MATHS QUESTION PAPER CLASS-XII

Time : 3.00 Hours]
[Maximum Marks : 100

Instructions :

1. Answer all the questions.
2. Write your answers according to the instructions given.
3. Begin each question from a new page.

SECTION - A

Given below are 15 multiple choice questions, each carrying ONE mark.
Write the serial number [(A) or (B) or (C) or (D)] which you feel is the correct answer of the questions.

1. In $\triangle \mathrm{ABC}$, if $\mathrm{A}(1,-6), \mathrm{B}(-5,2)$ and the centroid is $\mathrm{G}(-2,1)$, then Co-ordinates of vertex C are?
(A) $(-2,1)$
(B) $\quad(-2,6)$
(C) $(3,2)$
(D) $(-2,7)$
2. $d\{(a, 0),(0, b)\}=$?
(A) a
(B) b
(C) $|a-b|$
(D) $\sqrt{a^{2}+b^{2}}$
3. The t point of Parabola $y^{2}=20 x$ is ? $(t \in \mathrm{R})$
(A) $\left(5 t, 4 t^{2}\right)$
(B) $\left(5 t^{2}, 4 t\right)$
(C) $\left(5 t^{2}, 10 t\right)$
(D) $(t, 2 t)$
4. If $y=2 x+c$ touches a parabola $y^{2}=16 x$, then value of c is ...
(A) 2
(B) -2
(C) 8
(D) $\sqrt{2}$
5. The equation of director circle of ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ is ...
(A) $x^{2}+y^{2}=9$
(B) $x^{2}+y^{2}=16$
(C) $x^{2}+y^{2}=25$
(D) $x^{2}+y^{2}=7$
6. The eccentricity of hyperbola $x^{2}-y^{2}=144$ is ...
(A) $\sqrt{21}$
(B) $\sqrt{2}$
(C) $\sqrt{7}$
(D) $\sqrt{3}$
7. For non-null vectors $\bar{a}, b, \bar{c}, \bar{d} \in \mathrm{R}^{3}$ are distinct vectors, then $(\bar{a} \times \bar{b}) \cdot(\bar{c} \times \bar{d})$ is \ldots
(A). $\left|\begin{array}{ll}\bar{a} \cdot \bar{c} & \bar{a} \cdot \bar{d} \\ \bar{b} \cdot \bar{c} & \bar{b} \cdot \bar{d}\end{array}\right|$
(B) $\left|\begin{array}{ll}\bar{b} \cdot \bar{c} & \bar{b} \cdot \bar{d} \\ \bar{a} \cdot \bar{c} & \bar{a} \cdot \bar{d}\end{array}\right|$
(C) $\left|\begin{array}{ll}\bar{a} \cdot \bar{d} & \bar{a} \cdot \bar{c} \\ \bar{b} \cdot \bar{d} & \bar{b} \cdot \bar{c}\end{array}\right|$
(D) $\quad\left|\begin{array}{ll}\bar{b} \cdot \bar{d} & \bar{b} \cdot \bar{c} \\ \bar{a} \cdot \bar{d} & \bar{a} \cdot \bar{c}\end{array}\right|$
8. The projection of $\bar{a}=(1,1,1)$ on $\bar{b}=(2,2,1)$ is \ldots
(A) $\frac{5}{9}(2 ; 2,1)$
(B) $(1,3,2)$
(C) $(0,0,1)$
(D) $\frac{1}{9}(1,3,2)$
9. The direction of a line passing through points $(3,2,1)$ and $(5,6,7)$ is ...
(A) $(8,8,8)$
(B) $(2,4,3)$
(C) $(4,3,2)$
(D) $(2,4,6)$
10. The perpendicular distance between $6 x-3 y+2 z=1$ and $12 x-6 y+4 z=21$ is \ldots
(A) $\frac{63}{17}$
(B) $\frac{6}{31}$
(C) $\frac{12}{7}$
(D) $\frac{19}{14}$
11. The centre of sphere $|\bar{r}|^{2}-\bar{r} \cdot(2,4,6)+5=0$ is ...
(A) $(2,4,6)$
(B) $(1,2,3)$
(C) $(2,1,3)$
(D) $(2,3,5)$
12. $\mathrm{N}(a, \delta)$ form of the set $\{x /|x+1|<3, x \in \mathrm{R}\}$ is ...
(A) $\mathrm{N}(1,3)$
(B) $\mathrm{N}(2,3)$
(C) $\quad \mathrm{N}(3,1)$
(D) $\quad \mathrm{N}(-1,3)$
13. For $\sqrt{x}-\sqrt{y}=\sqrt{a}, a>0, \frac{d y}{d x}=$?
(A) \sqrt{x}
(B) \sqrt{y}
(C) $\sqrt{\frac{y}{x}}$
(D) $\sqrt{\frac{x}{y}}$
14. $\int \frac{1}{x^{2}+4 x+5} d x=$?
(A) $\tan ^{-1}(x+5)+c$
(B) $\tan ^{-1}(x+4)+c$
(C) $\tan ^{-1}(x+2)+c$
(D) $\tan ^{-1}(5 x+4)+c$
15. $\int_{1}^{4}\left(\frac{x^{2}+1}{x}\right)^{-1} \cdot d x=$?
(A) $\log \left|\frac{17}{2}\right|$
(B) $\quad \frac{1}{2} \log \left|\frac{17}{2}\right|$
(C) $2 \log |17|$
(D) None of these

SECTION - B

Instruction: In the following 16 to 30 questions each carries 1-1 mark.
Answer your questions as requirement.
16. If a line $(a+3) x+\left(a^{2}-9\right) y+(a-3)=0$ passes through origin, then find the value of a.

OR

Find K ; if the following lines

$$
\begin{array}{ll}
& 2 x-5 y+3=0 \\
& 5 x-9 y+\mathrm{K}=0 \\
\text { and } & x-2 y+1=0 \text { are concurrent. }
\end{array}
$$

17. Find the equation of parabola whose focus is $S\left(4^{\prime}, 0\right)$ and equation of its directrix is $x+4=0$.
18. Find the tangents to the parabola $y^{2}=8 x$ that is perpendicular to the line $x+2 y+5=0$.
19. Prove that $(\bar{x}-\bar{y}) \times(\bar{x}+\bar{y})=2(\bar{x} \times \bar{y})$.
20. Obtain the cosine formula for a triangle by using vectors.
21. If the equation $|\bar{r}|^{2}-\bar{r} \cdot(2,1,1)+3=0$ represents a sphere, then find its radius.
22. Obtain equation of a sphere having extremities of its diameter are ($1,1,1$) and (2, 2, 1).
23. Find K if $f(x)= \begin{cases}k x-1, & x<2 \\ x & x \geq 2\end{cases}$ is continuous at $x=2$.

OR

Obtain $\lim _{x \rightarrow 0} \frac{(2006)^{x}+(2005)^{x}-2}{x}$.
24. Prove $f(x)=e^{\frac{1}{x}}$ is decreasing function for $x \neq 0$.
25. Find the approximate value of $\sqrt{28}$.
26. Verify Rolle's theorem for $f(\dot{x})=x^{2}, x \in[-2,2]$.
27. Evaluate $\int \frac{\log x}{x} d x$.

OR

Evaluate: $\int\left[\sin ^{2} x+\sin 2 x\right] e^{x} d x$.
28. Show that $\int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x$.
29. Solve the differential equation $x \frac{d y}{d x}=y+2$.
30. Write down the order of the differential equation $\frac{d^{2} y}{d x^{2}}+3 y=0$.

SECTION - C

Instruction: In the following questions 31 to 40, each question carries 2 marks.
31. Let A be $(3,-1)$ and $\mathrm{B}(0,4)$. If $\mathrm{P}(x, y) \in \overline{\mathrm{AB}}$, obtain the maximum and minimum values of $3 y-x$.

OR

Find the equations of lines containing the diagonals of the rectangle formed by the lines $x=2, x=-1, y=6$ and $y=-2$.
32. Find the maximum and minimum distances of points on the circle
$x^{2}+y^{2}-4 x-2 y-20=0$ from the point $(10,7)$.
OR

Prove that for every value of K, the circle
$2 x^{2}+2 y^{2}-12 x+\mathrm{K} y+18=0$ touches the X axis.
33. Find the equation of Ellipse passing through the points $(1,4)$ and $(-6,1)$.
34. Find the measure of angle between the asymptotes of hyperbola $3 x^{2}-2 y^{2}=1$.
35. Find a unit vector orthogonal to $(2,1,1)$ and $(1,2,3)$.
36. Find the area of a parallelogram if its diagonals are $2 \bar{i}+\bar{k}$ and $\bar{i}+\bar{j}+\bar{k}$.
37. Obtain : $\lim _{x \rightarrow \pi} \frac{\sqrt{10+\cos x}-3}{(\pi-x)^{2}}$

OR

Obtain : $\lim _{x \rightarrow 1}(1-x) \tan \left(\frac{\pi x}{2}\right)$
38. Find : $\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left(\frac{1}{4 r^{2}-1}\right)$
39. Find : $\int \frac{\sin 2 x d x}{m^{2} \sin ^{2} x-n^{2} \cos ^{2} x}$.
40. Evaluate : $\int_{0}^{1} x \sqrt{\frac{1-x^{2}}{1+x^{2}}} d x$.

OR

Show that : $\int_{0}^{\pi / 2} \frac{d x}{2+\cos x}=\frac{\pi}{3 \sqrt{3}}$

SECTION - D

Instructions: Given below are 41 to 50 questions.
Each question carries 3 marks. Write your answer carefully.
41. If G and I are respectively the centroid and incentre of the triangle whose vertices are $\mathrm{A}(-2,-1), \mathrm{B}(1,-1)$ and $\mathrm{C}(1,3)$, find IG.
42. If circle $x^{2}+y^{2}+2 x+f y+\mathrm{K}=0$ touches both the axes, then find f and K .
43. If $\bar{x}+\bar{y}+\bar{z}=\overline{0}$, then prove that $\bar{x} \times \bar{y}=\bar{y} \times \bar{z}=\bar{z} \times \bar{x}$.

OR
If the vectors $(a, 1,1),(1, b, 1)$ and $(1,1, c)$ are coplaner vectors, then show that

$$
\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1 .
$$

44. Find the shortest distance between the lines
$x=y=z$ and $\frac{x+1}{1}=\frac{y}{2}=\frac{z}{3}$.
45. Find the vector and cartesian equation of plane and distance from origin to the plane which passes through points $\mathrm{A}(1,1,0), \mathrm{B}(0,1,1)$ and $\mathrm{C}(1,0,1)$.
46. Obtain : $\lim _{x \rightarrow 0} \frac{(1+m x)^{n}-(1+n x)^{n}}{x^{2}} ; m, n \in \mathrm{~N}$.
47. If $y=a \cos (\log x)+b \sin (\log x)$, then prove that $x^{2} y_{2}+x y_{1}+y=0$.
48. Using the mean value theorem, prove that

$$
\frac{1}{1+x^{2}}<\frac{\tan ^{-1} x-\tan ^{-1} y}{x-y}<\frac{1}{1+y^{2}} \quad(x>y>0) .
$$

OR

Show that curves $y=a x^{3}$ and $x^{2}+3 y^{2}=b^{2}$ are orthogonal curves. ($a \neq 0, b \neq 0$).
49. Solve the differential equation :
$x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$.
50. If the time is taken for horizontal range R is T, prove that angle of projection has measure $\tan ^{-1}\left(\frac{g \mathrm{~T}^{2}}{2 \mathrm{R}}\right)$.

> OR

Velocity of a projectile at the maximum height is $\sqrt{\frac{2}{5}}$ times its velocity at half the maximum height. Prove that angle of projection has measure $\frac{\pi}{3}$.

SECTION - E

Instructions : Each question carries 5 marks of the following 51 to 54 questions.
Answer the following questions.
51. In $\triangle \mathrm{ABC}, \mathrm{C}$ is $(4,-1)$. The line containing the altitude from A is $3 x+y+11=0$ and the line containing the median $\overline{\mathrm{AD}}$ through A is $x+2 y+7=0$. Find the equations of lines containing the three sides of the triangle.

OR

Find the equation of the line that passes through the point of intersection of $3 x-4 y+1=0$ and $5 x+y-1=0$ and that cuts off intercepts of equal magnitude on the two axes.
52. $f(x)= \begin{cases}e^{x} & ; x \geq 0 \\ \log (x+e) & ; x<0\end{cases}$

If f continuous at $x=0$? It is differentiable at $x=0$? Why?
53. Obtain : $\int \frac{d x}{\sin x+\sec x}$.
54. Obtain : $\int_{1} x^{3} d x$ as the limit of a sum.

OR

Prove that $\int_{0}^{\pi / 2} \frac{x \cdot \sec x}{1+\tan x} d x=\frac{\pi}{2 \sqrt{2}} \log (\sqrt{2}+1)$.

