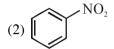
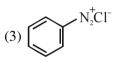

JEE (MAIN) – 2018 TEST PAPER WITH ANSWER (HELD ON SUNDAY 08TH APRIL, 2018)


PART – A CHEMISTRY


- 1. Which of the following salts is the most basic in aqueous solution ?
 - (1) CH₃COOK
- (2) FeCl₃
- (3) Pb(CH₂COO)₂
- (4) Al(CN)₂

Ans. (1)

2. Which of the following compounds will be suitable for Kjeldahl's method for nitrogen estimation?

Ans. (1)

- **3.** Which of the following are Lewis acids?
 - (1) AlCl₃ and SiCl₄
 - (2) PH₃ and SiCl₄
 - (3) BCl₃ and AlCl₃
 - (4) PH₃ and BCl₃

Ans. (3)

4. Phenol on treatment with CO₂ in the presence of NaOH followed by acidification produces compound X as the major product. X on treatment with (CH₃CO)₂O in the presence of catalytic amount of H₂SO₄ produces:

(3)
$$CO_2H$$
 CO_2H CH_3 CO_2H

5. An alkali is titrated against an acid with methyl orange as indicator, which of the following is a correct combination?

Base	Acid	End point
(1) Strong	Strong	Pinkish red
		to yellow
(2) Weak	Strong	Yellow to
		pinkish red
(3) Strong	Strong	Pink to
		colourless
(4) Weak	Strong	Colourless to
		pink

Ans. (2)

- 6. An aqueous solution contains $0.10 \,\mathrm{M}\,\mathrm{H_2S}$ and $0.20 \,\mathrm{M}\,\mathrm{HCl}$. If the equilibrium constants for the formation of HS⁻ from H₂S is 1.0×10^{-7} and that of S²⁻ from HS⁻ ions is 1.2×10^{-13} then the concentration of S²⁻ ions in aqueous solution is:
 - $(1) 3 \times 10^{-20}$
- $(2) 6 \times 10^{-21}$
- $(3) 5 \times 10^{-19}$
- $(4)\ 5\times10^{-8}$

Ans. (1)

7. The combustion of benzene (l) gives CO₂(g) and H₂O(l). Given that heat of combustion of benzene at constant volume is -3263.9 kJ mol⁻¹ at 25° C; heat of combustion (in kJ mol⁻¹) of benzene at constant pressure will be -

 $(R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1})$

- (1) 452.46
- (2) 3260
- (3) -3267.6
- (4) 4152.6

Ans. (3)

- **8.** The compound that does not produce nitrogen gas by the thermal decomposition is
 - $(1) (NH_4)_2 Cr_2 O_7$
 - $(2) NH_4NO_2$
 - $(3) (NH_4)_2SO_4$
 - (4) $Ba(N_3)_2$

Ans. (3)

9. How long (approximate) should water be electrolysed by passing through 100 amperes current so that the oxygen released can completely burn 27.66 g of diborane?

(Atomic weight of B = 10.8 u)

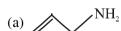
- (1) 0.8 hours
- (2) 3.2 hours
- (3) 1.6 hours
- (4) 6.4 hours

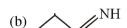
Ans. (2)

- **10.** Total number of lone pair of electrons in I_3^- ion is
 - (1)6

- (2) 9
- (3) 12
- (4) 3

Ans. (2)


- 11. When metal 'M' is treated with NaOH, a white gelatinous precipitate 'X' is obtained, which is soluble in excess of NaOH. Compound 'X' when heated strongly gives an oxide which is used in chromatography as an adsorbent. The metal 'M' is
 - (1) Ca
- (2) Al
- (3) Fe
- (4) Zn


Ans. (2)

- **12.** According to molecular orbital theory, which of the following will not be a viable molecule?
 - (1) He_{2}^{+}
- (2) H_2
- (3) H_2^{2}
- (4) He_2^{2+}

Ans. (3)

13. The increasing order of basicity of the following compounds is:

- (d) NHCH
- (1) (b) < (a) < (c) < (d)
- (2) (b) < (a) < (d) < (c)
- (3) (d) < (b) < (a) < (c)
- (4) (a) < (b) < (c) < (d)

Ans. (2)

- **14.** Which type of 'defect' has the presence of cations in the interstitial sites?
 - (1) Vacancy defect
 - (2) Frenkel defect
 - (3) Metal deficiency defect
 - (4) Schottky defect

Ans. (2)

15. Which of the following compounds contain(s) no covalent bond(s) ?

KCl, PH₃, O₂, B₂H₆, H₂SO₄

- (1) KCl, H₂SO₄
- (2) KC1
- (3) KCl, B_2H_6
- (4) KCl, B₂H₆, PH₃

Ans. (2)

16. The oxidation states of

Cr in $[Cr(H_2O)_6]Cl_3$, $[Cr(C_6H_6)_2]$, and $K_2[Cr(CN)_2(O)_2(O_2)(NH_3)]$ respectively are :

- (1) +3, +2, and +4
- (2) +3, 0, and +6
- (3) +3, 0, and +4
- (4) +3, +4, and +6

Ans. (2)

- 17. Hydrogen peroxide oxidises $[Fe(CN)_6]^{4-}$ to $[Fe(CN)_6]^{3-}$ in acidic medium but reduces $[Fe(CN)_6]^{3-}$ to $[Fe(CN)_6]^{4-}$ in alkaline medium. The other products formed are, respectively:
 - (1) $(H_2O + O_2)$ and $(H_2O + OH^-)$
 - (2) H_2O and $(H_2O + O_2)$
 - (3) H_2O and $(H_2O + OH^-)$
 - $(4) (H_2O + O_2)$ and H_2O

Ans. (2)

- 18. Glucose on prolonged heating with HI gives:
 - (1) 1-Hexene
 - (2) Hexanoic acid
 - (3) 6-iodohexanal
 - (4) n-Hexane

Ans. (4)

19. The predominant form of histamine present in human blood is $(pK_a, Histidine = 6.0)$

$$(1) \bigvee_{\substack{N \\ N \\ H}}^{\stackrel{\oplus}{N}} \bigvee_{\substack{N \\ H}}^{\stackrel{\oplus}{N}}$$

$$(2) \stackrel{\text{H}}{\underset{\text{H}}{\bigvee}} N \longrightarrow NH_2$$

Ans. (3)

- 20. The recommended concentration of fluoride ion in drinking water is up to 1 ppm as fluoride ion is required to make teeth enamel harder by converting [3Ca₃ (PO₄)₂·Ca(OH)₂] to:
 - (1) $[3(CaF_2)\cdot Ca(OH)_2]$
 - (2) $[3(Ca_3(PO_4)_2 \cdot CaF_2]$
 - (3) $[3(Ca(OH)_2] \cdot CaF_2]$
 - (4) [CaF₂]

Ans. (2)

21. Consider the following reaction and statements:

 $[Co(NH_3)_4Br_2]^+ + Br^- \rightarrow [Co(NH_3)_3Br_3] + NH_3$

- (I) Two isomers are produced if the reactant complex ion is a *cis*-isomer.
- (II) Two isomers are produced if the reactant complex ion is a *trans*-isomer.
- (III) Only one isomer is produced if the reactant complex ion is a *trans*-isomer.
- (IV) Only one isomer is produced if the reactant complex ion is a *cis*-isomer.

The correct statements are:

- (1) (I) and (III)
- (2) (III) and (IV)
- (3) (II) and (IV)
- (4) (I) and (II)

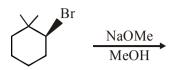
Ans. (1)

- **22.** The *trans*-alkenes are formed by the reduction of alkynes with :
 - (1) NaBH₄
 - (2) Na/liq.NH₃
 - (3) Sn-HCl
 - (4) H₂-Pd/C, BaSO₄

Ans. (2)

- 23. The ratio of mass percent of C and H of an organic compound $(C_XH_YO_Z)$ is 6:1. If one molecule of the above compound $(C_XH_YO_Z)$ contains half as much oxygen as required to burn one molecule of compound C_XH_Y completely to CO_2 and H_2O . The empirical formula of compound $C_XH_YO_Z$ is:
 - $(1) C_2H_4O$
- (2) $C_3H_4O_2$
- (3) $C_2H_4O_3$
- $(4) C_3H_6O_3$

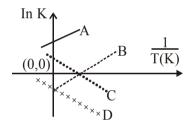
Ans. (3)


24. Phenol reacts with methyl chloroformate in the presence of NaOH to form product A. A reacts with Br₂ to form product B. A and B are respectively:

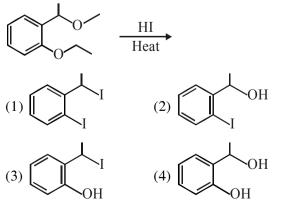
$$(2) \bigcirc O \bigcirc \text{ and } \bigcirc O \bigcirc O \bigcirc O$$

$$(3) \bigcirc OH \bigcirc OCH_3 \text{ and } \bigcirc OH \bigcirc OCH_3$$

Ans. (2)


25. The major product of the following reaction is:

Ans. (1)


26. Which of the following lines correctly show the temperature dependence of equilibrium constant, K, for an exothermic reaction?

- (1) B and C
- (2) C and D
- (3) A and D
- (4) A and B

Ans. (4)

27. The major product formed in the following reaction is:

Ans. (3)

- 28. A aqueous solution contains an unknown concentration of Ba²⁺. When 50 mL of a 1 M solution of Na₂SO₄ is added, BaSO₄ just begins to precipitate. The final volume is 500 mL. The solubility product of BaSO₄ is 1×10⁻¹⁰. What is the original concentration of Ba²⁺?
 - $(1) 2 \times 10^{-9} M$
 - (2) $1.1 \times 10^{-9} \text{ M}$
 - (3) $1.0 \times 10^{-10} \text{ M}$
 - $(4) 5 \times 10^{-9} M$

Ans. (2)

- **29.** At 518° C, the rate of decomposition of a sample of gaseous acetaldehyde, initially at a pressure of 363 Torr, was 1.00 Torr s⁻¹ when 5% had reacted and 0.5 Torr s⁻¹ when 33% had reacted. The order of the reaction is :
 - (1) 3

(2) 1

- (3) 0
- (4) 2

Ans. (2)

- **30.** For 1 molal aqueous solution of the following compounds, which one will show the highest freezing point?
 - (1) [Co(H₂O)₅Cl]Cl₂.H₂O
 - $(2) \left[\mathrm{Co(H_2O)_4Cl_2}\right]\mathrm{Cl.2H_2O}$
 - (3) $[Co(H_2O)_3Cl_3].3H_2O$
 - $(4) \left[\text{Co(H}_2\text{O)}_6 \right] \text{Cl}_3$

Ans. (3)