
NEET QUESTION PAPER (2018) BOOKLET CODE - LAACH (SS) 1. A battery consists of a variable number 'n' of 4. identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?

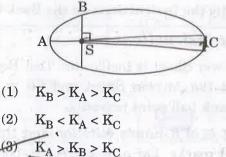
A set of 'n' equal resistors, of value 'R' each, are 2. connected in series to a battery of emf 'E' and \$=(n+1) internal resistance 'R'. The current drawn is I. E-loIR. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from = & x loI Battery becomes 10 I. The value of 'n' is n 2 lato [1]

identification. The colour code sequence will be B

n2-lon +n-10/030

n (1-10)+1 (n-10). n=10

0


6606

13 Yellow – Violet – Orange – Silver

(4)Violet - Yellow - Orange - Silver

CH/SS/Page 2

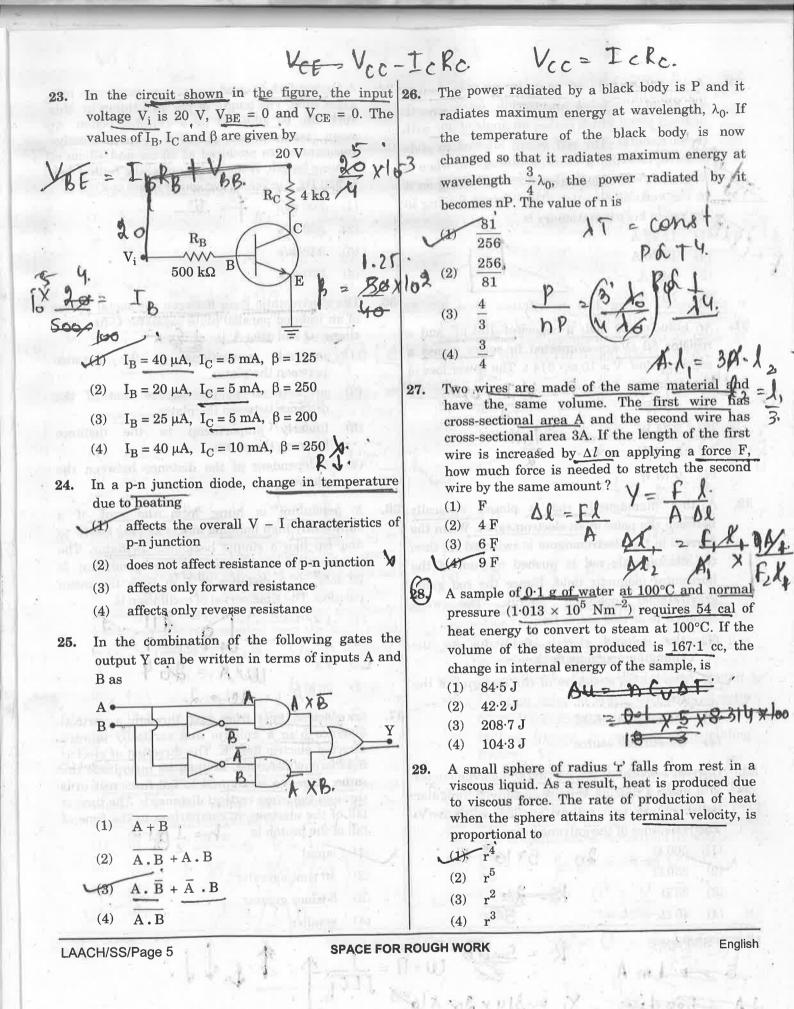
The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are KA, KB and KC, respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

$$(4) \quad K_A < K_B < K_C$$

- If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is *not* correct?
- 'g' on the Earth will not change. (1)
- Time period of a simple pendulum on the (2)Earth would decrease.
- (3)Walking on the ground would become more difficult.
- (4)Raindrops will fall faster.

6.

SPACE FOR ROUGH WORK


A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy (Kt) as well as rotational kinetic energy (K_r) simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is (1)2:5(2) 10 ; 7 1 mv2 7:10 1+21 A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere ? Angular momentum I () & . (1)(2) Rotational kinetic energy $\perp I \oplus 2$ (3)Moment of inertia TX

Angular velocity

English

The volume (V) of a monatomic gas varies with An astronomical refracting telescope will have its temperature (T), as shown in the graph. The large angular magnification and high angular ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from resolution, when it has an objective lens of state A to state B, is small focal length and small diameter (1)large focal length and large diameter (2) large focal length and small diameter (3)(4) small focal length and large diameter 0 Unpolarised light is incident from air on a plane 2 9 (1) $\overline{7}$ surface of a material of refractive index 'µ'. At a particular angle of incidence 'i', it is found that (2)refracted rays are and reflected the perpendicular to each other. Which of the (3)3 130 11415.04 following options is correct for this situation ? (1) $i = \tan^{-1}\left(\frac{1}{\mu}\right)$ for $\phi \simeq \mu$. The fundamental frequency in an open organ 12. pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe (2) $i = \sin^{-1} \left(\frac{1}{n} \right)^{-1}$ is 20 cm, the length of the open organ pipe is AL 24/ × 20 16 cm (1)Reflected light is polarised with its electric 12.5 cm (3)(2)vector perpendicular to plane of the (3)'8 cm 40,13. incidence (A) 13.2 cm 2 The efficiency of an ideal heat engine working Reflected light is polarised with its electric 13. between the freezing point and boiling point of vector parallel to the plane of incidence \checkmark water, is $\eta = 1 - \frac{345}{373} - \frac{100}{373}$ 12.5% (1)10. In Young's double slit experiment the separation 6.25% (2)d between the slits is 2 mm, the wavelength λ of 373 100 0 254000 20% (3)26.8% the light used is 5896 Å and distance D between (4) 8238 At what temperature will the rms speed of the screen and slits is 100 cm. It is found that the oxygen molecules become just sufficient for angular width of the fringes is 0.20°. To increase escaping from the Earth's atmosphere? 5.896 the fringe angular width to 0.21° (with same λ (Given: 2 x 3 and D) the separation between the slits needs to Mass of oxygen molecule (m) = 2.76×10^{-26} kg - > 002.2 B=A Boltzmann's constant $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$ be changed to (1) 1.7 mm(1) $1.254 \times 10^4 \text{ K}$ 11-2=10-3 (2) 5.016×10^4 K 2.1 mm (2)125-44 -XX 1-38 X102 (8) $8.360 \times 10^4 \text{ K}$ 1.9 mm (3) (4)1.8 mm $2.508 \times 10^4 \text{ K}$ × 2073×1026 (4)SPACE FOR ROUGH WORK 0.91 LAACH/SS/Page 3 a2 = 40 21 1 40 T = 125.44 ×0

a = 6 m/8A toy car with charge q moves on a frictionless 19. An em wave is propagating in a medium with a horizontal plane surface under the influence of a velocity $V = V\hat{i}$. The instantaneous oscillating uniform electric field E. Due to the force q E, electric field of this em wave is along +y axis. its velocity increases from 0 to 6 m/s in one second duration. At that instant the direction of Then the direction of oscillating magnetic field of Q = 6 m/gthe field is reversed. The car continues to move the em wave will be along for two more seconds under the influence of this V= utat - x direction (1)field. The average velocity and the average speed 0=6+ax2 (2)- y direction of the toy car between 0 to 3 seconds are respectively + z direction 2 -(1)1.5 m/s, 3 m/s (4)- z direction 1 m/s, 3.5 m/s (2)1 m/s, 3 m/s20. The magnetic potential energy stored in a certain (4)2 m/s, 4 m/s16. inductor is 25 mJ, when the current in the A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the inductor is 60 mA. This inductor is of inductance figure. The wedge is given an acceleration 'a' 1112 = 25×103 'towards the right. The relation between a and θ 13·89 H for the block to remain stationary on the wedge (2)1.389 H ardo 1 x 2000 x 10-8 x1 (3)138.88 H a coro = 9 8ino (4)0·138 H ~ 25× 03 18 21. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm. If the object asino $a = g \tan \theta$ is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be (3) $a = \frac{g}{\sin \theta}$ 36 cm towards the mirroly $-\frac{1}{20} =$ (1)30 cm towards the mirror 31 =(2) $a = -\frac{g}{g}$ (4) $\cos e \theta$ 36 cm away from the mirror $\hat{\mathbf{v}}$ A student measured the diameter of a small stee 2-B 20×153 (4) 30 cm away from the mirror ball using a screw gauge of least count 24 260 VE 0.001 cm. The main scale reading is 5 mm and The refractive index of the material of a prism is 22. zero of circular scale division coincides with 6-0001 25 divisions above the reference level. If screw $\sqrt{2}$ and the angle of the prism is 30°. One of the gauge has a zero error of -0.004 cm, the correct two refracting surfaces of the prism is made a diameter of the ball is (1)0.529 cm mirror inwards, by silver coating. A beam of (2)0.053 cm monochromatic light entering the prism from the (3)0.525 cm (4)0.521 cm other face will retrace its path (after reflection The moment of the force, F = 4i + 5i18. from the silvered surface) if its angle of incidence (2, 0, -3), about the point (2, -2, -2), is given by on the prism is $V -7\hat{i} -4\hat{j} -8\hat{k}$ $T = F \times F$ (1)zero (2) $-7\hat{i} - 8\hat{j} - 4\hat{k}$ (3) $-4\hat{i} - \hat{j} - 8\hat{k}$ = (-27+k (4) $-8\hat{i} - 4\hat{j} - 7\hat{k}$ (4)60° **SRACE FOR ROUGH WORK** LAACH/SS/Page 4 English

00 p6 ... 100

A tuning fork is used to produce resonance in a A metallic rod of mass per unit length 34. 30. glass tube. The length of the air column in this 0.5 kg m^{-1} is lying horizontally on a smooth tube can be adjusted by a variable piston. At inclined plane which makes an angle of 30° with room temperature of 27°C two successive the horizontal. The rod is not allowed to slide resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork Hown by flowing a current through it when a is 320 Hz, the velocity of sound in air at 27°C is magnetic field of induction 0.25 T is acting on it n the vertical direction. The current flowing in 300 m/s (1)the rod to keep it stationary is (2)350 m/s 11.32 A 7(1) 339 m/s (3)14.76 A (2)330 m/s (4)(3)5.98 A The electrostatic force between the metal plates 7.14 A 35. (4)of an isolated parallel plate capacitor C having a charge Q and area A, is 1 SA An inductor 20 mH, a capacitor 100 μ F and a 31. inversely proportional to the distance resistor 50 Ω are connected in series across a (1)between the plates. source of emf, $V = 10 \sin 314 t$. The power loss in proportional to the square root of the (2)the circuit is P= V.I LOSO distance between the plates. (1)1.13 W linearly proportional to the distance (3)(2)2.74 W lox between the plates. 0 (3)0.43 W (4) independent of the distance between the plates. 0.79 W (4)A pendulum is hung from the roof of a A thin diamagnetic rod is placed vertically 36. 32. sufficiently high building and is moving freely to between the poles of an electromagnet. When the and fro like a simple harmonic oscillator. The current in the electromagnet is switched on, then acceleration of the bob of the pendulum is the diamagnetic rod is pushed up, out of the 20 m/s² at a distance of 5 m from the mean horizontal magnetic field. Hence the rod gains position. The time period of oscillation is energy. The work gravitational potential 14-15m T =2 1s(1)required to do this comes from 2s(2)the induced electric field due to the $(\mathbf{1})$ W? A = 264 πs changing magnetic field the lattice structure of the material of the $2\pi s$ 10 = 2. 6 (4)rod An electron falls from rest through a vertical 37. DE SUIC (3) the magnetic field distance h in a uniform and vertically upward directed electric field E. The direction of electric (4)the current source field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it Current sensitivity of a moving coil galvanometer 33. through the same vertical distance h. The time of is 5 div/mA and its voltage sensitivity (angular fall of the electron, in comparison to the time of deflection per unit voltage applied) is 20 div/V. $h = \frac{1}{2} Q t^2$ fall of the proton is The resistance of the galvanometer is equal (1) 20 = 5× 100. 500 Ω (1)10 times greater (2) 250Ω (2)5 times greater (3)(3) 25Ω (4)smaller 40Ω (4)English

46. The similarity of bone structure in the forelimbs of many vertebrates is an example of	5 52. Match the items given in Column I with those
(1) Adaptive radiation	Column II and select the correct option give
(2) Convergent evolution	below :
(3) Analogy	Column I Column II
Homology .	
47. In which disease does mosquito transmitted	a. Glycosuria i. Accumulation of uric acid in joints
pathogen cause chronic inflammation of lymphatic vessels ?	b. Gout ii. Mass of crystallised salts within the kidner
(1) Amoebiasis	c. Renal calculi iii. Inflammation in
(2) Ringworm disease	glomeruli
(3) Ascariasis	
(4) Elephantiasis	d. Glomerular iv Presence of glucose in nephritis urine
48. Conversion of milk to curd improves its	
nutritional value by increasing the amount of	b c d
(1) Vitamin E	(1) iv i ii iii
(2) Vitamin B ₁₂	(2) ii iii i iv
(3) • Vitamin A	(3) i ii iii iv
(4) ,Vitamin D	
49. Which of the following characteristics represent	(4) m n iv i
'Inheritance of blood groups' in humans?	53. Match the items given in Column I with those
a. Dominance 🗸	Column II and select the correct option give
b. Co-dominance V ' + A + B	below :
c. Multiple allele \checkmark : \downarrow \downarrow \downarrow	d is sin if we present to got showing the
d. Incomplete dominance y	Column I Column II
e. Polygenic inheritance 🗴.	(Function) (Part of Excretory
(1) a, c and e	System)
(2) b, d and é	a. Ultrafiltration . Henle's loop
a, b and c	b. Concentration ii. Ureter
(4) b, c and e homology	of urine
50. Among the following sets of examples for divergent evolution, select the <i>incorrect</i> option :	c. Transport of urine
Eye of octopus, bat and man	d. Storage of urine iv. Malpighian
(2) Brain of bat, man and cheetah \checkmark	corpuscle
(3) Heart of bat, man and cheetah \vee	v. Proximal
(4) Forelimbs of man, bat and cheetah \checkmark	convoluted tubule
51. Which of the following is not an autoimmune disease ?	a b c d
(1) Vitiligo	(1) v iv i iii
Alzheimer's disease	(2) \dot{v} iv i ii
(3) Rheumatoid arthritis \checkmark	. Inden - Ard
(4) Psoriasis V	
	(4) iv v ii iii

(

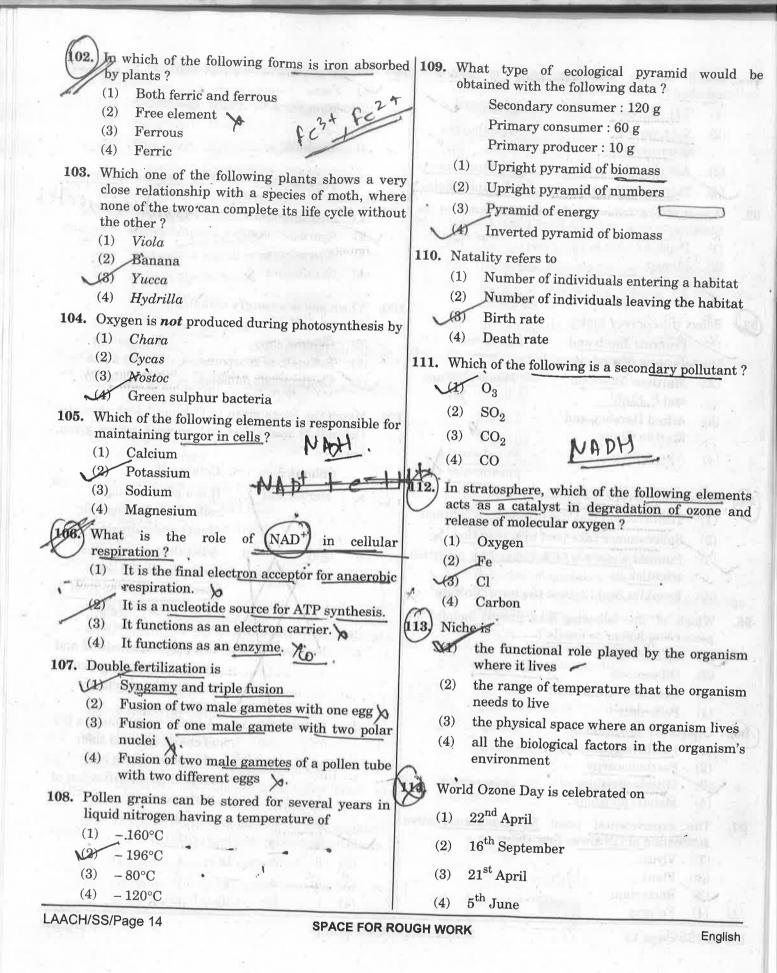
54.	The o	contraceptive 'SAHELI'	58.		ch of the following gastric cells indirectly
	(1)	is a post-coital contraceptive.		help	in erythropoiesis ?
	(2)	is an IUD. 🔊	~	(1)	Parietal cells
	(3)	increases the concentration of estrogen and		(2)	Goblet cells
	1	prevents ovulation in females. $>$		(3)	Mucous cells
~	(4)	blocks estrogen receptors in the uterus, preventing eggs from getting implanted.		(4)	Chief cells
		and all the second second second	59.	Mat	ch the items given in Column I with those in
35)	The from	amnion of mammalian embryo is derived		Colu belo	umn II and select the <i>correct</i> option given w:
	(1)	ectoderm and endoderm			Column I Column II
	(2)	mesoderm and trophoblast		a.	Fibrinogen . Osmotic balance
	(3)	endoderm and mesoderm		b.	Globulin ii. Blood clotting
	(4)	ectoderm and mesoderm			Albumin iii. Defence mechanism
56.	The sper	difference between spermiogenesis and miation is	*9	c.	a b c ii iii i
~		In spermiogenesis spermatozoa are formed,	N	(2)	i iii ii
		while in spermiation spermatozoa are			i ii iii
	R. and	released from sertoli cells into the cavity of seminiferous tubules.	1.15	(4)	iii ii i
	(0)				
	(2)	In spermiogenesis spermatozoa from sertoli cells are released into the cavity of	60.		cium is importan <u>t in skeletal</u> muscle
		seminiferous tubules, while in spermiation spermatozoa are formed.		-	traction because it
				(1)	prevents the formation of bonds between the myosin cross bridges and the actin
	(3)	In spermiogenesis spermatozoa are formed,			filament.
		while in spermiation spermatids are	11-	(2)	detaches the myosin head from the actir
		formed. 🗙	i depth	(4)	filament. b.
	(4)	In spermiogenesis spermatids are formed,		(3)	activates the myosin ATPase by binding to
		while in spermiation spermatozoa are			it. 🎾.
		formed.		(a)	binds to trop <u>onin to remove the masking</u> o
57.	Hor	mones secreted by the placenta to maintain			active sites on acti <u>n for myosin.</u>
		gnancy are	61.	Wh	ich of the following is an occupationa
	(1)	hCG, progestogens, estrogens,	01.		piratory disorder ?
	(1)	glucocorticoids		(1)	Emphysema
	(2)	hCG, hPL, progestogens, estrogens	21	(2)	Botulism
	(3)	hCG, hPL, estrogens, relaxin, oxytocin		(8)	Silicosis
	(4)	hCG, hPL, progestogens, prolactin		(4)	Anthracis

ş

60 M	
 62. Match the items given in Column I with those in Column II and select the correct option given below: Column I Column II a. Eutrophication i. UV-B radiation 	67. AGGTATCGCAT is a sequence from the codir strand of a gene. What will be the correspondin sequence of the transcribed mRNA? (1) UCCAUAGCGUA
 a. Eutrophication b. Sanitary landfill c. Snow blindness wi. Nutrient enrichment 	 (2) ACCUAUGCGAU (3) UGGTUTCGCAT (4) AGGUAUCGCAU
d. Jhum cultivation iv. Waste disposal	68. A woman has an X-linked condition on one of he
a b c d (1) i ii iv iii (2) iii iv i ii (3) i iii iv ii (4) ii i iii iv	X chromosomes. This chromosome can b inherited by (1) Both sons and daughters (2) Only grandchildren
Which one of the following population interactions is widely used in medical science for the production of antibiotics ?	(4) Only daughters
 (2) Parasitism (3) Mutualism (4) Commensalism (5) 40 100 	Column I Column II a. Proliferative Phase i. Breakdown of endometrial
64. Which part of poppy plant is used to obtain the drug "Smack"?	b. Secretory Phase
(1) Leaves	c. Menstruation hi. Luteal Phase
(2) Roots	a b c
(4) Flowers	(1) iii i ii
65. In a growing population of a country,	(2) ii iii i
 pre-reproductive individuals are less than the reproductive individuals. 	(3) i iii ii (4) iii ii i
(2) reproductive and pre-reproductive individuals are equal in number.	70. All of the following are part of an operon except
(3) reproductive individuals are less than the post-reproductive individuals.	(1) a promoter (2) an enhancer
NAT pre-reproductive individuals are more than the reproductive individuals.	(3) structural genes(4) an operator
36. All of the following are included in 'Ex-situ conservation' <i>except</i>	71. According to Hugo de Vries, the mechanism of evolution is
(1) Seed banks	(1) Minor mutations
(2) Botanical gardens	(2) Phenotypic variations
(4) Wildlife safari parks	(3) Saltation
(1) Whathe salari parks	(4) Multiple step mutations

	em	physema, respectiv	conditions in asthma a	and 75. W	orm	ione?	15	an amino acid derived
	(1)	Decreased res Inflammation of	piratory surface; bronchioles	(1	L)	Estriol		
	(2)	Increased resp Inflammation of	piratory surface; bronchioles X1 '	(2				dimbarrill
	(3)		er of bronchioles: Increa	sed (3	/	Ecdysone Epinephrine		Windowski () Windowski ()
	_4T		f bronchioles; Decreas	sed	.)	Epinepinine		and the start of the
73.	Col	tch the items given umn II and select	in Column I with those the <i>correct</i> option giv		hicl acor	n of the following rectly paired with	st: 1 its	ructures or regions is s function ?
	bel	ow : Column I	Column II	(1))	Corpus callosum		band of fibers connecting left and
	a.	Tricuspid valve	je Between left atriu and left ventricle	m				right cerebral hemispheres.
	b.	Bicuspid valve	ii. Between right ventricle and pulmonary artery	(2))]	Hypothalamus		production of releasing hormones and regulation of
	c.	Semilunar valve	iil. Between right atrium and right		1		i,	temperature, hunger and thirst,
		a b .c	ventricle	City .	1	imbic system	:	consists of fibre tracts that
	 (1) (2) (3) 	ii i iii i ii iii i iii <u>iii</u>				differences Juga Lor		interconnect different regions of brain; controls movement.
~	Colu	mn II and select	in Column I with those i the <i>correct</i> option give	(4)	Ņ	<u>Iedulla oblong</u> ata	:	controls respiration and cardiovascular reflexes.
	belov	w : Column I	Column II	77. Wh	ich nific	of the following cant role in osteop	ho	ormones can play a sis?
	a.	Tidal volume	i. 2500 – 3000 mI			arathyroid hormor	_	
	b.	Inspiratory Reserv	e ji. 1100 – 1200 mI	(2)	_	strogen and Parat		
		volume	X	(3)		rogesterone and A		The second
	c.	Expiratory Reserve volume	iii. 500 – 550 mL	(4)		ldosterone and Pro		
		Residual volume a b c	iv: 1000 – 1100 mL d	(78) The its p	tra olac	<u>nsparent lens</u> in t e by	he	human eye is held in
	(1)	iv iii ii	, i	(1)	-	Contraction and the second	che	ed to the ciliary body
	-	i iv ii	iii iii iii iii iii iiii iiii	(2)		nooth muscles atta		
r		iii i iv	iii mater all	(3)		aments attached t		
((4)	iii ii i	iv	~(4)	- P	aments attached t		

	(4) Enzymes of TCA cycle are present in mitochondrial matrix.	(4) Macropus				
	(3) Glycolysis occurs in cytosol.	(3) Chelone twitte				
	(2) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.					
84.	 Which of these statements is <i>incorrect</i>? (1) Oxidative phosphorylation takes place in outer mitochondrial membrane. 	a second s				
	(4) Polysome	(4) Dinoflagellates				
	(3) Polyhedral bodies	V37 Diatoms				
± *	(2) Plastidome	(2) Cyanobacteria				
	(1) Nucleosome	(1) Euglenoids				
	simultaneously. Such strings of ribosomes are termed as	89. Which of the following organisms are known as chief producers in the oceans?				
83.	Many ribosomes may associate with a single mRNA to form multiple copies of a polypeptide	9 th abdominal segment				
rul	(4) Proteins and lipids	(4) Presence of a boat shaped sternum on the				
1	(3) DNA and RNA	(2) Presence of caudal styles				
	(2) Nucleic acids and SER	(1) Presence of anal cerci (2) Forewings with darker tegmina				
	(1) Free ribosomes and RER	(1) Presence of anal cerci				
82.	Nissl bodies are mainly composed of	88. Which of the following features is used to identify a male cockroach from a female cockroach?				
	chromosomes	(4) Earthworm				
40	 (3) Allosomes – Sex chromosomes (4) Lampbrush – Diplotene bivalents 	(3) Tunicate				
S.	(3) Allosomes – Sex chromosomes	(2) Moth				
HUR	(2) Submetacentric – L-shaped chromososmes	(1) Starfish				
/	(1) Polytene – Oocytes of amphibians chromosomes	87. Which of the following animals does not undergo metamorphosis?				
81.	Select the <i>incorrect</i> match :	man half here and the state here and the				
	(4) Protein folding	excess water X				
	(3) Protein glycosylation	(3) having a contractile vacuole for removing				
P	(2) Cleavage of signal peptide	(2) using pseudopodia for capturing prey				
	(1) Phospholipid synthesis	(1) having two types of nuclei				
80)	Which of the following events does not occur in rough endoplasmic reticulum?	(4) Amphibia86. Ciliates differ from all other protozoans in				
	(4) Thecodont, Diphyodont, Homodont					
~	(3) Thecodont, Diphyodont, Heterodont	(3) Reptilia				
	(2) Pleurodont, Monophyodont, Homodont	(1) Osteichthyes				
	(1) Pleurodont, Diphyodont, Heterodont	(1) Osteichthyes				
	(1) Diana Last Diphyrodont IIstandont	system.				


а. "к

91.	Which of the following pairs is wrongly	98. Winged pollen grains are present in
2.0	matched ?	Pinus
	(1) T.H. Morgan : Linkage	(2) Mango
	(2) XO type sex : Grasshopper	(3) Cycas ,
	determination	
	(3) ABO blood grouping : Co-dominance	
	(4) Starch synthesis in pea : Multiple alleles	
92.	Which of the following flowers only once in its	
	life-time ?	(1) Saccharomyces Bosidionycet
	(1) Papaya	(2) Agaricus
	(2) Mango	(3) Alternaria
	(3) Jackfruit	(4) Neurospora '
>	(4) Bamboo species	(1) Itourosport g
60		100. Which one is <i>wrongly</i> matched ?
20	Select the <i>correct</i> match :	(1) Unicellular organism – Chlorella
-	(1) Francois Jacob and – Lac operon	(2) Gemma cups – Marchantia
10	Jacques Monod	(3) Biflagellate zoospores – Brown algae
	(2) Matthew Meselson – Pisum sativum and F. Stahl	(3) Diffagellate gametes – Brown algae (4) Uniflagellate gametes – Polysiphonia .
	(3) Alfred Hershey and – TMV	
	Martha Chase	101. Match the items given in Column I with those in
		Column II and select the <i>correct</i> option given
	(4) Alec Jeffreys - Streptococcus	below :
0		Column I Column II
94.) .	Select the correct statement :	a. Herbarium <i>j</i> . It is a place having a
	(1) Transduction was discovered by S. Altman.	collection of preserved
	(2) Spliceosomes take part in translation.	plants and animals.
	(8) Punnett square was developed by a British	
~	scientist.	b. Key X ji. A list that enumerates
	(4) Franklin Stahl coined the term "linkage".	methodically all the
2		A U opected toutin in an area
5.	Which of the following has proved helpful in	with brief description
	preserving pollen as fossils ?	aiding identification.
~	(1) Sporopollenin	c. Museum \bigvee iii Is a place where dried and
	(2) Oil content	A pressed plant specimens
	(3) Cellulosic intine	mounted on sheets are
~	(4) Pollenkitt	kept.
6)	Offsets are produced by	
Cons.	(1) Parthenogenesis >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
9	(2) Parthenocarpy	of characters and their
	(3) Mitotic divisions	alternates which are
	(4) Meiotic divisions.	helpful in identification of various taxa.
7.	The experimental proof for semiconservative	a b c d
	replication of DNA was first shown in a	M(1) iii iv i iii in an iii
	(1) Virus	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(2) Plant	
	(3) Bacterium	(3) <u>iii</u> ii <u>i</u> iv
	(4) Fungus	(4) i iv iii ii

LAACH/SS/Page 13

SPACE FOR ROUGH WORK

English

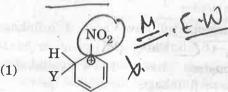
	(1)	Stems are usually unbranched in both Cycas and Cedrus.		con	new' variety of rice was patented by a foreign npany, though such varieties have been sent in India for a long time. This is related to
	(2)	Horsetails are gymnosperms.		(1)	Basmati
	(3)			(2)	Lerma Rojo
	(0)	Selaginella is heterosporous, while Salvinia is homosporous.		(3)	Sharbati Sonora
100	UT	Ovules are not enclosed by ovary wall in	0		Co-667
		gymnosperms, //	-	(4)	0-901
			123.	What	ich of the following is commonly used as a
116.		ndary xylem and phloem in dicot stem are			tor for introducing a DNA fragment in human
	-	luced by		lym	phocytes ?
	(1)	Axillary meristems	A 13	(1)	pBR 322
	(2)	Phellogen	6	(2)	λphage
	-(B)-	Vascular cambium	1 Bin	(3)	Ti plasmid
~	(4)	Apical meristems	Carrier and		Retrovirus
(117)	Swe	et potato is a modified_	1 1	-(4) Uso	of bioresources by multinational companies
\cup	(1)	Rhizome y · // // \'	144.		organisations without authorisation from the
	121	Tap root () ()	10.1		cerned country and its people is called
	(3)	Adventitious root	11.4	(1)	Bioexploitation
	(4)	Stem b	200 M	(2)	Biodegradation
110				(3)	Biopiracy
118.		imatophores occur in	af	(4)	Bio-infringement
	(1)	Submerged hydrophytes	0.0		bio-miningement
1.00	(2)	Carnivorous plants	125.	Sele	ect the <i>correct</i> match :
	(3)	Free-floating hydrophytes	0.17	(1)	G. Mendel – Transformation
N	(4)	Halophytes	010	(2)	T.H. Morgan – Transduction
(mg	Sele	ct the <i>wrong</i> statement :		(3)	$F_2 \times Recessive parent - Dihybrid cross$
U	(1)	Mitochondria are the powerhouse of the cell	100	(4)	Ribozyme – Nucleic acid
	(1)	in all kingdoms except Monerate v			KNA en.
	or	Pseudopodia are locomotory and feeding	126.		correct order of steps in Polymerase Chain
L		structures in Sporozoans.	- 14	0.00	ction (PCR) is
	(3)	Mushrooms belong to Basidiomycetes.	~	(1)	Denaturation, Annealing, Extension
	(4)	Cell wall is present in members of Fungi		(2)	Denaturation, Extension, Annealing
	(-) -	and Plantae.		(3)	Annealing, Extension, Denaturation
120	Com	parian strips occur in	127-	(4)	Extension, Denaturation, Annealing
120.		Endodermis	127.	In	India, the organisation responsible for
~			141.	the second se	essing the safety of introducing genetically
	(2)	Cortex			lified organisms for public use is
18.1	(3)	Pericycle	N	(1)	Genetic Engineering Appraisal Committee
	(4)	Epidermis		100	(GEAC)
121.	Plan	ts having little or no secondary growth are	1 12	(2)	Research Committee on Genetic
	(1)	Cycads			Manipulation (RCGM)
	(2)	Conifers		(3)	Council for Scientific and Industrial
	(3)	Deciduous angiosperms			Research (CSIR)
	IN	Grasses		(4)	Indian Council of Medical Research (ICMR)

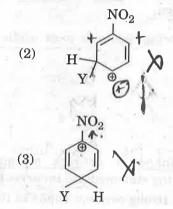
	136. On which of the following properties does the
homologous chromosomes begins is	coagulating power of an ion depend ?
(1) Zygotene	(1) The sign of charge on the ion alone
(2) Diakinesis	(2) Both magnitude and sign of the charge or
(3) Diplotene	the ion
(4) Pachytene	(3) Size of the ion alone
129. The Golgi complex participates in	(4) The magnitude of the charge on the ior
(1) Activation of amino acid D	alone Ba^{2+}, SO_{4}^{2-}
(2) Respiration in bacteria	137. The solubility of $B_{a}SO_{4}$ in Swater is
(18) Formation of secretory vesicles	$2.42 \times 10^{-3} \text{ gL}^{-1}$ at 298 K. The value of its
(4) Fatty acid breakdown	solubility product (K _{sp}) will be
130/ Stomatal movement is <i>not</i> affected by \sim S. (1) CO ₂ concentration \sim 1 b CO ₂ (1)	(Given molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$)
(2) O_2 concentration \sim 1038 ($\frac{3}{2}$)	$10^{(1)}$ $1.08 \times 10^{(1)}$ mol L
(3) Light 233.	(2) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$ 1.08×10^{-10}
(4) Temperature	(3) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$
131. The two functional groups characteristic of sugars are	(4) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$
(1) carbonyl and hydroxyl 231 842 L	138. Given van der Waals constant for NH3, H2, O
(2) carbonyl and phosphate	and CO_2 are respectively (17) 0.244, 1.36 and
(3) carbonyl and methyl very	3.59, which one of the following gases is most
(4) hydroxyl and methyl $10 + 4 + 4 + 4 + 10$	easily liquefied ? af Liq.
132. Which of the following is not a product of light	$\prod_{i=1}^{n} (1) CO_2$
reaction of photosynthesis?	10 -
(1) Oxygen 20	10~1 ~
(2) NADPH	Y 7 (3) H ₂
Vor NADH	(4) NH ₃
(4) $\overline{\text{ATP}}$	
100 04	(139. Following solutions were prepared by mixing
133. Stomata in grass leaf are	different volumes of NaOH and HCl of different concentrations : 4
(1) Barrel shaped	
(2) Rectangular(3) Kidney shaped	G a. $60 \text{ mL} \frac{\text{M}}{10} \text{ HCl} + 40 \text{ mL} \frac{\text{M}}{10} \text{ NaOH}$
A · · ·	
A Dumb-bell shaped	δ 5 b. 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH
134. Which of the following is true for nucleolus?	
It is a site for active ribosomal RNA synthesis.	c. $\frac{15}{75} \text{ mL} \frac{M}{5} \text{ HCl} + 25 \frac{5}{\text{ mL}} \frac{M}{5} \text{ NaOH}$
(2) It takes part in spindle formation.	10 M la M
(3) It is a membrane-bound structure.	d. 100 mL $\frac{M}{10}$ HCl + 100 mL $\frac{M}{10}$ NaOH
(4) Larger nucleoli are present in dividing cells.	pH of which one of them will be equal to 1?
135. Which among the following is not a prokaryote ?	
(1) Oscillatoria	
(2) Nostoc	$(2) d \succ $
(3) Mycobacterium	(3) a
	(4) b

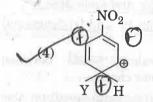
LAACH/SS/Page 16

(

SPACE FOR ROUGH WORK


....

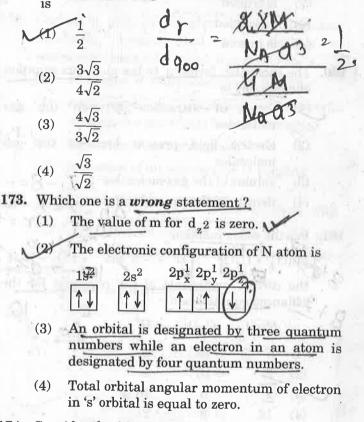

English


150. The type of isomerism shown by the complex 155. In the reaction [CoCl₂(en)₂] is O⁻Na⁺ OH Linkage somerism (1)CHO Ionization isomerism (2)+ CHCl₃ + NaOH Coordination isomerism (3)Geometrical isomerism 4 the electrophile involved is exhibits 151. Which one of the following ions YD dichlorocarbene (:CCl₂) d-d transition and paramagnetism as well? 2-8=-2 x= t6 MnO dichloromethyl anion (CHCl₂) (2)2-8--1 x=+7 MnO₁ formyl cation (CHO) (3)Ð 2Y - 14 = -2dichloromethyl cation $(CHCl_2)$ (4)(4)- 8 = - 2 Y = +6 Carboxylic acids have higher boiling points than 156. 152. Match the metal ions given in Column I with the aldehydes, ketones and even alcohols of spin magnetic moments of the ions given in comparable molecular mass. It is due to their Column II and assign the correct code : formation of intermolecular H-bonding (1) Column I Column II more extensive association of carboxylic (2) $\sqrt{8}$ B.M. acid via van der Waals force of attraction Cr³⁺ $\sqrt{35}$ B.M. b. formation of carboxylate ion (3)Fe³⁺ iii. $\sqrt{3}$ B.M. 5 formation of intramolecular H-bonding (4)Ni²⁴ $\sqrt{24}$ B.M. d. iv. 157. Compound A, C₈H₁₀O, is found to react with 15 B.M. NaOI (produced by reacting Y) with NaOH) and d b C a yields a yellow precipitate with characteristic i (1)iii ii smell. ii (2)iii iv A and hare respectively ii iv (3)i. (Ha iv OH and I₂ (1)153/ Iron carbonyl, Fe(CO)5 is dinuclear (1)(2)trinuclear $CH - CH_3$ and I_2 mononuclear (3)(4)tetranuclear A 144 144 11 AV 154. The geometry and magnetic behaviour of the $CH_2 - CH_2 - OH and I_2$ (3)complex $[Ni(CO)_4]$ are tetrahedral geometry and paramagnetic (1)square planar geometry and paramagnetic (2) $CH_2 - OH and I_2$ (4)tetrahedral geometry and diamagnetic (3)square planar geometry and diamagnetic VAT English LAACH/SS/Page 18 **CE FOR ROUGH WORK** Fe CON,

58 The bond dissociation energies	es of X_2 , Y_2 and $XY 1$		nixture of 2.3 g formic acid and 4.5 g oxalic
are in the ratio of $1:0.5:1.4$		acio	I is treated with conc. H_2SO_4 . The evolved
of XY is - 200 kJ mol ⁻¹ . Th	and the second se		eous mixture is passed through KOH pellets.
energy of X will be	= B[x-x] + B[y-y]	weill	ight (in g) of the remaining product at STP
(1) 400 kJ mol ⁻¹	- 2 B[X-4	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	HINOH TICOOH
(2) 800 kJ mol ⁻¹		/	2.8 H. (Ou h
(3) 100 kJ mol ⁻¹	= BX2 + 2 BX,	(2)	
(4) 200 kJ mol^{-1}	-201	(4)	1.4
159. When initial concentration	of the reactant is 1	64. The	difference between amylose and amylopectin
dou <u>bled, the half-life perio</u>	d of a zero order	is	and some setween any lose and any lopecin
reaction	Cropt a just	(1)	Amylose is made up of glucose and
(1) remains unchanged(2) is tripled	e-officient aller	(1)	galactose
(2) is tripled	in the second	(2)	Amylopectin have $1 \rightarrow 4 \alpha$ -linkage and $1 \rightarrow 6 \beta$ -linkage
(4) is halved	See and	(3)	Amylose have $1 \rightarrow 4$ α -linkage and
160. The correction factor 'a' to the	e ideal gas equation		$1 \rightarrow 6 \beta$ -linkage
corresponds to	244	ar	Amylopectin have $1 \rightarrow 4$ α -linkage and $1 \rightarrow 6 \alpha$ -linkage
forces of attraction molecules		ee wil:	a line to the second
(2) electric field present	between the gas	oo. which natu	ch of the following oxides is most acidic in ure?
molecules	Sur Sur	(1)	CaO A B
(3) volume of the gas molecu	les $2 \mathcal{L} - 8 = -2$	(2)	BaO
(4) density of the gas molecu	les 2.2 × = G	VBY	BeO
161. For the redox reaction	Sn=5 x=+3	(4)	MgO S
$7 \frac{1}{2000} + \frac{1}{100} + \frac$	2+ + CO ₂ + Hog	66 Rega	rding cross-linked or network polymers,
the correct coefficients of the	10		h of the following statements is <i>incorrect</i> ?
Dalanced equation are		(1)	They contain strong covalent bonds in their polymer chains.
0^{+} MnO_{4}^{-} $C_{2}O_{4}^{2-}$ H^{+}	0 16	(2)	Examples are <u>bakelite</u> and melamine.
of second line of the second sec	10,	(3)	They are formed from bi- and tri-functional
	there's ends		monomers
	n laboli - Gali	(4)	They contain covalent bonds between
(4) 16 5 2		37. Nitro	various linear polymer chains. ation of aniline in strong acidic medium also
162. Which one of the following con		gives	m-nitroaniline because
maximum formation of the reaction,	product in the	U	In acidic (strong) medium aniline is present as anilinium ion.
$A_2(g) + B_2(g) \rightleftharpoons X_2(g)$		(2)	In absence of substituents nitro group
(1) High temperature and low		1-1	always goes to m-position. In electrophilic <u>substitution</u> reactions
(2) High temperature and hig			amino group is meta directive.
(3) Low temperature and low(4) Low temperature and hig		(4)	In spite of substituents nitro group always goes to only m-position.
AACH/SS/Page 19	SPACE FOR ROU	0.000	
VI Ç	<u>T</u> .		Englion
Tel a ward it a	in the t		

- order of hybridisation sp², sp², sp, sp from left to right atoms?
- (1) $CH_3 CH = CH CH_3$ $CH_2 = CH - CH = CH_2$ $SH_2^2, SH_2 = CH - C = CH$ (4) $HC \equiv C - C \equiv CH$
- 169. Which of the following carbocations is expected to be most stable?

170) Which of the following is correct with respect to - I effect of the substituents ? (R = alkyl) (1) $-NR_2 > -OR > -F$ (2) $-NH_2 > -OR > -F$


(4)
$$-NR_2 < -OR < -F$$

(4) $-NH_2 < -OR < -F$

LAACH/SS/Page 20

 $4 \leq \sqrt{V} \leq N_{\rm c} \leq$ Mg 2t 168. Which of the following molecules represents the 171. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1s^2 2s^2 2p^3$, the simplest

(2)
$$Mg_2X_2$$

(3) Mgx_2
(4) Mg_0X_2
(5) Mgx_2
(6) Mgx_2
(7) Mgx_2
(7) Mgx_2
(8) Mgx_2
(9) Mgx_2

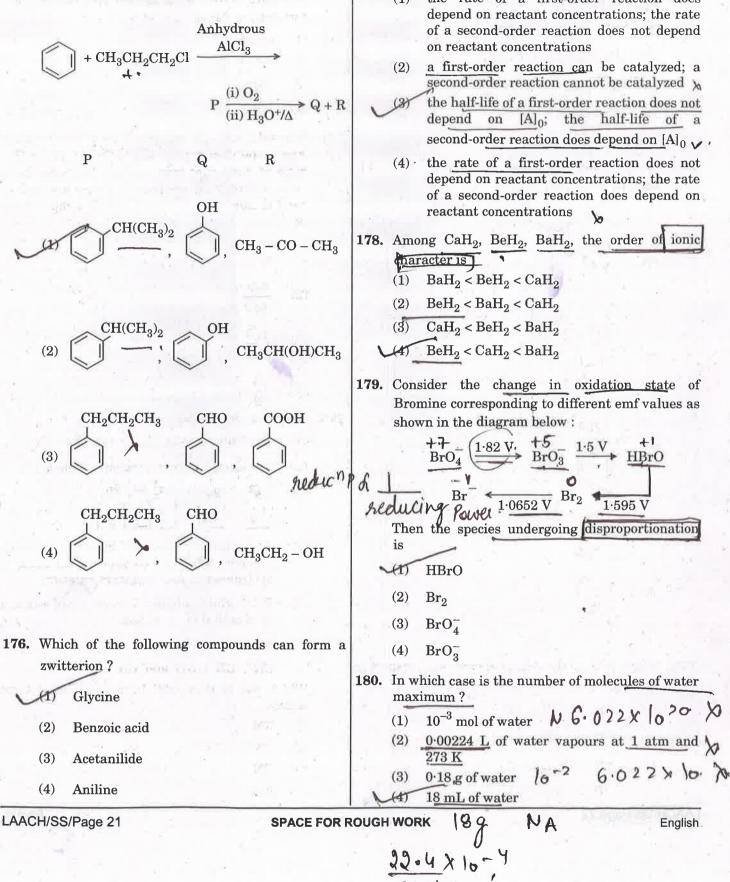
172. Iron exhibits bcc structure at room temperature. Above 900°C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remains constant with temperature)

174. Consider the following species :

Which one of these will have the highest bond order?

(1) CN
$$C+7 = 3$$

(2) CN⁺ $C+6 = 13$


$$(4) NO 1+0 - 1$$

11 12

SPACE FOR ROUGH WORK

English 8 ł

175. Identify the major products P, Q and R in the following sequence of reactions :

- 177. The correct difference between first- and second-order reactions is that
 - the rate of a first-order reaction does (1)

Read carefully the following instructions :

- 1. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 2. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 3. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 4. Use of Electronic/Manual Calculator is prohibited.
- 5. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 7. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

LAACH/SS/Page 24