Geometry Formulas

3.1. Right Triangle

Area of a right triangle= $\frac{1}{2}$ bh

Perimeter of a right triangle = a+b+c

Pythagoras Theorem = Hypotenuse² = Perpendicular² + base²

Where, b is the base of a triangle

h is the height of the triangle

3.2. Isosceles Triangle

Area of Isosceles Triangle Formula= $\frac{1}{2}$ bh

3.3. Equilateral Triangle

Area of an Equilateral Triangle = $\frac{\sqrt{3}}{4}a^2$

Perimeter of an Equilateral Triangle=3a

Semi Perimeter of an Equilateral Triangle =3a / 2

Height of an Equilateral Triangle== $\frac{\sqrt{3}}{2}a$

3.4. Scalene Triangle

Area of Triangle = $\frac{1}{2} \times b \times h$

When all the sides are given , A = $\sqrt{s(s-a)(s-b)(s-c)}$ Where s = (a+b+c)/2

3.5. Square

Area of a Square=a²

Perimeter of a Square (p) =4a

3.6. Rectangle

Rectangle

Area of a Rectangle, $A = I \times b$

Perimeter of a Rectangle, P = 2 (I + b)

Diagonal of a Rectangle, D = $\sqrt{l^2 + b^2}$

3.7. Parallelogram

Perimeter of a Parallelogram=2(Base+Height)

Height of a Parallelogram, Height=Area/Base

Diagonal of Parallelogram $=p^2+q^2=2(a^2+b^2)$

3.8. Rhombus

Area of a Rhombus = $\frac{d_1d_2}{2}$

d₁ is the length of a diagonal

 \mathbf{d}_2 is the length of the other diagonal

Perimeter of a rhombus = $4 \times a$

Where,

a is the side.

Area = 4 x ½ (ab)

Where,

b is the length of the base

a is the altitude (height).

Area = $Sin^2 sinx$

s is the length of any side

x is an interior angle

sin is the sine function

3.9. Trapezoid

Area of a Trapezoid = $\frac{a+b}{2}h$

Perimeter of a Trapezoid, P=a+b+c+d

Perimeter of a Trapezoid

h = height (Note – This is the perpendicular height, not the length of the legs.)

a = the short base

b = the long base

Height (altitude) = $2a/(b_1 + b_2)$

Base length = (2a/h) - b

Centroid of a Trapezoid, $x = \frac{b+2a}{3(a+b)}h$

3.10. Isosceles Trapezoid

Area of Isosceles Trapezoid = $\frac{a+b}{2}h$

Perimeter of Isosceles Trapezoid =a+b+2c

3.13. Kite

Area of a Kite= $(1/2) \times Diagonal$

Perimeter of a Kite= 2a+2bWhere, a = The length of First pair b = The length of second pair

3.14. Cyclic Quadrilateral

Cyclic Quadrilateral = $\sqrt{(s - a)(s - b)(s - c)(s - d)}$ Where s is called the semi-perimeter, s = (a + b + c + d) / 2

3.15. Tangential Quadrilateral

Area= \sqrt{abcd} (or)

A=rs

Where,

r = radius of inscribed circle

s = semi-perimeter = (a + b + c + d)

3.16. General Quadrilateral Area of a Square = (side)²

Area of a Kite = $(1/2) \times Diagonal$

Area of a Parallelogram = Base × Height

Area of a Rectangle= Base × Height

Area of a Trapezoid= $\frac{base1+base2}{2}h$

3.17. Regular Hexagon

Area of hexagon = $\frac{3\sqrt{3}}{2}a^2$

Where a is the length of each side of the hexagon

The formula for area of a regular polygon is given as,

$$A = \frac{l^2 n}{4tan\frac{\pi}{n}}$$

Where, I is the side length n is the number of sides

3.19. Circle

Area of a Circle = πr^2 Circumference of a circle = $2\pi r$

Where,

r is the radius of the circle.

d is the diameter of the circle.

C is the circumference of the circle.

3.20. Sector of a Circle

Area of sector = $\frac{\theta}{360^0}\pi r^2$

Length of an arc of a sector== $\frac{\theta}{360^0} 2\pi r$

Where, r is the circle radius

3.21. Segment of a Circle

Area of a Segment in Radians = $A = \frac{1}{2}r^2(\theta - sin\theta)$ Area of a Segment in Degrees= $A = \frac{1}{2}r^2(\frac{\pi}{180}\theta - sin\theta)$

Where, r is the radius of a circle

3.22. Cube

Surface area of Cube= $6x^2$ Volume of a cube = x^3 Diagonal of a Cube = $\sqrt{3}x$ Where, x is the side length of the cube.

The Cube Formula for any value 'x' is given as, $x^3 = x \times x \times x$

3.23. Rectangular Parallelepiped

Surface area = 2ab+2bc+2ac Volume = abc Diagonal = $\sqrt{a^2 + b^2}$ 3.24. Prism

Rectangular Prism

Surface Area of a Rectangular Prism = 2(bl+lh+hb) Volume of a Rectangular Prism=lbh Base Area of a Rectangular Prism =bl Where,

b – base length of the rectangular prism.

I – base width of the rectangular prism.

h – height of the rectangular prism.

Triangular Prism

Surface Area of a triangular Prism= ab +3bh

Volume of triangular prism= $\frac{1}{2}$ abh

Base area of a Triangular Prism =12ab Where,

- a apothem length of the prism.
- b base length of the prism.
- I base width of the rectangular prism.
- h height of the prism.

Pentagonal Prism

Surface Area of a pentagonal Prism = 5ab+5bh Volume of a Pentagonal Prism= $\frac{5}{2}$ abh Base Area of Pentagonal Prism= $\frac{5}{2}$ ab Where,

a – apothem length of the pentagonal prism.

- b base length of the pentagonal prism.
- h height of the pentagonal prism.

Hexagonal Prism

Surface Area of a hexagonal Prism = 6ab +6bh Volume of a HexagonalPrism=3abh Base area of hexagonal prism=3a Where,

a – apothem length of the hexagonal prism.

b – base length of the hexagonal prism.

- h height of the hexagonal prism.
- 3.25. Regular Tetrahedron

Area of One Face of Regular Tetrahedron, $A = \frac{1}{4}\sqrt{3}a^2$

Total Surface Area of Regular Tetrahedron $A = \sqrt{3}a^2$

Slant Height of a Regular Tetrahedron = $a\frac{\sqrt{3}}{2}$

Altitude of a Regular Tetrahedron, $h = \frac{a\sqrt{6}}{3}$

Volume of a Regular Tetrahedron, $v = \frac{a^3\sqrt{2}}{12}$

Surface Area of a Pyramid=Base Area $+\frac{1}{2}$ (Number of Base Sides× Slant Height × Base Length)

Volume of a Pyramid= $\frac{1}{2}$ ×Base Area ×Height

Surface Area of a Square Pyramid=2bs+b²

Volume of a Square Pyramid = $\frac{1}{3}b^2h$

Base Area of a Square Pyramid=b²

Where,

b – base length of the square pyramid.

s – slant height of the square pyramid.

h – height of the square pyramid.

Triangular Pyramid

Surface Area of a Triangular Pyramid= $\frac{1}{2}ab+\frac{3}{2}bs$ Volume of a Triangular Pyramid= $\frac{1}{6}abh$ Base Area of a Triangular Pyramid= $\frac{1}{2}ab$

Where,

a – apothem length of the triangular pyramid.

b – base length of the triangular pyramid.

- s slant height of the triangular pyramid.
- h height of the triangular pyramid

Pentagonal Pyramid

Surface Area of a Pentagonal Pyramid= $\frac{5}{2}ab+\frac{5}{2}bs$

Volume of a Pentagonal Pyramid= $\frac{5}{6}$ abh

Base Area of a Pentagonal Pyramid= $\frac{5}{2}$ ab

Where,

- a apothem length of the pentagonal pyramid.
- b base length of the pentagonal pyramid.
- s slant height of the pentagonal pyramid.
- h height of the pentagonal pyramid.

Surface Area of a Hexagonal Pyramid=3ab+3bs

Volume of a Hexagonal Pyramid=abh

Base Area of a Hexagonal Pyramid=3ab

Where,

- a Apothem length of the hexagonal pyramid.
- b Base length of the hexagonal pyramid.
- s Slant height of the hexagonal pyramid.
- h Height of the hexagonal pyramid.

3.27. Frustum of a Regular Pyramid

Volume of Frustum of a Regular Pyramid, V = $\frac{h(B_1+B_2+\sqrt{B_1B_2})}{3}$

Lateral Surface of Frustum of a Regular Pyramid, $S = \frac{s(P_1+P_2)}{2}$

Where, s = Slant height P₁ and P₂ = Perimeter of Bases h=Height B₁ and B₂ = Base Areas

Surface Area = $4a^2$

Volume = a^3

Diagonal = $\sqrt{3}a$

Octahedron

Surface Area= $2\sqrt{3}a^2$

Volume=
$$\frac{\sqrt{2}}{3}a^3$$

Dodecahedron

Surface Area = $30 \times a \times ap$ Volume= $\frac{1}{4}(15 + 7\sqrt{5})a^3$

Icosahedron

Surface Area= $5\sqrt{3}a^2$

Volume = $\frac{5}{12}(3 + \sqrt{5}a^3)$

3.33. Frustum of a Right Circular Cone

 $A=\pi (R_1+R_2)s$

$$V = \frac{\pi h}{3} (R^2 + Rr + r^2)$$

3.34. Sphere

Surface Area of a Sphere= $4\pi r^2$ Volume of a sphere= $\frac{4}{3}\pi^3$ Where, r is the radius of the sphere 3.35. Spherical Cap

The volume of the spherical cap with base radius, $V = \frac{\pi}{3}H^2(3R^2 = H^2)$

Where, H = height S = sphere radius A = base radius R = sphere radius

3.36. Spherical Sector

Surface Area of the spherical sector, $A=\pi r$ (2h+a)

Volume of the Spherical Sector, V = $\frac{2\pi r^2 h}{3}$

3.37. Spherical Segment

Surface Area of the spherical segment, A =2 π Rh Volume of the Spherical segment, V = $\frac{\pi h}{6}(3r_1^2 + 3r_2^2 + h^2)$

3.38. Spherical Wedge Surface Area= $2R^2\theta$ Volume= $\frac{2}{3}R^3\theta$ Arc Length at the equator = R θ 3.39. Ellipsoid

Volume of an Ellipsoid, $V=\frac{4}{3}\pi abc$ (or)

 $V = \frac{4}{3} \pi r_1 r_2 r_3$

Where,

r1= radius of the ellipsoid 1

r2= radius of the ellipsoid 2

r3= radius of the ellipsoid 3