Geometry Formulas

3.1. Right Triangle

Area of a right triangle $=\frac{1}{2}$ bh
Perimeter of a right triangle $=a+b+c$
Pythagoras Theorem $=$ Hypotenuse $^{2}=$ Perpendicular $^{2}+$ base 2
Where, b is the base of a triangle
h is the height of the triangle

3.2. Isosceles Triangle

Area of Isosceles Triangle Formula $=\frac{1}{2}$ bh

Altitude of an Isosceles Triangle $=\sqrt{a^{2}-\frac{b^{2}}{4}}$

3.3. Equilateral Triangle

Area of an Equilateral Triangle $=\frac{\sqrt{3}}{4} a^{2}$
Perimeter of an Equilateral Triangle=3a
Semi Perimeter of an Equilateral Triangle =3a / 2
Height of an Equilateral Triangle $=\frac{\sqrt{3}}{2} a$

3.4. Scalene Triangle

Area of Triangle $=1 / 2 \mathbf{x} \mathbf{b x h}$
When all the sides are given, $A=\sqrt{s(s-a)(s-b)(s-c)}$
Where $s=(a+b+c) / 2$

Area $=\mathbf{a} \times \mathbf{a}$

Area of a Square $=\mathrm{a}^{2}$
Perimeter of a Square $(p)=4 a$
3.6. Rectangle

Rectangle
Area of a Rectangle, $A=1 \times b$
Perimeter of a Rectangle, $\mathrm{P}=2(\mathrm{I}+\mathrm{b})$
Diagonal of a Rectangle, $\mathrm{D}=\sqrt{l^{2}+b^{2}}$

3.7. Parallelogram

Area $=b \times h$
Perimeter of a Parallelogram=2(Base+Height)
Height of a Parallelogram, Height=Area/Base
Diagonal of Parallelogram $=p^{2}+q^{2}=2\left(a^{2}+b^{2}\right)$

3.8. Rhombus

Area of a Rhombus $=\frac{d_{1} d_{2}}{2}$
d_{1} is the length of a diagonal
$\mathbf{d}_{\mathbf{2}}$ is the length of the other diagonal

Perimeter of a rhombus $=4 \times a$
Where,
a is the side.
Area $=4 \times 1 / 2(a b)$

Where,
b is the length of the base
a is the altitude (height).
Area $=\operatorname{Sin}^{2} \sin x$
s is the length of any side
\mathbf{x} is an interior angle
sin is the sine function

3.9. Trapezoid

Area of a Trapezoid $=\frac{a+b}{2} h$
Perimeter of a Trapezoid, $\mathrm{P}=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

Perimeter of a Trapezoid

$\mathrm{h}=$ height (Note - This is the perpendicular height, not the length of the legs.)
a = the short base
b = the long base
Height (altitude) $=2 a /\left(b_{1}+b_{2}\right)$
Base length $=(2 a / h)-b$
Centroid of a Trapezoid, $x=\frac{b+2 a}{3(a+b)} h$

The Learning App
3.10. Isosceles Trapezoid

Area of Isosceles Trapezoid $=\frac{a+b}{2} h$
Perimeter of Isosceles Trapezoid $=a+b+2 c$
3.13. Kite

Area of a Kite $=(1 / 2) \times$ Diagonal
Perimeter of a Kite= $2 a+2 b W h e r e$,
$a=$ The length of First pair
$b=$ The length of second pair

3.14. Cyclic Quadrilateral

Cyclic Quadrilateral $=\sqrt{(s-a)(s-b)(s-c)(s-d)}$
Where s is called the semi-perimeter,
$\mathrm{s}=(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}) / 2$

3.15. Tangential Quadrilateral

Area $=\sqrt{a b c d}$ (or)
$A=r s$
Where,
$r=$ radius of inscribed circle
$s=$ semi-perimeter $=(a+b+c+d)$

3.16. General Quadrilateral

Area of a Square $=(\text { side })^{2}$
Area of a Kite $=(1 / 2) \times$ Diagonal
Area of a Parallelogram $=$ Base \times Height
Area of a Rectangle $=$ Base \times Height
Area of a Trapezoid $=\frac{\text { base } 1+\text { base } 2}{2} \mathrm{~h}$

3.17. Regular Hexagon

The Learning App
Area of hexagon $=\frac{3 \sqrt{3}}{2} a^{2}$
Where a is the length of each side of the hexagon

3.18. Regular Polygon

The formula for area of a regular polygon is given as,
$\mathrm{A}=\frac{l^{2} n}{4 \tan \frac{\pi}{n}}$
Where,
I is the side length
n is the number of sides

3.19. Circle

Area of a Circle $=\pi r^{2}$
Circumference of a circle $=2 \pi r$
Where, r is the radius of the circle.
d is the diameter of the circle.
C is the circumference of the circle.

3.20. Sector of a Circle

Area of sector $=\frac{\theta}{360^{0}} \pi r^{2}$
Length of an arc of a sector $=\frac{\theta}{360^{0}} 2 \pi r$
Where, r is the circle radius

3.21. Segment of a Circle

Area of a Segment in Radians $=A=\frac{1}{2} r^{2}(\theta-\sin \theta)$
Area of a Segment in Degrees $=A=\frac{1}{2} r^{2}\left(\frac{\pi}{180} \theta-\sin \theta\right)$
Where, r is the radius of a circle

The Learning App
3.22. Cube

$$
\begin{aligned}
& \text { x = Length of the sides } \\
& \mathrm{D}=\text { Diagonals }
\end{aligned}
$$

Surface area of Cube $=6 x^{2}$
Volume of a cube $=x^{3}$
Diagonal of a Cube $=\sqrt{3} x$
Where, x is the side length of the cube.

The Cube Formula for any value ' x ' is given as, $x^{3}=x \times x \times x$

3.23. Rectangular Parallelepiped

Surface area $=2 a b+2 b c+2 a c$
Volume = abc
Diagonal $=\sqrt{a^{2}+b^{2}}$
3.24. Prism

Rectangular Prism

Surface Area of a Rectangular Prism = 2(bl+|h+hb)
Volume of a Rectangular Prism=lbh
Base Area of a Rectangular Prism =bl

BYJU'S
The Learning App
Where,
b - base length of the rectangular prism.
I- base width of the rectangular prism.
h - height of the rectangular prism.

Triangular Prism

Surface Area of a triangular Prism= $a b+3 b h$
Volume of triangular prism $=\frac{1}{2} \mathrm{abh}$
Base area of a Triangular Prism =12ab
Where,
a - apothem length of the prism.
b-base length of the prism.
I- base width of the rectangular prism.
h - height of the prism.

Pentagonal Prism

Surface Area of a pentagonal Prism $=5 a b+5 b h$
Volume of a Pentagonal Prism $=\frac{5}{2}$ abh
Base Area of Pentagonal Prism $=\frac{5}{2} a b$
Where,
a - apothem length of the pentagonal prism.
b - base length of the pentagonal prism.
h - height of the pentagonal prism.

Hexagonal Prism

Surface Area of a hexagonal Prism = 6ab +6bh
Volume of a HexagonalPrism=3abh
Base area of hexagonal prism=3a
Where,
a - apothem length of the hexagonal prism.
b - base length of the hexagonal prism.
h - height of the hexagonal prism.
3.25. Regular Tetrahedron

Area of One Face of Regular Tetrahedron, $A=\frac{1}{4} \sqrt{3} a^{2}$
Total Surface Area of Regular Tetrahedron $A=\sqrt{3} a^{2}$
Slant Height of a Regular Tetrahedron $=a \frac{\sqrt{3}}{2}$
Altitude of a Regular Tetrahedron, $h=\frac{a \sqrt{6}}{3}$
Volume of a Regular Tetrahedron, $v=\frac{a^{3} \sqrt{2}}{12}$
3.26. Regular Pyramid

Surface Area of a Pyramid=Base Area $+\frac{1}{2}$ (Number of Base Sides \times Slant Height \times Base Length)
Volume of a Pyramid $=\frac{1}{2} \times$ Base Area \times Height

Square Pyramid

Surface Area of a Square Pyramid=2bs+b2
Volume of a Square Pyramid $=\frac{1}{3} b^{2} h$
Base Area of a Square Pyramid $=b^{2}$
Where,
b - base length of the square pyramid.
s - slant height of the square pyramid.
h - height of the square pyramid.

Triangular Pyramid

Surface Area of a Triangular Pyramid $=\frac{1}{2} \mathrm{ab}+\frac{3}{2} \mathrm{bs}$
Volume of a Triangular Pyramid $=\frac{1}{6}$ abh

The Learning App
Base Area of a Triangular Pyramid $=\frac{1}{2} \mathrm{ab}$
Where,
a - apothem length of the triangular pyramid.
b - base length of the triangular pyramid.
s - slant height of the triangular pyramid.
h - height of the triangular pyramid

Pentagonal Pyramid

Surface Area of a Pentagonal Pyramid $=\frac{5}{2} \mathrm{ab}+\frac{5}{2} \mathrm{bs}$
Volume of a Pentagonal Pyramid $=\frac{5}{6}$ abh
Base Area of a Pentagonal Pyramid $=\frac{5}{2} a b$
Where,
a - apothem length of the pentagonal pyramid.
b - base length of the pentagonal pyramid.
$s-$ slant height of the pentagonal pyramid.
h - height of the pentagonal pyramid.

Hexagonal Pyramid

Surface Area of a Hexagonal Pyramid=3ab+3bs
Volume of a Hexagonal Pyramid=abh
Base Area of a Hexagonal Pyramid=3ab
Where,
a - Apothem length of the hexagonal pyramid.
b - Base length of the hexagonal pyramid.
s - Slant height of the hexagonal pyramid.
h - Height of the hexagonal pyramid.

3.27. Frustum of a Regular Pyramid

Volume of Frustum of a Regular Pyramid, $\mathrm{V}=\frac{h\left(B_{1}+B_{2}+\sqrt{\left.B_{1} B_{2}\right)}\right.}{3}$
Lateral Surface of Frustum of a Regular Pyramid, $\mathrm{S}=\frac{s\left(P_{1}+P_{2}\right)}{2}$
Where,
$\mathrm{s}=$ Slant height
P_{1} and $P_{2}=$ Perimeter of Bases
$\mathrm{h}=$ Height
B_{1} and $\mathrm{B}_{2}=$ Base Areas

3.28. Platonic Solids

Tetrahedron

Surface Area $=\sqrt{3} a^{3}$
Volume $=\frac{\sqrt{2}}{12} a^{3}$

Cube

Surface Area $=4 a^{2}$
Volume $=a^{3}$
Diagonal $=\sqrt{3} a$

Octahedron

Surface Area $=2 \sqrt{3} a^{2}$
Volume $=\frac{\sqrt{2}}{3} a^{3}$
Dodecahedron

Surface Area $=30 \times a \times a p$
Volume $=\frac{1}{4}(15+7 \sqrt{5}) a^{3}$

Icosahedron

Surface Area $=5 \sqrt{3} a^{2}$
Volume $=\frac{5}{12}\left(3+\sqrt{5} a^{3}\right)$
3.33. Frustum of a Right Circular Cone

$A=\pi\left(R_{1}+R_{2}\right) s$
$V=\frac{\pi h}{3}\left(R^{2}+R r+r^{2}\right)$
3.34. Sphere

Surface Area of a Sphere $=4 \pi r^{2}$
Volume of a sphere $=\frac{4}{3} \pi^{3}$
Where, r is the radius of the sphere

3.35. Spherical Cap

The volume of the spherical cap with base radius, $\mathrm{V}=\frac{\pi}{3} \mathrm{H}^{2}\left(3 \mathrm{R}^{2}=\mathrm{H}^{2}\right)$
Where,
$\mathrm{H}=$ height
$\mathrm{S}=$ sphere radius
A = base radius
$R=$ sphere radius

3.36. Spherical Sector

Surface Area of the spherical sector, $A=\pi r(2 h+a)$
Volume of the Spherical Sector, $V=\frac{2 \pi r^{2} h}{3}$

The Learning App
3.37. Spherical Segment

Surface Area of the spherical segment, $A=2 \pi R h$
Volume of the Spherical segment, $\mathrm{V}=\frac{\pi h}{6}\left(3 r_{1}^{2}+3 r_{2}^{2}+h^{2}\right)$
3.38. Spherical Wedge

Surface Area $=2 R^{2} \theta$
Volume $={ }_{-}^{2} \mathrm{R}^{3} \theta$
Arc Length at the equator $=\mathrm{R} \theta$
3.39. Ellipsoid

Volume of an Ellipsoid, $\mathrm{V}=\frac{4}{3} \pi \mathrm{rabc}$ (or)
$V=\frac{4}{3} \pi r_{1} r_{2} r_{3}$
Where,
r1= radius of the ellipsoid 1
r2= radius of the ellipsoid 2
r3= radius of the ellipsoid 3

