MATHS QUESTION PAPER
 CLASS-X
 (MARCH, 2011)

PART-A

Time : 75 minutes
Maximum Marks : 50

Instructions :

(1) There are 50 objective type questions in this part and all are compulsory.
(2) The questions are serially numbered from 1 to 50 and each carries 1 mark.
(3) You are supplied with separate OMR sheet with the alternatives (A) \bigcirc, (B) \bigcirc, (C) \bigcirc, (D) \bigcirc against each question number. For each question, select the correct alternative and darken the circle O as - completely with the pen against the alphabet corresponding to that alternative in the given OMR sheet.

- From the following $\mathbf{1}$ to $\mathbf{5 0}$ questions, select the correct alternative from the given four answers and darken the circle with pen against the alphabet, against the number in OMR sheet.
- Each question carries 1 mark.

1. On walking ' a ' metres on the hilly way, making an angle
[Space for
Rough Work] of 30° with the ground, one can reach the height ' b ' metres from the ground. Then
(A) $a=b$
(B) $2 a=b$
(C) $2 a=\sqrt{3} b$
(D) $\quad a=2 b$
2. Formula to find the curved surface area of Sphere is
(A) $\pi r^{2} h$
(B) $4 \pi r^{2}$
(C) $3 \pi r^{2}$
(D) $2 \pi r^{2}$
3. The angle of elevation of the top of the building from a point A on the ground is 45°. If the distance of the building from the point A is x and the height of the building is y, then \qquad
(A) $x=y$
(B) $x<y$
(C) $x>y$
(D) $x=2 y$
4. If $n=100, \sum f_{i} d_{i}=0$ and $\mathrm{A}=15$, then the value of mean $\bar{x}=$
(A) 100
(B) 115
(C) 15
(D) 11.5
5. If $n=50, \mathrm{~A}=20$ and mean $\bar{x}=19.7$, then the value of $\sum f_{i} d_{i}=$ \qquad
(A) 35
(B) (-35)
(C) 15
(D) (-15)
6. $n=100, \mathrm{~A}=12, \bar{x}=12, \quad \therefore \sum f_{i} d_{i}=$
(A) 12
(B) 0
(C) 100
(D) (-12)
7. $\bar{x}=\bar{y}+3, \therefore \bar{y}=\bar{x}+$
(A) 0
(B) 3
(C) (-3)
(D) 6
8. Under section 80 C , investment in \qquad upto fixed limit is exempted in income tax.
(A) PPF
(B) Bank FD
(C) Shares
(D) Mediclaim
9. Under section of income tax, mediclaim premium is exempted.
(A) 80 C
(B) 88 C
(C) 80 D
(D) 88 D
10. Senior citizen has invested Rs. 90,000 annually, under section 80 C . He will get the exemption of Rs. \qquad from his income.
(A) $1,00,000$
(B) $1,85,000$
(C) $1,50,000$
(D) 90,000
11. For $A(4,3)$ and $B(8,9)$; the mid point of $A B=$ \qquad
(A) $\left(2, \frac{3}{2}\right)$
(B) $\left(4, \frac{9}{2}\right)$
(C) $(6,6)$
(D) $(2,3)$
12. The distance between origin and point (x, y) is
(A) x
(B) y
(C) $x+y$
(D) $\sqrt{x^{2}+y^{2}}$
13. The centroid of a triangle with vertices $A(3,2), B(7,5)$ and $\mathrm{C}(2,2)$ is \qquad
(A) $(3,4)$
(B) $(4,3)$
(C) $\left(\frac{7}{2}, \frac{5}{2}\right)$
(D) $\left(6, \frac{9}{2}\right)$
14. Sum of the ages of five persons, five years ago, was 50 years. The sum of the ages of the same persons will be
\qquad years after five years.
(A) 100
(B) 75
(C) 60
(D) 80
15. In a two digit number, number at unit's place is ' p ' and number at ten's place is ' r '. The two digit number is
(A) $10 x+y$
(B) $10 p+r$
(C) $10 r+p$
(D) $10 y+x$
16. Solution set of $x+y-1=0$ and $2 x+2 y=2$ is \qquad
(A) $\{(1,0)\}$
(B) $\{(0,1)\}$
(C) Null set
(D) Infinite set
17. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$. Perimetre of $\triangle \mathrm{ABC}$ is 35 and that of $\triangle P Q R$ is 28 . If $P R=4 \sqrt{10}$, then $A C=$
(A) $5 \sqrt{2}$
(B) $5 \sqrt{10}$
(C) $2 \sqrt{5}$
(D) $4 \sqrt{10}$
18. Length of a diagonal of a Square is 10. Its area $=$
(A) 100
(B) $5 \sqrt{2}$
(C) 50
(D) 25
19. In $\triangle \mathrm{ABC}, m \angle \mathrm{~B}=90^{\circ}$. BM is an altitude on hypotenuse AC . $\mathrm{AM}=16, \mathrm{AC}=25, \therefore \mathrm{BM}=$
(A) 12
(B) 20
(C) $\sqrt{41}$
(D) 9
20. In a correspondence $A B C \leftrightarrow R P Q$ between $\triangle A B C$ and $\triangle P Q R$, is the angle corresponding o $\angle \mathrm{B}$.
(A) $\angle \mathrm{P}$
(B) $\angle Q$
(C) $\angle \mathrm{R}$
(D) $\angle B$
21. Bisector of $\angle P$ intersects $R Q$ in S in $\triangle P Q R$.
$\mathrm{QS}: \mathrm{RS}=4: 5$. If $\mathrm{PQ}=4$, then $\mathrm{PR}=$
(A) 4
(B) 5
(C) 9
(D) 10
22. $\triangle \mathrm{PQR} \sim \triangle \mathrm{XYZ}$ and $\mathrm{PQ}: \mathrm{QR}: \mathrm{PR}=3: 5: 7$.

If the perimeter of $\triangle \mathrm{XYZ}$ is 22.5 , then $\mathrm{YZ}=$
(A) 4.5
(B) 7.5
(C) 10.5
(D) 15
23. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}, m \angle \mathrm{~A}=m \angle \mathrm{R}$ and $\angle \mathrm{B} \cong \angle \mathrm{Q}$.

The correspondence \qquad . is similarity between them.
(A) $\mathrm{ABC} \leftrightarrow \mathrm{PQR}$
(B) $\mathrm{ABC} \leftrightarrow \mathrm{QRP}$
(C) $\mathrm{ABC} \leftrightarrow \mathrm{RQP}$
(D) $\mathrm{ABC} \leftrightarrow \mathrm{RPQ}$
24. $(1-\cos \theta)(1+\cos \theta)=$ \qquad
(A) $\operatorname{cosec}^{2} \theta$
(B) $\cos ^{2} \theta$
(C) $2-\cos ^{2} \theta$
(D) $\begin{gathered}1 \\ \operatorname{cosec}^{2} \theta\end{gathered}$
25. If $7 \cos ^{2} \theta+3 \sin ^{2} \theta=4$, then $\tan \theta=$
(A) 7
(B) $\quad 7 \begin{aligned} & 7 \\ & \end{aligned}$
(C) 3
(D) $\sqrt{3}$
26. $\sin ^{2} 60^{\circ}-\tan 45^{\circ}+\cos ^{2} 30^{\circ}-\cot 90^{\circ}=$
(A) 1
(B) 2
(C) $\begin{aligned} & 1 \\ & 2\end{aligned}$
(D) 3
27. Formula to find total surface area of Rs. 5 coin is
(A) $\pi r^{2} h$
(B) $\pi r(r+h)$
(C) $2 \pi r(r+h)$
(D) $\pi r l$
28. The radius of a Sphere is \qquad cm , if its curved surfac area is 616 sq . cm.
(A) 6
(B) 7
(C) 8
(D) 5
29. Volume of a Sphere with radius 1.5 cm is \qquad cu.cm.
(A) 4.5π
(B) 5π
(C) 5.5π
(D) 4π
30. Sum of first n natural numbers $=$
(A) $\begin{aligned} & n \\ & 2\end{aligned}$
(B) $\quad n+1$
(C) $\frac{n(n+1)}{2}$
(D) $\quad n-1$
31. While purchasing in instalment scheme, the formula to find simple interest $=$ \qquad
(A) $I=\begin{gathered}\text { PRN } \\ 100\end{gathered}$
(B) $\quad \mathrm{I}=\begin{gathered}\mathrm{PR}^{2} \mathrm{~N} \\ 100\end{gathered}$
(C) $\quad \mathrm{I}=\begin{gathered}\mathrm{P}^{2} \mathrm{RN} \\ 100\end{gathered}$
(D) $\quad \mathrm{I}=\begin{gathered}\mathrm{PRN}^{2} \\ 100\end{gathered}$
32. Simple interest on Rs. 500 at 10% is \qquad for two years.
(A) Rs. 100
(B) Rs. 110
(C) Rs. 120
(D) Rs. 10
33. If $\frac{(3 x-3)^{2}}{(1-x)^{2}}=m$, then $m=$ \qquad
(A) 3
(B) (-3)
(C) 9
(D) $\quad(-9)$
34. $\alpha=\ldots$. is a solution of quadratic equation $x^{2}+7 x+12=0$.
(A) 7
(B) 4
(C) (-3)
(D) 3
35. Value of discriminant D is \qquad for the quadratic equation $5 x^{2}-6 x+1=0$.
(A) 16
(B) 56
(C) $\sqrt{56}$
(D) 4
36. If one of the roots of the equation $k x^{2}+3 x-4=0$ is $x=2$, then the value of $k=$
(A) $\quad 1$
(B) $\left(-\frac{1}{2}\right)$
(C) 2
(D) (-2)
37. Any angle inscribed in a semi-circle is of measure \qquad
(A) 30°
(B) 90°
(C) 120°
(D) 60°
38. If $\odot(P, 5)$ and $\odot(Q, 4)$ touch each 'other externally, then $P Q=$ \qquad
(A) 5
(B) 9
(C) 1
(D) 7
39. If cyclic quadrilatic is a parallelogram, then it is
(A) Rhombus
(B). Rectangle
(C) Square
(D) Trapezium
40. If $\odot(P, 5)$ and $\odot(Q, r)$ are congruent circles, then
(A) $r=5, \mathrm{P} \neq \mathrm{Q}$
(B) $r=5, \mathrm{P}=\mathrm{Q}$
(C) $r \neq 5, \quad \mathrm{P}=\mathrm{Q}$
(D) $r \neq 5, \quad \mathrm{P} \neq \mathrm{Q}$
41. If $\odot(P, 3)$ and $\odot(\mathbf{Q}, \boldsymbol{r})$ are concentric circles, then
(A) $\mathrm{P}=\mathrm{Q}, r=3$
(B) $\mathrm{P} \neq \mathrm{Q}, r=3$
(C) $\mathrm{P} \neq \mathrm{Q}, \quad r \neq 3$
(D) $\mathrm{P}=\mathrm{Q}, r \neq 3$
42. Intersection set of all the radii of a Circle is
(A) ϕ
(B) $\{$ Centre of circle $\}$
(C) Circle
(D) Interior of circle
43. The length of semi-circular arc of $\odot(O, 5)$ is \qquad
(A) 2π
(B) π
(C) 5π
(D) 10π
44. $p(x)=-x^{2}$ and $q(x)=x^{3}$. Their $h(x)=$
(A) x^{3}
(B) $\left(-x^{2}\right)$
(C) x^{6}
(D) $\left(-x^{5}\right)$
45. If $p(x)=12(x-1)$ and $q(x)=17(x+1)$, then $h(x)=$
(A) 1
(B) $x-1$
(C) $x+1$
(D) $x^{2}-1$
46. From the following \qquad is not a polynomial in x.
(A) $\sqrt{x}-5$
(B) $3 x^{2}-\sqrt{5}$
(C) $\frac{3}{2} x^{2}-x-2$
(D) $5 x^{2}-x+1$
47. From the following, \qquad is rational expression, but not a polynomial.
(A) $\begin{aligned} & x-5 \\ & x-3\end{aligned}$
(B) $\frac{x^{2}-9}{x-3}$
(C) $\frac{x^{3}-8}{x^{2}+2 x+4}$
(D) $\quad \begin{aligned} & x-3 \\ & 3-x\end{aligned}$
48. If $\frac{a-1}{p(a)}=\begin{gathered}a^{2}+a+1 \\ a^{3}-1\end{gathered}$, then $p(a)=$ \qquad
(A) 1
(B) $a^{2}-1$
(C) $a+1$
(D) $(a-1)^{2}$
49. Remainder is \qquad when $x^{31}+1$ is divided by $x-1$.
(A) 3
(B) 2
(C) 4
(D) 1
50. H.C.F. of $p(x)=x^{2}+1$ and $q(x)=x^{2}-1$ is
(A) $\left(x^{2}-1\right)$
(B) x^{2}
(C) 1
(D) $\left(x^{2}+1\right)$

PART - B

Time : 2 Hours
Maximum Marks : 50

Instructions :-

(1) There are four sections in this part of the question paper and total $\mathbf{1}$ to $\mathbf{1 7}$ questions are there.
(2) All the questions are compulsory. Internal options are given.
(3) Draw figures wherever required. Retain all the lines of construction.
(4) The numbers at right side represent the marks of the question.

SECTION - A

Answer the following questions from 1 to 8 in short.
Each question carries 2 marks.

1. Find the solution set of the following pair of linear equations.
$2 x+y=35$
$3 x+4 y=65$
2. Find the discriminant of the quadratic equation $x^{2}+5 x+1=0$.
3. Find the sum of first 11 terms of an Arithmetic Progression $2,9,16,23, \ldots$. 2

OR

3. Find the 60 th term of an Arithmetic Progression
$10,20,30,40, \ldots \ldots$.
4. The cash price of a bicycle is Rs. 1,000. In instalment scheme, cash 2 down payment is of Rs. 450 and two monthly instalments of Rs. 300 each. Find the rate of interest charged in the instalment scheme.
5. The cost price of a wrist-watch is Rs. 800. It can be purchased by paying Rs: 425 as cash down payment and the remaining amount to be paid after two months, giving interest of Rs. 35. Find the value of the instalment.
6. $\triangle \mathrm{PQR} \sim \triangle \mathrm{MNO} . \mathrm{PQ}=8, \mathrm{MN}=6$ in $\triangle \mathrm{PQR}$ and $\triangle \mathrm{MNO}$ respectively.

If the area of $\triangle \mathrm{PQR}$ is 72 unit, then find the area of $\triangle \mathrm{MNO}$.
7. Using trigonometric identities, prove that
$\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \cdot \operatorname{cosec}^{2} \theta$
OR
7. Prove that $\tan 5^{\circ} \cdot \tan 25^{\circ} \cdot \tan 45^{\circ} \cdot \tan 65^{\circ} \cdot \tan 85^{\circ}=1$
8. Find the distance betwen the points $(7,5)$ and $(2,5)$.

2

SECTION - B

Answer the following questions from No. 9 to 12 with calculations.
(Each question is of $\mathbf{3}$ marks)
9. Find H.C.F. and L.C.M. of the polynomials $p(x)=x^{3}-8$, $q(x)=x^{3}+8 \quad$ and $\quad r(x)=x^{4}+4 x^{2}+16$.
10. Simplify :

3
$x^{2} \frac{x+4}{+2 x-8}+x^{2} \frac{x-4}{-2 x-8}+\frac{2 x}{4-x^{2}}$.

OR

10. Simplify :

$$
\frac{a^{4}-(a-2)^{2}}{\left(a^{2}+2\right)^{2}-a^{2}}+\frac{a^{2}-\left(a^{2}-2\right)^{2}}{a^{2}(a+1)^{2}-4}+\frac{a^{2}(a-1)^{2}-4}{a^{4}-(a+2)^{2}}
$$

11. While selling a Calculator for Rs. 56 , the profit in percentage is equal to
its cost price in rupees. Find the cost price of the Calculator.
12. A flag-staff of height h stands on the top of the tower. If the angles of elevation of the top and bottom of the flag-staff are respectively α and β from a point on the ground, prove that the height of the tower is $\frac{h \tan \beta}{\tan \alpha-\tan \beta}, \quad$ where $\alpha>\beta$.

SECTION - C

Solve the following questions from No. 13 to 15, as per the instruction.
(Each carries 4 marks)
13. Find the missing frequency for the following frequency distribution, if its Mean is 43.75 .

| Class | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 8 | 4 | 20 | 45 | 64 | 32 | f | 8 | 2 | 2 |

14. Prove that square of the length of the hypotenuse of a right-angled
triangle is the sum of the squares of the lengths of the other two sides.
15. Find the curved surface area of a Sphere, whose diametre
is $10 \mathrm{~cm} .(\pi=3.14)$

OR

15. How many litres of water can be stored in cylindrical tank with radius 1.4 m and height 4 m ?

SECTION -D

Solve the following questions from No. 16 to 17. (Each carries 5 marks)
16. Prove that "Angles in a segment corresponding to minor arc are congruent".

OR

16. Prove that "Angle made by a chord with tangent at one end point of the chord and the angle subtended by the chord in the alternate segment are congruent".
17. Using the centre of a Circle, draw a tangent to the circle through a point in the exterior of circle. How many such tangents are drawn? Here, radius $=3 \mathrm{~cm}$ and the distance of the point, in the exterior of their circle, from the centre is 7 cm .
