## NEET QUESTION PAPER (2018) BOOKLET CODE - ACHLA (BB)

1. The type of isomerism shown by the complex 6 $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]$ is
(4) Geometrical isomerism
(2) Linkage isomerism
(3) Ionization isomerism $\varphi$

(4) Coordination isomerism $\varnothing$
2. Which one of the following ions exhibits $\mathrm{d}-\mathrm{d}$ transition and paramagnetism as well?
3. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code :

## Column I

Column II
a. $\mathrm{Co}^{3+}$
i. $\quad \sqrt{8}$ B.M.
b. $\mathrm{Cr}^{3+} 3$
ii. $\sqrt{35}$ B.M.
c. $\mathrm{Fe}^{3+} 5$
iii. $\sqrt{3}$ B.M.
d. $\mathrm{Ni}^{2+}$
iv. $\sqrt{24}$ B.M.
$\sqrt{5(872)}$
v. $\sqrt{15}$ B.M.


Iron carbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$ is
(1) tetranuclear $\varphi$

L(2) dinuclear
(3) trinuclear
(d) mononuclear
$\times$

8. Considering Ellingham diagram, which of the following metals can be used to reduce alumina ?
(1) Fe
(2) Cu
(3) Mg
(4) Zn

9. The correct order of atomic radii in group 13 elements is
(1) $\mathrm{B}<\mathrm{Al}<$ In $<\mathrm{Ga}<$ Tl
(2) $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{In}<$ Tl
(3) $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{Tl}<\mathrm{In}$
(4) $\mathrm{B}<\mathrm{Al}<\mathrm{Ga}<$ In $<$ Tl


Which of the following statements is not true for halogens?
(1) All form monobasic oxyacids.
(2) Chlorine has the highest electron-gain enthalpy.
(3) All but fluorine show positive oxidation states.

All are oxidizing agents.
11. In the structure of $\mathrm{ClF}_{3}$, the number of lone pairs of electrons on central atom 'Cl' is
(1) one
(2) three
(3) four
(3) square planar geometry and paramagnetic (4) tetrahedral geometry and diamagnetic
(1) square planar geometry and diamagnetic
(2) tetrahedral geometry and paramagnetic

ACHLA/BB/Page 2
12. In the reaction

the electrophile involved is
(2) NO

(3) $\mathrm{N}_{2} \mathrm{O}$ 比
(4) $\mathrm{NO}_{2}$
16. The compound A on treatment with Na gives B , and with $\mathrm{PCl}_{5}$ gives $\mathrm{C} . \mathrm{B}$ and C react together. to give diethyl ether. $\mathrm{A}, \mathrm{B}$ and C are in the order
(1) $\mathrm{C}_{2}{ }^{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
(22) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rho$
(4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
17. The compound $\mathrm{C}_{7} \mathrm{H}_{8}$ undergoes the following

Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to theix,
(1) formation of intramolecular H -bonding (2) formation of intermolecular H-bonding
(3) more extensive association of carboxylic acid via van der Waals force of attraction $>$
(4) formation of carboxylate ion
14. Compound $\mathrm{A}, \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$, is found to react with NaOI (produced by reacting Y with NaOH ) and yields a yellow precipitate with characteristic smóll.
$A$ and $Y$ are respectivély
(1)



(4)


Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity?


(4) formyl cation (CHO )

$\qquad$
,
 reactions:

The product ' C ' is
(1) $m$-bromotoluene

$$
{ }^{1} \mathrm{cl}_{3}
$$

(2) $p$-bromotoluene
(3) 3-bromo-2,4,6-trichlorotoluene
(4) $o$-bromotoluene
18. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
(1) $\mathrm{CH} \equiv \mathrm{CH}$
(2) $\mathrm{CH}_{4} \mathrm{CH}_{3} \mathrm{Br} \mathrm{C}-\mathrm{C}$
(3) $\mathrm{CH}_{3}-\mathrm{CH}_{3} \cdot \mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$
(4) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ J

$n 4 \frac{1}{r}$
920
NT s the Which of the following molecules represents the order of hybridisation $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}$ from left to right atoms?
(1) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}, ~{ }^{+} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}_{0}$
(2) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3} \varnothing$
(3) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2} \varnothing$

(4) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$

$$
C=C=C=C
$$

20. Which of the following carbocations is expected to be most stable? $C=C=C^{+}$
(1)


(2)


(3)
21. The difference between amylose and amylopectin is is
(1) Amylopectin have $1 \rightarrow 4, \alpha$-linkage and $1 \rightarrow 6 \alpha$-linkage
(2) Amylose is made up of glucose and galactose
(3) Amylopectin have $1 \bigotimes_{1 \rightarrow 6 \beta \text {-linkage }}{ }^{4} \alpha$-linkage and
(4) Amylose have $1 \rightarrow 4 \quad \alpha$-linkage and $1 \rightarrow 6 \beta$-linkage
22. Which of the following compounds can form a zwitterion?
(1) Aniline
(2) Glycine
(3) Benzoic acid
(4) Acetanilide

Regarding cross-linked or network polymers, which of the following statements if incorrect
(1) They contain covalent bonds between various linear polymer chains.
(2) They contain strong covalent bonds in their polymer chains.
(3) Examples are bakelite and melamine.
(4) They are formed from bi- and tri-functional monomers.
26. Nitration of aniline in strong acidic medium also . gives m-nitroaniline because
(1) In spite of substituent nitro group always
goes to only m -position.
(2) In acidic (strong) medium aniline is present as anilinium ion.
(3) In absence of substituent nitro group always goes to m-position.
(4) In electrophilic substitution reactions amino group is meta directive.
27. Identify the major products $P, Q$ and $R$ in the following sequence of reactions :

Anhydrous

$\times \cos n$
$\mathrm{c}_{0} \mathrm{con}^{n 2}$


P $\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+} / \Delta]{\text { (i) } \mathrm{O}_{2}} Q+R$
28. Which of the following oxides is most acidic in (2) nature?

33. For the redox reaction

$$
\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

the correct coefficients of the reactants for the balanced equation are,

34. Which one of the following conditions will favour maximum formation of the product in the reaction,

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{X}_{2}(\mathrm{~g}) \quad \Delta_{\mathrm{r}} \mathrm{H}=-\mathrm{X} \mathrm{~kJ} ?
$$

(1) Low temperature and high pressure
(2) High temperature and loikypressure
(3) High temperature and higpressure
(4) Low temperature and low pressure
35. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
(1) is halved
(2) remains unchanged

(3) is tripled
(4) is doubled

36. The bond dissociation energies of $X_{2}, Y_{2}$ and $X Y$ are in the ratio of $1: 0.5: 1 . \Delta \mathrm{H}$ for the formation of XY is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissocjation energy of $X_{2}$ will be

37. The correction factor ' $a$ ' to the ideal gas equation corresponds to
(1) density of the gas molecules $\rightleftharpoons$
(2) forces of attraction between the gas molecules
(3) electric field present between the gas molecules
(4) volume of the gas molecules
38. In which case is the number of molecules of wate naximum?
(1) 18 mL of water INA mole.
(2) $10^{-3} \mathrm{~mol}$ of water $10^{-3} \mathrm{NA} \varnothing$
(3) 0.00224 L of water vapours at 1 atm and $273 \mathrm{~K} \quad 104 \mathrm{NA} \varphi$
(4) 0.18 g of water $10^{-2}$
39. The correct difference between first- and second-order reactions is that
(1) the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
(2) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
(3) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
(4) the half-life of a first-order reaction does not depend on $[\mathrm{A}]_{0}$; the half-life of a second-order reaction does depend on $[\mathrm{A}]_{0}$
40. Among $\mathrm{CaH}_{2}, \mathrm{BeH}_{2}, \mathrm{BaH}_{2}$, the order of ionic character is
(1) $\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}$.
(2) $\mathrm{BaH}_{2}<\mathrm{BeH}_{2}<\mathrm{CaH}_{2}>$
(3) $\mathrm{BeH}_{2}<\mathrm{BaH}_{2}<\mathrm{CaH}_{2}$.
(4) $\mathrm{CaH}_{2}<\mathrm{BeH}_{2}<\mathrm{BaH}_{2}>$

Consider the change in oxidation state of Bromine corresponding to different emf yalues as shown in the diagram below:


Then the species undergoing disproportionation is +5
(1) $\mathrm{BrO}_{3}^{-}$
(3) $\mathrm{Br}_{2}$

(4) $\mathrm{BrO}_{4}^{-}$

ACHLA/BB/Page 6
42. Consider the following species :

$$
\mathrm{CN}^{+}, \mathrm{CN}^{-}, \mathrm{NO} \text { and } \mathrm{CN}
$$

Which one of these will have the highest bond order?
(1) NO 2.5
(2) $\mathrm{CN} \quad 2.5$
(3) $\mathrm{CN}^{+}$
(4) $\mathrm{CN}^{-} 3$
43. Which one is a wrong statement ?
(1) Total orbital angular momentum of electron in ' $s$ ' orbital is equal to zero.
(2) The value of $\underline{m}$ for $d_{z^{2}}$ is zero.
(g) The electronic configuration of N atom is

(4) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
Iron exhibits bee structure at room temperature. Above $900^{\circ} \mathrm{C}$, it transforms to fee structure. The ratio of density of iron at room temperature to that at $900^{\circ} \mathrm{C}$ (assuming molar mass and atomic radii of iron remains constant with temperature) is
(1) $\frac{\sqrt{3}}{\sqrt{2}} \quad \rho=\frac{\infty \times M}{N_{A} \times A_{3}}$
(2) $\frac{1}{2}$

$$
\frac{\rho_{b c c}}{\rho_{\text {Fec }}}=\frac{2 \text { bee afc }}{a_{b}^{3} \times 2 f f c c}
$$

(1) $3 \sqrt{3}$ PFC
$=\frac{2 \times\left(\frac{11 r}{\sqrt{2}}\right)^{3}}{4 \times\left(\frac{4 \gamma}{\sqrt{3}}\right)^{3}}$
(4) $\frac{4 \sqrt{3}}{3 \sqrt{2}}$
45. Magnesium reacts with an element ( X ) to form an ionic compound. If the ground state electronic configuration of $(X)$ is $1 \mathrm{~s}^{2} 2 s^{2} 2 p^{3}$, the simplest formula for this compound is
(1) $\mathrm{Mg}_{2} \mathrm{X}_{3}$
(2) $M g_{3} X_{2}$
(3) $M g_{2} \mathrm{X} \varphi$
(4) $\mathrm{MgX}_{2} \varphi$

$\mathrm{mg}_{3} \mathrm{~N}_{2}$
46. Which of the following gastric cells indirectly help in erythropoiesis?
(1) Chief cells
(2) Parietal cells

(3) Goblet cells $\boldsymbol{6}$
(4) Mucous cells
47. Match the items given in Column I with those in Column II and select the correct option given below :

## Column I

a. Fibrinogen
b. Globulin
c. Albumin

## Column II

i. Osmotic balance
ii. Blood clotting
iii. Defence mechanism

48. Calcium is important in skeletal muscle contraction because it,
(1) binds to troponin to remove the masking of active sites on actin for myosin.
(2) prevents the formation of bonds between the myosin cross bridges and the actin filament.

(3) detaches the myosin head from the actin filament.
(4) activates the myosin ATPase by binding to it.
49. Which of the following is an occupational respiratory disorder?
(1) Anthracis
(2) Emphysema ${ }_{4}$
(3) Botulism $\varphi$
(4) Silicosis

$$
f=\sqrt{2} a=4 \gamma
$$

$$
\left.b c c=\sqrt{3} a=4 r \quad \frac{4 r}{\sqrt{3}}\right)
$$

50. Which of the following is an amino acid derived hormone?
(1) Epinephrine
(2) Estriol
(3) Estradiol
(4) Ecdysone
$(1.2)^{2} \times 10^{6}=\frac{3 \times \times \times N A T}{11}$
51. Hormones secreted by the placenta to maintain pregnancy are
(1) hG\&, hPL, progestogens, prolactin $\varphi$
(2) hCG, progestogens, estrogens, glucocorticoids $\varphi$
(3) hCG, hPL, progestogens, estrogens
(4) hG, hPL, estrogens, relaxin, oxytocin

The contraceptive 'SAHELI'
(1) blocks estrogen receptors in the uterus, preventing egos from getting implanted.
(2) is a post-coital contraceptive. Y.
(3) is an IUD.
increases the concentration of estrogen and prevents ovulation in females.
56. The amnion of mammalian embryo is derived from
(2) ectoderm and endoderm

(3) mesoderm and trophoblast $\mathbf{\rho}$
(4) endoderm and mesoderm
57. The difference between spermiogenesis and spermiation is
(1) In spermiogenesis spermatids are formed, while in spermiation spermatozoa are formed. $\varnothing$ !
(2) In spermiogenesis spermatozoa are formed, while in spermiation spermatozoa are released from sertoli cells into the cavity of seminiferous tubules.
(3) In spermiogenesis spermatozoa from sertoli cells are released into the cavity of seminiferous tubules, while in seermiation spermatozoa are formed.
(4) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed.

58. All of the following are part of an operon except
(1) an operator ${ }^{\sim}$
(2) a promoter ${ }^{2}$
(3) an enhancer
(4) structural genes
59. A woman has an $X$-linked condition on one of her $X$ chromosomes. This chromosome can be inherited by
(1) Only daughters
(2) Both sons and daughters
(3) Only grandchildren
(4) Only sons


## (4) Only


60. According to Hugo de Vries, the mechanism evolution is
(1) Multiple step mutations ${ }^{\circ}$
(2) Minor mutations
(3) Phenotypic variations

AqGVA Saltation
61. AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding sequence of the transcribed mRNA?
(1) AGGUAUCGCAU
(2) UCCAUAGCGUA
(3) ACCUAUGCGAU
(4) UGGTUTCGCAT
62. Match the items given in Column I with those in Column II and select the correct option given below:

## Column I

## Column II

a. Proliferative Phase i
i. Breakdown of endometrial lining
b. Secretory Phase
ii. Follicular Phase
c. Menstruation .
iii. Luteal Phase

|  | a | b | c |
| :---: | :---: | :---: | :---: |
| (1) | iii | ii | i |

(2) iii i
(3) ii iii i
(4) iv iii ii
63. In which disease does mosquito transmitted pathogen cause chronic inflammation of lymphatic vessels?
(1) Elephantiasis
(2) Amoebiasis
(3) Ringworm disease $\varphi$
(4) Ascariasis
64. Conversion of milk to curd improves its nutritional value by increasing the amount of
(1) Vitamin D
(2) Vitamin E
(8) Vitamin $\mathrm{B}_{12}$
(4) Vitamin A


Which of the following is not an autoimmune disease?
(1) Psoriasis
(2) Vitiligo


Alzheimer's disease
(4) Rheumatoid arthritis
66. Among the following sets of examples for divergent evolution, select the incorrect option :
(1) Forelimbs of man, bat and cheetah $N$
(e) Eye of octopus, bat and man $\Varangle$
(3) Brain of bat, man and cheetah $\sim$
(4) Heart of bat, man and cheetah $\checkmark$
67. The similarity of bone structure in the forelimbs of many vertebrates is an example of
(1) Homology
(2) Adaptive radiation
(3) Convergent evolution $>$
(4) Analogy
$\infty$
68. Which of the following characteristics represent 'Inheritance of blood groups' in humans ?
a. Dominance $\checkmark$
b. Co-dominance $V$ Ai
c. Multiple allele $\checkmark$ As
d. Incomplete dominance $\varphi$
e. Polygenic inheritance
(1) b, c and e
(2) a , c and e
(3) b, d and e
(4) $\mathrm{a}, \mathrm{b}$ and c

ACHLA/BB/Page 9

$$
\begin{aligned}
& 125 \times 10^{6} \times 2076 \times 10^{\text {SPACE FOR ROUGH WORK }} \\
& 3 \times 1 \times 0^{25} \times 10^{-23} \times \frac{250}{3} \times \frac{25}{3} \mathrm{~T}
\end{aligned}
$$

69. Which of the following options correctly represents the lung conditions in asthma and emphysema, respectively?
(1) Inflammation of bronchioles; Decreased respiratory surface
(2) Decreased respiratory Inflammation of bronchioles
(3) Increased respiratory surface; Inflammation of bronchioles
(4) Increased number of bronchioles; Increased respiratory surface
70. Match the items given in Column I with those in Column II and select the correct option given below :

## Column I

a. Tricuspid valve
b. Bicuspid valve
c. Semilunar value
(1) $\begin{array}{llll}\text { a } & \text { iii } & \text { b } & \text { i } \\ \text { ii }\end{array}$
(2)
(3)
(4)

i. Between left atrium and left ventricle
ii. Between right ventricle and , pulmonary artery
iii. Between right atrium and right ventricle
71. Match the items given in Column I with those in Column II and select the correct option given below :

## Column I

a. Tidal volume
b. Inspiratory Reserve volume
c. Expiratory Reserve volume
d. Residual volume iv. $1000-1100 \mathrm{~mL}$
iii. $500-550 \mathrm{~mL}$

## Column II

i. $\quad 2500-3000 \mathrm{~mL}$
ii. $1100-1200 \mathrm{~mL}$
72. Which one of the following population interactions is widely used in medical science for the production of antibiotics ?
(1) Commensalism
(2) Amensalism
(3) Parasitism
(4) Mutualism
73. All of the following are included in Ex-situ conservation' except
(1) Wildlife safari parks
(2) Seed banks $E$
(3) Botanical gardens $E$
(1) Sacred groves $I$
74. Match the items given in Column I with those in Column II and select the correct option given below :

## Column I

a. Eutrophication
b. Sanitary landfill
c. Snow blindness
i. Deforestation
iii. Nutrient enrichment
d. Jhum cultivation iv. Waste disposal

|  | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- |
| (1) | ii | i | iii | iv |
| (2) | i | ii | iv | iii |
| (3) | iii | iv | i | ii |
| (4) | i | iii | iv | ii |

75. In a growing population of a country,
(1) pre-reproductive individuals are more than the reproductive individuals.
(2) pre-reproductive individuals are less than the reproductive individuals.

(3) reproductive and pre-reproductive individuals are equal in number.
(4) reproductive individuals are less than the post-reproductive individuals.
76. Which part of poppy plant is used to obtain the drug "Smack" ?
(1) Flowers
(2) Leaves
(3) Roots
(4) Latex
77. Match the items given, in Column I with those in Column II and select the correct option given below :

## Column I

a. Glycosuria
b. Gout
c. Renal calculi
d. Glomerular
d. Glomerular

## Column II

i. Accumulation of uric acid in joints
ii. Mass of crystallised salts within the kidney
iii. Inflammation in glomeruli
iv. Presence of glucose in urine

|  | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- |
| (1) | iii | ii | iv | i |
| (2) | iv | i | ii | iii |
| (3) | ii | iii | i | iv |
| (4) | i | ii | iii | iv |

79. Nissl bodies are mainly composed of
(1) Proteins and lipids $\varnothing$
(2) Free ribosomes and RER
(3) Nucleic acids and SER
(4) DNA and RNA
$\infty$
Which of these statements is incorrect ?
(1) Enzymes of TCA cycle are present in mitochondrial matrix.
(2) Oxidative phosphorylation takes place in outer mitochondrial membrane.
(3) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
(4) Glycolysis occurs in cytosol.
80. Which of the following terms describe human dentition?

- (1) Thecodont, Diphyodont, Homodont
(2) Pleurodont, Diphyodont, Heterodont
(3) Pleurodont, Monophyodont, Homod\&Rt
(4) Thecodont, Diphyodont, Heterodont


Select the incorrect match :
(1) Lampbrush - Diplotene bivalents chromosomes
h(2)
Polytene
chromosomes - Oocytes of amphibians chromosomes
(3) Submetacentric - L-shaped chromososmes chromosomes
(4) Allosomes - Sex chromosomes
83. Which of the following events does not occur in rough, endoplasmic reticulum ?
(1) Protein folding
(2) Phospholipid synthesis
(3) Cleavage of signal peptide
(4) Protein glycosylation
84. Many ribosomes may associate with a single ERNA to form multiple copies of a polypeptide simultaneously. Such strings of ribosomes are termed as
(1) Polysome

(2) Nucleosome
(3) Plastidome
(4) Polyhedral bodies
85. Which of the following animals does not undergo metamorphosis?
(1) Earthworm

(2) Starfish
(3) Moth
(4) Tunicate
86. Which one of these animals is not a homeotherm?
(1) Macropus $\sqrt{2}$
(2) Psittacula $\downarrow$
(3) Camelus
(4) Chelone
87. Which of the following features is used to identify a male cockroach from a female cockroach? .
(1) Presence of a boat shaped sternum on the $9^{\text {th }}$ abdominal segment
(2) Presence of anal cerci. $>$
(3) Forewings with darker tegmina
44) Presence of caudal styles
88. Identify the vertebrate group of animals characterized by crop and gizzard in its digestive system.
(1) Amphibia
(2) Osteichthyes
(3) Aves
(4) Reptilia
89. Ciliates differ from all other protozoans in
(1) using flagella for locomotion $>$
(2) having two types of nuclei
(3) using pseudopodia for capturing prey $>$
(4) having a contractile vacuole for removing excess water am
90. Which of the following organisms are known as chief producers in the oceans ?
(1) Dinoflagellates
(2) Euglenoids
(3) Cyanobacteria
(4) Diatoms
91. The Golgi complex participates in
(1) Fatty acid breakdown
(2) Activation of amino acid
(3) Respiration in bacteria $\varphi$
(4) Formation of secretory vesicles
92. Stomata in grass leaf are (1) Dumb-bell shaped
(2) Barrel shaped
(3) Rectangulary
(4) Kidney shaped

93. The stage during which separation of the paired homologous chromosomes begins is
(1) Pachytene
(2) Zygotene
(3) Diakinesis
(4) Diplotene
94. The two functional groups characteristic of sugars are
(1) hydroxyl and methyl $=0$
(2) carbonyl and hydroxyl
(3) carbonyl and phosphate $y$
(4) carbonyl and methyl
95. Which among the following is not a prokaryote?
(1) Saccharomyces
yeast-
(2) Oscillatoria
(3) Nostoc
(4) Mycobacterium
96. Stomatal movement is not affected by
(1) Temperature
(2) $\mathrm{CO}_{2}$ concentration
(3) $\mathrm{O}_{2}$ concentration
(4) Light $\checkmark$
97. Which of the following is true for nucleolus?
(1) Larger nucleoli are present in dividing cells.
(2) It is a site for active ribosomal RNA synthesis.
(3) It takes part in spindle formation. $\varphi$
(4) It is a membrane-bound structure. $\varphi$
98. Which of the following is not a product of light reaction of photosynthesis ?
(1) ATP
(2) Oxygen ${ }^{2}$
(3) NADPH
(4) NADH
99. Which of the following elements is responsible for maintaining turgor in cells ?
(1) Magnesium
(2) Calcium
(3) Potassium
(4) Sodium
100. Which one of the following plants shows a very close relationship with a species of moth, where none of the two can complete its life cycle without the other?
(1) Hydrilla
(2) Viola
(3) Banana
(4) Yucca
101. Pollen grains can be stored for several years in liquid nitrogen having a temperature of
(1) $-120^{\circ} \mathrm{C}$
(2) $-160^{\circ} \mathrm{C}$
(3) $-196^{\circ} \mathrm{C}$
(4) $-80^{\circ} \mathrm{C}$
102. Oxygen is not produced during photosynthesis by (1) Green sulphur bacteria.
(2) Chara
(3) Cycas
(4) Nostoc
103. Double fertilization is
(1) Fusion of two male gametes of a pollen tube with two different eggs $>$
(2) Syngamy and triple fusion ${ }^{2}$
(3) Fusion of two male gametes with one egg
(4) Fusion of one male gamete with two polar nuclei
What is the role of $\mathrm{NAD}^{+}$in cellular respiration?
(1) It functions as an enzyme.
(2) It is the final electron acceptor for anaerobic respiration.
(3) It is a nucleotide source for ATP synthesis. (4) It functions as an electron carrier.

In which of the following forms is iron absorbed by plants? $\mathrm{Fe}^{+}$
Ferric

(1) Ferric
(2) Both ferric and ferrous $\varphi$
(3) Free element hp
(4) Ferrous
106. Select the correct statement :
(1) Franklin Stahl coined the term "linkage".
(2) Transduction was discovered by S. Altman. $\succ$
(3) Spliceosomes take part in translation. $\varphi$
(4) Punnett square was developed by a British scientist.
107. Select the correct match :
(1) Alec Jeffreys - Streptococcus pneumoniae
(2) Francois Jacob and Jacques Coned

- Lac operon $\sqrt{2 a}=4 \gamma$
(3) Matthew Meselsọn and F. Stahl.
(4) Alfred Hershey and - TMV Martha Chase

108. The experimental proof for semiconservative replication of DNA was first shown in a
(1) Fungus
(2) Virus

- Pisum sativum
(3) Plant
(4) Bacterium

Offsets are produced by
(1) Meiotic divisions
(2) Parthenogenesis

(3) Parthenocarpy
(4) Mitotic divisions

110. Which of the following pairs is wrongly matched?
(1) Starch synthesis in pea : Multiple alleles
(2) T.H. Morgan
: Linkage $\sqrt{ }$
(3) XO type sex
: Grasshopper determination
(4) ABO blood grouping : Co-dominance
111. Which of the following has proved helpful in preserving pollen as fossils ?
(1) Pollenkitt
(2) Sporopollenin
(3) Oil content
(4) Cellulosic intine
112. Which of the following flowers only once in its lifetime?
(1) Bamboo species
(2) Papaya
(3) Mango
(4) Jackfruit


ACHLA/BB/Page 13



SPACE FOR ROUGH WORK


113. The correct order of steps in Polymerase Chain Reaction (PCR) is
(1) Extension, Denaturation, Annealing
(2) Denaturation, Annealing, Extẹnsion
(3) Denaturation, Extension, Annealing
(4) Annealing, Extension, Denaturation
114. In India, the organisation responsible for assessing the safety of introducing genetically modified organisms for public use is
(1) Indian Council of Medical Research (ICMR)
(2) Genetic Engineering Appraisal Committee (GEAC)
(3) Research Committee on Genetic Manipulation (RCGM)
(4) Council for Scientific and Industrial Research (CSIR)
115. Use of bioresources by multinational companies and organisations without authorisation from the concerned country and its people is called
(1) Bio-infringement $>$
(2) Bioexploitation $\varphi$
(3) Biodegradation
-(4). Biopiracy
116. Which of the following is commonly used as a vector for introducing a DNA fragment in human lymphocytes?
(1) Retrovirus
(2) pBR 322
(3) $\lambda$ phage
(4) Ti plasmid
117. A 'new' variety of rice was patented by a foreign company, though such varieties have been present in India for a long time. This is related to
(1) Co-667
(2) Basmati
(3) Lemma Rojo
(4) Sharbati Sonora
118. Select the correct match :
(1) Ribozyme
(2) ,G. Mendel
(3) T.H. Morgan
(4) $\mathrm{F}_{2} \times$ Recessive parent
119. Natality refers to
(1) Death rate
(2) Number of individuals entering a habitat
(3) Number of individuals leaving the habitat (4) Birth rate
120. World Ozone Day is celebrated on
(1) $5^{\text {th }}$ June
(2) $22^{\text {nd }}$ April
(3) $16^{\text {th }}$ September
(4) $21^{\text {st }}$ April
121. Which of the following is a secondary pollutant?
(1) CO
(2) $\mathrm{O}_{3}$
(3) $\mathrm{SO}_{2}$
(4) $\mathrm{CO}_{2}$
122. Niche is
(1) all the biological factors in the organism's environment
the functional role played by the organism where it lives
(3) the range of temperature that the organism needs to live
(4) the physical space where an organism lives
123. What type of ecological pyramid would be obtained with the following data ?

Secondary consumer: 120 g
Primary consumer: 60 g Primary producer : 10 g
(1) Inverted pyramid of biomass

(2) Upright pyramid of biomass

(3) Upright pyramid of numbers $>0$

* (4) Pyramid of energy

124. In stratosphere, which of the following elements acts as a catalyst in degradation of ozone and release of molecular oxygen ?
(1) Carbon
(2) Oxygen
(3) Fe
(4) Cl

125. Casparian strips occur in
(1) Epidermis
(2) Endodermis
(3) Cortex
(4) Pericycle
126. Plants having little or no secondary growth are
(1) Grasses mono
(2) Cycads
(3) Conifers
(4) Deciduous angiosperms
127. Which of the following statements is correct ?
(1) Ovules are not enclosed by ovary wall in gymnosperms.
(2) Stems are usually unbranched in both Cycas and Cedrus.
(3) Horsetails are gymnosperms.
(4) Selaginella' is heterosporous, while Salvinia is homosporous.
128. Select the wrong statement:
(1) Cell wall is present in members of Fungi and Plantae.
(2) Mitochondria are the powerhouse of the cell in all kingdoms except Monera.
(3) Pseudopodia are locomotory and feeding structures in Sporozoans.
(4) Mushrooms belong to Basidiomycetes.
129. Secondary xylem and phloem in dicot stem are produced by
(1) Apical meristems
(2) Axillary meristems
(3) Phellogen $>$
(4) Vascular cambium
130. Pneumatophores occur in
(d) Halophytes
(2) Submerged hydrophytes $\varnothing$
(3) Carnivorous plants $\varphi$
(4) Free-floating hydrophytes

Sweet potato is a modified
(1) Stem $\wp$
(2) Rhizome $\varphi$
(3) Tap root
(4) Adventitious root $\mathrm{gMM}^{2}$
132. Which one is wrongly matched ?
(1) Uniflagellate gametes - Polysiphonia
(2) Unicellular organism - Chlorella
(3) Gemma cups

- Marchantia
(4) Biflagellate zoospores - Brown algae

133. After karyogamy followed by meiosis, spores are produced exogenously in
(1) Neurospora $\dagger$
(2) Saccharomyces y
(3) Agaricus
(4) Alternaria
134. Match the items given in Column I with those in Column II and select the correct option given below :

Column I
a. Herbarium
i.

Column II
$\checkmark$ It is a place having a collection of preserved plants and animals.
b. Key
-combers.
ii. A list that enumerates methodically all the species found in an area with brief description aiding identification.
c. Museum iii. Is a place where dried and pressed plant specimens mounted on sheets are kept.
d. Catalogue iv. A booklet containing a list of characters and their alternates which are helpful in identification of various taxa.

135. Winged pollen grains are present in
(1) Mustard
(2) Minus
(3) Mango
(4) Cycas

 An inductor 20 mH , a capacitor $100 \mu \mathrm{~F}$ and a resistor $50 \Omega$ are connected in series across a source of emf, $V=10 \sin 314 \mathrm{t}$. The power loss in the circuit is (1) 0.79 W
(2) 1.13 W

(3) 2.74 W
(4) 0.43 W

A metallic rod of mass per unit length $0.5 \mathrm{~kg} \mathrm{~m}^{-1}$ is lying horizontally on a smooth inclined plane which makes an angle of $30^{\circ}$ with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
(1) $7 \cdot 14 \mathrm{~A}$
(2) 11.32 A
(3) 14.76 A
(4) 5.98 A

138. Current sensitivity of a moving coil galvanometer is $5 \mathrm{div} / \mathrm{mA}$ and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} / \mathrm{V}$. The resistance of the galvanometer is
(1) $40 \Omega$
(2) $500 \Omega$

$$
\begin{aligned}
& \sigma_{F}=\frac{\theta}{I} \quad \gamma_{V}=\frac{\theta}{V} \\
& R=\frac{V}{I}=\frac{\theta \cdot \sigma^{\prime}}{\sigma_{v} \times \theta}
\end{aligned}
$$

(3) $250 \Omega$
(4) $25 \Omega$
(799) A thin diamagnetic rod is
placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work

## rod the magnetic field <br> 

required to do this comes from
(1) the current source
(2) the induced electric field due to the changing magnetic field
(3) the lattice structure of the material of the


141. In Young's double slit experiment the separation $d$ between the slits is 2 mm , the wavelength $\lambda$ of the light used is $5896 \AA$ and distance D between the screen and slits is 100 cm . It is found that the angular width of the fringes is $0.20^{\circ}$. To increase the fringe angular width to $0.21^{\circ}$ (with same $\lambda$ and D) the separation between the slits needs to be changed to
(1) 1.8 mm $\frac{\lambda B}{d} \quad \frac{\lambda}{d}=\theta$
(2) 1.7 mm
(3) 2.1 mm
(4) 1.9 mm


An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens, of
(1) small focal length and large dianfeter
(2) small focal length and small demeter
(4) large focal length and large diameter
(4) large focal length and small diameter


$$
\frac{-1}{15}=-\frac{1}{40} \frac{-1}{15} \frac{1}{40}=\frac{34 \times 40}{275} \text { (24) } \quad-\frac{1}{5}+\frac{1}{20} \frac{20 \times 18(60)}{78}
$$

149. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm . If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be
(1) 30 cm away from the mirror
(2) 36 cm towards the mirror

(3) 30 cm towards the mirrde
150. A moving block having mass $m$, collides with another stationary block having mass 4 m . The lighter block comes to rest after collision. When the initial velocity of the lighter block is $v$, then the value of coefficient of restitution (e) will be
(1) 0.5
(2) 0.4
(3) 0.8
(4) 0.25
151. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter $\mathrm{AB}=\mathrm{D}$. The height $h$ is equal to velocity $\vec{V}=V \hat{i}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along $\vec{\epsilon} \times \vec{R}$
(1) $-z$ direction
(2) - - -direction
(3) - y direction

(4) $+z$ direction


$$
\begin{aligned}
\text { s equal to } & =\sqrt{5 g C} \\
v= & =4 x \\
e & =\frac{1}{4}
\end{aligned}
$$

(1) $\frac{3}{2} \mathrm{D}$
(2) $\frac{5}{4} \mathrm{D}$

$$
\sqrt{2 g h}=\sqrt{5 \times g \times \frac{D}{2}}
$$

(3) $\frac{7}{5} \mathrm{D}$
(4) $\mathrm{D}^{\prime}$

$$
\prod_{0}
$$


149. Three objects, $A:$ (a solid sphere), $B:$ (a 'thin circular disk) and $C$ : (a circular ring), each have the same mass $M$ and radius $R$. They all spin with the same angular speed $\bar{\omega}$ about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation
(1) $\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}$

$$
\frac{1}{2}+w^{2}
$$

(2) $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}$
(3) $\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}$ $c>B^{d}>A$
(4) $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{C}}$
159. Which one of the following statements is - incorrect ?

- (1) Tolling friction is smaller than sliding friction.
(2) Coefficient of sliding friction has dimensions of length.
(3) Frictional force opposes the relative motion.
(4) Limiting value of static friction is directly proportional to normal reaction.
ACHLA/BB/Page 17
SPACE FOR ROUGH WORK
English



A toy car with charge $q$ moves on a frictionless horizontal plane surface under the influence of a uniform electric field E . Due to the force qE , its velocity increases from 0 to $6 \mathrm{~m} / \mathrm{s}$ in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively
(1) $2 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}$
(2) $1.5 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$
(3) $1 \mathrm{~m} / \mathrm{s}, 3.5 \mathrm{~m} / \mathrm{s}$
(4) $1 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$


152. A block of mass $m$ is placed on a smooth inclined wedge $A B C$ of inclination $\theta$ as shown in the figure. The wedge is given an acceleration ' $a$ ' towards the right. The relation between a and $\theta$ for the block to remain stationary on the wedge is
(1) $\mathrm{a}=\frac{\mathrm{g}}{\operatorname{cosec} \theta}$

$a=g \tan \theta$

(2) $\mathrm{a}=\mathrm{g} \tan \theta$

(3) $\mathrm{a}=\mathrm{g} \cos \theta$
(4)

$$
\mathrm{a}=\frac{\mathrm{g}}{\sin \theta}
$$

$$
\frac{1}{2} \times 6 \times 1
$$

$$
\frac{9}{3}
$$

158. The moment of the force, $\vec{F}=4 \hat{i}+5 \hat{j}-6 \hat{k}$ at $(2,0,-3)$, about the point $(2,-2,-2)$, is given by (1)
(2) $-7 \hat{i}-4 \hat{j}-8 \hat{k} \quad \pi=0 \hat{\imath}+2 \hat{j}-\hat{k}$
(3) $-7 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
(4) $-4 \hat{i}-\hat{j}-8 \hat{k} \varphi$

A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm . The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of $-0,004 \mathrm{~cm}$, the correct diameter of the ball is

| (1) | 0.521 cm |
| :--- | :--- |
| (3) | 0.529 cm |
| (3) | 0.053 cm |
| (4) | 0.525 cm |$\quad 6(2)-3(1)$

155. A battery consists of a variable number ' $n$ ' of identical cells (having internal resistance ' r ' each) which are connected in series. The terminals of the battery are short-circuited and the current 1 is measured. Which of the graphs shows the correct relationship between Land n ?

, (3)


156. A carbon resistor of $(47 \pm 4.7) \mathrm{k} \Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be
(1) Violet - Yellow - Oxange - Silver
(2) Green - Orange - Violet - Gold
(3) Yellow - Green - Violet - Gold
-(4) Yellow - Violet - Orange - Silver
157. A set of ' $n$ ' equal resistors, of value ' $R$ ' each, are connected in series to a battery of emf ' E ' and internal resistance ' $R$ '. The current drawn is I. Now, the ' $n$ ' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I . The value of ' $n$ ' is (1) 10
(2) $9 \quad I=$
(3) 20
(4) 11


SPACE FOR ROUGH WORK
English
ACHLA/BB/Page 18

on

$$
\begin{array}{r}
0.500 \\
+0.025 \quad \\
\begin{array}{r}
0.004 \\
0.025
\end{array}
\end{array}
$$

158. In the circuit shown in the figure, the input voltage $\mathrm{V}_{\mathrm{i}}$ is $2 Q \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$ and $\mathrm{V}_{\mathrm{CE}}=0$. The values of $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ and $\beta$ are given by

(1) $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \beta=250$
(2) $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \beta=125$
(3) $\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}} \approx \mathrm{mA}, \mathrm{H}=250$
(4) $\mathrm{I}_{\mathrm{B}}=25 \mu \mathrm{~A}, \mathrm{I} C=5 \mathrm{~mA},{ }_{2} 200$
159. In the combination of the following gates the output Y can be written in terms of inputs $A$ and

160. In a p-n junction diode, change in temperature due to heating
(1) affects only reverse resistance
(2) affects the overall V - I characteristics of pen junction
(3) does not affect resistance of $p-q$ junction $x$
(4) affects only forward resistance,
161. An electron of mass $m$ with an initial velocity $\overrightarrow{\mathrm{V}}=\mathrm{V}_{0} \hat{\mathrm{i}}\left(\mathrm{V}_{0}>0\right)$ enters an electric field $\vec{E}=-E_{0} \hat{i}\left(E_{0}=\right.$ constant $\left.>0\right)$ at $t=0$. If $\lambda_{0}$ is its de-Broglie wavelength initially, then its de-Broglie wavelength at time $t$ is

(2) $\lambda_{0}$
(3) $\lambda_{0} t$
(4) $\lambda_{0}\left(1+\frac{\mathrm{eE}_{0}}{\mathrm{mV}_{0}} \mathrm{t}\right)$
162. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is $\sim$
(1) $1: 1$
(2) $1:-2 y$
(3) $2:-1 \varphi$
(4) $1:-1$

163. For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is 150 loop (1) 20
(2) 15
(3) 30
(4) 10
 10 minutes. If initially there are 600 number dentation of 450 nuclei is 150 ,
(4) 10

164. When the light of frequency $2 v_{0}$ (where $v_{0}$ is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is $v_{1}$. When the frequency of the incident radiation is increased to $5 v_{0}$, the maximum velocity of electrons emitted from the same plate is $v_{2}$. The ratio of $v_{1}$ to $v_{2}$ is
(1) $1: 2$
(2) $2: 1 \quad 2 h V_{0}+L \nu_{0}=\frac{m v^{2}}{2}$
(3) $4: 1$

$$
v_{1}=\sqrt{h v_{0}}
$$

(4) $1: 4 \quad 5 h v_{0}-h \nu_{6}=\frac{\mathrm{mN}^{2}}{2}$

$$
\frac{1}{4} \times \frac{\text { SPACE FOR ROUGH WORK }}{0.2519}=\frac{n t}{(n+1) R}
$$

165. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of $27^{\circ} \mathrm{C}$ two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz , the velocity of sound in air at $27^{\circ} \mathrm{C}$ is
(1) $330 \mathrm{~m} / \mathrm{s}$
(2) $-300 \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
\frac{\lambda}{2}=53 \\
\lambda=106 \mathrm{~cm} . \\
v=1.06 \times 320
\end{gathered}
$$

(3) $350 \mathrm{~m} / \mathrm{s}$
(4) $339 \mathrm{~m} / \mathrm{s}$
166. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge $Q$ and area $A$, is
(1) independent of the distance between the plates.
(2) inversely proportional to the distance between the plates.
(3) proportional to the square root of the distance between the plates.
(4) linearly proportional to the distance between the plates.
167. An electron falls from rest through a vertical distance $h$ in a uniform and vertically upward directed electric field E . The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance $h$. The time of: fall of the electron, in comparison to the time of fall of the proton is

169. The volume $(V)$ of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

$W=$

$W(p-L V) \Delta T$
(1) $\frac{2}{5}$
(2),$\frac{2}{7}$
(3) $\frac{1}{3}$
(4) $\frac{2}{3}$

170. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm , the length of the open organ pipe is
(1) 13.2 cm
(2) 16 cm

$$
\frac{3}{2 L_{0}}=\frac{3}{4 L C_{0}}
$$

(3) 12.5 cm
(4) 8 cm

$$
4 L_{C}=6 L_{0} \frac{2}{3} \frac{40}{3}
$$

At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere?
(Given :
Mass of oxygen molecule $(\mathrm{m})=2.76 \times 10^{-26} \mathrm{~kg}$
Boltzmann's constant $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ )
(1) $2.508 \times 10^{4} \mathrm{~K}$
168. A pendulum is hung from the roof of $a$ sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is $20 \mathrm{~m} / \mathrm{s}^{2}$ at a distance of 5 m from the mean position. The time period of oscillation is
(1) $2 \pi \mathrm{~s}$
(2) 1 s
(3) 2 s
(4) $\pi / \mathrm{s}$
(4) $1.254 \times 10^{4} \mathrm{~K}$
(3) $5.016 \times 10^{4} \mathrm{~K}$
(4) $8.360 \times 10^{4} \mathrm{~K}$
172. The efficiency of an ideal heat.engine working
between the freezing point and boiling point of
water, is
between the freezing point and boiling point of
water, is
(1) $26-8 \%$
$\left.\begin{aligned} & \text { (1) } 26-8 \% \\ & \text { (2) } 12.5 \%\end{aligned} \right\rvert\,-\frac{273}{373}$

$$
1-\frac{273}{373}
$$

(3) $6 \cdot 25 \%$
(4) $20 \%$

$$
1-\frac{T_{2}}{T_{1}}
$$




H WORK
ACHLA/BB/Page 20
SPACE FOR ROUGH WORK
$w^{2} y=$
SPACE FOR ROUGH WORK

$$
t e<t p
$$

173. The power radiated by a black body is P and it radiates maximum energy at wavelength, $\lambda_{0}$. If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $+\frac{3}{4} \lambda_{\sigma}$, the power radiated by it becomes $n P$. The value of $n$ is
(1) $\frac{3}{4}$
(2) $\frac{81}{256}$
(3) $\frac{256}{81}$
(4)
174. Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3 A . If the length of the first wire is increased by $\Delta l$ on applying a force $F$, how much force is needed to stretch the second wire by the same amount? $F=K A$
(1) 9 F
(2) F
(3) .4 F
(4) 6 F

$$
\frac{F_{1}}{K_{1}}=\frac{F_{2}}{K_{2}} \frac{F_{1}}{A_{1}^{2}}=\frac{F_{2} K_{6}^{2}}{A_{2}^{2}}
$$

175. A small sphere oferadius ' $r$ ' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
(1) $r^{3}$
(2) $\mathrm{r}^{4}$

$$
\begin{aligned}
& \frac{f^{2}}{A^{2}}=\frac{F_{2}}{9 N^{2}} \\
& F=6 \pi^{2} \operatorname{rn}^{2}
\end{aligned}
$$

176. A sample of $0 \cdot 1 \mathrm{~g}$ of water at $100^{\circ} \mathrm{C}$ and normal pressure $\left(\mathbb{1} 013 \times 10^{5} \mathrm{Nm}^{-2}\right)$ requires 54 cal of heat energy to convert to steam at $100^{\circ} \mathrm{C}$. If the volume of the steam produced is $167 \cdot 1 \mathrm{cc}$, the change in internal energy of the sample, is
177. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the. sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
(1) Angular velocity $\rho$
(e) Angular momentum
(3) Rotational kinetic energy $\varphi$
(4) Moment of inertia
178. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy $\left(K_{t}\right)$ as well as rotational kinetic energy $\left(\mathrm{K}_{\mathrm{r}}\right)$ simultaneously. The ratio $\mathrm{K}_{\mathrm{t}}:\left(\mathrm{K}_{\mathrm{t}}+\mathrm{K}_{\mathrm{t}}\right)$ for the sphere is
(1) $7: 10$
(2) $2: 5$
(3) $10: 7$
(4) $5: 7$

179. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions $A, B$ and $C$ are $\mathrm{K}_{\mathrm{A}}, \mathrm{K}_{\mathrm{B}}$ and $\mathrm{K}_{\mathrm{C}}$, respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun $S$ as shown in the figure. Then

(1) $\mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{C}}$
(2) $\mathrm{K}_{\mathrm{B}}>\mathrm{K}_{\mathrm{A}}>\mathrm{K}_{\mathrm{C}}$
(3) $\mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{A}}<\mathrm{K} \subset$
(4) $\mathrm{K}_{\mathrm{A}}>\mathrm{K}_{\mathrm{B}}>\mathrm{K}_{\mathrm{C}}$
180. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is notsorrect?
(1) Raindrops will fall faster. $g M$
(2) ' $g$ ' on the Earth will not change. $\varphi$

$$
g=\frac{G^{M} M_{e}}{R^{2}}
$$

(3) Time period of a simple pendulum an the Earth would decrease.
(4) Walking on the ground would become more difficult.

ACHLA/BB/Page 21


SPACE FOR ROUGH WORK


$$
\begin{aligned}
& \text { 为电 } \\
& \text { SPACE FOR ROUGH WORK } \\
& 2\left(\mathrm{MnO}_{4}+\mathrm{Se}^{-}+8 \mathrm{hn}^{+} \mathrm{Mn}^{\mathrm{g} 2}+4 \mathrm{H}_{2} \mathrm{O}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5) } \mathrm{C}_{2} \mathrm{O}^{-2} \text {. } \\
& \rightarrow \mathrm{CO}_{2}+2 \text { esinin }^{-}=\mu \mathrm{H} i=\frac{-120}{11} \\
& 1032 \sqrt{2 m n o m}+16 n^{2}+5 \mathrm{c}_{2} 5^{-2} \rightarrow 2 m n^{+2}+10 \mathrm{CO}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2
\end{aligned}
$$

$$
\begin{aligned}
& (11.2)^{2} \times 10^{6}=\frac{3 \times 8.31 y}{3.2 \times 10^{-2}} \times T
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 2 \frac{52}{68}-200=\left[\frac{1}{2}(x)+\frac{1}{2}(0.5 x)\right]-[x]_{831 y}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{121 \times 3.2}{249} 54 \times 4.2
\end{aligned}
$$



