1.	(JE T 17 15 UIVISI	ore by a then reman	nder 18							
	(a) 2	(b) 0	(c) -1 OR 1	(d) 1						
2 .	l.c.m. (144, 610) =	·		,						
	(a) 144	(b) 610	(c) 1	(d) 43920						
3.	The product of ze	ros of polynomial x ²	-4x + 3 = 0 is							
	(a) 1	(b) 3	(c) 4	(d) –4						
4.	One factor of x^3 +	$6x^2 + 11x + k$ is x	+ 3 then k =	·						
	(a) 3	(b) 6	(c) 2	(d) 4						
5.	$5x^2 + 6x + 3$ is di	visible by $x + 3$ the	n remainder will be	•						
	(a) 0	(b) – 30	(c) 30	(d) 1						
6.	If $2x + 3y = 7$ and	d 3x + 2y = 3 then	x – y =							
	(a) 4	(b) -4	(c) 2	(d) –2						
7.	(2012, -2011) lies	in quadra	nt.							
	(a) First	(b) Second	(c) Third	(d) Fourth						
8.	Y Years ageo, the	age of Bhagvati is X	year, then after Z ye	ear the age of Bhagvati						
	15									
	(a) $x - y + z$	(b) $x + y + z$	(c) $y - x + z$	(d) $\mathbf{x} - \mathbf{y} - \mathbf{z}$						
0	5 7 7 5	$\frac{2}{2}$								
9.	$\frac{5}{x} + \frac{7}{y} = 17, \frac{7}{x} + \frac{5}{y} = 19$ then $\frac{2}{x} + \frac{2}{y} = $									
	(a) 3	(b) 5	(c) 6	(d) 8						
10.	One root of $x^2 - 4$	4x + a = 0 is 2 then	a =							
	(a) –2	(b) 2	(c) –4	(d) 4						
11.	The discriminant	of $a^2x^2 + b^2x + c^2 =$	0 is							
	(a) $D = b^2 - 4ac$	(b) $D^2 = b^2 - 4ac$	(c) D = $b^4 - 4a^2c^2$	(d) D = $b^4 + 4a^2c^2$						
12.	The roots of ax^2 +	bx + c = 0 are equ	al then real root is	·						
	b.	-2a	b							
	(a) $-\frac{1}{2a}$	(b) $\frac{-2a}{b}$	(c) $\frac{1}{2a}$	(d) $\frac{2a}{b}$						
13.	The discreminant	of the equation $\sqrt{5}$:	$x^2 - 2\sqrt{2}x - 2\sqrt{5} =$	0 is						
	(a) $4\sqrt{3}$	(b) 48	(c) $2\sqrt{3}$	(d) 32						
14.	The difference bet	ween two roots of e	equation $ax^2 + bx + b$	c = 0 is						
	$\mathbf{J} \times \mathbf{D}$	$\sqrt{\mathbf{V}}$	$(a) \frac{D}{D}$	$\frac{\mathbf{d}}{\mathbf{d}} = (\mathbf{b})$						
	$(a) - \frac{D}{a}$	(b) —	()	(α) \mathbf{V}_{α}						
15		(b) $\frac{\sqrt{D}}{a}$		•						
15.	The roots of quad	ratic equation x^2 +	18x = 0 are							
	The roots of quad (a) inverse	ratic equation x ² + (b) opposite	18x = 0 are (c) fraction	•						
15. 16.	The roots of quad (a) inverse	ratic equation x^2 +	18x = 0 are (c) fraction							

-

17.	Roots of $x^2 + 5x$	+ 6 = 0 are α , β the	$en \alpha^2 + \beta^2 = ___$	
	(a) 37	(b) 13	(c) 25	(d) None
18.	For A.P. $S_n - 2S_n$	$S_{n-1} + S_{n-2} = $	(n > 2)	
	(a) 2d	(b) d	(c) a	$(\mathbf{d}) \mathbf{a} + \mathbf{d}$
19.	9 + 19 + 29 +	+ 99 =		
	(a) 460	(b) 450	(c) 540	(d) 455
20.	In A.P. $T_7 = 12$,	$T_{11} = 28$ then comm	on difference d is _	·•
	(a) 16	(b) 4	(c) 5	(d) 3
21.	In ∆ABC, B-M-	C and A–N–C, MN	$\ \overline{AB} \cdot \text{If NC:NA} = 1$:3 and $CM = 4$ then BC
	=			
	(a) 12	(b) 16	(c) 8	(d) $\frac{1}{2}$
99	For AVV7 AMN	$O \frac{XY}{X} - \frac{YZ}{X} - \frac{XZ}{X}$ th	on correspondence X	$YZ \leftrightarrow$ is simi-
44.		MN NO MO		
	larity.			
00	(a) NMO	(b) MON		(d) MNO
23.				$m \angle B : m \angle C = $
	(a) $1:3:5$	(b) 5:3:1		
24.				then BC =
0.5	(a) 4	(b) 24		$\frac{(d) 16}{\overline{AC}}$
25.	In $\triangle ABC, m \ge B$ MC = 8 then BI	<i>A</i> =		se AC. If $AM = 4.5$ and
	(a) 4	(b) 6	(c) 8	
26.	G is the centroid	of $\triangle PQR$. If $GM = 5$	then QM =	where $\overline{\mathbf{QM}}$ is a median.
	(a) 9	(b) 15	(c) 12	(d) 18
27.	Distance betwee	n A(x ₁ , y ₁), B(x ₂ , y ₂)	is	
	(a) $(x_1 + x_2)^2 + (x_1 +$	$(y_1 + y_2)^2$	(b) $\sqrt{(x_1 + x_2)^2 - (x_1 + x_2)^2}$	$(y_1 + y_2)^2$
	-			
	(c) $\sqrt{(x_1 - x_2)^2 + (x_1 - x_2)^2}$	$(\mathbf{y}_1 - \mathbf{y}_2)^2$	(d) $(x_1 - y_1)^2 + (x_1 -$	$(\mathbf{x}_2 - \mathbf{y}_2)^2$
28.	If P(1, 2), Q(3, 4), $R(2, 1)$ then circu	mcentre of ΔPQR is	
	(a) $\left(\frac{3}{2}, \frac{3}{2}\right)$	(b) (3, 4)	(c) $\left(\frac{5}{2}, \frac{5}{2}\right)$	(d) (2, 4)
29.	The y coordinate	is twice the x-coord	inate of the midpoin	t of line segment joining
		B(2, 7) then $m = \$		·
	(a) 3	(b) 4	(c) 5	(d) 6
30.		ates of point which d ratio m:n from A.	livides the line segme	ent joining $A(x_1, y_1)$, and
	$(a)\left(\frac{mx_2-nx_1}{m-n}\right),$	$\frac{\mathbf{m}\mathbf{y}_2-\mathbf{n}\mathbf{y}_1}{\mathbf{m}-\mathbf{y}} \biggr)$	(b) $\left(\frac{mx_2 + my_2}{m+n},\right)$	$\frac{my_1 + ny_1}{m + n} \bigg)$
	((mr +nr)

(c) $\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$ (d) $\left(\frac{mx_2 + nx_1}{m-n}, \frac{my_2 + ny_1}{m-n}\right)$

3 1.	If $\tan\theta = \frac{4}{3}$ then	$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} =$		· · · · · · · · · · · · · · · · · · ·
	(a) $\frac{1}{3}$	(b) 3	(c) $\frac{3}{4}$	(d) $\frac{9}{16}$
32.	$\frac{1}{\cos^2\theta} - \frac{\sin^2\theta}{\cos^2\theta} = .$			
	(a) 0	(b) 2	(c) 1	(d) None
33.	$\csc 48^\circ = \sec \theta$ th	$en \theta = \$		
	(a) 42°	(b) 48°	(c) 38°	(d) 28°
34.	If $\sin\theta = \frac{3}{5}$ than $\frac{1}{5}$	value of $tan\theta$ + cose	$c\theta = $	
	(a) $\frac{4}{2}$	(b) $\frac{29}{12}$	$(a) \frac{3}{3}$	(d) $\frac{5}{3}$
	$(a) \frac{1}{3}$	(b) $\frac{12}{12}$	$(c) \frac{1}{5}$	$\left(a\right) \frac{1}{3}$
35.	-	ne side of the tower	-	e a and b (a > b). From nd 60, then the height
	(a) $\sqrt{a+b}$	(b) \sqrt{ab}	(c) $\sqrt{a-b}$	(d) $\sqrt{\frac{a}{b}}$
36.	-	ne angle of elevation	-	he top of building has uilding from the top of
	(a) Temple if talle	er than building	(b) Building is tal	ler than temple
	(c) Temple and bu	uilding are equally t	all	-
	(d) Cannot be det	.		
37.	-	lding is h and the un has measure is 4	_	w is x. If the angle of
	(a) $\mathbf{x} = \mathbf{h}$	(b) $\mathbf{x} = 2\mathbf{h}$	(c) $2x = h$	(d) $h = \sqrt{3}x$
38.	How many circle	passes through three	e non collinear poin	t ?
	(a) one	(b) two	(c) three	(d) four
39.	In $\Theta(P, 17)$, the le	•	chords is 16 and 30 .	(d) four If these two chords one
39.	In $\Theta(P, 17)$, the le	ngthof two parallel o	chords is 16 and 30 .	(d) four If these two chords one
39. 40.	In $\mathfrak{O}(\mathbf{P}, 17)$, the leside of centre there (a) 5 $\overline{\mathbf{OA}}$ and $\overline{\mathbf{OB}}$ are	ngthof two parallel o n the distance betwe (b) 7 the two mutually pe	chords is 16 and 30. een two chord is (c) 9 erpendicular radii of	(d) four If these two chords one
	In $\mathfrak{O}(\mathbf{P}, 17)$, the leside of centre there (a) 5 $\overline{\mathbf{OA}}$ and $\overline{\mathbf{OB}}$ are	ngthof two parallel o n the distance betwe (b) 7 the two mutually pe	chords is 16 and 30. een two chord is (c) 9 erpendicular radii of	 (d) four If these two chords one (d) 12 a circle having radius
	In $\Theta(P, 17)$, the less side of centre then (a) 5 \overline{OA} and \overline{OB} are 9 cm. The area of (a) 63.575 \overline{OA} and \overline{OB} are	ngthof two parallel o n the distance betwe (b) 7 the two mutually pe the minor sector cor (b) 63.585	<pre>chords is 16 and 30. een two chord is (c) 9 erpendicular radii of responding to ∠AOE (c) 63.595 erpendicular radii of</pre>	 (d) four If these two chords one (d) 12 a circle having radius B is (π = 3.14)
40.	In $\Theta(P, 17)$, the less side of centre then (a) 5 \overline{OA} and \overline{OB} are 9 cm. The area of (a) 63.575 \overline{OA} and \overline{OB} are	ngthof two parallel o n the distance betwee (b) 7 the two mutually per the minor sector corr (b) 63.585 the two mutually per	<pre>chords is 16 and 30. een two chord is (c) 9 erpendicular radii of responding to ∠AOE (c) 63.595 erpendicular radii of</pre>	(d) four If these two chords one (d) 12 'a circle having radius 3 is ($\pi = 3.14$) (d) 63.60
40.	In \bigcirc (P, 17), the less side of centre there (a) 5 \overrightarrow{OA} and \overrightarrow{OB} are 9 cm. The area of (a) 63.575 \overrightarrow{OA} and \overrightarrow{OB} are 7 then length of m (a) 11	ngthof two parallel o n the distance betwee (b) 7 the two mutually per the minor sector corr (b) 63.585 the two mutually per ninor arc is	chords is 16 and 30. een two chord is (c) 9 erpendicular radii of responding to $\angle AOE$ (c) 63.595 erpendicular radii of (c) 7	 (d) four If these two chords one (d) 12 (d) 12 (d) circle having radius (d) 63.60 (d) 63.60 (e) a circle having radius
40. 41.	In \bigcirc (P, 17), the less side of centre then (a) 5 \overrightarrow{OA} and \overrightarrow{OB} are 9 cm. The area of (a) 63.575 \overrightarrow{OA} and \overrightarrow{OB} are 7 then length of m (a) 11 From the figure, m	ngthof two parallel of the distance betwee (b) 7 the two mutually per the minor sector corr (b) 63.585 the two mutually per ninor arc is (b) 22	chords is 16 and 30. een two chord is (c) 9 erpendicular radii of responding to $\angle AOE$ (c) 63.595 erpendicular radii of (c) 7	 (d) four If these two chords one (d) 12 (d) 12 (d) circle having radius (d) 63.60 (d) 63.60 (e) a circle having radius
40. 41.	In $\Theta(P, 17)$, the less side of centre there is ide of centre there is ide of centre there is ide of centre there is identified by a side of the identified	ngthof two parallel of n the distance betwee (b) 7 the two mutually per the minor sector corr (b) 63.585 the two mutually per ninor arc is (b) 22 najor segment is	chords is 16 and 30. een two chord is (c) 9 erpendicular radii of responding to $\angle AOE$ (c) 63.595 erpendicular radii of (c) 7 (c) 7 (c) 7 (c) 7	 (d) four If these two chords one (d) 12 (d) 12 (d) circle having radius (d) 63.60 (d) 63.60 (e) a circle having radius

43.				a of the sector. Formed
		ition and the positio	on after five minute	of the minute hand. (π
	= 3.14)			
	(a) 157	(b) $\frac{157}{6}$	(c) $27\frac{1}{6}$	(d) None of these
44.	If volume of spher	$re \frac{4}{3}\pi \text{ cm}^3 \text{ then its of}$	liameter is	•
	(a) 0.5	(b) 1	(c) 2	(d) 2.5
45.	1 litre =	cm ³ .		
		(b) 10,000	(c) 100	(d) 10
46.	The surface area of	f cylinder is 132 sq.1	n. and radius is 7 m	then height of cylinder
	is	• -		
	(a) 3	(b) 4	(c) 5	(d) 6
47.	The surface area a	nd radius of sphere	and cone is equal, t	hen the slant height of
	cone is ti			
	(a) half			(d) fourth times
48.	If $\overline{\mathbf{x}} - \mathbf{z} = 3$ and $\overline{\mathbf{z}}$	$\overline{\mathbf{x}} + \mathbf{z} = 45$ then M =		[March 2013]
	(a) 24	(b) 22		(d) 23
49 .			4	m and n added to each
		new mean		
	(a) mn + \overline{x}	(b) $n\overline{x} + m$	(c) $n\overline{x} - m$	(d) $m\bar{x} + n$
50.	For ungrouped da	ta, $\sum_{i=1}^{15} x_i - 6\overline{x} = 36$	then $\overline{\mathbf{x}} = \underline{\qquad}$.	
	(a) 2	(b) 3	(c) 4	(d) 5
			םנ	
		DAD	RT-B	
Tim	e : 2 Hours]	ГАГ		[Total Marks : 50
Inet	mietions : As nor	Question Paper-1		

Instructions : As per Question Paper-1

SECTION-A

- Answer the following questions in short answer questions : (2 marks each)
- 1. Find square root : $2 + \sqrt{3}$.
- 2. -4 and 9 are the sum and product of the zeros respectively of a quadratic polynomial. Find the quadratic polynomial.
- 3. Solve by cross multiplication method : 0.3x + 0.4y = 2.5, 0.5x - 0.3y = 0.3
- 4. Find the 10th term from end for A.P. 3, 6, 9, ... 300. OR
- 4. In A.P. $T_7 = 18$, $T_{18} = 7$ then Find T_{101} .
- 5. In Rhombus XYZW. XY = 14 and YW = 48. Find XY.
- 6. Find the ratio in which X-axis devides the segment joining A(3, -2) and B(-6, 4) from B.
- 7. If in $\triangle ABC$, $m \angle B = 90$, AB = 3, AC = 6 then. Find $m \angle C$, $m \angle A$, BC. OR

7. If
$$3\cot A = 4$$
 then verify $\frac{1 - \tan^2 A}{1 + \tan^2 A} = \cos^2 A - \sin^2 A$.

8. The distribution below shows the number of wickets taken by a bowlder in one day cricket matches. Find the mean number of wickets.

Number of wickets	20-60	60-100	100-150	150 - 250	250-350	350-450
Number of bowlers	7	5	16	12	2	3

Solve the following : (3 marks each) ÷

9. While selling a pen for Rs. 24 the loss in percentage is equal to its cost price. Find the cost price of pen. The cost price of pen is less than Rs. 50.

SECTION-B

- A dice is thrown once. Find the probability of getting (i) a prime number (ii) a 10. number lying between 2 and 5 and (iii) an even number.
- Find the mode of the following frequency distribution. 11.

Class	0–15	15-30	30-45	45-60	6075	75-90	90–105	
Frequency	8	16	23	57	33	23	13	
OR								

The median of 230 observation of the following frequency distribution is 46. Find 11. a and b.

Class	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Frequency	12	30	а	65	b	25	18

A bridge across a valley is h metres long. There is a temple in the valley directly 12. below the bridge. The anlge of depression of the top of the temple from the two ends of the bridge have measures α and β . Prove that the height of the bridge

above the top of the temple is $\frac{h \cdot (\tan \alpha \cdot \tan \beta)}{\tan \alpha + \tan \beta}$

SECTION-C

* Solve the following : (4 marks each)

13. ABCD is a square of side 20 cm. Find the area of blue coloured region formed by the semi circles drawn on each side as shown in figure.

- 14. A metallic sphere of radius 3.6 cm is melted and a wire of diameter 0.4 cm of uniform cross-section is drawn from it. Find the length of the wire. OR
- 14. How many spherical balls of diameter 0.5 cm. can be cast by melting a metal cone with radius 6 cm and height 14 cm.
- **15.** P is the point in the exterior of $\Theta(O, r)$ and the tangents from P to the circle touch the circle at X, Y (i) if r = 12, XP = 5 then find OP (ii) m \angle XOY = 110 then find m∠XPO.

SECTION-D

Solve the following : (5 marks each) *

- Draw \overline{PQ} of length 6.5 cm and divide it in the ratio 4:7 write the steps of 16. construction.
- Prove that in $\triangle ABC$, $BC^2 = AB^2 + AC^2$ then $\angle A$ is a right angle. OR 17.
- In the plane of $\triangle PQR$, a line $l \mid |\overline{QR}|$ and l intersects $\overline{PQ}|$ and $\overline{PR}|$ at points A and 17. B then prove that $\frac{PA}{AQ} = \frac{PB}{BR}$.

12

12

10