

JEE MAINS SAMPLE PAPER- 1 PHYSICS SOLUTIONS AND ANSWR KEY

1. a	2. b	3. a	4. b	5. a	6. a	7. a	8. c	9. c	10. b
11. a	12. a	13. a	14. b	15. b	16. a	17. a	18. c	19. a	20. d
21. a	22. a	23. b	24. c	25. a	26. c	27. b	28. d	29. d	30. a

1. Let F $\alpha P^a V^b T^c$

 $\Rightarrow [F] = [P]^{a}[V]^{b}[T]^{c}$ $[F] = [ML^{-1}T^{-2}]^{a}[LT^{-1}]^{b}[T]^{c}$ $[MLT^{-2}] = [M^{a}L^{-a+b}T^{-2a-b+c}]$ Comparing, a = 1, - a + b = 1 \Rightarrow b = 2 - 2a - b + c = -2 \Rightarrow - 2 - 2 + c = -2 \Rightarrow c = 2 [F] = [P^{1}V^{2}T^{2}]

2.
$$\vec{u} = (\hat{i} + 2\hat{j}) \text{ ms}^{-1} \Rightarrow u_x = 1 \text{ } v_y = 2$$

$$\Rightarrow \tan \theta = \frac{1}{u_x} = 2$$
Range; R = $\frac{2v_x v_y}{g}$

$$= \frac{2(1)(2)}{10}$$

$$= \frac{2}{5}m$$
Trajectory,
 $v = x \tan \theta \left(1 - \frac{x}{2}\right)$

$$y = 2x \left(1 - \frac{5}{2} \right)$$
$$y = 2x - 5x^2$$

3. $V_{ang} = \frac{\text{Total displacement}}{\text{Total time}}$

rotai tiint

$$\underbrace{\frac{d}{2}}_{d} \underbrace{\frac{d}{2}}_{d} \underbrace{\frac{d}{2}}_{d}$$

$$V = \frac{d}{\frac{d}{2V_1} + \frac{d}{2V_2}}$$

After some rearranging we get

$$\Rightarrow \frac{2}{V} = \frac{1}{V_1} + \frac{1}{V_2}$$

4. For the system a = $\frac{F}{2m}$

For the second block

$$\begin{array}{c} a \\ \hline m \\ \hline \end{array} T \\ T = ma \\ = m \times \frac{F}{2m} \\ = \frac{F}{2} \\ 5. F = \frac{mv_{f} - mv_{1}}{t} \\ 0.1(0) - 0.1(10) \\ 0.1 \\ e -10N \text{ magnitude wise F = 10N} \\ 6. U_{1} = \frac{1}{2} kx_{1}^{2} \\ = \frac{1}{2} (240) \times (10 \times 10^{-2})^{2} \\ = 0.12 J \\ U_{1} = \frac{1}{2} kx_{1}^{2} \\ = \frac{1}{2} (240) \times (10 \times 10^{-2})^{2} \\ = 0.12 J \\ U_{1} - U_{2} = 0 \end{array}$$

7. The radius is r_n and the velocity is v_n . The de-broglie wavelength is

$$\frac{\frac{r_n}{h}}{mv_n} = \frac{mv_nr_n}{h}$$
But $mv_nr_n = \frac{nh}{2\pi}$
Therefore, $\frac{\frac{r_n}{h}}{mv_n} = \frac{n}{2\pi}$

8. f = 30 cm

 $R_0 = 10 c$

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
$$\frac{1}{30} = (n-1)\left(\frac{1}{\infty} - \left(\frac{1}{-10}\right)\right)$$
$$\Rightarrow n-1 = \frac{1}{3}$$
$$\Rightarrow n = \frac{4}{3} = 1.33$$

9.
$$E_k = \frac{1}{2} mu^2$$

At the highest point of the trajectory,

U = mg H

$$=$$
mg $\times \frac{u^2 \sin^2 \theta}{2g}$

 $=\frac{1}{2}mv^{2}\sin^{2}\theta$

 $=E_k sin^2 \theta$

```
10. Initial energy E_1 = (1) (-80) + 1(640) = 560 cal
```

Let the final state be completely liquid state (water)

E_f = mct

= (2) (1)t

⇒ 2t = 560

 \Rightarrow t = 280°C. Water cannot exist at 280°C. Thus all steam has not condensed. The final temperature is thus 100°C.

11. The following is the reflection diagram.

12. For every α particle emission neutrons and protons both decrease by two and for every positron emission proton number decreases by 1.

Initial neutron number: A – Z Initial proton number: Z

 $Z^{X^A} \xrightarrow{3\alpha} Z - 6^{X^{A-12}} \xrightarrow{2ct} Z - 4^{X^{A-12}}$ Number of neutrons is A - 12 - (Z - 4) = A - Z - 8Number of protons is Z - 4

13.

14. The acceleration is ;a = $\frac{qE}{m}$

Aslo,
$$v = u + at$$

 $v = 0 + \frac{qE}{m}t$
 $v = \frac{qE}{m}t$

The kinetic energy is

$$k = \frac{1}{2} mv^{2}$$
$$= \frac{1}{2} \times m \left(\frac{qEt}{m}\right)^{2}$$
$$= \frac{q^{2}E^{2}t^{2}}{2m}$$

15. Motorcyclist listens to two apparent frequencies police car:

$$f_1 = f_{01} \left(\frac{330 + v}{330} \right)$$
$$= 165 \left(\frac{330 + v}{330} \right)$$
$$= \left(\frac{330 + v}{2} \right)$$

Since no beats are present,

$$f_1 = f_2$$

330-v 330+y

2

 \Rightarrow v = 22 ms⁻

2

16. Since the voltage across the resistor is 40V, we have

Applying KVL to the loop

$$-40 - 10R - 20 + 100 = 0$$

$$\Rightarrow$$
 R = 4 Ω

17. The intensity at a point on the screen where the path difference is Δx is given by

$$I = I_0 \cos^2\left(\frac{\pi}{\lambda} \times \Delta x\right)$$
$$I = I_0 \cos^2\left(\frac{\pi}{\lambda} \times \frac{\lambda}{6}\right)$$
$$\Rightarrow \frac{1}{I_0} = \frac{3}{4}$$

18. The emf induced in the element is ,

20. Using the expression for the reactances, we have

$$X_{L} = 2\pi fL$$
$$= 2 \times \pi \times 50 \times \frac{200}{\pi} \times 10^{-3}$$
$$= 20 \Omega$$

Chain has a mass 'm' and length 'l'. Let a maximum length x of the chain project over the table. The length of the chain on the table is $A \times X$. Then the pulling force due to the length x should be balanced by the limiting friction acting to the left.

$$\frac{m}{l}xg = \mu \frac{m}{l} (l - x) g$$
$$x = \frac{\mu R}{1 + \mu}$$
$$= \frac{0.25l}{1.25}$$
$$= 0.2l$$

Therefore, it is 20%.

23. For the open tube

$$f_0 = \frac{v}{2l}$$

For the closed tube

$$f_0^1 = \frac{v}{4\left(\frac{l}{2}\right)} = f_0$$

24. At P, $B_{1} = 0$ $B_{2} = \frac{\mu_{0}i}{4R} = \frac{\mu_{0}\pi i}{4\pi R}$ 25. A and B are axial points $|V_{A}| = |V_{B}| = \frac{kp}{r^{2}} \cos 0^{\circ}$

$$|V_A| = |V_B| = \frac{1}{r^2} \cos(\theta)$$
$$= \frac{kp}{r^2}$$

C and D are equatorial points. Thus,

$$V_{\rm C} = V_{\rm D} = \frac{\rm kp}{\rm r^2}\cos 90$$

= 0

26.
$$\phi = \frac{\pi}{3}$$

 $V_{\rm rms} = \frac{100}{\sqrt{2}}$

 $i_{rms} = \frac{100}{\sqrt{2}}$

 $P_{avg} = V_{rms}i_{rms} \cos \varphi$

1 2

$$=\frac{100}{\sqrt{2}}\times\frac{100}{\sqrt{2}}\times$$

= 2500 W

27. $\phi = 8t^2 - 4t + 1$

We have

$$\in = -\frac{d\phi}{dt}$$

$$= -16t + 4$$

$$\in I_{t=0.1s} = -1.6 + 4$$

$$= 2.4 V$$

$$i = \frac{\epsilon}{R}$$

$$= \frac{2.4}{10}$$

$$= 0.24 A$$

28. Using dimensional analysis, we have

$$\begin{bmatrix} L \\ R \end{bmatrix} = [T] \Rightarrow \begin{bmatrix} R \\ L \end{bmatrix} = [T^{-1}]$$
$$[RC] = [T] \Rightarrow \begin{bmatrix} \frac{1}{RC} \end{bmatrix} = [T^{-1}]$$
$$\begin{bmatrix} \frac{1}{\sqrt{LC}} \end{bmatrix} = [T^{-1}]$$
Only [RCL] \neq [T^{-1}]

29. We can write the following truth table from the graph

A	В	С
0	0	0
1	1	1
0	1	0
1	0	0

This truth table belongs to the AND gate

30. 15 years is three half lives

Thus, N = $\frac{N_0}{2^3} = \frac{N_0}{8}$

CHEMISTRY SOLUTION AND ANSWER KEY

31.b	32. d	33.c	34.c	35.b	36.d	37.b	38.c	39.b	40.d
41.a	42.c	43.c	44.b	45.b	46.c	47.c	48.a	49.d	50.d
51.d	52.d	53.c	54.c	55.b	56.c	57.c	58.d	59.c	60.c

31. (b)

Sol: Conceptual

32. (d)

Sol: CaC₂ + 2H₂O → C₂H₂ + Ca(OH)₂ or 64g ------ 26g 64kg ------ 26kg C₂H₂ + H₂→ C₂H₄ 26kg ----- 28kg ∴ 64kg of CaC₂ gives 28kg of ethylene or polyethylene

33. (c)

Sol: EWG increases reactivity towards nucleophilic substitution, EDG decreases reactivity towards nucleophilic substitution.

34. (c)

Sol: $C_2H_5OH + SOCl_2 \xrightarrow{pyridine} C_2H_5Cl + SO_2 + HCl$ (A) (B) $C_2H_5OH + Na \rightarrow C_2H_5ONa + 1/2 H_2$ (X) (C) $C_2H_5Cl + NaOC_2H_5 \rightarrow C_2H_5 - O - C_2H_5 + NaCl$ (B) (C)

35. (b)

37. (b) Sol:Acidity α - I effect

38. (c) Sol: I (CH₃ COO)₂Ca $\xrightarrow{\Delta}$ CH₃COCH₃ (A)

 $\Lambda^{0}_{Agcl} = \frac{K \times 1000}{s}$ $s = -\frac{K \times 1000}{\Lambda^{0}_{Agcl}} = \frac{1.86 \times 10^{-6} \times 1000}{137.2} = 1.31 \times 10^{-5} M$ 45. (b)

Sol:

46. (c)

Sol: lonisation energy = -(energy of the 1st orbit) Energy of 1st orbit of $Li^{+2} = -13.6 \times 9$ ($\because \Xi$ -for $Li^{+2} = 3$) = -122.4evIonisation energy of $Li^{+2} = -(-122.4) = 122.4ev$

47.(C)

Sol:Ka= Ka₁× Ka₂ = $1 \times 10^{-5} \times 5 \times 10^{-10} = 5 \times 10^{-15}$

48.(a) Sol: $\frac{P_1d_1}{T_1} = \frac{P_2d_2}{T_2}$

49.(d)

Sol: $[Ni(CN)_4]^{2-}$ is with dsp^2 hybridization and $\mu = 0$ $[Ni(CN)_4]$ is with sp^3 hybridization and $\mu = 0$ BM $[Cu(NH_3)_4]^{2+}$ is with dsp^2 hybridization with $\mu = 1.732$ BM $[Pd(CI)_4]^{2-}$ is with dsp^2 hybridization with $\mu = 0$ BM

50.Ans(d)

Sol: boiling point of $NH_3 > PH_3$ due intermolecular hydrogen bonding

51. Ans(d)

Sol: Acidic nature of hydrides increases from H_2O to H_2Te

52. Ans(d)

Sol: conceptual

53. Ans(c)

Sol: it is an application of micro cosmic salt

54. Ans:(c)

Sol: Conceptual

55. Ans(b)

Sol: acidic nature of oxides increases in a period from left to right

56. Ans(c)

Sol:Dichromate salts react with hydrogen peroxide in acid medium and gives blue colour

57. Ans (c) Sol. 50,000

58. Ans (d)

Sol: Since it is obtained by condensation polymensation of only one type of monomer i.e., capvolactam.

59. Ans (c)

Sol: Conceptual

60. Ans (c)

Sol: Oxides of sulphur and nitrogen with dust and smoke combine with condensed water vapors andforms smog.

MATHEMATICS

61. b	62. c	63. b	64. c	65. b	66. a	67. d	68. a	69. c	70. a
71. b	72. d	73. d	74. a	75. b	76. a	77. c	78. c	79. c	80. a
81. c	82. d	83. d	84. b	85. a	86. b	87. a	88. d	89. c	90. c

Area
$$\Delta OMN = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ a & a/2 & 1 \\ a/2 & a & 1 \end{vmatrix} = \frac{3a^2}{8}$$
, Area of square = a^2
 \therefore Ratio is $a^2 : \frac{3a^2}{2} \implies 8:3$

62. Sol: (c)

8

The line 5x - 2y + 6 = 0 cuts y-axis at Q(0, 3). Clearly PQ is the length of the tangent drawn from Q on the circle

$$x^{2} + y^{2} + 6x + 6y = 2$$
 $\Rightarrow PQ = \sqrt{0 + 9 + 6 \times 0 + 6 \times 3 - 2} = 5$

63. Sol: (b)

Equation of tangent of slope m is $y = mx + \frac{1}{m}$ which passes through $(1, 4) \Rightarrow m^2 - 4m + 1 = 0$ $\tan\theta = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right| \Rightarrow \tan\theta = \frac{\sqrt{(m_1 + m_2)^2 - 4m_1 m_2}}{1 + m_1 m_2} \Rightarrow \tan\theta = \frac{\sqrt{16 - 4}}{2} = \sqrt{3}$

 $\cdot \theta = 60^{\circ}$

64. Sol: (c) Sum of 100 items = 49 × 100 = 4900 Sum of items = 60 + 70 + 80 = 210 Sum of items replaced = 40 + 20 + 50 = 110∴ New sum = 4900 – 110 + 210 = 5000 $\therefore \text{ Correct mean} = \frac{5000}{100} = 50$ 65. Sol: (b) Equation of the pair of Asymptotes is $3x^2 - y^2 + k = 0$ But passes through origin \Rightarrow k = 0 : Asymptotes are $3x^2 - y^2 = 0$: Angle α between them $\alpha = 2 \text{Tan}^{-1} \left\{ \frac{2\sqrt{0+3}}{3-1} \right\}$ $\therefore \alpha = \frac{2\pi}{3}$ 66. Sol: (a) $\stackrel{O}{\rightarrow} P \rightarrow (\sim \quad V r) \text{ is } F \Rightarrow \stackrel{O}{\rightarrow} \text{ is } T, \ \sim \quad V r \text{ is } F$ $\Rightarrow P is T, \sim is F, r is F$ $\Rightarrow \stackrel{\circ}{\neq}$ is T, is T, r is F 67. (d) $Lt = \frac{(1 - \cos x)(1 + \cos x + \cos^2 x)}{\sin 3x \cdot \sin 5x} = \frac{3/2}{3.5} = \frac{1}{10}$ Sol: $\Rightarrow 2x + 2y \frac{dy}{dx} = 0$ 68. (a) $x^2 + y^2 = 1$ $\Rightarrow \frac{dy}{dx} = \frac{-x}{y}$ 69.(c) $\frac{dy}{dx} = m = 3x^2 - 4x = 12 - 8 = 4$ AT = $\left| \frac{y_1 \sqrt{1 + m^2}}{m} \right| = \frac{4 \cdot \sqrt{17}}{4} = \sqrt{17}$ 70. (a) $a\cos x + \frac{1}{3}$ · 3 $\cos 3x = 0$ for $x = \frac{\pi}{3}$ a $\frac{1}{2}$ + (-1) = 0 a = 2

71. (b) Let
$$f(x) = ax^3 + bx^2 + cx$$

 $f(0) = 0 = f(1) \Rightarrow a + b + c = 0$
72. (d) $\int e^x \left(\frac{x+2}{x+3} + \frac{1}{(x+3)^2}\right) dx = e^x \cdot \left(\frac{x+2}{x+3}\right) + C$
73. (d) $f(x) = \log\left(\frac{2-\sin x}{2+\sin x}\right)$ is an odd function
 $\therefore \int_{-\pi/2}^{\pi/2} f(x) dx = 0$
74. (a) Area = 4
75. (b) $y = vx \Rightarrow \sin^{-1}\left(\frac{y}{x}\right) = \log x$
 $\Rightarrow y = x = e^{\pi/2}$
76. Sol: (a)
 $\overline{a} \cdot \overline{b} > 0 \Rightarrow 2\lambda^2 - 3\lambda + 1 > 0 \Rightarrow \lambda < \frac{1}{2} \text{ or } \lambda > 1 \qquad \dots (1)$
 $\overline{b} < 0, \ \overline{b} \cdot j < 0, \ \overline{b} \cdot k < 0 \Rightarrow \lambda < 0$
Form (1) and (2), $\lambda \in (-\infty, 0)$
77. Sol: (c)
[U, $\nabla, \overline{W}] = \overline{U} \cdot (\nabla \cdot \overline{W}) = \overline{U} \cdot (3i - 7) - k)$
 $= |\overline{U}||3i - \sqrt{j} - k|\cos 0$
 $\therefore \text{ Maximum value of } [\overline{U}, \overline{\nabla}, \overline{W}] = \sqrt{59}$. ($\because \cos\theta \le 1$)
78. Sol: (c)
Equation of the plane is $3(x - 1) + (y - 1) + 4(z - 1) = 0$
 $\Rightarrow 3x + 4y - 7 = 0$
 $\therefore \text{ Dist. from origin } = \frac{1 - 71}{\sqrt{3^2 + 4^2}} = \frac{7}{5}$
79. Sol: (c)
Let P be the required point on AB. Let P divides AB in the ratio $\lambda : 1$
 $P = \left(\frac{11\lambda - 9}{\lambda + 1}, \frac{4}{\lambda + 1}, \frac{5 - \lambda}{\lambda + 1}\right), \text{ OPL } \text{ AB } \Rightarrow 20 \left(\frac{11\lambda - 9}{\lambda + 1}\right) - 4 \left(\frac{4}{\lambda + 1}\right) - 6 \left(\frac{5 - \lambda}{\lambda + 1} = 0$
 $\therefore \lambda = 1 \Rightarrow P = (1, 2, 2)$

80. Sol: (a) $\begin{vmatrix} 3 & -2 & 1 \\ 4 & -3 & 4 \\ 2 & -1 & m \end{vmatrix} = 0 \qquad \Rightarrow m = -2$ 81. Sol: (c) $n(s) = 3^5 = 243$ $n(E) = 3({}^{5}C_{2} \cdot {}^{3}C_{2} \cdot {}^{3}C_{1}) + 3({}^{5}C_{1} \cdot {}^{4}C_{1} \cdot {}^{3}C_{3}) = 150$ $P(E) = \frac{n(E)}{n(S)} = \frac{50}{81}$ 82. Sol: (d) $P(W) = \frac{1}{6}, P(L) = \frac{5}{6}$ $P(A) = \frac{1}{6} + \left(\frac{5}{6}\right)^2 \cdot \frac{1}{6} + \left(\frac{5}{6}\right)^4 \cdot \frac{1}{6} + \dots = \frac{6}{11}$ 83. Sol: (d) Sol: $(x^2 + (x^6 - 1)^{1/2})^5 + (x^2 - (x^6 - 1)^{1/2})^5$ $= 2 ({}^{5}C_{0} (x^{2})^{5} + {}^{5}C_{2} (x^{2})^{3} (x^{6} - 1) + {}^{5}C_{4}x^{2} (x^{6} - 1)^{2})$ Here last term is of 14 degree. 84. Sol. (**b**) $|z| = |z - \frac{4}{2} + \frac{4}{2}|$ $\leq \left| \mathbf{z} - \frac{4}{2} \right| + \left| \frac{4}{2} \right|$ ≤2+ 21 $|z|^2 - 2|2| \le 4$ $|z|^2 - 2|2| + 1 \le 5$ $\Rightarrow |z| \le \sqrt{5} + 1$ $\log_x y \quad \log_x z$ 85. Ans. (a) $\log_v x$ $\log_v z$ 1 $\log_z x - \log_z y$ 1 $= (1 - \log_z y \log_y z) - \log_x y (\log_y x - \log_z x \log_y z)$ $+\log_x z(\log_y x \log_z y - \log_z x)$ = $(1-1)-(1-\log_{x} y \log_{y} x)+(\log_{x} z \log_{z} x - 1) = 0$ {Since $\log_x y \cdot \log_y x = 1$ }.

86. Sol: (b)

Last digit is zero and the remaining from digits are 1,2,4,5. Number of arrangements = 4! = 24

87. Sol: (a) $x - \frac{2}{x-1} = 1 - \frac{2}{x-1} - \dots - (1)$ $\Rightarrow x^2 - x - 2 = x - 1 - 2$ $\Rightarrow x^2 - 2x + 1 = 0$ $\Rightarrow (x - 1)^2 - 0$

 $\Rightarrow x - 1 = 0 \Rightarrow x = 1$ But when x = 1 (1) is not divined \therefore

∴ No root

88. Sol: (d)

$$\tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ}$$

=
$$\tan 9^{\circ} + \cot 9^{\circ} - (\tan 27^{\circ} + \cot 27^{\circ})$$

=
$$\frac{1}{\sin 9^{\circ} \cdot \cos 9^{\circ}} - \frac{1}{\sin 27^{\circ} \cos 27^{\circ}}$$

=
$$\frac{2[\sin 54^{\circ} - \sin 18^{\circ}]}{\sin 18^{\circ} \cdot \sin 54^{\circ}} = 4$$

89. Sol: (c)

 $2^{78} + 2^3 \cdot 2^{75} = 8 \ (2^5)^{15} = 8(1+31)^{15} = 8\{{}^{15}C_0 + {}^{15}C_1 \ 31 + \dots + {}^{15}C_{15}(31)^{15}\}$ $2^{78} = 8 + \text{ an integer multiple of } 31$ $\frac{2^{78}}{31} = \frac{8}{31} + \text{ an integer}$

90. Sol: (c) $|z_1 + z_2|^2 = |z_1 - z_2|^2$

$$\Rightarrow$$
 z₁. \overline{z}_2 + \overline{z}_1z_2 =0

 $i.ez_1.\overline{z}_2 + \overline{z_1.\overline{z}_2} =$

$$\Rightarrow$$
Re(z_1 . \overline{z}_2)=0

Cut
$$z_1 = r, e^{i\theta_1}, z_2 = r_2 e^{i\theta_2}$$

$$\Rightarrow$$
Re $z_1.\overline{z}_2=r_1r_2e^{i(\theta_1-\theta_2)}=0$

$$\Rightarrow$$
can($\theta_1 - \theta_2$) = 0

$$\Rightarrow \theta_1 - \theta_2 = \pm \frac{\pi}{2}$$