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FUNDAMENTAL DUTIES

It shall be the duty of every citizen of India

(A)

(B)

©
(D)

(E)

(F)
(G)

(H)

@
)

(K)

to abide by the Constitution and respect its ideals and institutions,
the National Flag and the National Anthem;

to cherish and follow the noble ideals which inspired our national
struggle for freedom;

to uphold and protect the sovereignty, unity and integrity of India;

to defend the country and render national service when called upon
to do so;

to promote harmony and the spirit of common brotherhood
amongst all the people of India transcending religious, linguistic
and regional or sectional diversities; to renounce practices
derogatory to the dignity of women;

to value and preserve the rich heritage of our composite culture;

to protect and improve the natural environment including forests,
lakes, rivers and wild life, and to have compassion for living

creatures;

to develop the scientific temper, humanism and the spirit of inquiry
and reform;

to safeguard public property and to abjure violence;

to strive towards excellence in all spheres of individual and
collective activity so that the nation constantly rises to higher levels
of endeavour and achievement;

to provide opportunities for education by the parent or the guardian,
to his child or a ward between the age of 6-14 years as the case may
be.

*Constitution of India : Section 51 A
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About This Textbook...

We have created a background in the book of Mathematics for standard 11,
semester | about formation of new syllabus and writing textbooks following curriculum
of NCERT.

First of all, this book was written in English. It was reviewed by teachers and
professors teaching in English medium schools and colleges. According to the
suggestions made by experts, necessary amendments were made and the manuscript was
translated in Gujarati. It was again reviewed by experts teaching in Gujarati medium;
considering their suggestions, the necessary changes were made.

Thus, the manuscript prepared was compeletely read by the authors in workshops
and the authors gave final touches to the manuscript.

In chapter 1, mathematical induction which is a tool to prove many properties
about statements related to natural numbers is studied. Also, we have shown the use of
mathematical induction in various fields using various formats. Chapter 2 gives an
introduction to complex number system. Fundamental theorem of algebra, square roots
and cube roots of complex numbers, Argand diagrams, inequalities etc. have been
presented in a very lucid manner in this chapter. Any algebraic n degree equation with
real coefficients can be solved using complex numbers and thus complex numbers are very
useful. Chapter 3 introduces binomial theorem which is an extension of expansions of the
squares and the cubes studied at secondary school level. Binomial theorem for positive
index is useful while using polynomials. Chapters 4, 5 and 6 advance the study of
trigonometry studied in semester 1. These chapters are useful to study properties of
triangles and for studying general solution of trigonometric equations.

In chapter 7, there are arithmetic progression, geometric progression and power
series (index 1, 2 and 3). In chapter 8, elementary study of conics and primary information
have been given. We mention intersection of cones and general second degree curves.
In chapter 9, there is a study of three dimensional geometry. To study this, vector is an
important tool. So in the beginning of the chapter, we have given introduction of vectors.
The study of three dimensional geometry is limited to section of a line segment.

Chapter 10 and 11 suggest the beginning of the calculus. Only intuitive concept of
limit has been taken and then limit has been defined. We have stressed how to obtain
limit using lemmas and theorems. The concept of limit has been explained with the
help of graphs but students are not supposed to draw the graphs. Having defined
differentiation, we have explained how to obtain derivatives of elementary functions.
There are ample number of examples so that a student can understand all the concepts by
himself / herself and a teacher can lead a student to self study. At the end of every chapter
enough number of multiple choice questions have been given so that understanding of
concept can be evaluated. We intend to render a student enough study material
from the textbook itself. Attractive four colour printing is an additional attraction of
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the book. We have given some information about contribution of Indian Mathematicians
at the end of some chapters.

Enough care has been taken to make the textbook maximally interesting and
errorfree. However all constructive suggestions regarding further improvement in the
textbook are most welcome.

We hope teachers and students both will find this book useful and valuable.

— Authors
Please consider following points while teaching textbook.
Following is necessary for study by students and teachers.
But it will not be asked in the board examination.
Chapter Exercise Examples
Chapter 1 Exercise 1 : Ex. No. 21 21,24
Chapter 2 Exercise 2 : Ex. No. 16 -
Chapter 5 Exercise 5 : Ex. No. 19 to 22 -
Chapter 8 - 13, 14, 19, 32
Chapter 10 Article 10.3 14, 15, 16
Exercise 10 : From statements of
examples 1, 2, 3 remove the
word ‘definition’.
Chapter 11 Exercise 11 : Ex. No. 6, 20(4) 17, 26
In Example 19
. i sy — =on—1
Let P(n) : o Si'x = nsin = x cosx

Following is useful for higher studies and competitive examinations,
but not for board examination.

Chapter Exercise Examples
Chapter 1 Exercise 1 : Ex. No. 9, 24, 29 23
Chapter 2 Exercise 2.3 : Ex. No. 3 -
Chapter 8 Exercise 8.3 : Ex. No. 3, 4 -
Exercise 8.4 : Ex. No. 8§, 9
Exercise 8§ : Ex. No. 6
Chapter 10 Exercise 10 : Ex. No. 9
Chapter 11 Exercise 11 : Ex. No.20(23)




Chapter |

PRINCIPLE OF
MATHEMATICAL INDUCTION

Mathematics is the queen of science and
number theory is the queen of mathematics.
— Gauss

Mathematics passes not only truth but also supreme beauty !
— Bertrand Russell

1.1 Introduction
We have studied one method of reasoning, deductive reasoning.
For example, consider the following statements :
() 1+2+3+ ..+ 100=5050

nn+1)
2

Q) 1+243+..4+n=

(3) Letn=100in (2). 1 +2+3 + ... + 100 = %2(101) = (50)(101) = 5050

Here we want to prove that sum of all integers from 1 to 100 is 5050. We have a general result

I+243+ . +p=2010

general principle to deduce a particular result.

. We take » = 100 in it and get the required result. Here, we apply a

Consider (1) If 3 divides product ab, then 3 divides a or 3 divides b. (2) If p is a prime and p divides
ab then p divides a or p divides b. (3) Let p = 3 in (2) as 3 is a prime. Hence, if 3 divides product
ab, then 3 divides a or 3 divides b.

Here also we apply a general principle to deduce a particular result.

(1) Amitabh Bachchan is a good actor.
(2) Actors are awarded national Padma honour in their category, if selected.

(3) Amitabh Bachchan was selected and got Padma honour.

PRINCIPLE OF MATHEMATICALINDUCTION 1



Here also a similar situation occurs.

But consider the following against this deductive reasoning,

4 — 1 = 3 is divisible by 3.

42 — 1 = 15 is divisible by 3.

43 — 1 = 63 is divisible by 3.

Here we observe a pattern and we make a conjecture that for every positive integer n,
4" — 1 is divisible by 3. So from a particular case, we conjecture a general result. This is not a
proof. This inductive assumption has to be proved. All conjectures may not be true. For example,
n* —n+ 41 is a prime for n = 1, 2, 3,..39. But for n = 41, 412 — 41 + 41 = 412 is obviously
not a prime. Hence we cannot deduce that »?
n=1,2,3,.39.

— n + 41 is a prime by observing values for

So, inductive argument starts from a particular case and by rigorous deduction the conjecture
is proved.

The history of this dates back to Plato. In 370 B.C. Plato's parmenides (Discussions or Dialogues)
contained an early example of implicit inductive proof. The early traces of mathematical induction
can be found in Euclid's proof that number of primes is infinite. Bhaskara II's cyclic method
(Chakravala) also introduces mathematical induction.

Sorites paradox used the method of descent. He said 10,00,000 grains of sand form a heap.
Removing one grain from the heap does not change the situation. So continuing the argument even one
grain or no grain also forms a heap !

Around 1000 A.D., Al-Karaji introduced mathematical induction for arithmetic sequences in
Al-Fakhri and proved the binomial theorem and properties of Pascal's triangle.

The first explicit formulation of the principle of mathematical induction was given by Pascal in
Traité-du-triangle arithmetique (1665). French mathematician Fermat and Swiss mathematician
Jacob Bernoulli used the principle. The modern rigorous and systematic treatment came only in 19th

century with George Boole, Sanders Peirce, Peano and Dedekind.
1.2 Induction Principle
We start with following principle :

Principle of Induction : If a statement P(n#) of natural variable n is true for » = 1 and

if P(k) is true = P(k + 1) is true, k € N, then P(n) is true, Vi € N.

Let us be given a statement P(r) involving a natural variable to be true for all natural numbers 7.

We prove it in two stages :
(1) The basis : We prove it for n = 1 (or 0 or the lowest value).

(2) Inductive step : Assuming that the statement holds for some natural number k&, prove it
forn =k + 1.

Then P(n) is true for all » € N.
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Domino effect : We are presented with a ‘long’ row of
dominos such that,

(1) The first domino will fall.

(2) Whenever a domino falls, its next neighbour will fall.

So it is concluded that all of the dominos will fall.

So the proof is like this. The first statement in an infinite
sequence of statements is true and if it is true for some £ € N,
it is true for the next value of the variable, then the given
sequence of statements is true for all » € N.

In logical symbols, (VP) [P(1) A (Vk € N) (P(k) = Pk + 1))] = (Vn € N)[P(n)]

This can be proved by using well-ordering principle which states that every non-empty
subset of N has a least element.

Proof : Let S be the set of natural numbers for which P(») is false. 1 & S as P(1) is true.
If S is non-empty, it has a least element # which is not 1. Let £ = n + 1. Since ¢ is the least

element for which P(7) is false, P(n) is true. Also P(n) = P(n + 1). Hence P(n + 1) = P(¢) is
true, a contradiction. Hence S = (.

P(n) is true, Vn € N.

Sometimes paradoxes are created by misuse of the principle.

There is a famous Polya's proof that there is no horse of different colour.

Basis : If there is only one horse, there is only one colour and hence P(1) is true.

Induction step : Assume that in any set of » horses, all have the same colour. Consider a set of
n + 1 horses numbered 1, 2, 3,... n + 1. Consider the subsets {1, 2, 3,..., n} and {2, 3, 4,...n + 1}. Each
is a set of n horses and therefore they have the same colour and since they are overlapping sets, all
n + 1 horses have same colour. This argument is true for 1 horse and » = 3 horses. But for 2 horses
the set {1} and {2} are disjoint and the argument falls flat.
1.3 Examples

Now we will apply the principle of mathematical induction to some examples.

nn+1)

Example 1 : Prove 1 +2 +3 + .. +n = 3 , n € N
Solution : Let P() : 1 +2 43 + ... + n = ”(”2“), ne N
For » = 1, LH.S. = 1 and RH.S. = % = 1. Hence, P(1) is true.

Let P(k) be true i.e. P(n) is true for n = k, k € N.

1+2+3+...+k=k(k2+1) 0)

For n = k + 1 we have to prove,

I+2+3+ ..+ (k+ 1)=—(k“)ék+2)

Now, | #2434 .+ hk+ 1) =(1+2+3+ .. +k+Kk+1)
=@+(k+1) by (i)

—(+ 1) (§+1) _ (k+1)ék+2)
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Hence, P(k + 1) is true.

P(1) is true and P(k) is true, = P(k + 1) is true.

P(n) is true, Vn € N by principle of mathematical induction.
Note : This example has historical importance.

Obviously, 1 +2 + 3 + ... + 100 = 5050 according to this formula. When this formula was not

known, Gauss, at very young age, calculated this by the following method and surprised his teacher
Buttner and assistant teacher Bartels.

Let S=14+2+34+ ..+ 100 (i)
S=100+99 +98 + ... + 1 (ii)
Adding (i) and (ii)
2S = (101) + (101) + ... 100 times () + (ii))
S = m = 5050. This was done in no time !

Let us review a geometric ‘proof”.

Consider a rectangle of sides » and » + 1 divided into

subrectangles of unit sides as shown. The portion under the dark

ladder has area 1 +2 + 3 + ... + n. h

By symmetry the rectangle has area

20+2+3+...+n)=nrn+1)

I+2+3+ . +n=1010 nr
Example 2 : Prove 12+22+32+...+n2=w, n € N
Solution : Let P(n):12+22+32+...+n2=w, n€ N

6
Letn=1. LHS. =12 =1 and RH.S. = 1X2X3 - 1.
P(1) is true.
Let P(k) be true, k € N.

2+22+324+  +i2= k(k+1)6(2k+1)‘

Letn =4k + 1.
LHS. =12+224+ 324 4+ 2+ (k+ 1) =w+(k+l)2

= e+ | 2B ke |

2k% + k + 6k +6)
k+ 1) r3

_ (k+1)Q2k* +7k +6)
6

_ (k+ 1k +2) 2k +3)
6

_ (k+1)<k+1+61><2<k+1>+1> = R.H.S.
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P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by principle of mathematical induction.

nn+1)>
4 s

Example 3 : Prove 13+ 23+ 33+ .+’ = n € N

2 2
Solution : Let P(n) : 13+ 23+ 33+ ... +n® = w, n € N

2 2
1>iz -

For n =1, LHS. =13 =1 and RH.S. =
P(1) is true.
Let P(k) be true.
R T i
Let n=Fk + 1.

A 2 2
LHS. = 134+23433 4+  + B+ (k+ 1) =k(k+l)+(k+l)3

= KA 12 4 4k + 1))

2
= &4 (2 + 4k + )

_ (k+1D? (k+2)°
4

2 2
_ (k+D (liﬂﬂ) = RHS.

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.L
(Now onwards we shall abbreviate Principle of Mathematical Induction as P.M.I.)
Example 4 : Prove 1 +3+5+ ..+ @Qu—1)=n% ne€ N
Solution : Let P(m) : 1 +3+5+ ..+ Q2n—1)=n*, ne N
Let n = 1. LHS. = 1 and RH.S. = 12 = 1.
P(1) is true.
Let P(k) be true.
1+3+5+ .. +Qk—1)=k
Letn =k + 1.
LHS.=14+3+5+..+Ck—D+QCk+1)
=K +2k+1
= (k + 1)> = RH.S.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.

PRINCIPLE OF MATHEMATICAL INDUCTION



) 1, 1 1 1 _ _n
Example 5 : Prove 1°2 + 23 + 34 + ... + nn+1) T n+1 n € N

1 n
nn+n - n+ir "€ N

Solution : Let P(n) : ﬁ + 2;3 + ﬁ + ...+

Letn=1. LHS. = 715 =
P(1) is true.
Let P(k) be true.

| 1 1 Lk
T2 t73+t3 7+t T %k+) = &+

Letn =k + 1.

oL ! v
LHS. =15 +33+33+t - +%xk+y T Trnk+2

k 1
k+1 T G+ Dk+2)

_ kk+2)+1
T (k+Dk+2)

k% +2k+1
k+ Dk +2)

(k +1)?
k + Dk +2)

|
I
~
an
w2

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.

Example 6 : Prove 1-1! +2:2! 4+ .. +n-nl=m+ 1) — 1, ne€ N
Solution : Let P(n) : 1-1!' +2:2! + .. +nnl=m+ 1) =1, n€ N
Letn=1LHS. =1-1'=1,RHS. =0+ —-1=2I—-1=1

P(1) is true.
Let P(k) be true.
-1 +221+ 4+ kK =((k+ 1) -1
Letn =k + 1.
L.H.S.

-1 4+ 2204 330 + . 4+ k&l + (k+ Dk + 1)
=(k+ D! =1+ (k+ Dk + 1)

=+ DI+ G+1)]—1

=+ 1) (k+2)—1

=(k+2)! — 1 =RHS.
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P(k + 1) is true.

P(k) is true = P(k + 1) is true.

P(n) is true, Vn € N by PM.I.
Note : Directly, n-n!=mn+1—1)n! =(m+ 1)n! —n!

=@+ 1) —n!
Letn=1, 2, 3,... etc. and add
1-11+2:21+33!+.+n-n =QI—1H+@B!'=2)+@!'=3)+.+((n+ 1) —n)
=m+ 1) -1

Example 7 : Prove (1+%)(1+%)(1+%) (1 + 21’:1:-1) =m+ 1% neN

_— (143Y125\(1.2 1+2”+1)= 2
Solution : Let P(n) : (1+1)(1+4)(1+9)...( 2 (n+ 1), ne N
Letn=1.LHS.=1 +%=4andR.H.s.=(1 +1)2=22=4

P(1) is true.

Let P(k) be true.
3 5 2k+1Y) )

(1+3)(1+5) . (1+ o) =+ 1)

Letn =k + 1.
B 3 5 7 (14_2k+1 |, 2k+3
L.H.S. = (1+T)(1+Z)(1+6) %2 (k+1)2

K>+ 2k +1+2k+3
(k +1)?

=(k+1)2><(

=K + 4k + 4

= (k + 2)*> = RH.S.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.

Note : Directly, (l+%)(l+%)(l+%) (1+ 2’:1-;1)

_ 4.9 .16 (mt1’

1° 2 9 " 2

= (n+ 1)2

Example 8 : Prove 1-2+2:22+ 323+ . +n-2"=m—12""1+2 ne N
(This type of series is called arithmetico geometric series.)
Solution : Let P(n) : 1-2+2+22+3:234+ . +n-2"=m—-12""1+2, neN
Letn=1.LHS. =2and RHS.=0+2=2
P(1) is true.
Let P(k) be true.

PRINCIPLE OF MATHEMATICAL INDUCTION



Hence, 1:2 4+ 222+ .+ k-2F=(k—1)2F" 1 +2

Letn =k + 1.

LHS. =1:2+2:224+3:23+ .+ k-2k+ (k+ 12k "1
=G — 2K T 42 + (k+ 1)2kF 1
=k—1+k+ 12671 +2
=2k-2t71 42
=k-2t*2 42 =RHS,

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vin € N by PM.I.

n—1 _ a(r™ -1

Example 9 : Prove a + ar + ar? + ... + ar r#1,n€ N

r—1
Solution : . 2 n-1_ au’ -1
olution : Let P(n) : a + ar + ar- + ... + ar = = (r#1),n €N
—1
Let 7 = 1. LHS. = a and RHS. = &=L — 4
P(1) is true.
Let P(k) be true.
k
a+ ar + ar + ...+ark_l=%

Letn =k + 1.
LHS.=a+ar+a?+ .. +ak- 1+ a*

k
_art =1
—?+ar

k

r-—1 k
=a(ﬁ+r]

k

r —1+rk(r—1)
r—1

k

a(rk—1+rk+1—rk)

r—1

k+1
= M = RHS
r—1

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vi € N by P.M.I.
Example 10 : Prove 327 +2 — 81 — 9 is divisible by 8, n € N
Solution : Let P(n) : 327 +2 — 8n — 9 is divisible by 8, n € N
Letn=1.3*—8—9=81—8—9=64is divisible by 8.

8 MATHEMATICS-2



Let P(k) be true. Hence 32+ 2 — 8k — 9 is divisible by 8.

Letn =4k + 1.

Now, 32k+4 — 8k +1)— 9 Qk+1)+2=2k+ 4
=32%k+2.32 _8k—8—9
=3%+2@8+1)—8—8—09 3*=9=8+1

- 8_32k+2+32k+2_ 8k —8—0
=132k+2 _ 8k —9 + 8(32k+2_ 1)
Now, 8 divides 326 +2 — 8k — 9 by p(k)
Also, 8 divides 8(3% +2 — 1)
8 divides 3%k +2 — 8k — 9 + 8(32k+2— 1)
320+ D+2_ gk + 1) — 9 is divisible by 8.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vin € N by PM.1.
Note : Obviously,
3M+2_8p—9 =3 tl—1—-8n—38
=B2-1)(GHY"+@) -+ . +1)— 81— 8 (Example 9)
=8(32"+32"=2+ _ +1)— 8n — 8 is divisible by 8.
Another Method :
P(n) : 327+ 2 — 81 — 9 is divisible by 8, n € N
Forn=1,32%2— §(1) — 9 = 64 is divisible by 8.
P(1) is true.
Let P(k) be true.
32k+2 — 8k — 9 is divisible by 8.
32k+2 — 8k — 9 = 8m where m € N @)
Now, Let n = k£ + 1,
32k+D+2 _8hk+1)—9=3%+2x32_-8r—8—-9
=@8k+9+8m)9—8—8—9 (From (i)
=72+ 81+ 72m— 8 — 8 —9
= 64k + 72m + 64
= 8(8k + 9m + 8) is divisible by 8.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.1.

PRINCIPLE OF MATHEMATICAL INDUCTION 9



Example 11 : Prove 200227 * I + 200327 + | js divisible by 4005, n € N
Solution : Let P(n) : 200227 + 1 + 200327 + 1 js divisible by 4005, n € N
Let n = 1.

20023 4+ 20033 = (2002 + 2003) [(2002)? — (2002)(2003) + (2003)?]
= (4005) [(2002)2 — (2002)(2003) + (2003)?]
(2002)3 + (2003)? is divisible by 4005.
P(1) is true.
Let P(k) be true.
200226+ 1 4+ 20032k + 1 js divisible by 4005.
Let n =k + 1.
Now, 20022(k + 1)+ 1 + 20032(k + 1)+ 1
= 20022k +3 — 20022k + 1 (2003) + (2002)% + 1. (2003)2 + (2003)% + 3
= (2002)%F + 1 [(2002)2 — (2003)2] + (2003)2 [(2002)%k + 1 + (2003)% *+ 1]
= —(4005) (2002)%% + 1 + (2003)2 [(2002)%% * 1 + (2003)% *+ 1]
Now, (2002)%+ 1 (2003)24 + 1 is divisible by 4005. (P(k))
(2002)2k+ D+ 1 4 (2003)2k+ D+ 1 js divisible by 4005.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.

Example 12 : Prove x2* — y2" is divisible by x +y, n € N
Solution : Let P(n) : x2" — 2" is divisible by x + y, n € N
Let n = 1.

Then x2 — »2 = (x — y)(x + ») and so x2 — y? is divisible by x + y.
P(1) is true.

Let P(k) be true.
x2k — y2k is divisible by x + y.

Letn =k + 1.

X2+ 1) 2+ 1) = 2k 42 2k 2 4 2k 2 k42

x2k (xZ _ y2) + y2 (ka _ y2k)

=32 (x — y)x + y) + )2 (=%
Now, x2¢ — y2k is divisible by (x + y). (P(k))

x2k+1) — 32+ 1) ig divisible by (x + y).
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P(k + 1) is true.
P(k) is true = P(k + 1) is true.

P(n) is true, Vn € N by PM.L
Example 13 : Prove 12 + 22 + 32 + ..+ n? >”T3, n € N
Solution : Let P(n) : 12 + 22 + 32 + ..+ n? > ”?3, n € N
Letn=1.LHS. =12=1 RHS. =1 and 1> 1
P(1) is true.
Let P(k) be true.
P42 4324+ 2> K
Letn =k + 1.

Now, 12+ 22 + 32 + . + k2+(k+1)2>kT3+(k+1)2

Now, %3 +(k+ 12 =103 + 382 + 6k + 3)

(S + 3K + 3k + 1+ 3k +2)

> 16+ 3K + 3k+ 1) as Gk +2) 23 >0
’€T3+(k+1)2 > Lk + 1)
12422+ 324 4 (k+ 12 >3k + 1)

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vin € N by PM.1.

nm+n@n+1) _ 2n°+3n’ +n
6 6

3
Note : 124+22 4324+ 4+ n2= >2%

Example 14 : Prove 1 + 2 + 3 + ...+ n <%(2n + 12, ne N
Solution : Let P(n) : 1 +2 +3 + ...+ n <%(2n + 12 neN
Letn =1 LHS =1, RHS. =1(3)? =3 and 1 < 3

P(1) is true.
Let P(k) be true.

I+ 243+ .+ k<gQk+ 1)
Add k + 1 on both the sides.

I+2+3 4+ 4+ k+Gk+ 1) <3+ 172+ (k+1)

(@)

(i)

(by (i) and (ii))

(i)

PRINCIPLE OF MATHEMATICAL INDUCTION

11



Now, %(21( + 12+ (k+1) = %(41(2 + 4k+ 1 + 8k + 8)
= (4K + 12k + 9)
Tk + 12+ (k+ 1) =5k + 3) (i)
I+ 243+ 4+ (k+1) <gQk+3) (by (i) and (ii)

P(k + 1) is true.
P(k) is true = P(k + 1) is true.

P(n) is true, Vi € N by P.M.L

Note:1+2+3+..+n="2000 - 4”2;4” < A (A
Example 15 : Prove (1 + x)" 2 1 + nx, n € N x> -1
Solution : Let P(n) : (1 +x)" 2 1 +nx, n € N
Letn=1.(1+x)!'=1+x>1+1-x
P(1) is true.
Let P(k) be true.
(1 +xf>1+ kx
Letn =k + 1.
Now, (1 + x)f+ 1= (1 + x)F (1 + x)
2 (1 + kx)(1 + x) (by P(k) and as x > —1)

IT+x)fF 1> 1+ hkx+x+hk?>21+hkx+xaske N, x2>0
(I +x)F*+1>1+ *k+ Dx

P(k + 1) is true.

P(k) is true = P(k + 1) is true.

P(n) is true, Vn € N by PM.I.

1 1 1
Example16:Provel+2—2+3—2+...+?S2—%, n € N
. 1 1 1
Solutlon:LetP(n):1+2—2+3—2+...+FS2—%, n €N
Letw=1,LHS. =1,RHS. =2—-1=1

P(1) is true.

Let P(k) be true.

I I L _ 1
I+ 7+ +tm<2-7

1
Add (k+1)2 on both the sides.

B 1 1 1 1 .
Hence, 1 + ¥ + 3 + ...+ e + k+1)2 <2-— T T k+1)2 @)
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1 1 _ 1 1 1 1
Now. 2=+ G+ =2 % Y G+ T &+1 ~ &+

B 1 1 —k—1+k
2%+ T k+2 T TRk

i 1 1
=2 %+1 T kv T kk+)

| k—k-1
Tkt k)2

=2

B i |
=2=%+1 ~ ktk+1)

_ 1 1 o o1 ..
2=t kv <27 %+1 (k € N gives K1) > 0) (i)

1 1 1 1 . .o
1+2_2+3_2+'“+(k+1)2 <2_(k+1) (by (i) and (ii))

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true Vn € N by PM.IL.

Note : Thus however large 7, sum 1 + zlz T 3% AP oo F # is ‘bounded’ and less than < 2.

Example 17 : Prove (8) + (’11) + (’;) + ...+ (Z) =2" mné€N

Solution : Let P(n) : (}3) + (’11) + (’21) + ...+ (Z) =2" né€N

Let n = 1. LHS. = (§) + (1) = 2, RHS. = 21 = 2

. P(1) is true.
Let P(k) be true.

() + (1) + 4 (1) =2

Letn =k + 1.

s = (5 (1) e () (51
() (1) ) (1) ) o (650 () + 6
(s ) - (5 = ) - (£2) -1 (- (52)+ (45)
2[5 ()4 () n )]

=2.2k
=2k+1 = RH.S.
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P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.

1.4 Some Variants of P.M.I.

Variant 1 : If P(n) is a statement involving natural variable n and if P(kg) is true for some
positive integer k, and if the truth of P(k) for some integer k = k, implies the truth of P(k + 1),
then P(n) is true Vn € N, such that n = k.

Example 18 : Prove 2" >n?;, n>5, n€ N

Solution : Let P(n) : 2" > n%, n>=5 né€ N

Let n = 5. (ky = 5), 2° = 32, 5% = 25 and 32 > 25.
P(5) is true.
Let P(k) be true for k > 5. Hence, 28 > k?
Letn =k + 1.
Now, 26+ 1 =2.2k> 242 @k > k) ()
Now, 2k2 — (k+ 1)2 =2k2 — k2 — 2k— 1
=K —-2k+1-2
=k+12-2>0ak>5
2k2 > (k + 1)? (ii)
26T 1> (k + 1)? (by (i) and (ii))
P(k + 1) is true.
P(k) is true = P(k + 1) is true.

P(n) is true, Vn € N by PM.L
Variant 2 : Let P(n) be a statement of integer variable n.

If P(1) and P(2) are true and if P(k) and P(k + 1) are true for some positive integer k£ implies
P(k + 2) is also true, then P(#n) is true for all » € N.
Example 19 : Let a, be a sequence of natural numbers with a; = 5, a, = 13 and
a, . ,=5a, . — 6a, forn=1.Prove a,=2"+3" Vne N
Solution : Let P(n) : If a,, , , =5a, . | — 6a, forn >1, a; =35, a, =13, then a, =2" + 3", Vne N.
Let n =1.a; =35 and 21 +31=2+3=5. Hence, P(1) is true.
Let n = 2. a, = 13 and 22+32=4+9=13. Hence, P(2) is true.

Leta,=28+3K a, ,  =2k" 1+ 3k 1 for k> 1

14 MATHEMATICS-2



Now, a;, . , = 35a; . | — 6q,
=5k 14 3k+ 1y — 6.2k —6-3k
=5-2k.2 +5.3k.3 — 62— 63K
=2K(10 — 6) + 35 (15 — 6)
= k.02 4 3k.32
—ok+2 4 3k+2
P(k + 2) is true.
P(k) is true and P(k + 1) is true = P(k + 2) is true.
P(n) is true, Vn € N by PM.L
Note : a, , , = 5a, , | — 6a, is called a recurrence relation. Its solution is a, = AQ(" + Bf”
where O, B are roots of X2 — 5x + 6 = 0 (5 is co-efficient of a, , |, —6 is co-efficient of a,)
oa=3,p=2
a, = A3" + B2"
ay=3A+2B=5 a,=9A + 4B =13. Hence, A=B =1
a,=3"+2"1fa, ,=1-a,, — m-a,, then O and B are the roots of equation
¥ —n+m=0.
Miscellaneous Problems :
Example 20 : Prove that any payment of ¥ 4 or more can be made using ¥ 2 and ¥ 5 coins only.

Solution : Let P(n) : Any payment of ¥ 4 or more can be made using ¥ 2 and ¥ 5 coins only.
ne N

For n = 4, we require two coins of ¥ 2 to pay ¥ 4. Let the statement be true for k 2 4.
Letn =k + 1.
Consider two cases :

(1) If the payment for ¥ k contains a ¥ 5 coin, take it back and give 3, ¥ 2 coins. Hence
k+ 6 —5=k+ 1 rupees are paid.

(2) If the payment for ¥ k does not contain any ¥ 5 coin, since k¥ = 4, he must have paid at
least two % 2 coins. Take them back and pay one ¥ 5 coin. Hence R k + 5 — 4 = k£ + 1 are paid.

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) be true, for Vn € N by PM.L

Example 21 : Prove that any integer » > 23 can be put in the form 7x + 5y = n, where
x€ NU {0}, ye N U {0}.

Solution : Let P(n) : Any integer n» > 23 can be put in the form 7x + Sy
x€ NU {0}, y e N U {0}.

n, where

Let » = 24. Then 72 + 52 = 24 is the required form with x = y =2.

PRINCIPLE OF MATHEMATICAL INDUCTION 15



Let 7x + 5y = k for k 2 24, x € N U {0}, y € N U {0}. @)

Now, 5:3 —=7-2=1 (i)
Tx—=2)+5(y+3)=k+1 (Adding (i) and (ii))

Here y+3 € NU {0} andx —2 € N U {0} if x # 0 or 1.

Let x = 0. Then 5y = k = 24. Thus y 2 5, using (i).

73 —5+4=1 and 5y = k gives on adding. (iii)
7-3+5(y—4)=k+ 1
Here x =320,y —420 w25

P(k + 1) is true, if x = 0

Let x = 1. Hence, 7 + 5y = k, using (i).

Then 5y =k —7 2 17. Thus y = 4
7:3—=5+-4=1and 7+ 5y = k gives on adding. (iv)
7(4) + 5 —4)=k+ 1 withy —4 >0 and x = 4 (Adding in (iv))
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true for Vn € N by PM.L

Example 22 : (Tower of Hanoi) We have three pegs and a collection of disks of different sizes. Initially

they are on top on each other according to their size
on the first peg, the largest being on the bottom and
the smallest on the top. A move in this game consists
of moving disks from one peg to another such that
larger disk can never rest on a smaller one. Prove

that the number of moves to transfer all disks from

first peg to the last peg using the second peg as intermediate is 2”7 — 1, n € N.

Solution : Let P(n) : The number of moves to transfer all disks from first peg to the last peg

using the second peg as intermediate is 2” — 1, n € N.

Let n = 1, obviously there is only one move.
P(1) is true. 21 — 1 = 1. (p(k))
Suppose there are 2 — 1 moves to transfer k disks as required.

First we move top k disks to the second peg using the third peg as the intermediate one. This

will take 2¥ — 1 moves. Now move the last disk to the third peg. This is one move. Now move k disks

from second peg to the third peg in 2 — 1 moves.

The total number moves is 2K — 1 + 1 + 2k — 1 =2-2k — 1 =2k 1
P(k + 1) is proved.

P(k) is true = P(k + 1) is true.

P(n) is true, Vn € N by PM.L

16
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5 3 62n

Example 23 : Prove nl g ”? + ”T + 35 € N, n € N (to be done after chapter 3)

Let P(k) be true. Hence, k + ks + k3 + %15{ € N

Letn=4%Kk+ 1.
K+ k+1° k+1P 62k+1 11
Consider(( 11) +( 5) +( 3) + (165 )) (k

Now, 11, 5, 3 being primes, 11 divides ( ) forr=1, 2,.

and

= L(lll)k +

165

3oy 6m _ 15433455+ 62
3 165 165

P(1) is true.

=k + DI =KD + Lk +1)° = ) + $(k + 1)} -
1—11<1 +(Ve+ (e +.+ (1 )klo) + %(1 + e+ ()R +.+ (Z)k“)
+ %(1 + (ke + (S)kz)

R ot 000+ 10D 3w 3

11 11

!

5d1v1des()forr=1 2,3, 4

3 divides (}) for r = 1,2

+Li+d+ =

The R.H.S. in (1) represents a natural number.

Also AL + &2 4 K& 4 S ¢ N

165

k+D'" L k+1) L k+1?P L 62k+1)
T 1 5 Tt %

KL KKy 62k
K_ ? + 5 + 2= ST + a natural number € N
P(k + 1) is true.

P(k) is true = P(k + 1) is true.

P(n) is true for Vn € N by PM.L

+”T+62”GN,neN

_ 165 _
“Te5 |

11

K %)
3 165

3

k )+ 165 165

62
t 165

PRINCIPLE OF MATHEMATICAL INDUCTION

17



Example 24 : There are 2n persons in a hall. Some persons handshake with others. There do not

exist any three persons who have handshakes with each other. Prove that the number of
handshakes is at most 72,

Solution : Let P(n) : There are 2n persons in a hall. Some persons handshake with others. There

do not exist any three persons who have handshakes with each other. Then the number of
handshakes is at most n2.

For n = 1, there are two persons. Hence there is at most 1 = 12 handshake.
P(1) is true.
Let P(k) be true.
Let n =k + 1.
Now there are 2k + 2 persons. Choose two persons A and B who have had a handshake.
(If there are no two such persons, number of handshakes is zero which is at most (k + 1)2.

Now the remaining 2k persons had at most k% handshakes (P(k) is true). A and B have one

handshake.

Each of 2k persons could shake hands with A or B only as no three persons had handshakes

with each other. Hence the number of handshakes is at most

K+ 1+ 2k=(k+ 1)
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true for Vn € N by PM.I.
A paradox :
[Note : A paradox is the misinterpretation of a result to arrive at a contradictory result.]

P(n) : A thirsty man can drink » drops of water.

For n = 1, obviously a thirsty man would like to drink one drop of water.
If he can drink k£ drops of water, he can definitely drink & + 1 drops of water.

So he can drink any amount water to exhaust all resources of water on the earth !

Exercise 1

Prove the following by the principle of mathematical induction : (1 to 19) (n € N)

nn+nHn+2)3n+1)

1. 12.2422.3+ .. +n2n+1)= =

2. a+(a+d)+(a+2d)+...+(a+(n—1)d)=%n(2a+(n—1)d)

3. TRttt Tttt TinmT =

4 1-2:342-3-4+ 4 nn+ Hn +2) = LD T2OT

5. 1+5+9+..+(@ln—-3)=nCn—1)

6. Tty =1— (L)
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10.
11.
12.
13.
14.
15.
16.

17.

18.

19.

20.

21.
22.

23.
24.

25.

26.

27.

28.

29.

1 1 2n

1 1
Tttt s T T 23+ ~ i+l

| | | . nm+3)
23 T3233t T nmsom+2 ~ Tnrnm+o

nn+1Hen+ DG +3n—1)

4 4+24 434+ + =
30

Ifa =1a=14a,=a _]+an_2,n23,thenal+a2+a3+...+an=an+2—1.

n n

41" — 1 is divisible by 40.

4007" — 1 is divisible by 2003.

7" — 6n — 1 is divisible by 36.
27"+ 35" — 5 is a multiple of 24.
117+2 4 1227+ 1 5 divisible by 133.

n(n + 1)(2n + 1) is divisible by 6.
1-31 42324333 4 4 po3n=@n-DFT+3
4
10" + 3 .47 72 4+ 5 s divisible by 9.
5 3 mn
I’l? + nT + T € N

@2n)! 1
PrOVG 22n(n ')2 — J3n + 1

' =
For Lucas' sequence a, = a, _

ta,_,n23)a =1,a, =3, prove a, < (1.75)".
Prove 2" > 3, if n = 10

Prove a polygon of n sides has diagonals, n > 3

nn—3)
2

Ifa =1,a,=1,a,=a,_,+a,_, n=23, then prove that

n

L[ (1=45Y . . . .
a, =5 5 - 5 (This {a,} is called Fibonacci sequence.)

Iff:N—=>Nf(D)=1f2)=5f(n+1)=f(n)+2f(n—1), n=22
then prove that f(n) = 2" + (—1)"
ff:N—->Nf(D)=1f(n+1)—f(n)=2"

then prove that f(n) = 2" — 1

Ifa =1,a,=1,a,=a,_|+a,_, n23

n
then prove that a, + a, + ag+..+ a,, = a,, . | — 1
Ifa, =1,a,=11and a,=2a,_,+3a,_, n23
then prove that a, = 2(—1)" + 3" forn € N

Prove that every integer n = 12 can be written in the form 7x + 3y = n,

x€ NU{0},ye NU {0}
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30. Prove that 3 + v/5)"+ (3 — J/5)" is even, n € N.

31. Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the right

so that the statement becomes correct :

(1) For P(n) : 2" < n!, ... is true. 1]
(a) P(1) (b) P(2) (c) any P(n), n € N (d) P(4)
(2) For P(n) : 2" =0, ...... is true. ]
(a) P(1) (b) P3)
(c) P(10) (d) Pk) = Pk + 1), ke N
(n+1)(n+2)

B Pm:1+2+3+...+m+1)= > ,n € N [ ]

(a) P(1) requires L.H.S. = 7 = R.H.S.

(b) P(1) requires L.H.S. = 3 = R.H.S.

(c) P(k) = P(k + 1) is not true for £k € N

(d) It is false that P(n) is true, Vn € N by PM.L

4) If ... is true and P(k) is true = P(k + 1) is true for k£ = —1, then P(n) is
true for all » € N U {0, —1}. ]
(a) P(=1) (b) P(0) (c) P(1) (d) P(2)

(5) P(n) : Every prime is of the form 22" + 1 is not true, for n = ...... [ ]
(a) 1 (b) 2 ()0 (d)5

(6) P(n) : 2" — 1 is a prime for n = ...... ]
(a) 1 (b) 3 (c) 4 (d) 8

(7) P(n) : n* — n + 41 is a prime, is false for n = ..... ]
(a) 1 (b) 2 (c) 3 (d) 41

(8) P(n) : 2n + 1 is a prime, is false for n = ...... ]
(a) 1 (b) 2 (c) 3 (d) 4

(9) P(n) : 4n + 1 is a prime, is false for n = ...... [ ]
(a) 1 (b) 3 (c) 7 (d) 11

(10)P(n) : 2" > n? is true for n = ... ]
(a) 2 (b) 3 (c) 4 (d) s

Summary

We studied the following points in this chapter :

1.
P

Principle of Induction and Examples

Different variants of P.M.I. and applications

— ‘ —
o

20

MATHEMATICS-2



Puzzle

There are n people in a room each being put on a hat from amongst at least » white hats and
n — 1 black hats. They stand in a queue, so that every one can see the colour of the hat of the
person standing in front of him. Starting from back we ask the persons in turn, ‘Do you know
what is the colour of your hat ?° If the first (n — 1) persons say no, the person in the front will
say ‘Yes the colour of my hat is white.” Prove.

Solution : Let P(n) : If the first (n — 1) persons say no, the person in the front will say yes.

For n = 1, there is no black hat (1 — 1 = 0). Hence the first person will say, ‘yes, my hat is
white.” Suppose the statement is true for n = k. Let n = k + 1.

See how the man standing in the front would think. Suppose my hat is black. Then excluding
me there are k people with at least £ white hats and & — 1 black hats. By P(k), since the first
(k — 1) persons said no, the person behind me must say yes. ‘I know the colour of my hat.’

But he said no. So the colour of my hat cannot be black. Hence it is white.

. P(k+ 1) is true.
. P(k) is true = P(k + 1) is true.
. P(n) is true, Vn € N by PM.L

Explanation : If n = 2, there is one black hat and at least two white hats. If the last person
sees a black hat put on by the person in front of him, he would definitely say, ‘Yes, colour of my
hat is white,” as there is only one black hat. But he is not able to answer. So the first person
logically thinks he has put on a white hat and the person behind might have put on a black or a
white hat.

B W or B
9 . 2

— ‘ —
e

Srinivasa Ramanujan (1887-1920) was one of India's greatest mathematical geniuses.
He made substantial contributions to the analytical theory of numbers and worked on elliptical
functions, continued fractions and infinite series.

In 1990 he began to work on his own on mathematics summing geometric and arithmetic series.

Ramanujan had shown how to solve cubic equations in 1902 and he went to find his own
method to solve the quartic.

In 1904 Ramanujan had begun to undertake deep research. He investigated the series
E(%) and calculated Euler's constant to 15 decimal places.

Continuing his mathematical work Ramanujan studied continued fractions and divergent
series in 1908.
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Chapter 2

COMPLEX NUMBERS J

A mathematician is a device for turning coffee into theorems.
— Paul Erdos

As far as the laws of mathematics refer to reality, they are not certain and as
far as they are certain they do not refer to reality.
— Albert Einstein

2.1 Introduction

In previous classes, we have studied the number sets N, Z, Q and R. We know that the set of
rational numbers and the set of irrational numbers constitute the set of real numbers. We also
studied properties of numbers and solutions of linear equations in one variable and two variables.
We also discussed the solutions of quadratic equations in one variable. We observed that if the

discriminant 52 — 4ac < 0, the quadratic equation a2+ bx+c=0a b c€ R, a#0 has no

solution in R. For example x2 + 1 = 0 has no solution in R. To allow the square root of negative
numbers, the real number system has to be extended to a larger system. In fact, Greeks were
the first to recognize the fact that square root of a negative number does not exist in the real
number system. The Indian mathematician Mahavira or Maviracharya (850 A.D.) too mentions this
difficulty in his work ‘Ganitasara Sangraha’. The extension of real number system should be in such
a way that the algebraic operations such as addition, subtraction, multiplication and division can be
defined properly. This new set is called the set of Complex Numbers and is denoted by C.

2.2 The Set R X R and the Set of Complex Numbers

We begin with the set R of real numbers to obtain the set C of complex numbers. R X R is the

set of all ordered pairs of real numbers.
RXR={@@a b)|ae R, be R}

We shall define the equality, addition and multiplication of two elements of R X R.
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(1) Equality : Two elements (a, b) and (¢, d) of R X R are defined to be equal if ¢ = ¢ and
b=d Thus a=c¢, b=d = (a b) = (c, d)
For example, (1, 0) = (sin®x + cos®x, logl) but (1, 4) # (4, 1)
(2) Addition : The sum of two elements («, b) and (¢, d) of R X R is defined as follows :
(ab)+ (c,d=(@+c, b+ d
For example, (5,2)+ (2,3)=(G5+2,2+3)=(7,5)
(3) Multiplication : The product of two elements (a, b) and (¢, d) of R X R is defined
as follows :
(a, b)(c, d) = (ac — bd, ad + bc)
For example, (5, 2)(2,3)=(5X2—=2X3,5X3+2X2)=(4,19)
The set R X R with these rules is called the set of complex numbers and it is denoted by C.
Generally, we denote a complex number by z.
2.3 Basic Algebraic Properties of Complex Numbers
We have discussed the properties of closure, commutativity, associativity and distributivity with respect
to operations of addition and multiplication on R. We shall see that these properties hold good in C too.
The operation of addition satisfies the following properties :
(1) The closure property : The sum of two complex numbers is a complex number.
iez;+z,€ C Vz,z,€ C
We also say that the addition is a binary operation on C.
(2) The commutative property : z; + z, = z, + z; Vzl, 7z, € C
(3) The associative property : (z; + 2,) + 23 =2, + (3, + z3) Vz, 25,23 €C
(4) The existence of additive identity : There exists a complex number O = (0, 0),
called an additive identity or the zero complex number, such that

z+40=z=0+7 Vze C
It can be proved that the additive identity O is unique.
In fact if (a, b) + (x, ¥) = (@, b) for all (a, b) € C,
then a + x = g, b+y=bh,
x =0, y=0.
Thus, (x, y) = (0, 0)
Also (a, b) + (0, 0) = (a, b).
(5) The existence of additive inverse : To every complex number z = (a, b), there
corresponds a complex number (—a, —b), denoted by —z, called the additive inverse
(or negative) of z such that z + (—a, —b) = (0, 0) = O.
We observe that, z + (—z) = (a, b) + (—a, —b)
= (a + (—a), b + (—b))
= (0, 0)
= O (O is the additive identity.)
Also, (—z) +z =0
We can prove that for z € C, its additive inverse —z is unique.
Note : (a, b) + (x, ) = (0, 0) requires a + x =0=5b + y

xX=—a y=—b
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(—a, —b) is the additive inverse of (a, b).
The operation of multiplication satisfies following properties :
(1) The closure property : The product of two complex numbers is a complex number.
ie. z;z; € C, Vzl,z2 e C
We also say that the multiplication is a binary operation on C.
(2) The commutative property : 2,2, = z,z; Vzy, 2z, € C
(3) The associative property : (z2;2,)73 = 2(2523) Vzl, 2y, 23 € C
(4) The existence of multiplicative identity : There exists a complex number
(1, 0), called a multiplicative identity such that z(1, 0) = z = (1, 0)z, Vz € C
By taking z = (a, b), z. (1, 0) = (@, b)(1, 0) = (a— 0, 0 + b) = (a, b) = z
Also, (1, 0)z = z(1, 0) = z
The multiplicative identity (1, 0) is unique.
Note : If (a, b)(x, ¥) = (a, b). V(a, b) € C, then ax — by = a and ay + bx = b, Va, b € R.
In particular @ = 1, b = 0 gives x = 1, y = 0. Then (a, b)(1, 0) = (a, b), V(a b) € C.
(5) The existence of multiplicative inverse : To each non-zero complex number z = (a, b),

there corresponds a complex number (a2f—b2’a2+b2] (denoted by z7'), called a

multiplicative inverse of z such that

z-z'=(1,00=z"-2 (1, 0) is the multiplicative identity)

a —b

Since (a, b) # (0, 0), &> + b> # 0 and hence z7' = (az PR +b2] € C and

/)
z-z' = (a b)(azibz’a2+b2]

_ a —b —b a
=\a-p2yp2 —b-pip-a- 2o Y0 o2

2+b*> —ab+ab
=& 222 =1, 0)
a*+b* a*+b

Also, z7' - z = (1, 0)

Note that for each non-zero z € C, its multiplicative inverse z™' is unique.

z! is also denoted in %

Note : Let z' be a complex number such that zz' = (1, 0)
Let z' = (x, »)

zz' = (a, b)(x, y) = (1, 0)

(ax — by, ay + bx) = (1, 0)

ax —by=1,ap+ bx =0

. . a —b
Solving these equations we get x = 72,72, v = 2, )2

24 MATHEMATICS-2



. a —b
27 ar 40 at + b2
As z = (a, b) # (0, 0) we have a* + b*> # 0.

L a —b
Sy A ey

The existence of multiplicative inverse enables us to show that if a product z,z, is zero, then at
least one of the factors z; and z, is zero. (why ?)

(6) The distributive laws : For any three complex numbers z;, z,, z3
(@) zy(zyp + 23) = 212, + 2423
(b) (z; + zp)z3 = 2123 + 2523
2.4 R as a Subset of C

By definition, every complex number is an ordered pair of real numbers. Let us denote by R' the
set of those complex numbers (a, ) in which 5 = 0. So, R' = {(g, 0) | a € R}. Obviously R' C C. Let
(a, 0), (b, 0) be two elements of R'. Note that,

(1) (@ 0)=(,0)<=a=0b

2) (@ 0)+ (b, 0)=(a+b 0)e R

() (a. 0)b, 0) = (ab, 0) € R

Thus, the sum as well as the product of two elements of R' is again an element of R'. Moreover,
the first component of the sum or product of two numbers (a, 0) and (b, 0) is obtained merely by adding
or multiplying respectively the first components a and b, while the second component remains zero. Infact
R' is closed for addition and multiplication as in C. So as far as equality, sum and multiplication are
concerned, the complex numbers of the form (a, 0) behave exactly like real number a. Hence we identify
complex numbers of the form (a, 0) with @ and write a for (a, 0). Thus (4, 0) = 4, (0, 0) =0 etc. In this
way we look upon every real number a as the complex number (a, 0), which allows us to identify R

with R' and so R'= R C C. Thus we have N C Z € Q < R < C. Now O = (0, 0) = 0, the additive
identity (1, 0) = 1, the multiplicative identity.
2.5 Representation of a Complex Number in the form a + ib

By writing a for (a, 0) we are able to represent a complex number (@, ) in another form.

Firstly, let us get familiar with a special complex number (0, 1). We use the symbol i for this
complex number. Thus, i = (0, 1).

Now, 2 =(0, 1)(0, 1)=(@0-0—=1-1,0-1+ 1-0)=(—1,0) = —1I. In the year 1737 Euler was the
first person to introduce the symbol i for the complex number (0, 1), satisfying 2 = —1. i = (0, 1) is
called an imaginary number.

Now, (a, b) = (a, 0) + (0, b)

= (a, 0) + (0, 1)(b, 0) (0, 1)(b, 0) = (0 — 0, 0 + b) = (0, b))
=a+ib
(a, ) =a+ib

Hence, every complex number (a, b) can be expressed in the form a + ib, where

a, b € R and 2 = —1.
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Thus, C={a+ib| a b € R}

According to the commutative law for multiplication, ib = bi.

Hence, a + ib = a + bi

For example, (3, 5) =3+ 54, (0, 7)=0+7i=7i,(5,0)=5+0i=5

For the complex number z = a + bi, a is called the real part of z and is denoted by Re(z) and b
is called the imaginary part of z and is denoted by /m(z).

So, z = a + ib = Re(z) + ilm(z). For example, if z = 3 + 2i, then Re(z) = 3 and Im(z) = 2.

Note that both the real and imaginary parts of a complex number are real numbers.

A complex number, whose real part is zero and whose imaginary part is non-zero is called a purely
imaginary number. For example, 9 = 0 + 9/ is a purely imaginary number.

Let us now revert to the algebraic operations on complex numbers which are in the form a + bi.
Equality of two complex numbers :

Two complex numbers z; = a + bi and z, = ¢ + di are equal ie. (a, b) = (¢, d) if a = ¢ and
b=d

If z=a+ bi =0 then a = 0 and b = 0. =0+ 0)
Example 1 : if 3x + 3x — y)i = 4 + (—6)i, where x and y are real numbers, then find the values of

x and y.

Solution : We have 3x + (3x — y)i = 4 + (—6)i. Since a + bi =c +di = a =c and b = d,

we get 3x = 4, 3x — y = —6. On solving, we get x = %, y = 10.

Addition of two complex numbers :

Let z; = a + bi and z, = ¢ + di be any two complex numbers. Then the sum of z; = (a, b),

2, = (¢, d) is as follows :
g+yn=@bt+Ed=@+ce,b+d=a+c+ (b+di
For example, (2 + 242i) + (=3 + V2i)= 2 = 3) + V2 + V2)i
=—1 +342i
Difference of two complex numbers :
Let z; and z, be any two complex numbers. The difference z; — z, is defined by,
21— % =21+ (2
Let z; = (a, b), z; = (¢, d)
Then —z, = (—¢, —d)

=(a b) + (=¢, =)
=(a— ¢, b—24d
=(a— ¢c)+ (b —di

For example, 2 + V3i) — (=3 + 2J3i) =2 — (=3) + (3 — 2V/3)i
=5— J3i
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Multiplication of two complex numbers :
Let zy = a + bi and z, = ¢ + di be any two complex numbers.
zy = (a, b), z; = (¢, d)
2,z = (ac — bd, ad + bc)
212y = (ac = bd) + (ad + bc)i
For example, (2 + V3i)(=3 + V3i) = 2 X (-3) — ¥3V3) + 243 + J3 X (-3))i
=(—=6—-3)+ 2V3 = 3V3)i=—-9— J3i
We can open the bracket and multiply them because of the distributive laws.
Quotient of two complex numbers :

. 3.
Let z; and z, be any two complex numbers where, z, # 0. The quotient Z—l is defined as
2

1 _ 1 _ a —b _ a _ bi
In fact, - =z (a2+b2’a2+b2) a+b* @ +p

6+ 3i _ )
For example, Tors — (6 +30)(10 + 8))

(6 +30) (12 - L)

60 + 30i — 481 — 244>

164
84 — 18i g _ _
164 @ 1
) R )
nt sl

Powers of i :
We shall assume that the usual laws of indices hold good for integral powers of z.
We know that 7 = —1, 3 = %i = —i, i* = (P> = (=1)> = 1, P’ = i, i = —1 etc.
Remember, i* = —1, i = —i, i* = 1
Also, we have i~1 = zl = % xL=2L= —i, i 2=—1,i3=4ii%=1 etc.

In general, for any integer k, i* =1, ¥+ 1 = #h+2=_] hk+3 =

In mathematics, trichotomy is the property of an order relation. For any real numbers x and y,
exactly one of the following holds : x <y, x =y or x > y. This law of trichotomy holds for comparison
of real numbers. This property is no more valid for complex numbers as C is not ordered.

2
25
) } (i) ' + 2+ B+ i+ .+ 100

2 2
Solution : (i) [149 + (%)25} = [146 i +(%)24 (ll)}

Example 2 : Evaluate (i) [ilg +(
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Gi) i' + 24+ B3+ i+ .+ 27 4+ 998 4 99 441000
=((—-1—-i+H+G—-—1—-i+1)+.+@G—1—i+1) (250 brackets)
=0+0+..+0=0

Conjugate of a Complex Number :
If z = (a, b) = a + bi, then its conjugate complex number is defined to be the complex number

a — bi = (a, —b) and is denoted by 7.

We note that zZ = (a + bi)(a — bi) = a®> — b*> = a* + b%. So just like a surd 7 acts like a

. .. . — . p P4q
‘rationalising’ factor. Since zZ = a? + b? is real, we express complex number Z as ﬁ so that the
denominator ¢q is real. Let us understand this concept by a few examples.

Example 3 : Express the following in the form of a + ib, where ¢, b € R
(2 — 8i)(7 + 8i) 1 (a+i’ N R
()= @G +4) G) T3 @) T e 0= P
) (2—8i)7+8) 144160 — 56i — 64i*
Solution : (1) T+ = 5
14 — 40i + 64
= —_"_ 2 = —
T+1 @ D
78 —40i
1+1
78 — 401 1—i
=057 X1 (multiply and divide by conjugate of 1 + i)
78 — 78 — 40i + 40i>
B 1—i?
_ 38 —21181 (i2 = -1)
=19 — 59i
o] L1 3—4i_3—4i_i _i)
@ GH+4)' =FF=Tw Xy “orte % T il
3—4i ; .
. Nl o ——— _ 34 _ 3 40 -1
or directly (3 + 4i) P+ " 55 T35 T a8 (formula of z77)
3 A+  P+3-17-i+3-1-7+7
G TF < 4+3i
_1+3i-3-1i
T 4+30
_ 2+2i
4430
(=24 2i)4 = 3D)
(44304 - 30)
_ —8+8i+6i—6i’
16+9
=2 414, 2= —
=35 t 351! (@ 1)
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1 3 1 1+ cos8 + isin®
D TcosO—isin® ~ T+cos0—isin0 X 1+ cosO + isin®

1+ cosO + isin®
~ (1+cos9)? + sin’0

1+ cosO+ isin®

1+ cos*0 + 2cos9 + sin*0

1+ cos0 +isin®
2 +2cos0

__1+cosB . sin®
T 2(1+cosH) i 2(1+ cos0)

1 .___sing
=g ti 2(1+ cos0)
. ‘ sin® 2sin%c0sg ~ 0
Note : We will see in chapter 5 that 15 cos0 — —200 2 % = tan =
Example 4 : Find the real values of x and y so that
A+i)x—2i Q2-3)y+i . iy 3y+4i
() =5 CEr @D 557~ 3xFy 0
. . 1+Dx—2i 2-3D)y+i .
Solution : (1) 317 + 3] =1

x+ =203 —D+2v+ A =33+ =G+ H3 — i

(Multiplying both sides by (3 + /)3 — i))
3x+(x—2)+[3x—=2)—xli+6y—(1 =3+ [2y+3(1 =3)]i=O + 1)i
(4x+9 —3)+2x— Ty —3)i=10i

4+9y—3=0and 2x — 7y — 3 =10 (Equality of two complex numbers)
4+99 —3=0and2x — 7y — 13 =0
Solving the above simultaneous equations, we get x = 3, y = —1.
iy 3y+4i
@ FEr -~ Foey -
yGBx +y) — By + 4i)ix + 1) =0 (Multiplying both sides by (ix + 1)3x + y))

(—3y+4x)+i(3xy+y2—3xy—4)=0+i0

(3y +4x) +i(G? —4) =0+ i0

—3y+4x=0and 2 —4=0 @+bi=0=>a=0,b=0)
Y2 —4=0givesus y=12

Fory=2wegetx=%andfory=—2wegetx=—%.

The solution set is {(%,2),(—%,—2)}.

Exercise 2.1

1. Express the following complex numbers in the form a + bi :

) 2 =i =il = J2i) Q) @ =32+ i)
() G+06 - it+gi) @ 2L (wse @ =30
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2.6

1+2i 2—1 50

®) =t ©) The-6-h
3472
DU ® |-
4 =1V (3 + V503 = V50)
©) (2i+1] (10) 3 +2i) — (/3 = V2i)

Find the real values of x and y, if

1) x+4yi=xi+y+3

Q) G+5x+G—2y+i2+6i=0

G) TS5 +—===1+3i

4) (* + 2xi) — Bx2 + yi) = 3 — 5i) + (1 + 2i)
(5) Gx — )2 + )2 =101 + i)

Find the multiplicative inverse of :

(1) 3—2i @ -1+if3 @) :f;i @) Q=30  (5)—i

Show that, (1) Re(iz) = —Im(z)  (2) Im(iz) = Re(z)

Verify that each of the two complex numbers z = 1 % i satisfies the equation z> — 2z 4+ 2 = 0.
*

Conjugate and Modulus of a Complex Number

Complex Conjugate : We know if z = a + bi, 7 = a — bi.

As an example,

(H)Ifz=3+5i,then 7 =3 — 5i

2)Ifz=5—3i,then 7 =5 + 3i

B)Ifz=3=3+4+0i,thenz =3 —-0i=3

@ Ifz=3i=0+3i,then 7 =0 — 3i = —3i

Here are some basic facts about conjugates.

For any three complex numbers z, z,, z, we have the following properties :

1. (2) =z 2. Z;Z = Re(z)

3. % = Im(z) 4. z=7 if and only if z is real.
5. 7 =—z if and only if z is purely imaginary.

6. | iZz = Zl + 22 7. a = ZIZZ

o]

z Z
(—1) = ==, where 2, #0
2> 2

The above properties are easy to verify. Let us verify some of them.
Let z=a + ib

1. Z=a—1ib

() =a—-ib =a+ib=z

30

MATHEMATICS-2



z+ Z=a+ib+ a—ib=2a=2Re(z) as Re(z) = a

% = Re(z)

z—Z=a+ib—a+ib=2b=2ilm(z) as Im(z) = b

-2 _
5 Im(z)

z=z S atib=a—-ibsS b=-bS2h=00=0.

Thus, z = 7 if and only if z is real.

Modulus of a complex number :

Modulus of a complex number z = a + ib is defined as ‘,az +b? and is denoted by | z |.

Thus, | z| = Ja? +b°

Note that | z | is a real number and | z | 2 0, Vz € C.

As an example, if z =3 + 4i, then | z | = J9+16 = ¥25 =5

Notice that if z is a real number (i.e. z=a + 07 ) then, | z | = va* = | a |, where | z | is the

modulus of the complex number and | a | is the absolute value of the real number (recall that for any

real number @ we have va* = | a |).

Properties of modulus :

1. |z|=0ifand only if z=10 2. |z|Z2|Re(@) || z]| 2] Im(z) |
3. zz=|zP 4. |z|=1]7|
Z 1%

5. |z|=]|—-z] 6. é=|zzlz,wherezz;t0

— 2 _|Z1|
7o lzizg =1z 1] 2z | 8. Z—Tzlwherezzio
9. |zy+z | <]z |+|z | (Triangular inequality) (Why triangular ?)
10‘|Zl_22|2||zl|_|22||

Let us verify some of the above properties :

1.

|z|=0<:>‘/a2+b2 =0 +=02a=0,b=02z=0
|z 2 =d + b% = (Re(2))? + (Im(2))* = (Re(z))?
| z | 2| Re(z) | Similarly, | z | = | Im(2) |

27 = (a + ib)(a — ib) = a* + b2 = | z |?

lzl=la+ib|= 2 +p? and | T|=|a—bi|= [ +(b)? = Jd? +1?

so, | z|=]|7]
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7. |21z P=(212) (zz)
= (212) (2_15)

- (212_1) (225)

= | 21 |2 | Zy |2
Solzizy [ =z || 2 |

9. |zy+z P =@ +2)z + )

=iy T Tty

|2y P+ 12y 2+ 2Re (z;2,)

IN

2y P+l P+2z ]z |
:|Z1|2+|22|2+2|Z1||22|
=(|Z1|+|22|)2

Szt [ Sz 4]z

lzy =+ =l 1S|z1 -5 +]z|
|Z1|_|22|S|Z1_Zz|
But,|zl|—|zz|or|zz|—|zl|=||zl|—|zz|‘ (If a € R then
‘|21|_|Zz|‘3|21_22| or |21_22|2||21|_|22|‘.
Example 5 : Find the conjugate and modulus of (1) 2 —3i)* (2) |77

Solution : (1) 2 =312 =4 —12i — 9 =—-5— 12}
Complex conjugate of (2 — 37)% is —5 + 12i and
|2 =32 |=|2-3iP=44+9=13

—3+7i
1+1

(2) Let z=

=347 % 1—1
o 1+1 1—1i

343 +7i —7i%
1—i?

_ 44100
2
3:2—5iand|z|=‘/22+52 = J29

|-3+7i1  J49+9
or |z|==m = N

=2+ 5i

| 2y |2 + 1z |2 tzi, Tz (2122 =

1 = 7%)

|a| = a or —a)

32
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Example 6 : If z=x + yi and | 3z | = | z — 4 |, then prove that x2 + 12 + x = 2.
Solution : We have | 3z | =]z — 4 |
[3x+3yi|=|(x—4) + yi|

32432 = Jx—a)? +y?
9xZ +1?) = (x — 4)% + )72
92 + 9y2 = x2 — 8x + 16 + )?
8x2 + 8x + 82 =16
x2+y2+x=2

Example 7 : If z; = 3 + 4/ and z, = 12 — 5i, verify the following :
Wan =an @lz+nl<lzl+lnl @lzznl=lzllz5]
Solution : We have z; =3 + 4i and z, = 12 — 5i
(1) zzp = (@ + 4i)(12 — 5i) =36 — 15i + 48i — 20i2
=36 — 15i + 48i + 20
=56 + 33i

A% = 56 — 33i

Now, 2122 = (3 — 4i)(12 + 5i) = 36 — 48i + 15i — 202 = 56 — 33i

Hence, 7120 = 71 2p is verified.

Q) zy+z,=3+4i+12-5i=15—i

lz) + 2y | = J225+1 = J226

Also, | z; | = ,/9+16 =51z |= ‘/144+25 =13
Also, | zy |+ ]z, | =5+ 13 =18 = {324
Clearly, 4226 < 4324

Hence, | zy + 2z, | < | z; | + | z, | is verified.

G) |22, | = J562 1332 = 3136 +1089 = J4225 = 65 (by (1))
Also, |z, ||z, | =513 =65
Hence, | ziz, | = | z; | | 2, | is verified.
Example 8 : (1) If z € C and | z + 3 | £ 8, find the maximum and minimum values of
|z —2].
2)Ifze Cand|z—4]<4, find the maximum and minimum values of | z + 1|.
Solution : (1) We have | z +3 | < 8
lz=2]=|E+3)—=5|<|z+3|+]|-5] (Triangular Inequality)
<8+5=13
lz—2|<13
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If wetakez=—11then|z+3|=|—-11+3|=8and|z—-2|=13
So the maximum value of | z — 2 | subject to | z + 3 | < 8 is 13.
Now, | z— 2| =2 0 is always true.
Forz=2,|z+3|<8istrueand|z—2|=0.

So the minimum value of | z — 2 | subjectto | z + 3 | < 8 is 0.

(2) We have |z—4| <4

lz+1|=|C—4dH+5|<|z—-4|+]|5] (Triangular Inequality)
<4+45=09
lz+1] <9

If we take z=8 then |z—4 |=4and |z+1]|=09.
So the maximum value of | z + 1 | subject to | z — 4 | < 4 is 9.

[z+1]20.Ifweletz=-—1,|z+ 1] would be zero.

But, |[z—4|=|—-1—4|=5¢ 4.
Thus the condition | z — 4 | £ 4 is violated if z = —1.
Now, [z+1|=[E=4H+5]| === 2z—4]—[-5]]
(z =212z =121
>5—4=1
lz+1]21

If wetake z=0then |z—4|=4and |z+1]|=1.

So, the minimum value of | z + 1 | subject to | z — 4 | < 4 is 1.

Example 9 : If z (# —1) is a complex number such that i—;i is purely imaginary, then show that
|z ] =1
Solution : Let z = x + iy.
-1 x+iy—1 (x—D+iy (x+D—iy (> +y* —D+2iy

Then 7=/ Txtiy+l o (xHD+ly (A D=dy  (x+12 42
Since ;—;i is purely imaginary, we have Re(i—:) =0
2 +y?—1
x2+y2=1
lz|=1 (z|= x2+y2)

2.7 Argand Plane and Polar representation

Historically, the geometric representation of a complex number as a point in the plane is
useful because it relates the whole idea of a complex number as an ordered pair in RZ. We know
that corresponding to each ordered pair of real numbers (x, y), we get a unique point in the
XY-plane and vice-versa. The complex number x + iy which corresponds to the ordered pair (x, y)
can be represented geometrically as the unique point P(x, y) in the XY-plane and vice-versa.
(Figure 2.1)
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Some complex numbers such as 2 + 3i, =2 + 37, =2 — 37, 2 — 37, 0 + 24, 2 + i0 which correspond
to the ordered pairs (2, 3), (=2, 3), (—2, =3), (2, =3), (0, 2), (2, 0) are represented geometrically by the
points A, B, C, D, E, F respectively in the figure 2.2.

The plane having a complex number assigned to each of its point is called the Complex Plane or
the Argand Plane. The points on the x-axis correspond to the complex numbers of the form a + i0 (real
numbers) and the points on the y-axis correspond to the complex numbers of the form 0 + ib (purely
imaginary numbers). The X-axis and Y-axis in the Argand plane are called the real axis and the imaginary
axis respectively.

(Jean-Robert Argand (1768 — 1822) was a gifted amateur mathematician. In 1806, while
managing a bookstore in Paris, he published the idea of geometrical interpretation of complex numbers
known as the Argand diagram.)

Geometrical representation of modulus of a complex number :

Y
1
P(x.y)
In the Argand plane, the modulus of the
24y complex number x + iy is the distance between the
point P(x,y) and the origin O(0,0). (Figure 2.3)
€ > X
0(0,0)
k4
Figure 2.3
gu 3 v
Geometrical representation of the conjugate !
of a complex number : P(z)
The representations of a complex number
z=x+ iy and its conjugate z = x — iy in the Argand X
plane are the points P(x,y) and Q(x,—y) respectively. j o
Geometrically, the point Q(x,—y) is called the mirror
image of the point P(x,y) with respect to the real axis. Q(z)
(Figure 2.4) .

Figure 2.4
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Geometrical representation of the sum of two complex numbers :

Y From the figure 2.5, in the argand plane P, Q

A

Imz and R represent z|, z, and z; + z, respectively,

N where z; = x; + iy; and z, = x, + iy,. Mid-point of
R(A] + Q)
—_— — . (X +x +
OR and PQ is (%%)
OR and ﬁ bisect each other.

Here, we have assumed that O, P and Q are
non-collinear points.

The absolute values of z,, z, and z; + z, are

geometrically given by |z, [ = OP, | z, | = OQ = PR
and | z; + z, | = OR. We know that the sum of any
two sides of a triangle is greater than the third side.
Hence, in AORP, we have OR < OP + PR implying | z; + z, | < | z; | +|z,|. That is why this
inequality for the absolute values of complex numbers is called the triangular inequality. (When does

Figure 2.5

equality occur in | z; +z, | <[z, | +]|z,| ?)
Polar representation of a complex number :

There is an alternate form to represent a complex
number z = x + iy which is known as polar
representation. Let us understand how we can express P(x. ¥)
any complex number into polar form. Let z = x + iy

be a non-zero complex number represented by the point y
_— >

P(x, ). (Figure 2.6) Draw PM L OX. Then OM = x

and PM = y. Draw 5 Let OP=rand mZMOP=0. < 0 = M

Then x = rcos® and y = rsin®.
Therefore z = x + iy = r(cosO® + isinB) Figure 2.6
Note : Here P lies in the first-quadrant.
. x>0, y>0.But if P(x, y) lies anywhere in the Argand plane except for origin, then also
x = rcos®, y = rsin® are true.
z=x+ iy = r(cosO + isin0)
Here, 12 = x + )2 (r=0P >0

T r > 0)

r=‘,x2+y2 =|z|and tan9=%

The form z = r(cosO + i sin0) is called the polar form of the complex number z. Also 0 is known
as amplitude or argument of z, written as arg(z). Since sine and cosine functions are periodic, there
are many values of O satisfying x = rcos® and y = rsin®. Each of these O is an argument of z. The

unique value of O such that =t < 6 < T for which x = rcos® and y = rsin@ is known as the
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principal value of arg(z). While reducing a complex number to polar form, we always take the principal
value of arg(z). Unless specified the notation arg(z) means principal value of arg(z). To find the value
of arg(z), one has to take care of the position of the point in the plane. Argument of the complex
number 0 is not defined (Why ?)

&+ ) {o, it x>0 @+ ) L, if y>0
arg(x + i0) = : arg iy) =
w, if x<0 —%,ify<0
Argument of positive real number is 0 and that of negative real number is 7. Similarly

argument of purely imaginary number yi is % or —% according as y > 0 or y < 0 respectively.

Also, cos® = %, sin@ = % and —T < 0 < T.

(i) Ifx >0,y >0, then we can get 6, 0 < 0 < %, such that cos@ = %, sinf = 2.

,
(i) Ifx <0,y >0, then we find O such that cosQl = %, sinQlL = %
0<O(<%. Let6=7t—oc.Thencos9=%, sin0© =%.
(iii) If x <0, y <0, then we find O such that cosQl = %, sinOL = %
O<O(<%. Let © = —1t + o Then cos® =%,sin9 =%
Iyl

(iv) If x > 0, y <0, then we find O such that cosQl = %, sinQL
o< o< % Let O = —0t. Then cos® = %, sin@ = %

Example 10 : Write the following complex numbers in polar form. Determine the modulus and the
principal value of the argument in each case :

() 1+ ) -1 + J3i (3) =3 —i A1 —i
(5) =3 (6) —2i (7 1 (8) 2i
Solution : (I) Letz=1+i=x + iy

x=1y=1
Sooor = "xz +y = \/5
cosO p 7 and sin0 . 7
P(0) lies in the first quadrant.
= n
o-%

The polar form of z is ﬁ (cos%+isin %)
|z|=r=ﬁ,argz=9=%.

() Letz=—1+ J3i=x+iy
x=-ly=43
r=|z|=‘/1+3=2
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cose—_—1=_—1andsin9=£=£
r 2 r 2
cosOL = %, sinQl = g

Since x < 0, y > 0, P(0) lies in the second quadrant.

=t-o=nw—-L=2L
O0=m—-o="m L = 2
The polar form of z is 2 (coszTn+ isin 2T7t)

Also, | z|=r=2 argz=0 = 2L,

3
(3)Letz=—ﬁ—i=x+iy
x=—J3,y=-1
r=|z|=\/m=2
cosGZ_T‘/gand sinGZ_Tl
cosoc=§, sin06=%
-2

Since x < 0, y < 0, P(0) lies in the third quadrant.

- _ = — I - 5T
0 T+ O T+ 3 =

The polar form of z is 2 (COS(_S?TE)+iSin(_S?)).

—5TC

Also, |z |=r=2,argz=0 = =

4 Letz=1—i=x+1iy
x=1y=-1

r=|z|=,/?=ﬁ

_ 1 _ L . =1 _ =L
cosO p 5 and sin0 p 7

1 . 1
cosOl = ﬁ, sinoL = f

= n
=7
Since x > 0, y < 0, P(9) lies in the fourth quadrant.
= — = —n
0=-0a=-%

The polar form of z is ﬁ(cos(—%) + iSin(—%)).

Also,|z|=r=ﬁ,argz=9=—%.
(5) Letz=-3.Herez=x+1i0 and x < 0.
Its polar form is 3(cosT + i sinT)

Also, |z |=3,argz=0 =T.

(x| =1,|y| = V3)

(x|=v3,1pl=1

(Ix[=4L|yl=1
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(6) Letz=—2i. Here z =0 + iy and y < 0.

Its polar form is 2(605(_%)+iSi”(_%)j.

Also, |z | =2, arg z = GI—%.
(7) Letz = 1. Here z=x + i0 and x > 0. So Its polar form is 1(cosO + isin0).

Also, |z | =1, arg z =0 = 0.
(8) Letz=2i. Here z=0 + iy and y > 0. So its polar form is 2(COS%+iSin%).

Also,|z|=2,argz=e=%.

Exercise 2.2

1. Find the absolute value and the principal argument of the following complex numbers :

] <N\ 2 . .
M Gor @ (%) Gy 3 —i (&) LB g 553

1

2. If z =3 + 2i, then verify the following :

M [z[=1z2] @ —Jz[SRex=<]z] (3)Z—I=é7

3. Ifz =3+ 2iand z, = 2 — i, then verify the following :

Ha+z =5+% Qa-2-5-5 Gaa-15 @(F) -2
4. If z is a non-zero complex number, show that (z7!) = (Z)"L.
Lo 1t ) ) _
5. 1If (a + ib)” = 77, show that a° + b~ = 1.
6. If z; and z, are two complex numbers such that | z; | = | z, |, then is it necessary that

z; = z, ? Justify your answer.
. z-1
7. A complex number z = a + ib is such that arg (m) = %. Show that a® + b% — 2b = 1.

8. Find the maximum value of | 1 +z+ 22+ 23 |,ifz€ Cand | z | < 3.

9. (1) Ifz=a+iband 2|z— 1| =]|z— 2], prove that 3(a* + b?) = 4a.
(2) If z € C such that |2z — 3| =3z — 2|, prove that | z | = 1.
(3) Ifze€ Csuchthat |2z —1|=|z— 2|, prove that | z | = 1.

10. Show that complex number —3 + 2i is closer to the origin than 1 + 4i.

11. Represent the points —2 + 3i, —2 — i and 4 — i in the Argand diagram and prove that they are vertices
of a right angled triangle.

12. Find the complex number z whose modulus is 4 and argument is STTC.

13. If (I — 5i)zy — 2z, = 3 — 7i, find z; and z,, where z; and z, are conjugate complex numbers.
14. If (a + ib)?> = x + iy prove that x2 + )2 = (& + b?)%.

(1+10)?
2—1i

15. If = x + iy, then find the value of x + y.

*k
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2.8 Square Roots of a Complex Number

If (@ + ib)*> = z = x + iy, we say that a + ib is a square root of z.
Let z = x + iy and let a square root of z be the complex number a + ib, if it exists.
x + iy = (a + ib)?
x + iy = (@® — b?) + (Qab)i
a*> — b?> = x and 2ab = y (i)

Now, @ + B2 = J(a? b2 +4a%? = x> +)> = 7] (by (i) (i)

From (i) and (ii) we get 2a> = |z | + x ie. a = i" |z|-2|-x and b = idlzl;x

If y > 0, then a and b both positive or both negative as y = 2ab.

) iZl+x . [lz—Xx
Therefore, the square roots of x + iy are i(‘/ 5 +l‘/ 5 ]

If y < 0, then out of g and b, one is positive and another is negative.

. lzZl+x . [lzl—x
Therefore, the square roots of x + iy are i‘(‘/ 5 —lJ ) ]

Now, we have proved that every complex number has two square roots.

Example 11 : Find the square roots of (1) J3—i (2) 7 + 24i

Solution : (1) Let z = J3 — i Here x = \/g,y=—1 <0

|Z|:Jx2+y2:\/m:2

. . lzl+x lzl=x
We know that if y < 0, then the square roots of x + iy are i(‘/ 5 _l‘/ 3 ]

2+J3 . [2-43
Hence the square roots of +/3 — i are * 7 ! 7 |

2
Now 2 + 43 = 4+22J§ _ (ﬁ;l)

J§+1_.J§—1]’ i3 =2

The square roots of z = J3 —iare i( ) )

(2) Letz=7+24i Here x=7,y=24> 0

|z | = \/x2+y2 = J491576 =25

. lzl+x . [lzl—X
We know that if y > 0, then the square roots of x + iy are £ 5t 3 .

25+7 . [25-7
Hence the square roots of 7 + 24i are i(\/ 5 +l\/ 5 ] = X(4 + 3i).

Example 12 : Find the square roots of (1) 1 (2) =1 (3)i (4) —i

(1) Letz=1
| z | = 1. Let the square roots of z be a + ib.
(a + ib)> =1

A —=b2+2abi=1=1+0i
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a*> — b?> =1, 2ab = 0. From 2ab = 0 we have a = 0 or b = 0.
From a = 0, we have —h% = 1 which is not possible as » € R. So a # 0.
2ab = 0 gives b = 0

a? =1
a==*1
a—+ib ==l

Square roots of 1 are *1.
Note : In R, we know square roots of 1 are %1.
(2) Let z = —1. Let the square root of z be a + ib.
(a + ib)? = —1
@ — b + 2abi = —1
a* —b?=~1,2ab =0
2ab = 0 gives a=0or b =0
But b = 0 gives a® = —1 which is not possible as @ € R. So b # 0.
a=0and b2 =1

b ==l
Square roots of —1 are +i. (as we expected since 2 = —1)
Remember 2 = —1.

Similarly the square roots of —4 are 2i,
the square roots of —3 are +J/3i.

(3) Let z = a + ib be a square root of 7.

(a + ib)? =i

@ — b + 2iab =i

a* — b* =0 and 2ab = 1

a=b or a=—b

But a = —b gives —2a® = 1 using 2ab = 1.

This is not possible.

a=>band 24> = 1

a= iﬁ. Since a = b we have b = iﬁ.
. 1 i
+ = +-L
Square roots of i are _( 5 JEJ
(4) Let z = —i. From (3) above a? — b% = 0, 2ab = —1
a=b or a=—-b

If a = b, then 2a% = —1 which is not possible.
a=—b and 24* = 1

L ,__L - L, __L
a—ﬁ,b— ﬁanda ﬁ’b ﬁ

+)

The square roots of —i are i(

St
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2.9 Quadratic Equations having Complex Roots

We have studied quadratic equations and solved them in the set of real numbers when the
value of discriminant is non-negative. i.e. when D = 0. Now we can answer the unanswered
question, ‘What happens when D < 0 ?°

Now let us try to solve quadratic equation ax> + bx + ¢ = 0, a b c € R, a # 0,
where D = b% — 4ac < 0.

ax? +bx+c = i (a*x* + abx + ac)

:i [(ax+%)2 +ac—%}
1 {(mg)iw}
If ax? + bx + ¢ = 0, then (ax+%)2 = w.

Now, b% — 4ac < 0
2 . +"/ _p2
Square root of ax + % = Square root of b 44ac that is —.¥ 4“; b

+"/ —b>
ax+%=_l 4ac—b

2

. 2
y = “btifdac—p® (a # 0)

2a
-btiv-D
2a ’

If D < 0, roots of ax? + bx + ¢ = 0 are

Fundamental Theorem of Algebra :
Every polynomial equation having complex coefficients and degree = 1 has at least one
complex root.

Example13:Solve(l)x2+3=0(2)2x2+x+1=0(3)s/§x2—ﬁx+3s/_=0
Solution :
(D) ¥>+3=0
oxr=-3
soox =130
(2) Here,a=2,b=1,c=1
P2—dac=1—4.2-1=-7<0

—1+J7i
4

Therefore, the solutions are given by x = b _zla D

3) Here,a=s/§,b=—ﬁ,c=3s/§

P2—dac=2—4J3 .33 =2-36=-34<0
—b+iJ-D _ V2Eiv3  1£J17
2a 3 Ve

Therefore, the solutions are given by x =
2.10 Cube Roots of Unity
Let z be a cube roots of unity.
Then, z3 = 1
B —1=0
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- DE+z+1)=0

z=lorz2+z+1=0

=, ZLESE @=1,b=1,¢=1,D = —3)

2
14430 —1—43i

Hence, the cube roots of unity are 1, 5 5

Properties of Cube Roots of Unity :

(1) Each of the two non-real cube roots of unity is the square of each other.

N2
_ i —1+4J3 _1_ i
Let = “;'/5 . Then ®? =( 2‘/7] =l -2/3i+3%) =2 2‘/5’

Also, (0?2 = ®* = W3® = ®. Hence cube roots of unity are 1, ©®, M.
(2) We observe that sum of the cube roots of unity is 0. i.e. 1 + ® + ®? =0
(3) It can easily verify that product of cube roots of unity is 1.i.e. 1- - ®? =@ =1

—1+J3i —1-3i
2 2

(4) Representing 1, in the Argand plane as A, B, C respectively then A is

3 3
(1, 0), B is (—%éj and C is (—5—%). Note that AB = BC = AC = /3. Thus A, B,

C are the vertices of an equilateral triangle. (Figure 2.7)

Y

F

B\.\

A

/

Figure 2.7

Exercise 2.3

1. Solve:
MHx2+2=0 Q)2 +x+1=0 A V5x2+x+J5=0

1
WP +x+ 3 =0 OF+F+1=0 (O3 —dx+Z=0

2. Find the square roots of :
(44430 Q)5-12i (3)—48+ 14i (4)3 —44J10i

(5)%+l.%+l%+i%+i%+i% 6) 4 (7) —16i (8) =25 (9) —10

3.  When do we have | z; + z, | = |z, | + | z,| ? Prove your contention.
4. Prove that in the Argand plane if P represents z and Q represents iz, then OP = OQ and
mZPOQ = % State geometrical meaning.

5. Prove points representing z, iz, —z and —iz in Argand plane form a square.

6. What is the relation between representation of z and 7z in the Argand plane ?
*
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Miscellaneous Problems :

Example 14 : Find all the complex numbers z satisfying the condition 7 = z=.

z

Example 15 : Find real 0 such that

2

Solution : Let z = x + iy be such that 7 = z2.

x — iy = (x2 — %) + i(2x)
By definition of equality of complex numbers, we have x = x2 — % and —y = 2xy.
From the second result we have either y = 0 or x = —%.

Assume first y = 0. Then from x = x2 — 32, we have x = x2

x=0orx=1 =20

So in this case z=0 orz = 1

: __1 1 _ 1 —
Now, if x = —=, then _7_7_y2 (x = x2 —p?
- +3
YT
So in the second case z = —% + iﬁ orz=—% — iﬁ
2 2 2
Consequently, there are four complex numbers 0, 1, —% + i@, —% - i@ satisfying the equation
2

=z

3+ 2isin0 |

T 250 1S real. Also find the number.

. 0 3+2isin® 3 +2isin® 1+ 2isin®
Solution : We have, 77778 = 72510 X T+ 2ism0

3+ 6isin® + 2isin® + 4i’sin’0
1+ 45in’0

3—4sin’0 8sin®
| +45in?0 T 1+ 45in%0

If the given complex number is real, its imaginary part is zero.

8sin®
Therefore, |+ 4sin?0 — 0
sin® =0
O =km ke Z

. . 3+0
This number is 0 =3

Exercise 2

. 25 3—4i
Reduce : (1) [118 +(%) } 2) (1—141' - lii) ( 5+l~l) to the standard form.

. 1+i 11—
Find the modulus of = " I

For any two complex numbers z; and z,, prove that Re(z,z,) = Re(z|)Re(z,) — Im(z|)Im(z,).

44
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10.
11.
12.

13.

14.

15.
16.

17.

18.

19.
20.
21.

Find the value of Re(f(z)) and Im(f (2)) for f (z) = ﬁ at z =7 + 2i.

Show that the point set of the equation | z— 1| =]z + i | represents a line through the origin whose
slope is —1.
Prove that | 2Z + 5)(W2 — i) | = V3] 22+ 5 |.

_Zl
1_

If z; and z, are distinct complex numbers with | z, | = 1, then find the value of

1 1
If o+P T a+ib — L where O, B, @ and b real, express b in terms of o and 3.

If (x + iv)® = a + ib, prove that % + % = 4(x2 — y2).

Solve : (1)x2—2x+%=0 2)27x2—10x+1=0 (3)21x2—28x+ 10=0
Ifze€ Cand|z| <2, find the maximum and minimum values of | z — 3 |.

For z = 3 — 2i show that z2 — 6z + 13 = 0. Hence obtain the value of z* — 423 + 622 — 4z + 17.

If (H_l) = 1, then find the least positive integral value of m.

5 5 , a+b’
If &0 —iy)” = 7 d prove that (x2 + y?)? = = Z1d

Find the value of z which satisfies the equation | z | —z =1 + 2i.

If the complex numbers z, z,, z3 represent the vertices of an equilateral triangle such that

| zy | =12z | = z3 |, then show that z; + z, + z; = 0.

Show that the area of the triangle in the Argand diagram formed by the complex numbers z, iz and
N |

z+121si|z|2.

Z,showthat|w|— 1 = z is real.

1-1
Ifz=x+iyand w= P

If z = =5 + 4i, show that z* + 923 + 3522 — z + 164 = 0.
If z=x+ iy, prove that | x | + | vy | < J2]| z |.

Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the
right so that the statement becomes correct :

(1) Solution of |z — 4| <|z—2]is given by ... ]
(a) Re(z) > 0 (b) Re(z) < 0 (c) Re(z) > 3 (d) Re(z) > 2

(2) If|z—=1[2=]z >+ 1, then z lies on......in the Argand diagram. ]
(@ x2+yr=1 (b) the imaginary axis
(c) the real axis d2x+3=0

(3) If | z+ 4| < 3, then the maximum value of | z + 1 | is ... ]
(a) 6 (b) 0 (c) 4 (d) 10

(4) The conjugate of a complex number is ﬁ Then that complex number is ... ]
@) 745 ® 7= © 747 A 757

G) "+t 4t 4+ 3 s equal to ... [ ]
(a) 1 (b) —1 (c) 0 (d) "
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3+40 .,

(6) The multiplicative inverse of == is ... [ ]
8 31 8 31 - 8 31 - 8 31 -

(a) _E + El (b) 75 - gl (C) _f - fl (d) 25 + El

@) Ifx+iy=Zt;:,thenx2+y2= ........ ]
(a) 1 (b) =1 (© 0 (d) 2

(8) The smallest positive integer n for which (1 + 72" = (1 — i)*" is ... ]
(a) 4 (b) 8 (c) 2 (d) 12

1+2i

(9) On the Argand plane the complex number 1_; lies in the ...... quadrant. ]
(a) first (b) second (¢) third (d) fourth

(10) arg(—1) = ... ]
@ 0 (b) T ©Z (d) -7

(11)The complex numbers sinx + icos2x and cosx — isin2x are conjugate of each other, for... [ ]
(@ x =km, ke Z ®)x=0
() x = (k+%)ﬂ:, ke Z (d) no value of x

(12)If a complex number lies in the third quadrant, then its conjugate lies in the ...... quadrant. [__|
(a) first (b) second (¢) third (d) fourth

(13)The complex number with modulus 2 and argument ZTTE is ... ]

@) —1 + i3 b) =1 — V3 (© -4+ 18 @ 4 -3

(14)Argument of 1 — i3 is... ]
@ & (b) ZF © —% d) -
(15)If the cube roots of unity are 1, ®, ®?, then 1 + ® + ®? = ...... ]
(@) 1 (b) 0 (c) —1 (d) ®
*
Summary

We studied following points in this chapter :

1.

A number of the form a + ib, where a and b are real numbers, is called a complex number

where 2 = —1.

Let z; = a + ib and z, = ¢ + id be any two complex numbers.
zytzy=(@+ o) +ib+d), zz, = (ac — bd) + i(ad + bc)
(a + ib)a — ib) = a* + b?

1

Multiplicative inverse of a non-zero complex number z = a + ib is Z 1=-_—4 =i

- + .
at+b>  a’+b?

:Z_

Ak+3 — _;

i4k=1,i4k+1=i, '4k+2=_1,l = —

1

46

MATHEMATICS-2



6. For complex number z = a + bi, its complex conjugate is z = a — bi.
7. Modulus of a complex number z = a + ib is | z | = ‘/az +b2.

8. The complex number x + iy which corresponds to the ordered pair (x, y) can be represented

geometrically as the unique point P(x, y) in the XY-plane and vice-versa.

lzl+x . [lzl—X

(\/ 2 +’\/ 7 ],y>0
lzlI+x . [Jlzl—x

i(\/ 2 _l\/ 2 ],y<0

_1+,/§1’ o2 = —1—2J§z

I+

9. Square roots of x + iy are

10. The cube roots of unity are 1, ® =

, 2.
11. If %2 — 4ac < 0, the solutions of ax? + bx + ¢ =0 where g, b, c € R, a # 0 are w.
a

— ‘ —
e

Brahmagupta was the first to use zero as a number. He gave rules to compute with zero.
Negative numbers did not appear in Brahmaphuta siddhanta but in the Nine Chapters on the
Mathematical Art (Jiu zhang suan-shu) around 200 BC. Brahmagupta's most famous work is his
Brahmasphutasiddhanta.

Brahmagupta gave the solution of the general linear equation in chapter eighteen of
Brahmasphutasiddhanta.

The difference between rupas, when inverted and divided by the difference of the unknowns,
is the unknown in the equation. The rupas are [subtracted on the side] below that from which
the square and the unknown are to be subtracted which is a solution equivalent to x = %,
where rupas represents constants. He further gave two equivalent solutions to the general quadratic
equation.

Diminish by the middle [number] the square root of the rupas multiplied by four times the
square and increased by the square of the middle; divide the remainder by twice the square. the
middle.

Whatever is the square root of the rupas multiplied by the square [and] increased by
the square of half the unknown, diminish that by half the unknown [and] divide [the remainder]
by its square. [The result is] the unknown which are, respectively, solutions equivalent to,

_ \/4ac+b2 -b ‘

2a

Brahmagupta then goes on to give the sum of the squares and cubes of the first # integers.

The sum of the squares is that [sum] multiplied by twice the [number of] step[s] increased
by one [and] divided by three. The sum of the cubes is the square of that [sum] Piles of these with
identical balls [can also be computed].

It is important to note here Brahmagupta found the result in terms of the sum of the first
n integers.

He gives the sum of the squares of the first » natural numbers as n(n + 1)(2n + 1)/6 and

nmn + 1)\
-~ .

the sum of the cubes of the first » natural numbers as (
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Chapter 3

BINOMIAL THEOREM J

The laws of nature are but the mathematical thoughts of God.
— Euclid

%

I like mathematics because it is not human and has nothing particular to do with this planet
or with the whole accidental universe, because like Spinoza’s God, it won’t love us in return.

— Bertrand Russell
%

If there is God, he is a great mathematician.
— Paul Dirac

3.1 Introduction
In earlier classes, we have learnt about expansions like,
@+bl=a+b
(@ + b)? = a* + 2ab + b?
(a + b)Y = & + 3a®b + 3ab*> + b3 and even (a + b)* as a product of
(a + b)? with (a + b)
ie. (a+ b)* = a* + 4a3b + 64%b% + 4ab’ + b*.

However, the expansions of (a + b)°, (a + b)°, ... become difficult by using multiplication.

It is believed that in the eleventh century, Persian poet and mathematician Omar Khayyam gave
the general formula for (a + b)", where n is a positive integer. This formula or expansion is called
the Binomial Theorem.

Euclid (Fourth B.C.) a Greek mathematician gave a specific example of Binomial Expansion
for n = 2. An Indian mathematician Pingla (Third Century B.C.) had given the idea about the higher
order expansions. In the tenth century an Indian mathematician Halayadha was aware of general
binomial theorem and Pascal's Triangle. Persian mathematician Al-Karaji and in 13th century Chinese
mathematician Yang hui have also obtained such results.

The coefficients of the consecutive terms in the expansion of (a + b)", for n = 1, 2, 3, ... can also

be obtained from a row from triangular arrangement of numbers, known as Pascal's Triangle
named after French mathematician Blaise Pascal (1623-1662).
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Index Coefficients

: /\V\
| AN
4 N N N N

In Pascal's Triangle first and last element of any row is 1, while the other elements are obtained
by adding the numbers of the upper row which are at the beginning of the arrows.

Pascal's Triangle : The first row is 1 1

ie. (o) ()

The second row is 1 2 |

Here the first and last entry is 1 and the middle term is obtained as sum of the two terms of st

((rrl) + (rril) - (n;rl))

Similarly, the third row is 1 3 3 1, the first and last term is 1, the second term is obtained as

the sum of 1st and 2nd term of 2nd row i.e. 1 +2 =3 as (S) =+ (?) = G) and 3rd term is obtained as

row, because ((l)) + G) = (%)

the sum of 2nd and 3rd terms of 2nd row i.e. 2 + 1 = 3 as (?) + (%) = (g)

In the same manner, let us check 5th row in the light of above discussion.

4th row : 1 4 6 4 1
L () G G ()
the 5th row : 1 (1+4 4 +0) (6 +4) @4+1) 1
1 5 10 10 5 1

- (3)
(1) + ()= 00)
=5

) the Pascal's triangle

Here. (o) + (1) = (): (1) + (3) = (3): &) + (3) = B): (5) + ()

n!

GICEDL 0 <r < n, and also (g) =

By using the formula (’Z) =

can be written as,
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Index Coefficients

Observing above array, we can write the coefficients of the terms in the expansion of (a + b)", for

any index n, without writing the earlier rows. For example, for index 7,

we have the coefficients of the terms as ((7)), (Z), (;), (;), (Z), (Z), (g), (;)

Now, we are in a position to write the binomial expansion of (a + b)" for any positive integral

value of n.

3.2 Binomial Theorem

@+by={g)a+(T)a=1b+(5)a =202+t (F)ar =m0 .4 (0)p" ne N

We shall prove this theorem using the principle of mathematical induction.

Let, P(n) : (a+ by = (§)a + (V)@= 1o+ (5)an =262 +.4 (F)ar =707 +.+ (3) b ne N
Let n = 1

LHS. =@+ bd'=a+b

R.HS. = ((l))al + (})al “Lb=a+b

. P(1) is true.
Let P(k) be true.

@ b= (D N1+ Bk 202 4
+ (rlfl)ak = Dopr- 1y (,]f)ak I L+ (ﬁ)bk
Now, (a + b " 1= (a + b)(a + b)
=@+ b[(o)a + (V) 1b + (§)ak - 252 +
+ (r]fl)ak =Dy -l g (lﬁ)ak RV (llﬁ)bk]

On multiplying both the factors and rearranging the terms, we get,

(a+b)k+1—( ak+1+[ ]"b+[ )]ak—l-b2+

+[ r_1) +(1§)]ak—<’—1)-b’+ ...+(’,§)bk+1

50
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Now, we know that; (g) =1= (Z) and (’;) + (r’fl) = (n:l), 1<r<n
R T L PUE IS (KT Natk+ D =242 4 .

k+1 1
+( N ]a(k+ 1)—”-b”+...+(lgil)b/€+1

s Pk + 1) is true.
.. By the principle of mathematical induction, P(n) is true, Vn € N.

Some Corollaries :

(1) Substituting a = 1, b = x in the binomial expansion of (a + bY’, we have,
A+ =(g)+(Dxr+ G)2+ et (B +.+ (3 Vne N

(2) Replacing b by —b, we obtain
@by =(glar = (N)ar=1b + (5)ar =282 = (3)ar =303 + ..+

y- (e =y 4o+ ()
(3) Taking x =1 in (1), we get

2= () + () + (8) 4t () 4t ()

)+ )+ () + et () et () =2

(4) Substituting x = —1 in (1), we have
()= (1) + () - () + i 0

Also, 2= (5) + (1) + (5) + (3) +.. + () (ii)

~. Adding respective terms of (i) and (ii), we have,
2 =of() + (3) + () + -]
)+ (1) + () 4ot i

) +G) +. = (5)+(5) +.=2n-1 (From (i) and (iii)) (iv)
Note : From the expansion of (a + b)", we observe the following points :

(1) There are (n + 1) terms in the expansion.

(2) The index of ‘@’ in the first term is # and the index of ‘@’ decreases by 1 in the successive
terms and simultaneously the index of b is zero in the first term and the index of b increases by 1 in the
successive terms.

(3) Degree of each term (i.e. the sum of indices of a and b) is n, the index of (a + b).
n
(n)
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(4) The coefficients of the terms in order are (g), (’11), (’21),




(5) As we know that, (’Z) = (,,’fr), so the co-efficients of terms in the expansion are

symmetrically situated successively from left or right i.e. (g) = (Z), (’11) = (nli 1); (g) = (nr_lz),

4
Example 2 : Expand : (2x—1+%) ,x#0
Solution : Taking @ = 2x, b =1 — %, n =4 in the corollary (2).
4 4
—1+4) = —(1=4L
(2x-1+1) [2x (1 x)}

= (3ot = (el -3) + G -2 - (a4 + (-4

1y, 43 2,1 4-3-2 3,3 1
= 1ot — 4@ -7) + 13 (4x2)(1_?+7j -frreo(i-drEok)

[0 - () + (G - (O + @)

14
= 16x* — 320 + 56x2 — 56x + 49 — 2 + 5 —

Example 3 : Evaluate (0.99)° using binomial theorem.

Solution :

(0.99)5 = (1 — 0.01)°

=(3) = (on + (3)©012 = (3015 + (3)0.00* —(2) 0.01y

=1 —5(0.01) + 10(0.0001) — 10(0.000001) + 5(0.00000001) — (0.0000000001)
=0.9509900499
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Example 4 : Which is smaller ? (1.1)190000 5 100000

3.3

Solution : (1.1)190000 = (7 4 (.1)100000

= (100800) + (100000) (0.1) + Sum of some positive terms

=1+ 10000 + Sum of positive terms
> 10000
10000 is smaller out of (1-1)10000 and 10000.

Excercise 3.1

Expand the following :
(0 (+? +—) x£0) Q-2 BG)GBx—2° & (x—ﬁ)s, (x # 0)

Expand : (1) (1 +x +x9)* 2) (1 — x + x2)3
Evaluate by using binomial theorem :
(1) (0.98)*  (2) 99 (3) (101)°
Using binomial theorem, indicate which one is larger ? (1.01)19000 or 100
*
General and Middle Term
The expansion of (a + b)" contains (n + 1) terms. If we consider T{, T,, T, ..., T, 4

as the first, second, third, ... (# + 1)th terms respectively in the expansion of (a + b)", then
T, = (§)a Ty = (T~ Vo, 1y = (S)an 202 T, = (h)on.

We may take the general term as T, , | = (’:)a” Y, 0<r<n

If in (a + b)"; n is even, then n + 1 is odd. So the middle term is (%+ l)th term.

th +2\th ) .
So (%+ 1) term = (nT) term is the middle term.

10+

For example, in the expansion of (2x + )!0, the middle term is = 6th term. If » is odd,

then » + 1 is even, so there are two middle terms : ( ) term and ( ) term.

term.

For example, in the expansion of (2x + y)°, the middle terms are 9 = 5th term and 2 = 6th
Example 5 : Find the fourth term in the expansion of (3x — y).

Solution : Here, a =3x, b =—y, n =7

Now, T, , | = (’;)a” Y

To find T4, we let r = 3 r+1=4
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7 B s 7:6°5
Ty=T34 = (3)(3x)7 S = T 6L
= —2835x%3

16
Example 6 : Find the coefficient of x~2 in the expansion of (x —%) , (x#0)

Solution : Here, a = x, b = —%, n=16

foy - (e

-
16 _ 1 16 _ 2.
— (I’)(x)l6 r_(_?) — (r)(_l)r_xl6 37

For the index of x to be —2, we must have 16 — 3r = =2 i.e. r = 6.

16 -
T, = (6)(_1)6,x16 3(6)

Coefficient of x72 is (166 ) or 8008.

11
Example 7 : Find the constant term in the expansion of (Zx2 —é) , if it exists. (x #0)

Solution : Suppose the constant term (i.e. term in which index of x is zero) exists and it is
(r + Dyth term.

Here, a = 2x2, b = —%, n=11

0oy = (e

_ (lrl)(zxZ)ll - r.(_é)r — (1’})(2)11 -r, (_1)r.x22 - 3r

For the constant term, index of x is zero.
22-3r=0
r=2¢N
Our assumption is wrong.
Constant term does not exist in the expansion.
Example 8 : Find the middle term / terms in the expansion of (%+3 y) .

Solution : As n = 9 is odd, so we have two middle terms namely,

n;l =241 = 5th term and n—2'—3 = 9—;3 = 6th term

Here,a=%,b=3y,n=9
n _
Tr+ L = (r)an ropr

B (9 9-4 4 _ 98760 4y _ 5103 5.4
T5—T4+1—(4)-(§) C G = T (7 JBDY) = g Xy
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And T, = (g).(g)""s. Gy) r+1=6)

9:8:76-5( x4
e TR
Middle terms are % xy* and _15%09 xhA.
12
Example 9 : Obtain the term independent of x in the expansion of (‘/% +‘,ﬁ] . x>0
12 12-r r
Solution : Here, T, , = (r)(\/%] ( %j
_ (12 e 1 6L _
= () T Xy e

6 — 3L

_ (12 1 -1
- (r) T Ny R
For the term independent of x, we let 6 — 3—; =0

r=4

12) 1 1 12-11-10-9 1 55
(ﬁ)4 (ﬁ)4 - 1-2-3-4 36 4

T5:(4

Exercise 3.2

15
1. Find the coefficient of : (1) x® in (x +2)? (2) x3% in (x“ —%) , (x #0)

2. Find the constant term in the expansion of :

10 9
(1) (%+£] w>0 @) a0

x 3

n
3. The coefficients of x” and x3 in the expansion of (2 +%) are equal, find ».

4. Find the middle term or terms in the expansion of :
3/ 8 2120
(1) (2—"7j O (5+3) O (-] a0 @+
5. If the coefficient of x3 in the expansion of (1 + x)” is 20, find .

6. If the coefficients of fifth, sixth and seventh terms in the expansion of (1 + x)” are

in arithmetic progression, find ».

Miscellaneous Problems :
Example 10 : Find the coefficient of x> in the expansion of the product (I — x)!° - (1 + 3x)*%.

Solution : Applying binomial theorem to get (1 — x)! and (1 + 3x)*, we have
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(1 - x)15 = (105) — (lls)x + (125)x2 — (135)x3 + .- (g)xls and
(1 + 304 = Gx + 1 = (5)30* + (e + (5)602 + (3en + (3) 1

Now, we want to find the coefficient of x3 in the product (I — x)1° - (I + 3x)* we shall

simply collect the terms containing x> from the product, without finding complete product.

They are, () - (1)@7) — (D)~ (3)o + (5)x2- (3)an = (5)e-(§)

4.3 15-14
=1:4:273 — 15-x-— -9x% + x2-4.3x—

15-14-13 4
1-2 1-2 1-2-3

x° -1

= (108 — 810 + 1260 — 455)x3 = 103x3
Coefficient of x3 in (1 — x)!15 - (1 + 3x)* is 103.

10
Example 11 : If the middle term in the expansion of (%Jr 3) is 8064, find x.

Solution : Here n = 10

n+2 10+2

n is even, so middle term is — = — = 6th term
10-5
_ 10y (x
Te=Ts 4y (5)(?) 3y
10:9:8:7:6 45 5
8064 = 753773 -3—5-3
8064 _ .5
252
X =32=2
x=2

Example 12 : Prove that (3 + \/§)5 + 3 - J§)5 = 6726. Hence deduce that,
6725 < (3 + J8)3 < 6726. Hence obtain [(3 + +/8)°].

Solution = 3 + ¥8)° = ()37 + (7)) + (3)Br(EY + (3)32(/8)’
+ (e + )W 0
G- ¥8) = ()3’ - (1)3*B) + 3)3rPB? - (3)32(B)?

+ () - BBy
Adding (i) and (ii), we have

G+ V8 + G- VB =2(5)3 + (3)3PWE)2 + (3)3)/B)]

=2[1.243+%-27-8+ 5-3-64] ((2)=(?))

= 2[243 + 2160 + 960]
= 2[3363]
= 6726
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Now, 3 + v/8)3 — ¥/8) =9 —8=1and (3 + +/8) > 0. Hence 3 — /8 > 0.
Also 3 + J8)> 1

3-8 <1

0<3—48<1

0<B -8y <1

CG+Y <B+V8)Y +3 -8 =6726<(3+ V3 +1

G+ J8)° < 6726 and 6726 < (3 + J/8)° + 1

6725 < (3 + J8)° < 6726

According to definition of integer part, [(3 + J8 )] = 6725

Example 13 : The sum of the coefficients of powers of x in the first three terms in the expansion

n
of (x*=2) (x # 0) is 127, find n. (2 € N)

Solution : In the expansion of (x2 —%)n, the first three terms are (g)(xz)”, (7)()62)” - L (_72) and

—971\2
(g)(xz)” - 2(72) . As the sum of the coefficients of these terms is 127, we have,

(3) - Qe+ (4= 10

4n(n —1)

1 —2n+ =127

1 —2n+ 2n(n—1) =127
1 —2n+ 20> —2n—127=0
202 —4n — 126 =0
n—2n—63=0
m—=—9n+7=0
n=9orn=-7 But—7¢ N
n=9
Example 14 : Use the binomial theorem to show that dividing 8” — 7n by 49 leaves the remainder 1.

Solution : 8" = (1 + 7)"

t+(N1+ )2+ (5)B+ .+ ()7

L+ 7n+ 2[(5) + (3)7+ .+ ()7 7]

81— 7n =1+ 49m, where m = [(5) + (3)7 + ..+ (})7 2] e N

Dividing 8" — 7n by 49 leaves the remainder 1.
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Example 15 : Prove that : (3)2 + (’11)2 + (’21)2 +..+ (2)2 = an! Vne N

(n ’)2 )
. . 2n)! 2n)! 2n
Solution : [Motlvatlon : See the R.H.S. = ahnh = n—ml = (n ),

which is the coefficient of x7 in the expansion of (1 + x)2”.]

(I+x2 =1 +x"(x+ 1)
= [(’3) + (’f)x + (’é‘)x2 +..+ (n’ll)x” -l4 (Z)x”] X
[(B)er+ (T =t (B =2+ (2 e+ ()]

Now coefficient of ¥ in the expansion of (I + x)*" is (2,;1 ) and

coefficient of x” in R.H.S. = (8)2 + (’11)2 + ..+ (2)2 (Taking product term wise)

(A + G (3 4 (= (2]

_em! o en!
T alnl T )2
Example 16 : Prove that : (rol)(rf) + (’f)(g) + (’21)(2) + ...+ (nril)(Z) = #’3}_’_1),, Vne N
@2n)!

Solution : [Motivation : See R.H.S. = = (nzfl). It is the coefficient of

Run—m—-0n'n—1n!

1

x" = 1 in the expansion of (1 + x)zn.]

(1+x)2 =1 +x)"x+ 1)
= [(’5) + (’f)x + (’é‘)x2 +.+ (n’ll)x” -4 (Z)x”] X
(6 + (T =+ (B =2+ (B =3+ o+ ()]

Now coefficient of x” = ! in (1 + x)*" is (n2111) and

the coefficient of ¥ = 1 in RH.S. is (§)(7) + (1)(5) + (3)(3) + -+ (,"1)(%)

B0+ () +ot (200 = (2 = G
Example 17 : Prove that : () +3(}) +5(3) + ..+ @n+ D(}) = (n + 127, Vn € N
Solution : Let (§) +3(7) +5(5) +.+ @ = D(,%)) + @n+ D(}) = G)
Using (%) = (,” ) and taking terms in the reverse order, we have

en+ D(5) +@n=D(1) +@n=3(3) +.+5(,"5) +3(,%) + () =5 (i)

Adding corresponding terms of (i) and (ii), we have

o+ en+ g+ e+ en— 1))+ +en-30) + .+

@n =3 +35(,",) + @ =1 +3(," )+ @+ D+ n(h) =25
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Qn + 2)[(’3) + (’f) + (’;) o+ (Z)] =28
2n + 1)-2" =28
S =(n+ 12"

So, (§) +3(1) +5(5) + .ot @+ D(}) = (n + 12

Example 18 : If in the expansion of (x — 2y)", the sum of fifth and sixth term is zero then find the

value of % If n» = 8 then find %

n

Solution : Here, T5 = (’Z) -x" ~ 4. (=2y)* and T = (5) <X T (=2y)

Now, Ts + Tg = 0. So, Ty = =T

(2).(_2)4,xn—4,y4 =_(’;).(_2)5.xn—5.y5

n! _ n! B
M=ot 160"~ 4yt = =575, =57+ (32) -0 7 27
X"yt n! 4(n—4)!

= : 32
5y T Sslm=5)! X T Al X g
x  Hm-Hn-5!
y 5-4l(n —5)!
X _n—4
y =3 X 2
Taking n = 8, we have

<=

=§
5

Example 19 : Obtain the sum of the last thirty coefficients in the expansion of (1 + x)*°.

Solution : There are 60 terms in the expansion of (1 + x)%.

i.e.

Sum of the coefficients of last thirty terms is,

s=(30) + (1) +(3) ++ (%) + (3) (first 30 coefficients (). (7). .(39)) @
S=(3)+ () + () 4+ (7) (D) (using (2) = (,",)) G
28 = (509) + (519) + ..+ (gg) (adding respective sides of (i) and (ii))
S=27 =2%

Exercise 3

1. Obtain the ratio of the coefficients of x? in the expansion of (I + x)*" and (1 + x)2" — 1.

2. If the coefficients of (+ — 2)th and (2 — 5)th terms in the expansion of (1 + x)3¢ are equal,
find 7.

3. Find x, y and » in the expansion of (x + y)", if the first three terms in the expansion are 64, 960
and 6000.

4. The 2nd, 3rd and 4th terms in the expansion of (a + b)" are 240, 720 and 1080, find @, » and n.
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10.

11.

Prove that 2 + +/3)7 4+ (2 — /3)7 = 10084.

Hence deduce that, 10083 < (2 + ﬁ)7 < 10084.

Find n, if the ratio of the fourth term to the fourth term from the end in the expansion of
5 LY

(ﬁ +fj is6: 1.

Find the coefficient of x* in the expansion of (1 — x)12- (1 + 2x)°.

n
The sum of the coefficients of the first three terms in the expansion of (x2 —%) (x #0) is 376,
find the coefficient of x8.

Using the binomial theorem, show that 32 — 8n — 1 is divisible by 64, for n € N.
Prove the following identities : (Vn € N)
M (§)+2(1) +305) + et @+ D(}) =@+ 2201

@ (§)+(1) +1(5) + .+ 75

Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the

n 2I’l-l-l_1
(n) BTES

right so that the statement becomes correct :

(1) If the coefficients of 5th and 19th terms in the expansion of (1 + x)" are equal, then

n= ... ]
(a) 18 (b) 24 () 22 () 20

(2) If the coefficients of (# — 6)th and (27 — 2)th terms in the expansion of (1 + x)°2 are equal,
then » = ...... ]
(a) —2 (b) 14 () 34 () 20

(3) The coefficient of x2! in the expansion of (x + x%)20 is ...... ]

20 20 20 20

@ (7) ) (7)) © (%) @ (79)

(4) The number of terms in the expansion of (2x + 3y + 4z)° of type x9.)? .z is ...... ]
(a) 10 (b) 15 (©) 21 () 42

G)IFC+BYH+02 - =x+pJ/3, theny= ... [ ]
(a) 0 (b) 56 () 112 d) 97

(6) If T, _ is the middle term of (a + b)'°, then r = ...... ]
(a) 6 (b) 5 (c) 7 (d) 8

12

(7) Constant term in the expansion of (2)62 —%) , (x Z0)is ...... ]

(a) 7920 (b) 495 (c) —7920 (d) —495
—1 —1 —1

@ "I+ () =@ ]

(a) 2" (b) 27— 1 (c) 2" — 1 (d2r-1 -1

60
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1

8
(9) Middle term in the expansion of (2x +—) is ...... x#0) ]

ox
@ () ® (§)e © (3)(35) @ (3@
(10) Sum of the coefficients of x!3y2 and x2y!3 in the expansion of (x + y)!J is ....... ]
@ (5) ®) 2(13) © (5) @2(5)
.
Summary

We studied following points in this chapter :

1.

The Binomial Expansion for » € N is given by the binomial theorem as
@+by=(g)an+(T)a= 1o+ (5)a =202 +.4 (F)ar =700 +.4 () n e N

The coefficients of binomial theorem are arranged in an array, known as Pascal's Triangle.

The general term of the expansion (a + )" is T, , | = (’,?)an —rep

n+1

2\th .
j term, if n is even and (T)

. . . . +
The middle term in the expansion of (a+ b)" is (% + 1) or (n 5

n+3\th ) .
as well as terms are the middle terms, if » is odd.

2

— ‘ —
e

Brahmagupta's most famous result in geom-
etry is his formula for cyclic quadrilaterals. Given the
lengths of the sides of any cyclic quadrilateral,
Brahmagupta gave an approximate and an exact

Brahmagupta's formula \
/ \

formula for the figure's area.
C

The approximate area is the product of the halves of the sums of the opposite sides of
a quadrilateral. The accurate [area] is the square root the product of the half of the sum
of the sides diminished by [each] side of the quadrilateral.

So given the lengths p, ¢, » and s of sides of a cyclic quadrilateral, the approximate area

- tr ts . : +qg+r+ _
1S (p 2 )(q 2 ) while, letting 7 = L7G7T75 the exact area is

2

Ja—p)t—q)(t—r)(t—s)

Heron's formula is a special case of this formula and it can be derived by setting one of the
sides equal to zero.

th
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Chapter

ADDITION FORMULAE
AND FACTOR FORMULAE

Music is the pleasure the human mind experiences from
counting without being aware that it is counting.
— Gottfried Leibnitz

4.1 Introduction
We have studied the fundamental ideas and properties of trigonometric functions. Now, we will
see how to express values of trigonometric functions with variables ot + [3 and ot — [ in terms of values

of trigonometric functions with variables O and [3, where O and B are real numbers. These
formulae are known as addition formulae. With the help of these formulae, we will derive factor
formulae and study their uses.

If f(x) = ax, x € R is a linear function, then
fx —y)=alx —y) =ax —ay = f(x) = f()
Thus, fix —y) = f(x) = f()

Now, consider the trigonometric function f(x) = cosx, 0, = L and B= U

3 6"
For these values of Ot and [3,0(—[.)):% —%. So cos(&—ﬁ)=cos%=§
_ = cosE — cosE =L _ B 1= B
But cosOt cosB cos3 cos-¢ > T 5 5 # 5

Thus, cos(0t — B) # cosot — cosP

Thus, what is true for a linear function may not be true for trigonometric functions. Similarly
other results can also be quoted. Now, we will obtain the formula of cos(0t — ) using cosQl, cos[3,
sinQL, sin[.)).
4.2 The Addition Formulae

We shall first prove a formula for cos(0t — B) and cos(Ol + B).

Let us see the expression for cos(OL — B).
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Theorem 1 : For o, B € R Y

A
(1) cos(OL — B) = cosOL cosB + sinOL sinB () R(a—f)
(2) cos(OL + [3) = cosOl cosB — sinQl sinB )
Proof : Case (1) : Let a, B € [0, 2m).
We have three possibilities for O and B by law " A(LO) X
of trichotomy. Y
They are () o0 > B (i) o =P (i) o0 < B
i o>p
Suppose the trigonometric points on the unit circle
corresponding to o, 3 and o0 — [ are P, Q and R Figu\r'e 1

respectively.
By definition, P(QV) = (cosQL, sinQL),
Q(B) = (cosP, sinP) and R(oL — B) = (cos(ar — B), sin(ot — B)).
Also A is (1, 0).
As shown in figure we have l(@) = q, l(m) = B and I(AT{) =0 — B
AsB<O€andQ€ @,
(PQ) = I(AP) — I(AQ)
(PQ) = o — B = (AR)
PQ = AR
Chords corresponding to congruent arcs of the same circle are congruent.
PQ = AR
PQ? = AR?
Now using distance formula,

PQ2 = (cosOL — cosB)2 + (sinOl — Sl'i’lB)2

cos>0L — 2cos0. cosP + cos®P + sin*0L — 2sin0l sinf} + sin’3
= cos’0l + sin’0l + cos’P + sin’ — 2cosQ cosP — 2sint sinf3
=2 — 2(cos cosP + sin0. sinf)

ARZ= (1 — cos(0l — B))2 + (0 — sin(0L — B))2
=1 — 2cos(0L — B) + cos* (0L — B) + sin® (0L — B)
=2 — 2cos(OL — B)

But AR? = PQ?
2 — 2cos(0L — B) =2 — 2(cosO. cosB + sinQ sinB)
—2cos(0L — [3) = —2(cosQl cosB + sin0OL. sinB)

cos(0L — B) = cosd. cosP + sino sinf3
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(ii) Suppose O = B
Then, L.H.S. = cos(0t — B) = cos(0L — Q) = cos0 =1
R.H.S. = cos cosP + sinot sinf3
= cosO cosO. + sinQl sinOl
= cos®0l + sin*0L = 1
L.H.S. = R.H.S.
(iii) Suppose O < B
Then, o0 — B =—(P — o)
cos(0L — B) = cos(=(B — )

= cos(B - Q) (cosine is an even function.)

= cosB cosQL + sinB sinQl (B > o)

cos(0t, — B) = cosoL cosP + sinot sinf}
Case (2) : O, B € R
For the given O, B € R, we can find O, Bl € [0, 2m),
such that &0 = 2mT + O, and B =2nm + Bl’ m n € 7
o—B=2mn+a, —Qm+ B)
=2(m — mm + o, — B,
= 2k + O —Bl,wherek=m—n e Z
As sin and cos are periodic functions whose principal period is 2T
cosOl = cosOly, cosP} = cosBl and cos(0L — P) = cos(0ly — Bl)
Thus, cos(0L — B) = cos(0l; — [31)

cosQL, cosBl + sinQl, sinBl (Case (1))

cosOl cosB + sin0l sinB
cos(0. — B) = cos0 cosP + sinol sinf3

From case (1) and case (2) we see that for all O, B € R
cos(0L — [3) = cosOl cosB + sinQOl sinB

(2) We have, cos(o + ) = cos(ot — (—))

cosQL cos(—B) + sinQl sin(—B)

= cosO cosB — sinQl sinB (cos(—B) = cosB, sin(—ﬁ) = —sinB)
cos(0 + B) = cosO cosP — sindi sinf
Corollay 1 : (1) cas(%—e) = sin® () sin(%—e) = cosO

Proof : (1) We know that for all O, B € R,

cos(0L — B) = cosdl cosP + sinot sinf3
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We substitute Ot = % and 3 = 0 in the above identity. We get,

cos(%— 9) = cos% cosO + sin% sin0
=0-cosO + 1-sin

= sin@
cos(% - 9) = sin®

(2) If we replace O by % —0in cos(%— 9) = sin0, we get

coi 3-(3-6)] - in(£-0)
cos® = sin(%—e)
sin(%—e) = cos0O

Theorem 2 : (1) sin(0t — B) = sin0. cosP — coso sinfd

(2) sin(OL + B) = sinQl cosB + cosOL sinB

Proof : (1) sin(0L — B)Z cos [% - (o = B)] (cos(%—e) = sine)
- o (3-0) +

= cos(%—a) cosB - sin(%—Oﬁ) sinB
= sinQ cosB — costL sinB
sin(0L — B) = sinQL cosB — cosO sinB
@) sin(0 + B) = sin [0 — (—B)]
sin0L - cos(—f) — cosoL - sin(—)

= sin0L - cosP + cosOL - sinf3 (cos(—0) = cosO and sin(—0) = —sin0)

sin(0L + [3) sinQL - cosB + cosOL - sinﬁ
4.3 Other Formulae for Allied Numbers

We have seen from theorems 1 and 2 that for all real numbers Ot and [3.

cos(0L — ) = cost cosP + sinQl sinf3 i)
cos(OL + B) = cosOl cosB — sinOl sinB (i)
sin(0L — [3) = sinQl cosB — cosQL sinB (i)
sin(0L + B) = sinoL cosP + coso sinf3 (iv)

We have also seen that for all O € R,

sin(%—e) = cos0, cos(%—e) = sin0

—G) _ cos9
_ e) sinB

= COle

[EREE

mn(%_e) B szn(

COS(

LS}
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Putting O = % and B = 0 in (iv) and (ii) respectively, we get

sin(%"' 9) = sin% cosO + cos% sin® = 1-cosO + 0-sin@ = cosO

sin(%*‘e) = cosO

T . . . .
COS(?"'G) = COS% C‘O.S'e - Sll’l% sme =0- COSG —1- sme = —sme

cos(7+ 9) = —sin®

and hence, tan(%Jre) = —cot9

Similarly putting, Ot = 3—TE and B =0 in (i) to (iv), we get

sin L _g = —cos0, cos 3L _g = —sind
(5-9) (3

tan(Tn— ) cot®
T

Similarly, sm(% + 6) = —cos0, cos(%“r 9) = sin0

tan(—"' 9) = —cot®
Again putting o = 7, B = 0 and o = 27, B = 0 in (i) to (iv), we can prove the following :
sin(Tt — 0) = sind, cos(Tt — 0) = —cos0O, tan(Tt — 0) = —tan®
sin(Tt + 0) = —sin0, cos(T + 0) = —cos0, tan(T + 0) = tand
sin(2T — 0) = —sin0, cos2T — 0) = cos0, tan(2T — 0) = —1an®
sin(2T + 0) = s5in0, cos2T + 0) = cos0, tan(2T + 0) = tand

We will be using these formulae frequently for solving examples, so it would be very useful to
remember them. As an aid to memory, remember the following.

First of all, it is enough to consider values of trigonometric functions sinQl, cosQ etc. where

0 < Ol < 2T, because if O € R then 0 = 2nT + o, 0 < 0L < 27T. We let 0 < B < % Then typical real

numbers % - P % + B, 377E — B and 3TTE + B correspond to the trigonometric points which
lie in the L, II, III, IV quadrants respectively.
L B T B From figure 4.2 for any real value, trigonometric function change as
2 2 under, sin — cos, cos —> sin, tan — cot, cot —> tan, sec —» cosec,
377t B B 3% + B cosec —> sec.
Figure 4.2 P(%"'B) is in second quadrant.

In the second quadrant sin(%+ B) > 0.

Note : Choice of sign is according to the original function on the left.
sin(%"'f’) = cosP

P(STR— B) is in the third quadrant and in the third quadrant cos(%t— B) is —ve.
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For any such transformations, the trigonometric functions

remain same. sin —> sin, cos — cos etc.

COS(

3T

N B) = —sinf}

Now have a look at the figure 4.3,

R—B‘ B

T+ P 2m — B

Figure 4.3

Choice of sign is according to the quadrant of the original function. The trigonometric point
P(Tt + B) is in the third quadrant and sin(TT + B) is —ve in the third quadrant.

Hence, sin(Tt + ) = —sinp,

tan(mt + B) = tanf

Now P21 — [) is in the fourth quadrant.

(tan(Tt + I.))) is +ve in third quadrant.)

Hence, sec(2 — B) = secP, cosec(2m — P) = —cosec3

(as sec takes +ve and cosec takes —ve values in the fourth quadrant.)

Now, let us find sin(SSTn) and cos(an) using there rules.

sin(T

387‘c)

(36m+2m
sin T

2 2T
sin 3
(3T
Sin 3
o —Z
sin(T = %)
I
sm3
REl
2

60T+ T
cos 4
cos( 15T +2

yis
cos| 0+ 4)
—coe L
cos
oL
2

The Principle Period of tan :
We know that sin(Tt + 0) = —sin®, cos(t + 0) = —cos0. So tan(m + 0) = tan®

(12T is a period of sine function.)

(sine takes +ve values in the second quadrant.)

(14T is a period of cosine function.)

(cosine takes —ve values in the third quadrant.)

Thus, T is a period of fan. Now we will prove that T is the principal period of fan.
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Suppose the principal period of fan is p.
Now, tan(® + p) = tan0, VO, 0 + p € R — {(2k+ 1)%|k€ Z}
In particular, taking © = 0, we get

tanp = 0

p = km

The least positive value of p is .

Thus, T is the principal period of tan.

Example 1 : Evaluate : (1) cos120° (2) sin(_”n) 3) tan(lm) @) 3sec(ﬂ)

4 4

Solution :
cos120° = _71
@ sin(ZE) = —sin( 2E)
( 16T+ T )
= —sin 2
= —sm(4TC +%) = —sin% = —ﬁ
wl25) -
3) tan(BTn) = ftan 1211:4+1t) = tan(3TE +%)
= Icm% =
on{ 1) =1
) 3sec(#) = 3sec(7Tn)
8T — T
= 3sec( )
= 3sec(27€ — %)
= 3sec(_Tn)
= 3sec% = 35
3sec(%) = 35
sin(@ - %) tan(% + 6) cosec (2T +8)
Example 2 : Evaluate : (1) cos@—1) + cot 3% +0) sec(%’t—e)
2) sinlOTTc . cosHTTc + coszTn . sins?7t

(3) cos? % + cos? % + cos? 5?“ + cos? 7%

4

(1) cos120° = cos(90° + 30°) = —sin30° = 3L (cos(5 +6) = —sind)

(4 is a period of sine.)

(31 is a period of fan.)

(sec(—0) = secO)

(21 is a period of sec.)
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sin[e - %j tan(% + 6) cosec(2T +0)

Solution = (1) 550~ + Cor3n+0) sec(s_rc_ 9}
2
_ _Si”(%— 9) —cot O cosec 9
- TCos(m-0) cot® 1 “cosec ©
—cos 9
~ —cos© + =D+ =D

=1-1-1 =-1

. 10TC 11T 2TC . STC
2) sin—— - cos=c= + cos== - sin==

3 3 6
M+ T RE—T7 IM—T 6mM—T
= sin 3 - cos 6 + cos 3 - Sin 6
- o . - - ; -
= szn(3TC+ 3) cos(ZTC 6)+ cos(TC 3) sm(TC 6)
- _—enl . I —cosL) .
= sm3 cos6+ ( c0s3) Sm6
- BB 11
2 2 2 2
- =3 _1 __
4 4 1
2T 230 4 2 (T ST 2 (& — I
(3) cos 2 + cos S + sin (2 )+ sin ( 3 )

= cos? % + cos? % + sin? (T) + sin? (_)

8
= (cos2 % + sin? %) + (cos2 n + sin? 3—“)

= 14+1 =2
Example 3 : Decide whether following numbers are positive or negative.

(1) sin110° + cos110°  (2) coseclf—f - “0117_?

sin(180° — 70°) + cos(90° + 20°)

Solution : (1) sin110° + cos110°
= sin70° — sin20°
Now sine is an increasing function in the first quadrant.
70 > 20. Hence sin70° > sin20°
sin70° — sin20° > 0
sinl110° + cos110° is positive.
@) 177 171

COS€CT — Sec B

12T + 57T 18T —TC
cosec\ " 13 | — sec| T 17

Smy _ (3_7t_£)
cosec(TC+ 12) sec{= B

- _ ST T
cosec5 + cosec3

Now, as sine is increasing and so cosec is a decreasing function in the first quadrant and

T ST
12 < 12
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10.
11.
12.

13.

cosec£ > cosecs—n

12 12

o 5_7t)
(cose012 cosec 3 >0

7T 1T - .
cosec— sec5- 18 postitive.

Exercise 4.1

Evaluate :

(1) cos135° @) an(ZE)  (3) cos(LE)

(4) sec690° (5) cosec D:Tn 6) cot(an)
Prove : (2 to 11)
cos(%+ 9) - sec(—0) - tan(mt — 0) + sec(2mw + 0) - sin(w + 0)- cot(%—e) ~ 0

Sin(m—-6) cosec(m+90) cosec2m+0)
sin(m+0) " cosec(-w+0) " sin3n-0)

= —COS6026

sin(-9) - tan(% - 9) - Sin(m—9) - sec (377‘ + 9)

=1
Sin(T +0) -cos(%c - 9) -cosec(w—0)-cot(2m - 0)

sin(n + 1)A - cos(n + 2)A — cos(n + 1)A - sin(n + 2)A = —sinA
sin?(40° + 0) + sin’(50° — 0) = 1

cot 333° — cos567°
tan297° + sin477°

5ec?129° — cose31°
cosec39° — sec121°

= cosec39° — sec59°

cos(A + B + C) = cosA cosB cosC — sinA - sinB + cosC — sinA cosB sinC — cosA sinB sinC
sinQ, - sin(B — Y) + sinf - sin(y — o) + siny - sin(0t — B) = 0

(sinQL — cosQl) - (sinB + cosB) = sin(OL — B) — cos(OL + B)

For AABC, prove following results :

(1) sin(B + C) = sinA (2) cos(A + B) = —cosC

(B+C A
(3) sin| — = cos5 4) tan(A — B — C) = tan2A
sin(B+C)-cos(B+C)-sin%-cos%

®) sin(B+C) - cos

2

1

(B;C)-sin(n+A)-cos(27t—A) -

(6) If cosA = cosB cosC, then prove that 2cotB cotC = 1.
For a convex quadrilateral ABCD, prove that

(1) sin(A + B) + sin(C + D) = sin(B + C) + sin(A + D)
(2) cot(tA+ B+ C)+ cotD =0
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14.

15.

16.

17.

18.

19.

20.

4.4

For cyclic quadrilateral ABCD, prove that
(1) cosA + cosB + cosC + cosD = 0
(2) sinA + sinB = sinC + sinD
Ifo—PB= %, then prove that 2sin0l — cosf} = ﬁsinB.
If0 = 197[ , then prove that cos?0 — sin?0 — 2tan® + sec?0 — 4cot?0 = 0.
, Fid 23n 2 5| .2 IR .9 9T 2 1R
Evaluate : (1) sin? + sin + sin 2 + sin 2 + sin P + sin 7

(2) sinx + sin(TT + x) + sin(27W + x) + ... 2n terms.

(3) cosx + cos(t — x) + cos(QM — x) + cos(3M — x) +...(2n + 1) terms, if x = %
719 RIS I, I
4) cot = 20 " COL S cot Sn - cot Sk - cot S

Determine whether each of the following is positive or negative :

(1) sinl155° + cos155° 2) tan— + co t( 67t)
(3) tanlll® — corl11° @) cosec— + sec71—72t

_ Sin(T — 0) + tan(w + 6) + tan4w - 0)
If tan® = (TS) and % < 0 < T, then find the value of ( )
sin(m + 9) + 605(57c - 9)

Prove that sin(nTt + (—1)" 0) = sinB, for all n € N.

Some Important Results

(1) We have already obtained values of trigonometric functions for &=, & % With the help of

6° 4
sin(0, — PB) and cos(0 — [3), we will obtain values of smﬁ and cos%.
Let & 3,[3 7 ora 4,B 6
—_B==I
o B 12
T o (B _T
Sinyy = S’”(4 6)
= sinl cosE — cos& sinZk
Sin' cos<e — COS Sin<g
_ LB
272 a2
el O £l O (R
02 W2 T2 4
sink = Jo—+2
12 4
Similarly, we can show that cos% = ’/EIJE
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3L = sin(Z-L) = o _ Jo+\2
Also, sin 5 = sinl5 13 cos3 T
n _ Jo—2

cos ) cos ) 2 Sin 12 7

2) () sin(o+ B) - sin(0L — B) = sin®0l — sinZB = cos2[3 — cosZal
(i) cos(@ + PB) - cos(at — B) = cos*o — sin’P = cos’P — sin’at

(i) sin(ol + B) - sin(OL — B) (sinOL cosB + cosO. sinB)(sinO( cosB — cosQ sinB)

= sin’0L - cos2B — cos’0. - sinZB

sin®oL (1 — sinzﬁ) — (1 — sin*Q) - sin2[3
= sin*0L — sin®OL sin’P — sin®P + sin’0L sin’3

= sin’0L — sin2B

sin(00 + B) - sin(0L — B) Sin?oL — sinZB
Now, sin(O + [3) - sin(00 — B) = sin®0l — sin2[3
= (1 — cos?0r) — (1 — coszﬁ)

= COSZB — cos?OL

sin(0L + B) - sin(0L — B) 0052[.)) — cos*L

Similarly, it can be proved that

cos(0L + B) - cos(OL — B) cos?0. — sin2B = coszﬁ — sin?oL

4.5 The Range of f(Q) = acosO. + bsinO, 0L € R, a, b € R, a* + b* # 0
As a? + b? # 0, we consider three cases :
1) a=0,b#0 2a#0,b=0 @B)a#0,b#0
Case (1) :a=0,b#0

Then, f(O) = bsinO.. Range of sinQ is [—1, 1].

—1 < sin0l <1
& —b < bsind < b (b>0)
For b > 0, the range of bsinO. is [—b, b] = [-| b], | b|]. (16| =b)

Now; for b < 0, =1 < sin0t < 1 < —b = bsinO, = b
& b < bsinOl < —b
For b < 0, the range is [b, —=b] = [—| b, | b]| ]. (|| =-b)
The range of f(0) = bsinO. is [—| b |, | b |].
Case 2) :a#0,b=0
Then, f(0) = acosO. Its range is [—| a |, | a|] as before.
Case 3) :a#0,b#0
In this case, we shall express acosQ. + bsinO. in the form r cos(0 — QV).
As rcos(® — o) = rcos® cosO + rsin® sinOl, we shall find » and O such that a = r cos0,
b = rsin®. (r > 0)
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These equations imply that a* + 52 = 12 and tanf = %.

L . b
r= ‘,az +b%. As the range of zan function is R, corresponding to real number g We can
find © € R — {(2n - l)% | n € Z} such that ran® = %.

Hence, for given a and b (both non-zero), we can select r = ‘,az + b2 and O such that tan = %.
We can select 0, so that rcos® = a, rsin® = b.
Thus, f(0) = acosO. + bsinQl
= rcosO cosOl + r sin0 sin0L

= r (cosO cosOl + sin0 sin)

=rcos(B — Q)
f(0) =rcos(B0 — )
—1<cos@®@—)< 1< —r<rcos(®@—a)<r r>0)

The range of f(Q) is [—r, 7].

Hence, range of f(Q) is [— a’ +b%, ‘/az + b2 ]

This means that the maximum value attained by f(Ql) is ‘,az +b% and the minimum value is

4.6 Addition Formulae for fan and cot

(1) Ifo, Band ot + Be R — {(2k—1)§ | ke z},then

__tano.+tanf
fan (0. + ) = 1—tano. - tanf
and if o, Band 0 — B € R — {(Zk—l)% ‘ k € Z},then

_tano.—tanf
tan (0. — B) = 1+ tano. - tan

sin(@+P)  sinocosB+cosasinf
cos(@+PB)  costcosP—sinasinf

Proof : tan (0L + ) = (+Pe R—{(Zk—l)%|ke z})

As. o Be R—{@k—1E | ke z}. coso #0. cosP # 0

Hence, dividing both numerator and denominator by cosOl - cosf, we get

tano. + tan3
tan (0. + ) = 1 — tano. - tanf
o tano.— tanf3
Similarly, we can get, tan(Ot — B) = m

(2) Ifo, Band oo + B € R— {knt | k € Z}, then
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4.7

cota-cotP—1

cot (0. + P) = cotP+ cota
and if o, Band @ — B € R — {klt | k € Z}, then

_cotu-cotB+1
cot (0. = P) = cotf—cota
cos(0t+B)  coso-cosB—sina-sin

sin(ot+B)  sind-cosp+cosa-sin

As, O, B € R— {klt | k € Z}, sino # 0, sinf} # 0.

Proof : cot (0L + B) =

Hence, dividing both numerator and denominator by sindi - sinf3, we get

cota-cotB—1

cor (ot + ) = cotP+cota -

o coto.-cotP+1
Similarly, we can prove that, cot(Qt — B) =

cotBp—-coto -
TT TT
Value of ran 3 and cot 3
T _T_X n_nT_T=
We have {5 = 3 — Jor 7 =4 — ¢
T _ ik
Dtk = ¢ (L_L):M
(D) tan{s = tan{3 7% 1+tanZ tan &
J3-1
T 1+43
G-1 -1
T IR
_ 32341 _4-243 Y
3—-1 2
tant =2 — J§
12
T 7
T T cot=cot=++1
Q) cot% = cot(;‘j) = —3 4
cott —cott
4 3
L .1+1
J3
-
J3
J3+1
31
1+43  J3+1
=G XA

3-1 2

3+243 +1 4+2,/§:2+\/§

cot%=2+£

B O+PeR- k| ke Z})
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— ol E __’T) — ey X — 3
Also, tan% 12 tan(2 1 cot12 2 + /3 and
ST (_ﬂ __71) _ -9 _

cotT3 = col\3 ™13 tan12 2 — 3.

Example 4 : If sinQl = i, % <O <T and tanB = _?12, —% < B < 0, then determine the quadrant of
P + ) and P(a0 — P).
Solution : Here % < O < T and —% < B < 0. On addition, we get 0 < o0 + B < 7.

P(oL + B) is in the first or in the second quadrant. As cosine takes +ve value in the first
quadrant and —ve value in the second quadrant and sine takes +ve value in the first and the second

both quadrants, so to determine the quadrant of P(Q( + B), we must find cos(Ot + B).

cosO(=—‘/1—sin20t = — 1—% = _?3 (% <0< 1'C)
tanﬁ—?z,—%<[3<0

secf} = ‘/1+tanz[3 = 1+% = % (—% <B< 0)

cosB = E’ smB = tanB COSB = —12 % _ %

cos(0L + ) = cos0L- cosP — sinoL - sinfd

-FE - 65

_ oI5 4 48 .33

65 65 65
cos(OL + [3) >0
P(ot + B) is in the first quadrant.
Second method for determining quadrant :
To determine the quadrant of P(Ot + B), we can use another method.

sin(0L + B) = sin0. cosP + cosol sinfd

B+ ()R - 2 -

5/\13 5 13 65
= —_ } / = ﬁ
cos(OL + B) cosOL cosB sinQ( smB %5 (Method 1)

As sin(0L + B) >0 and cos(O + B) >0, P(O + B) is in the first quadrant.

Now, for P(00 — B) <0L<Tcand——<[.))<0

T —
Z>-p>0

— I i .
0< B<2and2<OC<Tl: (i)
% < OL—B < 3771 (adding inequalities in (i))
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P(ow — [3) is in the second or in the third quadrant. As sine takes +ve values in the second
quadrant and —ve values in the third quadrant and cosine takes —ve values in the second and in the

third both quadrants, so to determine the quadrant of P(0t — [3), we must find sin(0t — [3).

sin(0L — B) = sin0. cosP — coso sinfd
— {4}(5
- (5)55) -

sin(OL — B) <0

()8 - 25 -2

5 13 65 65

Pt — [3) is in the third quadrant.

Example 5 : Find the range of sin@ + cos(9+%).

Solution : Suppose f(e) = sin® + cos(e +%)

= sin® + cosO cos% — sin® sin%

= sin@ + %cose — gsine

() = %cose + (l_éj sin® = acos® + bsin®

Comparing f(0) with acos® + bsin®, we get

—l gy
Z’b ! 2
‘/52
Now. r2=a2+b2=%+(1—7)
=1 - 3
=L+1-3+3
=2 J_

3
23 :J3—2J§+1 :‘/(JE—DQ
2 2

R ’2_’/_:\/4_ -
. _ JS-1 _ 1

TR \/% 2
The range of f(0) is [—r, 7] = [ﬁ—ﬁ, g—ﬁ}

Example 6 : Determine whether the sin110° + cos110° is positive or negative.

Solution : Suppose f(0) = sin110° + cos110°
= ﬁ(ﬁsinlloo + %coslloo)
= ﬁ(cos45° sinl110° + sin4d5° cosllOO)
= 2 sin(110° + 45°)
= 2 sin155° > 0 (90 < 155 < 180)

sin110° + cos110° is positive.

Note : The example 3 solved earlier in this chapter can be solved by this alternative method too.
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Example 7 : Express J3sin0 — cosO. in the form rsin(00 — ©) and find » and ©, where, » > 0,
0<0<2m
Solution : Let f(Qt) = \/gsinoc — cosO.

Multiplying and dividing by ‘,(ﬁ)z 4 (-2 =4 =2,

fo) = 2(§sinoc - %cosoc)

= 2(s1’n0( cos% — cosQL sin%)
= 2sin (OC — %)
= rsin(0L — 0)

r=2,6=%.HereG=%satisﬁesOS9<21t.

Example 8 : If \/gcosoc — sinOt = rcos(0L — 0), find » and 0. r > 0,
where (i) 0 < 0 < 21 (ii)‘T’T<e<0

Solution : Let f(Q) = \/ECOSQ — sinQL

Multiplying and dividing by r = J(ﬁf + (=% =2,

fo)= 2(§cos(x - %sinoc)

= Z(COS% cosOl — sin%sinoc)

= 2cos (O( + %)
sonfe ()
Now comparing with rcos(0t — 0), we get

r=2,9=_—6nand9=_—6nsatisﬁes_7n<9<O

2cos (OC + %) = 2cos (OC + % - 21‘5) = 2cos (oc - HTE)
0= “Tn satisfies 0 < O < 2T.

Example 9 : Prove that sin?A = cos’(A — B) + cos’B — 2cos(A — B)cosA cosB.

Solution : RH.S. = cos’(A — B) + cos’B — 2cos(A — B)cosA cosB.

= cos’B + cos’(A — B) — 2cos(A — B) cosA cosB

= cos’B + cos(A — B) [cos(A — B) — 2cosA cosB]

= cos’B + cos(A — B) [cosA cosB + sinA sinB — 2cosA cosB]
= cos’B + cos(A — B) (sinA sinB — cosA cosB)

= cos’B — cos(A — B) cos(A + B)

= cos’B — (cos’A — sin’B)

= cos’B + sin’B — cos?A

= 1— cos?A

= sin’A = L.H.S.
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10.

11.

12.

13.

Exercise 4.2

Evaluate :

222710 _ ;2710 2 2z~r1o 2710 272710 _ ;22710
(1) sin 372 sin 72 (2) sin 522 cos 72 (3) cos 372 sin 372

Prove that : sin?A + sin’B + cos* (A + B) + 2sinA sinB cos(A + B) = 1.

(1) If cosA = %, cosB = % and 0 < A, B < %, then prove that A — B = %

(2) If sinA = ﬁ, cosB = ﬁ and 0 < A, B< E, then prove that A + B = %.

(1) Find the quadrant of P(0t — ), if cosOl = %, cosP = }—2 3775 <o, B<o2m

(2) Find the quadrant of P(0t + [), if cosOl = 2, < o< wand tanf} = %, T<P< 3771

137 2

-1 - =3 3T T :
If corol = =, secP = = Where T < @ < =5 and 5 < B < m. Find the value of tan(ol + )

and find the quadrant of P(O( + [3).

Determine the range of (1) 7sin® + 24cos® (2) cosO® + sin(e —%) + 1

Prove that 5cos® + 3c0s(9 +%) + 7 in [0, 14].
Express ﬁsine + cos0 in the form rcos(B — ), where » > 0 and 0 < O < 2Tt.

_Tn < 0 < 0 and cosO. — 3sin0L = rcos(00 — 0), find » and 0.

Prove :
| (n 0() J3cos o.— sin o 5 390 J3cos 21° — sin 21°
() tan(3 "~ cos 0.+ 43 sin o @) tan T cos 21° +4/3 sin 21°

(3) tan3A - tan2A - tanA = tan3A — tan2A — tanA

(4) cotA - co2A — cot2A - cot3A — cot3A - cotA = 1

(5) tan25° - tan15° + tanl15° - tan50° + tan5° - tan50° = 1
IfA+B= %, then prove that

() (1 + tanA)(1 + tanB) = 2
2) (cotA — 1)(cotB — 1) =2

(1) Prove that A + B = % => fanA = tanB + 2tan(A — B)
(2) Prove that tan65° = tan25° + 2tan4(°
IfA+B+C=Q2k+ 1)%, k € Z, then prove that

(1) tanA tanB + tanB tanC + tanC tanA = 1

(2) cotA + cotB + cotC = cotA cotB cotC
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14. If A+ B+ C =km, k € Z, then prove that
(1) tanA + tanB + tanC = tanA tanB tanC
(2) cofB - cotC + cotC - cotA + cotA - cotB = 1
15. If tanA = 3, tanB = %, 0<A BK< %, then prove that A — B = %
16. If tanB = 2 and tanC = 3 in AABC, then prove that tanA = 1.
17. If 0 <A, B< %, tanA = # and tanB = ﬁ, prove that A + B = %
fan o X sin@  x+y
18. foo+PB=6,00—B=0and anB "y then prove that G x—y-
tan (A — B) sin *C 5
19. If — 7 + A 1, then prove that tanA - tanB = tan-C.
20. If tan(A + B) = 3 and fan(A — B) = 2, then find tan2A and tan2B.
T nsindt. cost n N |
. tanB = —l—nsinza , then prove that tan(Ol — B) = (1 — n) tanQ.
*
4.8 Expression of a Product in the Form of a Sum or a Difference

We have studied the following formulae valid for all real 0, B € R :
sin(0L + PB) = sino cosP + cosaL sinf3
sin(0L — B) = sin0 cosP — cosal sinfd
cos(0L + PB) = cosoL cosP — sin0t sinf3
cos(0. — ) = cosol cosP + sino. sinf}
Taking sum and difference of (i) and (ii), we get,
sin(0, + P) + sin(ot — B) = 2sindi cos
sin(0L + B) — sin(0l — [3) = 2cosOl sinB
that is,
2sin0L cosB = sin(0L + B) + sin(0L — B)
2cos sinB = sin(0L + B) — sin(0L — B)
In the same way, taking sum and difference of (iii) and (iv), we get
cos(0L + B) + cos(ot — ) = 2cosa. cosP
cos(OL + B) — cos(0L — B) = —2sinQ sinB
that is,
2cosO cosB = cos(OL + B) + cos(OL — B)

2sin0L sinfd = cos(0t — ) — cos(at + PB)

@@
(ii)
(iii)
(iv)

)
(vi)

(vii)

(viii)

In each of (v), (vi), (vii) and (viii), the left side is the product of trigonometric functions where as

the right side is the sum or difference of a trigonometric functions with variable o + 3 or ot — 3. It would

therefore be easy to express product of trigonometric functions in terms of a sum or a difference.
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For example, 25in30 cos50 = sin(30 + 50) + sin(30 — 50)
= sin80 + sin(—20)
= sin80 — sin20
Now, if we take bigger angle first, then calculation become simpler
2¢0s30 - 5in50 = 2sin50 - cos30 = sin(50 + 30) + sin(50 — 30)
= sin80 + sin20

Example 11 : Express each of the following as a sum or a difference.

(sin(—0) = —sin0)

(1) 25in50 cos® (2) 2c0s§ sin% (3) 2sin30 sin5SO (4) sin® (5) 2cos50 cos%

Solution : (1) 2sin50 cos® = sin(50 + 0) + sin(50 — 0) = 5in60 + sindO

2) ZCOS% sin% = sin(% + %) - sm(52e 39) = sin40 — sind

(3) 2sin30 sin50 = cos(30 — 50) — cos(30 + 50) = cos(—20) — cos80
= c0s20 — cos80

(4) sin?0 = sin0 sind = %[ZSine s5in@] = %[cos(e —0) — cos(© + 9)]

= %[cosO — cos20] = %[1 — cos20]
(5) 2cos50 cos% = cos(59+g) + COS(Se_g) = coslle + cos== 29
Example 12 : Prove that sin20° - sin40° - sin60° - sin80° = %

sin20° - sind0° - sin60° - 5in80°

sin60° - (sin20° - sin40°) - 5in80°

Solution : L.H.S.

_ % X £ (25in40° + 5in20°) - sin80°

g [cos(40° — 20°) — cos(40° + 20°)] sin80°

= ﬁ [cos(20°) — cos60°] sin80°

S -

= (cosZO0 - %) sin80°
-3 (25in80° c0s20° — sin80°)

[szn(80° +20°) + 5in(80° — 20°) — 5in80°]
[sm100° + 5in60° — sin80°]

sin(180° — 80°) + f — 5in80°]

o
( in80° + @ - sin80°)

b el ol =l =l <l

R.H.S.
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(sin0 = 0)

Example 13 : If A + B = 90° then find the maximum and minimum values of sinA - sinB.
Solution : Let y = sinA - sinB = sinA sin(90° — A) = sinA cosA
Then, y = %(ZSinA . cosA) = %[sin(A + A) — sin(A — A)]
_ 1.
= 2sm2A
Now, =1 <si2A <1 & F < JsimA< 1 & L <y<d

Hence, >

1. Express as a sum or a difference :

(1) 2sin70 - cos30 2) 2sin% . cos% (3) 2cos50 - sin30
“ 2cos% . sin? (5) 2cos110 - cos36 (6) 2cos% . cos%
(7) sin90 - sin110 ® 2sinL2 9 . sm% (9) 2sin0 - cosH
2. Find the value :
. 5T T . 5T 7T 5T
(1) 2smﬁ . smﬁ 2) 2Sll’lﬁ * cos5 3) ZCos1 smﬁ
4 2c0s51—12t . c0s71—;E (5) 8cos15° « cos45° « cos75° (6) 8sin10° - sin50° -
3. Prove :
(D sin(%"'e) sin(%—e) = %cosZG
(2) sinB - sin(%—e) . sin(%‘*‘e) = %sin?»e
ST _
3) ZCOSE . cosﬁ + cos3L 13 + cos o7 0
4) co0s20° - cos40° - cos60° - cos80° = %
(5) 4cos12° - cos48° - cosT2° = cos36°

Exercise 4.3

4. Prove that 4cosO - cos(%—e) cos(%‘i'e) = ¢0s30 and deduce that

cos6° cos42° cos66° cosT8° = %

5. Find the value of 2sin 10° — 25in70°.
6. Prove that cos 27n + cosi + cos 6771:

and _71 are respectively the maximum and minimum values of sinA sinB.

sin70°
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4.9 Expressing the Sum or the Difference as a Product

We have seen the formula (v) to (viii) which are reproduced below :
2sinQL - cosB = sin(0L + B) + sin(OL — B)

2cosOL sinB = sin(00 + B) — sin(0L — B)

2cosOL - cosB = cos(OL + B) + cos(OL — B)

2sinQL - sinB = cos(OL — B) — cos(OL + B)

Let us substitute &t + 3 = C and o0 — B = D in these formulae.

C+D
2

C+D C-D

sinC + sinD = 2sin( 5 ) cos( > )
) C+D (C-D

sinC — sinD = 2cos( > ) sm( ) )

C+D C-D
2cos > cos| =

{(C+DY (C-D
cosD — cosC = 2sin > sin| — or

(C+DY) _(C-D
—2sin ) sin > )

These formulae are useful as they express sums or differences as products.

Then, O = and 3 =C_TD. We get

cosC + cosD

cosC — cosD

Example 14 : Express the following as products :

(1) 5in60 + sin40 (2) sin60 — sin20 (3) cos50 + cos20
(4) cos60 — cos100 (5) sin® — 1 (6) cosO + 1

60 + 496 60—496
Solution : (1) sin60 + sind® = 2sin( ) ] cos( > j = 25in50 cosO

60 +296 60 —20
(2) sin60 — sin20 = 2COS( > ] sin( > ) = 2c0s40 sin20

50 +20 50 —20
(3) cos50 + cos26 = 2cos(T) cos( 5 ) = 2c0s? cos%

60+ 100 60 —100
4) cos60 — cos100 = —2sin 5 sin >

= —25in80 sin(—20) = 2sin80 sin20

o+L p-L
(5) sin® —1 = sin® — sin% = 2COS( > - ) sin( 2)

= 2cos(

w|o

5) -3

(v)
(vi)
(vii)

(viii)
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0+0 0-0
(6) cosO +1 = cosO + cosO = 2c0s( > j cos( 3 j = 2cosg cos%
= 2cos2%

Example 15 : Prove that

(1) cos20° + cos60° + cos100° + cos140° = %
2) 1 + cos2A + cosdA + cos6A = 4cosA - cos2A - cos3A
3) \/gsinloo + ﬁsinSSO = c0s80° + 2c0s50°

Solution : (1) L.H.S.= c0s20° + c0s60° + cos100° + cos140°
1 100° + 140° 100° — 140°
=c0s20° + & + 2cos\ T 5 |cos| T 2

= cos20 + % + 2c0s120° cos(20°) (cos(—20°) = cos20°)

c0s20° + £ + 2cos(180° — 60°) c0s20°
+ c0s20° — 2c0s60° cos20°
+ c0s20° — 2. %cos20°

+ c0s520° — cos20°

= R.H.S.

(2) L.H.S.

1 + cos2A + cos4A + cos6A

(cosO + cos2A) + (cos4A + cos6A)
= 2cosA - cosA + 2cos5A - cosA

= 2cosA(cosA + cos5A)
= 2cosA(2cos3A - cos2A)
= 4cosA - cos2A - cos3A = R.H.S.

(3) L.H.S. = 3sin10° + 2 sin55°
=2 gsinloo +2- ﬁsinSSo
= 25in60° sin10° + 2sind5° sin55°
= ¢c0s50° — cos70° + cos10° — cos100°
= c0s50° — cos(180° — 80°) — (cos70° — cos10°) (rearranging)
= c0s50° + c0s80° + 25in40° sin30°
= c0s50° + cos80° + 2sin(90° — 50°) %
= c0s50° + cos80° + cos50°
= c0s80° + 2c0s50° = R.H.S.

ADDITION FORMULAE AND FACTOR FORMULAE 83



Exercise 4.4

1. Convert into a form of product :

(1) sin70 + sin30 2) szn— + sin== 39 (3) sin30 — sin50
4) sin? - sin% (5) cos110 + cos90 (6) cos22 + coslle
(7) cos50 — cos110 (8) cos— - cosﬁ (9) cos® — 1

(10) sin® + 1 (11) cosO + sin® (12) sin® — cosO

Prove : (2 to 7)

2. (1) cos55° + cos65° + cos175° =0  (2) cos L — cos & = _—21

12 12
sin & — cos 2L 1
o o _ o B o _ L
(3) sin65° + cos65° = 2 c0s20 “4) cos 3L + sin & NG

12

cos TA + cos 5A
(5) Sin7A —sinsa — COIA

(6) cos20 cos% — cos30 cosge = sin50 smSe

(7) sin® + sm(e"'—) + sm(e +—) =0

3. (1) (cosol + cosP)? + (sina. + sinf)*> = 4cos® (Ot;B]

(2) (cosOL — cosP)? + (sin0t — sinP)? = 4sin? (a;[}]

A+B . B+C . C+A

4. (1) sinA + sinB + sinC — sin(A + B + C) = 4sin 5— Sin—— sin—

(2) cosA + cosB + cosC + cos(A + B + C) = 4cosA_2|_B cosB;C cosc-;A
: sin(A +B) —2sinA + sin (A — B) 3 A
5. cosS(A +B)—2cosA +cos(A—-B) tan
COS 3A +2coS5A + cos TA )
(2) TosA +2c0s3A T cossA — COS2A — sin2A tan3A
6. (1) —— — J3 — =4 (2) J25in10° + J3c0535° = 5in55° + 2c0s65°
sin 10 cos10

7. (1) sinO = nsin(@ + 200) < tan® + o) = 1+ 1_, tan

(2) sin(2A + 3B) = 5sinB = 2tan(A + 2B) = 3tan(A + B)
*
Miscellaneous Problems :
Example 16 : Prove that 0 < o, B < % = sin(0 + B) < sin0 + sinf and deduce from this that

sind9° + sind1° > 1.
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Solution : sin(0l + [3) — sinQl — sinB

= sin0. cosP + cosOl sinfd — sinQ, — sinf3
= sinQl (cosB - 1)+ sinB (cosOL — 1)
Now,asO<O(,B<£,soO<sin0(< 1,0<sin[3< 1 and

0<cos0€<1,0<cos[3<l
cosO — 1 <0, cosp —1<0

sinO((cosB — 1)< 0 and sinB(cosO( -1H<O0

sinOL(cosB -+ sinB(cosoc - 1H)<0
sin(0L + B) — sino — sinf} < 0
sin(OL + [3) < sinQ + sinB

Now, taking Ol = 49°, 3 = 41°

As 0 <49 <90 and 0 < 41 <90
sin(49° + 41°) < 5in49° + sind1°
sin90° < sind9° + sind1°
sind9° + sind1° > 1

@

= 36

Example 17 : If cos(ot + PB) = %, sin(0L — PB) = % and 0 < o, B < %, then prove that fan20l R

Solution : We have, 0 < O < %, 0< B < %

T —T - i
0<o+PB<fand=F<o-B<E

cos(OL — B) and sin(OL + B) are positive.

Now, sin(0t + ) = ‘,1_0052(0(_1_3) = J1-16 =
cos(0.— ) = \/l—sinz(a—ﬁ = ‘/1—% I%

sin(OL + B) = % and cos(Ol — B) = %

sin(g+8) =
Now,tan(O(+B)=W_|ﬁE):?=%

sin(o.=B) &
andtan(a—ﬁ)=m:it§:%

tan20 = tan[(O. + B) + (0 — B)]

tan(o +B) +tan(o —B)
~ T—tan(g + B) tan(o —B)

<a-P<

e<a+p<Z

INE
A
0|3
—
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Example 18 : If o and [3 are roots of acos® + bsin® = c, then show that,

a’—-b’ 202 — (@* + b?)
(1) cos@ + By = o @ eos(@ — Py = 7 —
Solution : We have, acos® + bsin® = ¢ (i)

acos® = ¢ — bsin®

a*cos®0 = (¢ — bsin0)?

a*(1 — sin?0) = ¢2 — 2besin® + b2 sin*0

(@* + b?) sin*0 — 2bcsin® + (¢ — a®) =0 (i)
Since Ot and B are roots of equation (i), sinOl and sinB are the roots of the equation (ii).

. . Cz _ a2 see
sinQl smB iyl (iii)

Again, acos® + bsin@ = ¢

bsin® = ¢ — acosO

b2(1 — cos?0) = ¢2 — 2accos® + a* cos*O

b? — b2cos®0 = a* cos?® — 2accosO + 2

(@* + b?) cos?0 — 2ac cos® + (¢ — b?) =0 (iv)
Since Ot and B are roots of equation (i), cosQL, cosB are the roots the equation (iv).

C2 _ b2
cosQL cosf} = ey )

Now, cos(0t + ) = cosl cosP — sin0t sinf3

2 —b? 2 — g2 @ —b?
T+ A2+ a?+p?

a* - b?

cos(OL + B) = _a2 e

and cos(0L — B) = cosOl cosP + sinot sinfd

c? —b? N ct—a? 2¢2 —(@* + b
T at+b? a+b* a’ +b?

(from (iii) and (v))

2c% — (@* +b?)
cos(OL — B) = —a2 b2

Example 19 : If asin® = bsz’n(6 +27n) = csz’n(6 +4T7t)’ then prove that ab + bc + ca = 0. (abc # 0)

Solution : Let asin® = bsin(e +ZTR) = csin(e +4T7t) =k

It is clear that k£ # 0 (why ?)
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sin® + sin(e +2T7t) + sin(B +4Tﬁ)

Q |=
+
S =
+
o=

= sin® + sin(e +4T7t) + sin(e +277t)

2sin(9 +2?7t) coszTn + sin(e +277t)
= 2sin(e +2T1t) X (—%) + sin(e‘*'zTn)

k k  k_
+ 5+ 0

a c
bc +ca +ab
P Tt )
ab + bc+ca=0 (k # 0)
Exercise 4

1. Prove that :

c0s?33° — cos*57°

M sin? %0 — sin? %0 - _ﬁ @) sii;/io" - coslzoO =4

2. Provethat0 <o, B < % = tan(0L + B) > tano. + tanf} and deduce that tan35° + tan25° < J3.

3. Prove that 2tanf} + cotf} = tan0. = 2tan(o. — B) = corP.

ksino sin ¢

4. If 0 + B = o and sin® = ksinf, prove that ran® = T kcoso and tanf} = T cosa:

5. If sinA + cosB = 0 in AABC, prove that AABC is an obtuse angled triangle and that

0 < sinA < %

6. If cos(B — Y) + cos(y — Q) + cos(0t. — B) = _73, prove that sin0 + sinf} + siny = 0 and
cosO. + cosP + cosy = 0.
7. If tan(0L + 0) = ntan(0 — 0), then prove that (n + 1) sin20 = (n — 1) sin20L.

8. If o and [ are the roots of the equation atan® + bsecO = c, then prove that tan(0. + ) = %.

—C
9. Find the maximum and minimum values of 3cosO + SSin(e —%).

10. Prove that sin10° - sin30° - sin50° - sin70° = %.

11. Prove : cos% + cosgi—qt + cos51—71t + cos71—71t + cos9—71I = %
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12.

13.

14.

c0580 cos50 — cos120 cos90
sin80 cos50 + cos120 sin9O

Prove that = tan40.

m+n

T 2T
Prove that mtan(e—g) = ntan(e*‘T) = co0s20 = e

Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the right
so that the statement becomes correct :

cos 10° + sin 10°

(1) The value of 05 10° —sin10° 'S [
(a) tan25° (b) tan35° (¢) tan55° (d) tan80°
(2) The value of c0s245° + sinl55° is ... ]
J2+1 S+ J3-1
(@ 0 (b) 5 © ~5 @ 5
(3) The value of cos(270° + ) cos(90° — o) — sin(270° — L) cosOL is... ]
(@) —1 (b) 0 © 3 (d) 1
(4) The value of 2sin(%) sin(sl—jzt) is ... ]
—1 -3 1
(a) St (b) 1 O (@ 1
(5) If A =125 and x = sinA° + cosA°, then [ ]
(a)x<0 (b)yx=0 (c)x>0 dx=0
(6) If tanot = n’}rl and tanf} = 2nl+19 O<aoP< %), then o + P is ... [ ]
T T yis
(@) 0 b T ©Z @z
tan 50° — tan 40°
(7) The value of EEsra— R []
(@0 (b) 1 (© 2 (d)3
(8) sin190° + cos190° ... []
(a) is negative (b) is zero
(c) is positive (d) is not defined.
fan 225° + tan 345°
o _ .
(9) If cot15° = m, then o 195 — tan Tos° 1S []
m-1 om m’—1 m+1
(@) m? +1 (b) m2+1 (©) e +1 (d) e +1
(10)The value of log tan1® + log tan2° + ... + log tan89° is ... ]
(a) 0 (b) 1 (c) 2 (d) 3
1—tan*15°
(11) The value of _1+tan215° 1S ... []
(@) 1 (b) L © 2 @ V3
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(12)The value of cos480° sin150° + sin600° cos390° is ...

(@ 3 (b) 0
(13)tan25° + tan20° + tan25° tan20° is

(a) 0 ) 1

(c) -1
equal to ...

© 3

d) 3

(d) 2

(14)In AABC, if tanA = %, tanB = L, then the measure of angle C is...

3
s T
(@) () 5
(15)The value of J3cosec20° — sec20°

(a) —4 () 1

37T
() &
is ...

(c) 2

(16)The value of J3sin75° — cos75° is ...

@ 75 (b) 1

2T 231 25T —
(17)cos = + cos = + cos >

(@ 3 (b) 0
(18)The value of cos15° — sinl5° is ...
—1
@ 5 (b) 0
(19)cos27%O — cos237%0 is equal to ...

(@) 3 b) 7

We studied following points in this chapter :

1.
P

Sk

cos(. — B) = cos cosP + sindi sinfd
cos(O + B) = cosa cosP — sindi, sinfd
cos(%—e) = sin0, sin(%—e) = cos0O
. sin(0L + PB) = sin0 cosP + coso sinfd
. sin(0t — B) = sintt cosP — coso sinf3
sin% = _,/E;,/E cos% = ,/E-:,/E

() V2

© 7

© 3

© 3

Summary

. sin(0L + [3) - sin(OL — B) = sin®0l — sinZB

sin(0L + B) - sin(OL — B) = COSZB — cos0l

(d) 2

(d) 4

(d) 242

d) 3

@) 75

@) 75
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8. cos(0 + B) - cos(at — B) = cos?or — sinfd
cos(OL + [3) - cos(OL — [3) = c0s2[3 — sin?oL

9. The range of f(O) = acosO. + bsin3, o, B € R, a, b, € R, > + b> # 0
is [_Jaz +b° ‘/az+b2 ]

In proper domain,

tano. + tanf3
10. tan (0L + B) = T=tanc-fanp

tano. — tan

1L an (0.~ ) = 1+ tanao. - tan

cota-cotf—1

12. cot (0L + B) = cotP+ cota

cota.-cotP+1

13. cot (0 — PB) = cotB —cota.

14. tan%=2—\/§, c0t%=2+\/§

15. 2sindi, cosP = sin(oL + B) + sin(ar — P)
16. 2cosOl sinB = sin(0C + B) — sin(OL — B)
17. 2cosO. cosB = cos(OL + B) + cos(OL — B)
18. 2sindi sinfd = cos(ot — B) — cos(ot + P)

C+D C-D
19. sinC + sinD = 2sin( > ) cos( 3 )

C+D C-D
20. sinC — sinD = 2cos( > ) sin( > )

C+D C-D
21. cosC + cosD = 2cos( ) ) cos( > )

C+D C-D
22. cosC — cosD = —2sin( ) ) sin( > )

— ‘ —
L X

Aryabhata is also known as Aryabhata I to distinguish him from the later mathematician
of the same name who lived about 400 years later.

The surviving text is Aryabhata's masterpiece the Aryabhatiya which is a small
astronomical treatise written in 118 verses giving a summary of Hindu mathematics up to that
time. Its mathematical section contains 33 verses giving 66 mathematical rules without proof.

The mathematical part of the Aryabhatiya covers arithmetic, algebra, plane trigonometry
and spherical trigonometry. It also contains continued fractions, quadratic equations, sums of
power series and a table of sines.
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Chapter S

VALUES OF TRIGONOMETRIC FUNCTIONS FOR
MULTIPLES AND SUBMULTIPLES

Geometry is not true, it is advantageous.
— Henri Poincare

Since the mathematicians have invaded the theory of relativity, I do not
understand it myself anymore.
— Albert Einstein

5.1 Introduction

In this chapter we shall use addition formulae to obtain values of trigonometric functions for
multiples like 20, 300 etc. of O and for sub-multiples like % of O.. Then we will obtain the values of
trigonometric functions for some standard particular numbers and finally, we will use them for proving
some conditional identities.

5.2 Trigonometric Functions of 20
(1) Formula for sin20. : For O, B € R,

sin(0L + ) = sin0L cosP + cosaL sinf3

Substituting B = o in this formula,

sin(0 + Q) = sinQ cosO + cosOl sinQL

sin20, = 2sinQ, cosO. (i)
(2) Formulae for cos20. : For O, B € R,

cos(0L + PB) = cosoL cosP — sint sinf3

Putting 3 = o in this we see that,

cos(OL + O) = cosO. cosOl — sinQL sinQL

cos20, = cos*OL — sin*QL (ii)
cos20. = cos?0. — (1 — cos*Ql)
cos20. = 2cos*0L — 1 (iii)
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Again, cos20 = cos>0L — sin?QL
=1 — sin®0, — sin’o.
cos20. = 1 — 2sin®0 (iv)

So we have, cos20L = cos?0, — sin?*0L = 1 — 2sin*0 = 2cos?0, — 1

Thus, once sin®t and cosOl for & € R are known, we can obtain the values of sin20¢ and
cos20. using above formulae. Also values of sine and cosine functions for numbers that are twice of
the given numbers can be obtained.

From (iii) and (iv) we have,

1 + cos20. = 2cos?0l, 1 — cos20, = 2sin’0.
These are quite useful forms.

If we replace 200 by Ot (and so O by %), we get

. — e O o
sinQl 2sm—2 cos=

_ 200 _ .20
cosOl cos 5 Sin 5

Also we have 1 + cosOl = ZCosz% and 1 — cosOl = 2sin2%

(3) sin20l, cos20 and fan20. in terms of tanCl.

sin20L = 2sinQ - cosOL

28in0L - cosoL.

= 2 . 2 —
cos*a.+ sin*o. (cos“0L + sin“0L = 1)

Ifoaoe R— {(2k - 1)% ‘ ke Z}, then cosQ # 0. So let us divide both numerator and denominator

by cos?0l. Then,

_  _2tano.
sin200 = 11 )
cos20L = cos*0L — sin*Ql
cos0. — Sintu,
~ cosfu.+ sinto,
Again, taking 0t € R — {(2k - 1)% | ke Z}, cosOL # 0, we divide both numerator and denominator
by cos?dl, to get

_ 1-tarto, .
cos20l = T+ a0 (vi)

Now suppose O and 20( both are in the domain of fan. Then
tan20. = tan(OL + O0)

= = faro tane (@ € R-[{ek—0F% ke z} v {ek—DE [ ke Z}]

) 2fano. ..
That is fan20L = 7_, 2 (vii)

Finally, assuming that Ol and 20 are in the domain of cof, we can similarly prove that

co20l, = % (oc € R-— {% | ke z}) (viii)

Note that if 00 # kTTE for all k£ € Z, then certainly Ot # kTt for all k£ € Z, because ATt = Zan,
2k € 7.
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2
Thus, if o # &2 for all k € Z then cor20r = 2 %1

2cotL
In the results (v), (vi) and (vii), if we replace 200 by O (and so replace O. by %), we get
2tans 1—tarr < 2tans
sin0L = m, cosOlL = m and fanQl = m.
If we put tan% = 1, then above formulae become
) _ar - _ar
sinolL = 1+12> cosOL = 172 and tanQl = 1—72-
5.3 Trigonometric Functions of 30
(1) sin300 = sin(200 + O0)
= sin20L - cosOL + cos20L - sinOl
= (2sin0L - cosQ) - cosO + (1 — 2sin*QL) - sin0L
= 25in0L - cos?0L + sinO — 2sin> 0L
= 2sin0 (1 — sinQl) + sinOL — 2sin>0L
= 2s5in0L — 2sin>0L + sinOL — 2sin>0l
= 3sin0l, — 4sin> oL
$in30L = 3sin0. — 4sin30L (ix)
(2) cos30L= cos(OL + 20QL)
= cosO* cos20. — sinQL. - sin20L
= cosO, - (2cos?0. — 1) — sin0L (2s5in0L cosOL)
= 2c0s30L — cosO. — 2cosOL - sin*OL
= 2c0s300 — cosO, — 2cos0. (1 — cos0L)
= 2cos30L — cosOL — 2cosOL + 2cos 0L
= 4cos30L — 3cosOl,
cos30.= 4cos30l — 3cosOL (x)
(3) Taking O, 20, 30 in the domain of tan,
that is 00 # (2k— D&, o0 # 2k — DI and o # (2k - NE ke z
(Remember that every odd multiple of % is an odd multiple of %, for example 3% = 9%[

ie. {(2k— 1)% | ke z} - {(Zk— 1)% | k e z})

tan30L = tan(20. + L)

__tan20.+ tano.
T 1—tan20o. tan

2tan o

1—tan’?o.

= 2tan o
1

+tan O

lan o

1—tan’o,

2fan o, + tan oL — tan >c.

1 — tan >0 — 2tan 0.
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3tan 0, — tan 3o,

_ Jan O —fan "o _ _ &
= T g ®ER {(2k DE. ke z}

3tan o, — tan’ o

_ Jlano —fam 0 _ _nE i
tan30 = ——_—5-—. 0L € R {(2k e, ke z} (xi)

This formula remains true even if 20 is in the domain of 7an. 20t € D,,,)

Similarly, we can prove that if O, 20 and 30t € D, ), , then
o %k o= AL oz AL g e 7
kr
fim ke 2 c (= ke
cot’o.— 3cot o
= — _ (kn ..
cot30L oo -1’ o e R { 3 ‘ke Z} (xii)

Indeed, this is true for all O = kTTC, ke Z.

Thus, for any 00 € R, we can calculate sin30,, cos300 and fan30l, if sin0O, cosOl and fanQ.
are given. Also values of trigonometric functions of 40, 5Q(, ... etc. can be expressed in terms of
trigonometric functions of OL.

sin 9+ cos%

@) 1+sin%—cos 0

Example 1 : Prove : (1) % = tan®

= cot8
cot2

3) % = tan(%—e) (4) sec® + tanB = tan(%+%)

$in20 25in0 cosH

Solution : (1) LH.S. = 77755 = 2cosB tan® = R.H.S.

8
2
1+sin%—cos 3]

sin B + cos

(2) L.H.S.

B 0 0
2sin 5 cos <+ cos =

sin%+ (1-cos 8)

0 .0
cos= (2 sin =+ 1)

8
2

sin2 + ZSiI’lZ%

0 . 0
C0S7 (2 sin = + 1)

B | - 0
s1n3(1+2sm3)
s}

COSE

= = e =
sin% cot2 R.H.S.

. T
sin (— -20

cos20 2
1+ sin20 —

(3) LHS. =

(cosA = sin(%—A), SinA = cos(%—A))

1+cos(%—26)

2sin (%—8) cos (L—G)
= o (%—6; = tan(%—e) = R.H.S.
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(4) L.H.S.

= tan(£+2) = RHS.

Example 2 : Express cos40 in terms of cosO and sin50 in terms of sin0.
Solution : cos40 = cos2(20)
= 2c0s%20 — 1
=2(2c0s%0 — 1)2 — 1
= 2(4cos*0 — 4cos?0 + 1) — 1
= 8cos*0 — 8cos?0 + 1
sin50 = (sin50 + sin@) — sind
= 25in30 cos20 — sind
= 2(3sin® — 4sin30)(1 — 25in?0) — sin®
= 6sin0 — 12s5in°0 — 8sin30 + 16sin°0 — sind
sin50 = 16sin°0 — 20sin30 + 5sind
Example 3 : Prove that cosA - cos(60° — A) cos(60° + A) = %cos3A and use it to find the value of

c0520° . cos40° . cos60° . cos80°.

Solution : L.H.S. = cosA - cos(60° — A) cos(60° + A)

= cosA(cos?60° — sinA)
- cosA(% — sinzA)

- cosA(% - (1 - coszA))
= cosA(—% + coszA)

= i(4COS3A — 3cosA)

= %cos3A = R.H.S.

Now, c0520° . cos40° . cos60° . cos80° = 5(cos20° - cos(60° + 20°) cos(60° — 20°)

= %Hcos3(200)] (A = 20
-1 o1 1 _ 1
8(:0s60 S X > T

Example 4 : Prove that cos’0 + 0053(2%+9) + cos3(47n+9) = %00539.

Solution : We know that cos30 = 4cos30 — 3cos0. So, cos30 = %(c0s39 + 3cos0)
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L.H.S. = cos’0 + cos3(2?n+e) + COSS(4T7I+G)
= %[cos39 + 3cos0] + %[cos(m‘t +30) + 3cos(2?n+9)]
+ %[005(475 +30) + 3cos(4?n+6)]

= %[00539 + 3cos0] + %[00539 + 3605(2?7:4_6)]

+ %[cos39 + 3cos(47n+9)]

= 300530 + é[cose + cos(z—n"'e) + cos(4—n+9)]

4 4 3 3
= 30530 + i[cose + 2cos(Tt + 0) cosﬂ]
4 4 3
=3 3 — 1
4cos39 + 4[c0s9 2co0s0 X 2]
= %cosSG + %(cose — cos0) = %cos39 = R.H.S.
5 : sin2" A )
Example 5 : Prove that cosA - cos2A - cos2A - cos2?A - ... - cos2"~ 1A = A and use it to find
27T 47T 8T 147C
the value of cos (5 + COSTE + COSTT - COsT=
Solution : sin20 = 2sin® cosO
0= sin20
cos 2sin 0
L.H.S. = cosA - cos2A - cos2?A - cos23A - ... . cos2" — 1A
_ simA SimQA)  sin2*A)  Sin2(2°A) sim22" ~'A)
28inA C O 25imA T osin2?a  2sin2A T 2sin2"7'A
sin2(2" 1A) sin2"A RS
- 2".sinA T 2%esina T
2n AT 8m M _ _ 21 Anm 8T | I
COSTT + COS=5 + COSTT » COS—% COS5 - COSS + COST T - COSTE
4r _ ( - E) S E)
(cos 15 cos\TC 15 cos 15
. 16T
_ Sll’ll—5
s, TU
16sznﬁ
sin (n+%)
-
16smﬁ
- T
- sin = L
. T
16smﬁ 16
Exercise 5.1
Prove (1 to 19) :
, sin20 0 5 cos20 (n -8
© T—cos2B _ o © Ttsinzd NG )
; 0 9 _ 5 0 s cosO 3 (n 9)
. tani + cot; = 2cosec © Trsin® - tan T
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1+ 5in20 + cos20 T 0 T 0} _
5. T¥sin20 cos20 cor® 6. tan(z ?) + m”(f_f) = 2sec
cot® —tanB
7. —1 i = secO - cosecO = 2cosec20
—2sin"0

8. sec20 — tan20 = tan(%—e)

sin 50 —2sin 30 + sin 6
cos 58 — cos O

= tan0

sin® —sin30

10. = 2sin0

sin*0 —cos’0
11. \/§COS60200 — sec20° =4
12. 2(cos®0 — sin®0) = cos20 + cos320

13. If tanol = 3 and l‘anE =1 then tan(OL + B) = 3.

14. If cosB = %( ) then cos20 = 2(x2 +éj and cos30 = %(X3 +L3j

sin’A — sin’B

Ao o 1

1S. SIN2A — sin2B ztan(A +B)
sin 30 cos30

16. S0 T co® 2
cos30  sin30 _

17. 050 + == S0 = 4¢0s20

18. c0s30 sin30 + sin30 cos30 = %sin49
19. ¢0s30 cos30 + sin30 sin30 = cos320

20. If sinA = 2 LKA = then find the value of sin2A, cos2A, tan2A and sindA.

21. If 150 = T, then prove that cosO . c0s20 . cos30 . cos40 . cos50 . cos60 . cos70 =

22. Show that \/2+‘/2+ ‘/2+2c0s89 = 2co0s0, where 0 < 0 < %

128 )

23. Prove that tan® + tan(%JrG) + tan(—+9) = 3tan30 and deduce that
1an20° + tan80° + tan140° = 34/3.

24. Prove that tan© . tan(%+9) tan(——e) = tan30 and deduce that

1an6® . tand2° . tan66° . tan78° = 1
25. Prove : cos60 = 32¢0s%0 — 48cos*0 + 18cos?0 — 1

*k

5.4 Trigonometric Functions of % in Terms of cosOl

(1) We know that cos20t = 1 — 2sin?0L. If we put O in place of 20! (and % in place of ), we get

cosOL =1 — 2sm2g
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(@)

(€))

5.5
(1)

2)

2Sil’l2% =1 — cosO
oo _ l—cosa
Sin°=3 —

Similarly, substituting O in place of 20¢ (and % in place of Q) in cos20L = 2cos?OL — 1

2cos2% =1+ cosO

s oL 1+ cosd
A ? = —

CO =
2
. 1—cos
sin*&
20L _ 2 _ 2
tan 5 = cos2s T 1+cos o
2 2

5 1—cosa.
lan“= = T¥cosa

Values of Trigonometric Functions for Some Special Numbers

sin18° :

Suppose 6 = 18°

50 =90°
30 + 20 =90°
20 =90°— 30

5in20 = 5in(90° — 30)
sin20 = cos30

25in0 cosO = 4c0s30 — 3cosO

25in® = 4cos?0 — 3

2sin® = 4(1 — sin?0) — 3
25in® = 4 — 4sin’0 — 3
45in0 + 2sin® — 1 =0

sin@ =

24 ‘/22 — 44 (-1

2(4)

_ —24J20 _ —2+2)5 _ —1+45

8

Here O = 18°. Hence, P(0) is in the first quadrant.

sin® > 0
sin18° = S5
4
cos18° :

Substituting 6 = 18° in cos?0 = 1 — sin0, we get

cos?18°= 1 — sin’18°

:1_(&

4

8

]2:

4

16—5+2J5—1

16

O # 2k — )T k € Z)

(cos18° # 0)
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cos?18°=
16
cos180 = |10 J;62'/§ (0 < 18 < 90. So cos18° > 0)
(3) cos36° :

Substituting © = 18° in cos20 = 1 — 25in%0, we get
c0s36° = 1 — 2sin18°

S-1Y

5-2/5+1
1 =2 "7 —
_8—5+2d5-1 _ 24245 _ J5+1

8 8 4

J5+1

4

cos36° =

4) sin36° :
Substituting © = 36° in sin20 = 1 — cos20, we get
sin?36° = 1 — cos236°

(J§+1]2

B (5+2'/§+1} _16-6-2J5 _ 10-245

16 16 16

sin36° = |10 ‘162‘/5 (0 < 36 < 90. So sin36° > 0)

We can similarly get sines and cosines of multiples of 18 like 54, 72, 144 etc. In fact,

sin72° = sin(90° — 18°) = cos18° = ““;62'/5

and sin54° = sin(90° — 36°) = cos36° = J§4+1

Similarly, cos72° = 5in18° and cos54° = sin36°

. 1° . T,
&) st22 or sin-g :
Putting 6 = %O in sin20 = ﬂ, we get
. 2450 . 1—cos 45°
sint S = T
—L
_ 2
2
_2-1
202
I el SRR T
22 V2 4
sind2” = 2;‘/5 0 < 221 < 90. So sin221° > 0)
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(6) In the same way, we get COSQQ%O — JZ-IZ-JE

7 tanZZ%0 :

2450 _ 1—cos45
2 1+cos4s

i
l_ﬁ J2-1 J2 -1 E—l_(ﬁ_l)z

- 1+% R R SN R - S

Now, 0 < 221 < 90. Hence, 1an221" > 0
an22L” = 2 -1
Similarly, we can show that cot22%o = V2 + 1. We can also get value of sines and cosines
of 67%0 etc.
1 0 . lO . lO _ lO lO _ lO
cos675 = sm222 s sm672 005222 and tan672 cot222
0

Example 6 : If cor® = = g + cos3-.

= % < O < T, then find the value of sin

Solution : Since cot® = 1_—25, tan = _le

secze=1+tan29=l+%=%

secO = i%. Since % <O<T, secO <0

=5

13 =
13

5 - Hence, cosO =

sece = -

.29 _ 1-cos® _ 15 _ 18
Now, sin > — > 3
. So sine >0

; i T8 g
Smce2<9<7t,4<2< 5

wla

Q
S
(o2}
vl
Il
|N
—_
ENH
N
w|@
N
w|s
N

Example 7 : Prove that sin*Z + sin* 3 sint AR+ gin

8 8
Solution : L.H.S. = sin4% + sin* 3% + sz‘n“%E + sin*

I
2
I
=
|2
+
2
I
=
W
a o0
+
2
I
=
—_—
a
|
oo|;;
p—
+
2
I
~
—_——
a3
|
oo|
S ——

[
V)
—_
]
S
=~
|a
+ .
]
—~ o0
[98)
=
N—

Il
[\°]
—
—
”
<
S
[\
)
ool
~
[§8}
+
U
<
[}
W
4

2
)]
- T\2 - 3T \2 —
_ 2[(1 02054) n (1 czos4 ) ] (sin29 _1 c;)sze)
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&

[(1 = cos %)Z (1 = co 3})2]
(%) + (-]
-2 +1+14+42]

= R.H.S.

Il
I\le—

[\CY [SCT ST (T

[1+

Nl»—

Example 8 : If sin0, + sinfd = a and cosO. + cosP = b, prove that

(1) cos(ot — By = HE=2 (g tan(ugﬁ) - iﬁ%
Solution : (1) We have sinQ. + sinfd = a and cosO. + cosP = b
Squaring and adding,

(sinOL + sinB)2 + (cosOl + cosB)2 =a? + b?

sin* 0L + 2sin0l sinfd + sin?B + cos?0l + 2cos cosP + cos?P = a® + b2

2 + 2(cosO cosP + sinQ. sinf) = a* + b?
2 + 2cos (0L — B)=a2 + b2

232 _
cos(()c—f)):%b2
S(oo—=B)  I—cos—B)
(2) Now, fan ( > j ~ 1+ cos (o - B)
a’+bh%—2

] - ———o
o P
tanz( B) = a2+p2_n

1+ >

- 4—a’-b*
i[858 er

2 a’ +b?

o-p ’4—az—b2
tan( > ]=i a’+b?

8}

Example 9 : Prove sin*0 « cos*0 = <= : (3 — 4c0s40 + c0s80)

128
Solution : sin%0 - cos?O = (sin® cose)4

%(2sin9 cos0)*

%(sin29)4

A2 2
16(sm 20)

1 [ 1=cos49 2
16 2

(1 — 2cos40 + cos?40)

_4
_ 1 _ 1+ cos8O
=% (1 2¢0s40 + T)
= o5 (2= 4cos40 + 1 + cos80)

= % (3 — 4cos40 + cos80)
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10.

11.

12.

5.6

Exercise 5.2

If tanx = 2 ,T<x< 37[ , find the values of smi, cos% and tani.

If cosOlL = %, cosf =

o — o —
13, 0<aq, [3 < & then find the values of sin ( 3 B] and cos? (TB)

Prove : (3 to 12)
cos®0 — sin0 = Z(cos329 + 3c0s20)

cos’A + cosz(A +2?7t) + cosz(A—zTn) = %
sin?A + sin (A +—) + sin (A +4T7t) = % Deduce this from example 4.

(1 + cos—)(l + cos—)(l + cos—)(l + cos%c) = %

sin*0 - cos?0 = L [2 — 0520 — 2cos40 + cos60]
sin%0 = 3% [10 — 15c0s20 + 6c0s40 — cos60]

sin6° «+ sind2° - sin66° - sin78° = %

cos6° « cos42° + cos66° - cos78° = %

27T 47 8T 14T _
16cos15 COST5 * COSTT * COST3 =1

(1 + cosﬁ)(l + cosig)(l + c0s716c )(1 + cosglg) = %

%
Conditional Identities

Now we shall discuss some identities satisfying certain conditions.

e.g. sin2A + sin2B + sin2C = 4sinA sinB sinC for A + B + C = 7. This identity is true for all

A, B, C satistying the condition A + B + C = Tt. Therefore, this identity is called a conditional identity.

On the other hand sin?A + cos?A = 1 is true for every A without any condition. This is an example of

an unconditional identity.

Most of the relations, relating to the angles of a triangle are of the type of conditional identities. They

are useful in understanding the properties of a triangle. Here we need to keep the following in mind.

A+B+C=1
A+B 1 C

A+B=m—C and

A+B
sin(A + B) = sin(m — C) and sin( ; ) - sm(% %)

. . . {A+B C
sin(A + B) = sinC and sin| — = cos>

In the same way,

A+B . C
cos(A + B) = —cosC and cos| — = sin=

102
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Example 10 : If A + B + C = T, then prove that
sin2A + sin2B + sin2C = 4sinA sinB sinC.
Solution : L.H.S.= sin2A + sin2B + sin2C
2sin(A + B) cos(A — B) + 2s5inC - cosC

= 2sin(M — C) cos(A — B) + 2sinC - cosC A+B+C=m
= 25inC « cos(A — B) + 2sinC - cosC

= 2sinC [cos(A — B) + cosC]

= 2sinC [cos(A — B) — cos(A + B)] A+B+C=m
= 2sinC [—2sinA - sin(—B)]

= 4sinA sinB sinC (sin(—B) = —sinB)
= R.H.S.

Example 11 : f A+ B + C = %, then prove that

cos?A + cos?B + cos’C = 2[1 + sinA sinB sinC].

cos?A + cos’B + cos?C

1+ cos2A 1+cos2B 1+ cos2C
- > + 7] + 2

Solution : L.H.S.

= %[3 + cos2A + cos2B + cos2C]
= %[3 + 2cos(A + B) cos(A — B) + 1 — 2sin?C]

= %[4 + 2cos(A + B).cos(A — B) — 2sin’C]

=2 + cos(£-C) . cos(A — B) — sin’C (A+B=Z -0
= 2 + sinC [cos(A — B) — sinC]
= 2 + sinC [cos(A — B) — cos(A + B)] (A +B=I - c)

= 2 + sinC [—2sinA - sin(—B)]

= 2 + 2sinA sinB sinC

=2 [l + sinA sinB sinC]
or second method :

L.H.S. = cos’A + cos’B + cos’C

cos’A + 1 — sin®B + 1 — sin’C
=2 + (cos’A — sin’B) — sin’*C
=2 + cos(A + B) cos(A — B) — sin’C

=2+ cos(%—C) . cos(A — B) — sin’C
=2 + sinC - cos(A — B) — sin’C

= 2 + sinC [cos(A — B) — sinC]

=2 + sinC [cos(A — B) — cos(A + B)]
= 2 + sinC [—2sinA - sin(—B)]

= 2[1 + sinA sinB sinC] = R.H.S.
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Exercise 5.3

If A+ B + C = T, prove that

(1) cos2A + cos2B + cos2C = —1 — 4cosA cosB cosC

2) sinA + sinB + sinC = 4cos% cos% cos%

(3) cosA + cosB + cosC =1 + 4sin% sin% sin%

4) sin*A + sin®B + sin?C = 2(1 + cosA cosB cosC)
(5) cos?A + cos’B + cos?C = 1 — 2cosA cosB cosC

6) sin?d 4 sinzg + 5in?S =1 — 2sinl sin2 sinS

2 2 2 2

2A 2B 2C _ ( inA ¢inB
(7) cos 5 + cos > + cos > 2(1 +sm2 sin=

(8) sin’A + sin®B — sin’C = 2sinA sinB cosC
IfA+B+C= %, prove that

(1) sin*A + sin’B + sin®C = 1 — 2sinA sinB sinC
(2) sin2A + sin2B + sin2C = 4cosA cosB cosC
(3) sin’A — sin®B + sin?C = 1 — 2cosA sinB cosC

*

Miscellaneous Problems :

2

Sin

Example 12 : Prove that tan142%0 =2+J2-J3 - 6.

3 fon 1°_ 1°
Solution : l‘anl422 lan(90° + 522 )
— 1°
= —cot52 >
= _ 1°
= 001(450 + 72 )

cot 7%0— 1

cot 7%0 +1

710 .710
_ _COS > — Sin >

10 . _10
COS7? + sm7§

C

2

)

10 . 10 10 i 10
_ cos 75 _ Sll’l73 cos 72 Sll’l72

10 . 10 lO_ . lO
cos 73 + sin 73 cos 72 sm72

710 .7102
cos > — Sin >

2510 222510
Cos™l5 — sin" 73

. o o)
1-2sin 7% X cos 7%

o . o
cos? 7% — sin? 7%
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1—sin 15°

cos 15°
| — sin (45° = 30°)
T cos(45° —30°)

l_ﬁ—l
22
V3+1
22
22 -3 +1

J3+1
Q2 -3+ W3-
T WBHD @B

V6 =22 =3+ 3 +3—-1)

=-Joe+2+2-43
=2+2-V3-V6

Example 13 : If A+ B + C = T, then prove that
T—A T-B T-C
sm— + sm— + sm— =1+ 4sm( 7 ) sin( 7 ) sm( )
T—A -
Solution : RH.S. =1 + 4sin( 7 ) sin( ) ( 7 )
_(B+CY . A+C A+B
=1+ 4sin| — sin 7 A+B+C="m
B+C A+C + B
=1+ 2(2sin( 7 j sin( )) ( ))
A+B + B+ 2C
=1+ 2sin( 7 ) [cos( ) ( )]
A+ B T — +C
=1+ 2sin( T j cos( ) — 2sm( j cos( 7 )

=1+ (sin% + sin%) (sm— — sin&

2

= inB A T i C
1+sm2 +sm2 sin= +sm2

= ¢pd B i C =
sin= +sm2 +sm2 L.H.S.

Example 14 : If o0 and B be the roots of the equation acos® + bsin® = c, prove that

o+
tan + tanE = L. Hence, deduce that tan( ) B) = Q.

2 2 a+c a

Solution : acos® + bsin® = ¢

1-tan* 2tan
1+tan29 +b 1+tan29 - ¢
29

a — atan“= + 2btang =c+ ctan29

(a + ¢ tanzg - 2btan% +(c—a=0
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This is a quadratic equation in tan% and its roots are tan% and tan%.

_ c—a
tan + tanE = —(Lbj =2 and tan: . tan% =

2 2 a+c a+c 2 c+a
o+p tan%+tan%
Now, tan| = = B
1= tan tan
2b_
__atc 2 2 _b
o |_t-a T atc—cta 2 g
C+a

Example 15 : Prove using principle of mathematical induction,

cos® + cos20 + cos30 +...+ cosn® = sin (nJ;1)6 . cos % . cosecg — 1.

Solution :

Let, P(n) : cosO + cos20 + cos30 + ... + cosn® = sin (an -;1)9 . cosn—2e . cosec% -

For n =1, LH.S. = cosO, RH.S. = sin0 . cos% . cosec% —

sine-cosg
= e |
sin=
25in8 . cosd . cosd
_ 2 2 2 _
T |
sin=

= QCOSZ% —1
= cos® = RH.S. (cos20 = 2c0s%0 — 1)
P(1) is true.

Let P(k) is true.

cos® + cos20 + cos30 + ... + cosk® = sin(k + 1)% . coskTe . cosec% -

Let, n =k + 1

L.H.S. = cosO + cos20 + cos30 + ... + cosk® + cos(k + 1)0
sin (kilje-cosk—ze

= — 1+ cos(k + 1)0

8
sin =

- 0 (2sin(k;1j9cos%+2sme cos(k + 1)9)— 1

25in3 5
- 2silng [s"”w + Sin% + sinw _ Sl-n(zk;rne] iy
- [ 22 )] -
= si,l,l% [%-QSin k *;2)9 .cos(k;ne] .
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10.

11.

12.

13.

14.

15.
16.

= o k+20  (k+DB 0
= sin 5 cos 3 cosec= 1

P(k + 1) is true.

P(k) is true. = P(k + 1) is true.
P(n) is true for Vn € N by PM.I.

Exercise 5

Prove : (1 to 15)

lan(%+%) = secO + tan0

cot 8 + cosec © — 1

cot®—cosecO+1 Ol
3cos2B—2

tanCl = \/gtanﬁ = cos20 = m

o —tan*2 8
tans = int = ——¢
an= cos® = sinQl, = |+ tan* 8
If 5in® = a, then the roots of a(l + x2) = 2x are tan% and col%.
If cos® = a, then the roots of 4x2 — 4x + 1 = 42 are cos29 and sm29

If o and [ are the roots of the equation acos® + bsin® = c, then

6’2 _b2
(1) cosOl + cosB = acb2 and cosOl - cosB L b
2 b 2_ 2
() tano. + tanf = P_2 . 2 and fanQl - tanf} = B 02
—c
G) sina + B) = =L~
’+b

cos’0 = % [10cosO + 5c0s30 + cos50]

(2cosO + 1)(2cosO — 1)(2cos20 — 1)(2cos40 — 1) = 2c0s80 + 1

cosecO + cosec20 + cosecdO + cotd = cot%

(cos?48° — sin?12°) — (cos266° — sin’6°) = &

sec 80 —1 tan 80

sec40—1 ~ tan20

cote =2 + 3 +J4 + Vo

lan— = \/4+2J5 -2+
45in270 = J5+45 — 3-45

If x = sin® + cosO - sin20 and y = cosO + sin0 - sin20,

2 2
then prove that (x + »)3 + (x — »)3 = 2.
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17. If A+ B + C = T, prove that

. . . . (B-C . (C-A . ({A-B
(1) sin(B + 2C) + sin(C + 2A) + sin(A + 2B) = 4sin| — - sin| — - sin| —

2) cosd + cosB + cos& = 4cos(n_A) -cos(n_B) -cos(n_c)
2 2 2 4 4 4

18. Prove : AABC is right angled triangle <
cos?A + cos?B + cos?C = 1 & sin?A + sin®B + sin?C = 2
Prove by principle of mathematical induction : (19 to 22)

)
19. sinx + sin3x + sind5x + ... + sin(2n — 1)x = SLIL

sinx
20. LianX + Linx + o+ Lt = L ocor X — corx
2 2 4 4 N on on on
21. sin® + sin20 + ... + sinnd = sin (n -;1)6 . sinn—2e . cosec%
sin" 20
22. cosOL- cos20.- cos4Ol- ...- cos2" ~ oL = =, .
2"« sinoL

23. Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the right
so that the statement becomes correct :

(1) One root of 4x3 — 3x = % is ... ]
(a) sin70° (b) sin10° (¢c) sin20° (d) cos70°

(2) The range of the function cos*0 — sin0 is ... ]
(@) [0, 1] (b) [=1, 1] (¢) (0, 1) (d) (=L 1)

(3) The range of sec*® + cosec?0 is ... ]
(@ [1, o] (b) RT (c) [8, =) (R =11

(4) The value of c0s67%0 is ... ]
@ L2242 () 2242 © V2 -1 @2 +1

(5) The value of 3sin% — 4sin3% is ... []
(@) 4 (b) 1 © L (@) —+

(6) If sin® = %, % < 0 < m, then P(20) is in the ...... quadrant. ]
(a) lst (b) 2nd (c) 3rd (d) 4th

(7) One root of the equation 6x — 8x3 = /3 is ... []
(a) sin20° (b) sin30° (c) sinl0° (d) cos10°

(8) If o is the root of 25¢0s20 + 5cos® — 12 =0, % < 0 < T then sin2QL is ... [ ]
(@) 52 ) 5 © 3 (d) 3%
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sin30
(9) TS 200520 Is equal to ...

(a) —sin® (b) —cos0 (c) cosO (d) sin®

1+ sin® —cos0 2
I+ sin®+cosd ) 18

(10) The value of (

(a) tanze (b) 2001% (©) cotzg (d) 2c0sec2
(11) The value of 12sin40° — 16sin340° is ...
(a) =342 (b) 243 (©) =243 (d) 3v2
(12) If sin0. = _?3, T<a< 37“, then the value of cos% is ...
@ 7 ® 7 © 7 D 75
1+cosA  ,p .
(13) If 7= = P then tanA is equal to ...
2 +n? m* —n
+ 2mn 42mn_ 2mn m -
(2) T30 (b) £ © 0 d)
(14) cos ( ) — sin (ZL) is equal to ...
5- 5 e s
(a) 2J_ 1 © S5 (d)
(15) If cosOt = —0.6 and T < O < 37[ , then tanZ is equal to ..
1-45 J5—1 J5 S5+
@) — 2 © 5 2

(16) If0< B < % is an acute angle and 2x-sm29 + 1 = x, then tan0 is .

(@) x? -1 (®) {x?+1 (©) {x*-2 (d)
(17) If tanx = %, then the value of acos2x + bsin2x is ...
(@) a—»>b (b) a (c) b (da+b
(18) The value of cos6° - sin24° - cos72° is ...
=1 —1 1 1
(@) 5 (®) - ) 3¢ (d) 7
(19) The maximum value of the expression sin®0 + cos®0 is ...
1 5 13
(a) 1 (b 5 ) 3 (d) 5
(20) If cosA = 3 , then the value of 32sm% sms‘; is equal to ...
(a) —11 (b) =11 ) J11 11
*
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Summary

We studied following points in this chapter :

1.
2%
Sk

10.

11.

12.

13.

14.

15.

16.

17.

sin200 = 2sinQL cosOl
cos20L = cos?0L — sin?0L = 2cos?0L — 1 = 1 — 2sinQL

1 + cos20. = 2cos?0 and 1 — cos20. = 2sin’0L

. _ _2tanc.
Sin200 = 7 1 g2,
_ 1—tan’o.
COSC s e
2tanot
_ —<lant: T 5
tan20, = 7, o0 aeR-[{eck-nDRluiek-1nE} ke z
_ cot’o—1 _ fk=m

sin30L = 3sin0l — 4sin30L
cos30L = 4cos30L — 3cosOl

3tan o, — tan® o

_ — -
tan3o. Y= o€ R {(2k D&, ke Z}
cot30L — 3cot O
_ _ fk=m
o0l = s —— o€ R {—3 | k € Z}

: 1—coso.

2 2
cosz% — 1+;0S0(
tan2% = iliiiz o€ R-— {(Zk— 18%,4 | k e Z}
sin18° = ‘/54_1 , cos18° = 104;6%/5

sin36° = ‘/—10 _1625 , C0s36° = '/§4+1

sinZZ%o = 2;'/5 , COS22%0 _42+V2 , tanZZ%o =2 -1

2

. q—
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Chapter

TRIGONOMETRIC EQUATIONS
AND PROPERTIES OF A TRIANGLE

If equations are trains threading the landscape of numbers, then no train stops at pi.
— Richard Preston

Pure mathematics is in its way, the poetry of logical ideas.
— Albert Einstein

6.1 Introduction
In the previous semester and in chapters 4, 5 we have studied about trigonometric functions, their
graphs and their properties like zeros, range, periodic nature, identities. Trigonometry is useful in land
surveying. We know that by using trigonometry we can find the height of a hill without actually
measuring it. In 1852, Radhanath Sikdar, an Indian mathematician and a surveyor from Bengal,
was the first to identify Mount Everest as the world’s highest peak, using trigonometric calculations.
Trigonometry is useful in modern navigation such as satellite systems, astronomy, aviation, oceanography.
In this chapter we will learn how to solve trigonometric equations and properties of a triangle using
trigonometry.
6.2 Trigonometric Equations

2

A trigonometric equation is an equation containing trigonometric functions, e.g. sin“x — 4cosx = 1

is a trigonometric equation.
A trigonometric equation that holds true for all values of the variable in its domain is called a

trigonometric identity, e.g. cos20 = 2c0s20 — 1 is a trigonometric identity.
There are other equations, which are true only for some proper subsets of domain of functions involved.
We will learn some techniques for solving such trigonometric equations, as well as how to obtain the

complete set of solutions of an equation based on a single solution of that equation The equations

sinx = l has not only the solution x = E but also x = 5 T x=2m+ 7% x=3n-L ¢ etc. are also solutions
of sinx = 2 Thus, we can say that x = % is a solutlon of sinx = = but it is not the complete solution

of the equation. A general solution to an equation is the set of all possnble solutions of that equation.
Note that some trigonometric equations may not have any solution, e.g. sinx = Tt. Due to periodic nature
of trigonometric functions, if a trigonometric equation has a solution it may have infinitely many solutions.
The set of all such solution is known as the general solution.
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Look at the graph of y = sinx. Observe any of the horizontal line y = k£ where k varies from —1
to 1. We can see that the graph of y = k intersects the graph of y = sinx in infinitely many points
(figure 6.1). This means that if we take a € [—1, 1], then there are infinitely many real numbers x such
that sinx = a. For a solution of a trigonometric equation, we need a unique real number O such that
sin0. = a. For that we have to restrict the domain suitably. If we restrict the domain to [-Z, Z| or
[n, 3_7:] or [371: 2] etc. then we get a unique number O such that sinOl = a. We assume that the
restricted domain for y = sinx is —3, 2] In this domain any horizontal line y = &, k € [—1, 1]
intersects the graph of y = sinx only at one point (figure 6.2).

Y
A
< 2 > y=2
ra 1 - = - —1
I P s z = s 7
E—A\ / \ \ =
1 / \ / \ 5
s 2 % 4 \ 5 X
i N T O L TUN  3m /2T \ S 3
] Necie= oflr == |\ A | \ S
< \ / \ 7 \.u >
< N 1 oL > y=-1
e > y=-2
2 Y
W
Figure 6.1
Y
y = sinx 4
o 2 -
1
. 7 2
< 7 5
> 7 <
< *~—7i—5 7t —p X
P chme—ob|— e 3
< / 3
< o >
-1
€ > >
v
Figure 6.2

Similar situation arises for the function y = cosx. (figure 6.3)
We take the restricted domain [0, Tt] for y = cosx. (figure 6.4)

Note that any horizontal line y = a where | a | > 1 will not intersect the graph of y = sinx or

y = cosx. Thus sinx = a or cosx = a where | a | > 1 has no solution.
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F. 3
£ 2 :y:2
ra 1 - _1
o 71 )=
> Y 7 1 X F——2
- \ 7 \ 7 ) Y ¢
o8 x i Y1 = C X
s < i —271C 1\ —JT lf O E\\ T ff % 27C & N 28
- - - >
% T S - 1
x - —l - ’y
£ =) >y=-2
k4
Figure 6.3
Y
N
< 2 > y=2
e 1 e
< ~ Fy=1
o \ 2
< ‘\ >
= 0 =X & X
< . ?
< A\ >
< e »y=-1
-1
< >y=-2
_2 y
W
Figure 6.4

For the function y = fanx, if we draw any horizontal line in the plane it will intersect the graph of
y = tanx at infinitely many points (figure 6.5). This means that if we take any a € R, then there are

infinitely many real number x such that fanx = a. we need a unique value O such that tanQl = a. So we

have to restrict domain suitably. We take (—%, %) as restricted domain of y = tanx. (figure 6.6). We

shall discuss this in more detail when we study the concept of inverse trigonometric functions in the third
semester in 12th standard.

A H A "~

T ‘TE .«'r. "\ =

y = tanx Y
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A
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Figure 6.5
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Thus, for any a € [—1, 1] there is a unique O € [—%, % , such that, a = sinOL..
Also, for any a € [—1, 1] there is a unique Ol € [0, Tt], such that, a = cosOL..

Finally, for any ¢ € R there is a unique Ol € (—%, %), such that, a = tanO..
We know the set of zeros of sine, cosine and tangent functions. That actually means that we already
know the general solutions of the equations sin@ = 0, cosO = 0, tan® = 0.

sind =0 0=Im, ke Z

cos® =0 & 0=k + 1)%,ke Z

tan® =0 & 0 =km, ke Z

We shall now solve the equations, sin® =a, —1 <a<1,cos0 =a,—1 <a<1and tan® = a, a € R.

6.3 General Solution of sin® = a, where —1 < a <1

Here —1 < a < 1. Therefore, there is a unique O € [—%, %] such that, a = sinOL.
Now, sin@ = a = sinQ.
sin® — sin0l = 0

0+a . 00—«
sin
2
0+o . 0—-a
5 =0 or sin 5 =0

0+ o

2cos =0

cos

2

=+ DE oY =—untne z Why ?
> y

0=Qn+ 1)t —orO=2nw+ 0, ne Z

g ¢ ¢ ¢ ¢

O=0Cn+ D+ DT lotor O =2um + (=)0, n € Z

Therefore, the general solution is given by 0 = kTt + (—1)fo, k € Z.

(We have replaced 2n + 1, 2n by k because any integer is of the form either 2n + 1 or 2n)
Thus, sin® = sin0l & 0 = kTt + (ko k € Z
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Hence, the solution set of sin® = a, =1 < a < 1 is given by {7t + (—1)*0L | K € Z} where
- 1], in® = g = si
o€ [ > 2] and sin® = a = sinOL.

(We may take any Ot € R such that a = sinOl. The solution remains same. This convention of

taking Ot € [—E L 1is only for the uniformity of the form of the solution set.)

272
General Solution of cos® = a, where =1 < a < 1
Here —1 < a < 1. Therefore, there is a unique Ot € [0, T] such that, a = cosQL.

Now, cos® = a = cosO.

0+a sine—oc 0

cos® — cosO. = 0 <—2sin

2
<:>sine+a =Oorsine;a =0
= O+a = kT or 0-« =km, ke Z

S O0=2%kT—-0or@=2knw+ 0, ke Z
Therefore the general solution is given by 8 = 2km + o, k € Z.
Thus, cos® = cosOl & O =2kR T O, k€ Z
Hence, the solution set of cos® = a, —1 < a < 1 is given by {2kt £ O | kK € Z} where
o € [0, 7] and cos® = a = cosO..
General Solution of tan® = a, where a € R

Here a € R. Therefore, there is a unique O € (—%, %) such that, a = tanOL.

Now, tan® = a = tan0.

sin® Sinol
cosO coso.

tan® — tanol = 0 &

sin® coso. — cosO sind
cosO coso. B

sin(@—o)
cosBcoso.

< sin® — o) =0

S 0-0a=kn ke Z

SO0=im+o. ke Z
Thus, tan® = tan0l < O =kn + O, k € Z

Hence, the solution set of tan® = a, a € R is given by {kKTt + O | kK € Z} where

- T =g =
o€ ( > 2) and tan® = a = tano.

By the word ‘solve’ we shall mean to obtain the general solution set of the given equation.
Example 1 : Solve : (1) 25in20 — 1 =0 (2) sin*0 — s5in® —2 =0

Solution : (1) 2sin20 — 1 =0
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. - 1_ (E
sin20 = 5= sm( 6)
We know that general solution of sin® = sinot is kT + (—1)f0l, k € Z.

20 = kT + (— 1)k7t ke z

_ KT X
0=+ (1fZ ke z

Hence, the required solution set is {kn + (= l)k | ke Z}

() sin*0 — sin® —2 =10
(sin® + 1)(sin® — 2) =0

sin@ = —1 or sin@ =2

But sinf = 2 is not possible. (Why ?)
9 = —1 = ¢7 _l
So, sin® | sm( > )

0=kt + (— 1)k(——) ke Z

Hence, the required solution set is {kTE + (=1k+1 % | ke Z}.

Example 2 : Solve : (1) 2cos50 + \/5 =0 (2)2cos?0 — \/gcose =0
Solution : (1) 2cos50 + \/5 =0

_ B T — ST ST
cos50 = - = cos(Tt - F) = cos( 5 ) (T € |0, Tt])
We know that general solution of cos® = cosOl is 0 = 2k + O, k € Z.

50 =2kn + 3L ke 7

_ 24T
0 5

I+

%, ke Z
Hence, the required solution set is {% + % | k € Z}.
(2) 2cos?0 — ,/gcose =0
cosO(2cosO — \/5) =0
cos® = 0 or cosO = g = cos(%)
—(2k+1)7T ke Zor9—2k1'c+ ke z

Hence, the required solution set is {(Zk + 1)% | k € Z} ) {2k71: + I ‘ k € Z}

Example 3 : Solve : (1) sin5x — sin3x — sinx = 0 (2) cosx + cos2x + cos3x = 0
Solution : (1) sin5x — sin3x — sinx = 0
2cos4x sinx — sinx = 0

sinx(2cosdx — 1) = 0
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. T
sinx = 0 or cosdx = % = cos(§)

x=kW, k € 20r4x=2kni§,ke 7

X =km, k € Zoerani%,ke V4

Hence, the required solution set is {kTU | k € Z} U {an + % | k € Z}.

0

cos3x + cosx + cos2x = 0

(2) cosx + cos2x + cos3x

2cos2x cosx + cos2x = 0

cos2x (2cosx + 1)

Il
S

cos2x = 0 or cosx

I
|
|
|
)
S
T

1 _ . 2; (ZTR e [, 1t])

x=Qk+ DI ke z or x=2knJ_rZTT“,ke Z

x=Qk+DHE ke z or x=2kﬂ:i27n,ke Z

Hence, the required solution set is {(2k + 1)% | k e Z} U {Zk‘lt + 2Tn | k e Z}.
Example 4 : Solve : (1) tan?0 + (1 — \/g)tane - J§ =0
(2) tan® + tand® + tan70 = tanO tan40 tan7O
Solution : (1) tan®0 + (1 — V3)an® — 3 =0
tan*0 + tan® — \/gtane - ,/E =0
tan®(tan® + 1) — \/g(tane +1)=0
(tan® + 1)(tan® — \/5) =0
tan® = —1 or tan® = J§

tane = tan(—%) or tane = tan%

e:kn—%,kez or 9=kn+%,ke Z

Hence, the required solution set is {kTC - % ‘ k € Z} U {k‘lt + % ‘ k e Z}.

(2) tanB® + tan40 + tan70 = tanB tan4O tan70

tan® + tand® = —tan70 + tanO tan4O tan70

tan® + tan40 = —tan70 (1 — tanB tan40) (@)
First we prove that 1 — tan0 tan4® # 0.
If 1 — tan® tand® = 0 then by (i) we have tan® + tan40 = 0.

Thus, tan® tand® = 1 and tan4® = —tan® which gives tan’60 = —1 which is not possible in R.
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tan® + tan40

Now, by (i) we have T_7anBianid —tan70

tan(9 + 40) = —tan70
tan50 = tan(—70)
50 =kmt — 70, ke 7

_ kT
0= o ke Z
Also tan9, tan40, tan70, should be defined.

6 @m+ DT 40 = Qm+ DF. 70 = Cm+ DT, ke Z

If9=%,ke 7 then k # 6, 18, 30, ...

40 = k_37£ # (2m + 1)% forany k € Z — {6, 18, ...}
70 = % # (2m + 1)% forany k € Z — {6, 18, ...}

k# 6,18, ..
k#12n+6,ne€ Z
k is not odd multiple of 6.

The solution set is {%E ’ k € Z where k # 12n + 6}, ne’zZ

Example 5 : Solve : (1) 4sin® = cosec® (2) sec® + tan® =2 — 3

Solution : (1) 4sin® = cosecO

1

4s5in@ = Sin 0
45in’0 =1
sin® = i%

sin® = sin(%) or sin@ = sin(—%)

=i+ & keZ or 6 =kn+(_1)k(_%)’ke 7
O=im+ @ E keZ o O=km+(1)" 1L kez
O=imti ke z

Hence, the required solution set is {kTE i% ‘ k e Z}.
() sec® + tan®=2— 3 (i)

_ a o _ L 2443 _
Since sec?0 — tan’® = 1, we have sec® — tan0® D 2=+ 2+J§

sec® — tan® =2 + \/5 (i)
Solving (i) and (ii) we get, sec® = 2 and tan® = —J§
Note that the above is a simultaneous system of trigonometric equations.

Since cosO = % > 0 and tanB = —\/5 < 0, P(9) is in the fourth quadrant.
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cosO = cos(—%) and tan® = tan(—%)

0 = 2km — %, ke Z (P(0) is in fourth quadrant.)

Hence, required solution set is {2le: —% ‘ k e Z}.

6.4 The General Solution of acosx + bsinx = ¢, a, b, c € R and a* + b> # 0
For the given real numbers @ and b, we can find » > 0 and &0 € [0, 27) such that @ = rcosOl and
b = rsinQl. (chapter 4)

@ + b? = 12 cos?oL + 12 sinoL = 2

r=Ja+p r > 0)

Now, acosx + bsinx = ¢
rcosOL cosx + rsinOl sinx = ¢

rcos(x — Q) = ¢
cos(x — Q) = % ()

<

The last equation will have a solution if and only if < 1, that is if and only if ¢ < 2, that

is if and only if 2 < a? + b2
If cos(x — Q) = cosB, where cosB = %, [3 € [0, m], then the general solution of (i) is
x— O =2k £ B, k € Z where 0L € [0, 27) such that a = rcosOl and b = rsinQL.

Thus, if ¢2 < a?> + b2, the general solution of acosx + bsinx = c is

x =21+ 0ot [3, k € Z, where O € [0, 2T0) such that a = rcosOl and b = rsin0O, and

cosB = %, B € [0, ], r = ‘,a2+b2-

If ¢2 > a? + b2, the equation has no solution. In this case the solution set is §.
Example 6 : Solve : chosx + sinx = ﬁ
Solution : Method 1 : Here a = JE, b=1c¢c= ﬁ
P=a+p=3+1=4

Hence, r = 2. Here ¢2 < a* + b2. So the given equation has a non-empty solution.

a = rcosO. and b = rsinQl gives cosOl = @ and sinQl = % Therefore oL = %

— V2 _

= £ = =
Now,cosB—r 5=
- I
B=%

Hence, required solution set is {2k + L £ B | k€ Z} = {ZkTC + % i% ‘ ke Z}.
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Method 2 : \/gcosx + sinx = \5
J3 1. L

= -cosx + Ssinx = -

The required solution set is {ZkTC + STE ‘ k e } { o ‘ k e Z}.

Example 7 : Solve : 3cosO + 4sin® = 6
Solution : Here a = 3, b = 4, ¢ = 6.
2 =a?+ b2 =25 ¢ =36. S0, > d?+ b?

Hence, the solution set is .

Exercise 6.1

Solve the following equations :

1. 2cos20 + ﬁ =0 2¢0s%0 + \/gcose =0

2
3. 2cos0 + secO =3 4.  4sin?0 — 8cos® + 1 =10
5. ﬁcosecB@ —-2=0 6. 2sin*0 — sin® =0
7. 2sin@ + cosecO =3 8. sin20 + cosO =0
9. sin70 = sin® + sin30 10. cos?0 — cos® = 0
11. tan20 — \/5 =0 12. ﬁcote — co?0 =0
13. tan’*® — (\/5 + 1)tan® + J§ =0 14. cosO + sin® =1
15. ﬁsine — cosO = ﬁ 16. 2cosO + sin® =3
17. 3 — cot*50 =0 18. cosec®20 —2 =0
19. J2 + sec4B =0 20. 1an30 + co® =0

*

6.5 Properties of a triangle

The literal meaning of the word trigonometry is
“the science of measurement of (the parts of) a triangle.”
A triangle has three angles and three sides. Measures of
angles and sides are not independent of each other. In
this article we shall get the exact relationship between the
parts of a triangle.

We will use following notation in relation to a triangle :

m/BAC = A, mZABC = B, m/BCA = C B a c
A+B+C=T

(A, B, C are taken in radian measures.)
AB=¢, BC=a, CA=5b
The radius of the circumcircle of the triangle, that is, circumradius = R

Figure 6.7
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sine Rule :
In AABC we have,

a b C
sinA ~ sinB ~ sinC =2R

We shall prove here that ﬁ = 2R. The other two can be proved similarly.

There are three possibilities for A :

(1) 0<A<§ QA=2Z (3)§<A<n

2
. s
Case 1 : 0 <AL > A
. . —
Suppose O is the circumcentre of AABC. Let BO D
intersect the circumcircle at D. Here BD = 20B = 2R and R
D = m4ZBDC = mZCAB = A (i)
(Angles in the same segment)
(6]
R
Now in ABCD, mZBCD = % (Angle in a semicircle)
sinD B R B C
Figure 6.8
. - _a .
sinA 3R (by (1))
a
sina ~ 2R

Case 2 : AABC is right angled and A = %

ﬁ is a diameter of the circumcircle.

BC = 2R

Now, a = BC = 2R = 2Rsin§ = 2RsinA

a

<~ = 2R
st A Figure 6.9
Case 3: T <A<Tm
2 C
As ZBAC is obtuse, so vertex A is on the minor arc .
BC. Now take any Point A' on the major arc BC.
A
Here, m/BAC = (1 — A) < 2. (g <A< n)
By case (1) applied to ABA'C, we get A
BC = a = 2RsinA' = 2Rsin(Tt — A) = 2RsinA B
a
sina ~ 2R
Figure 6.10

Thus, in each case, ;1 = 2R
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Similarly, we can prove that ; &= = 2R and ﬁ = 2R.
a b c
sina ~ sinB ~ sinc ~ 2R
cosine Rule :
In AABC, we have
2,2 0 2, 2 g2 2,2 2
cosA = u, cosB = u and cosC = u
2bc 2ca 2ab
2,2 2
We shall prove that cosA = brc—a”
2bc
Y
¥, 8
As shown in the figure 6.11, without loss of C(bcosA, bsinA)
%
generality we take vertex A as the origin and AB in the
positive direction of the X-axis. Since AB = ¢, the b a
coordinates of B are (¢, 0). Now AC = b and
mZCAB = A. So vertex C is (bcosA, bsinA).
Now, a = BC A0 c BGO)
v
a? = BC?

Figure 6.11

(bcosA — ¢)* + (bsinA — 0)?
= b2cos’A — 2bc cosA + c? + brsin?A
= b2(cos’A + sin®A) — 2bc cosA + 2
a? = b* — 2bc cosA + c?
2bc cosA = b2 + 2 — &

b2 +c2-a*
COSA = ———
2bc
In the same way, we can prove the results,
2 2 2 2 2 2
c*+a*-b a - +b°-c
—— — and cosC = ————

cosB =
2ca 2ab

Note :

(1) The above proof will not change even if ZBAC is a right angle or an obtuse angle.

(2) If the lengths of the three sides of a triangle are known, we can find the measure of all the
angles using cosine rule. Similarly, if two sides and the included angle are given, then by cosine rule
we can find the remaining sides and remaining angles.

Important Formula :

We shall obtain an important result by the use of sine and cosine rules.

Projection Formula :

a = bcosC + ccosB, b = ccosA + acosC, ¢ = acosB + bcosA

We shall prove a = bcosC + ccosB

We prove the result using cosine rule. (Try to prove it using sine rule)
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bcosC + ccosB = b + ¢

a*>+b*-c? ct+a’-b*

2ab 2ca
_at+bi-c | Fral-b?
2a 2a
_at+br -+ +at-b* _ g _
2a 2a

Thus, a = bcosC + ccosB

=da

Similarly, the other two projection formulae can also be proved.

Example 8 : For AABC prove that,

(1) a(sinB — sinC) + b(sinC — sinA) + c(sinA — sinB) = 0

B-C C-A
2) asinésin( 3 )+bsin§sin( 3

2 2

Solution : (1)

2

a(sinB — sinC) + b(sinC — sinA) + c(sinA — sinB)

b C b

alb-c)+b(c-a)+cla-b) _ 0
2R B

. A . [(B=C ({T—=(B+0O .
?) asin 5 sin| — = asin| —— | sin

B+C .
= acos| — sin

= %(sinB — sinC)

_a/b _ c
= 2GR 7 )
_ 1 _

= ﬁ(ab ac)

B . [(C-A

)

al g5~ 5%) + blsx—5%) + o3k 5%

B-C
2

Similarly, bsin = sin( > ) = ﬁ(bc — ab)

2

A-B

- C _ _
csin = szn( > )— ﬁ(ac bc)

Adding (i), (ii) and (iii) we get

B-C
L.H.S. = asin & sin ( 3 ) + bsin% sin(

2

Example 9 : In any AABC, prove that

COSA cos B cosC  a®+b?* +c?

() ==+ —— + =

c 2abc

tanC b? +c? - a?
(2) tan A at+b*>= 3

C-A
2

)

)

B—C)

2

+ csin% sin

ﬁ(ab —ac + bc — ab + ac — bc) = 0 = RH.S.

. C . A_B
+ csin = sin 5

(

A-B
2

)=0

)

A+B+C=m

(i)

(i)

(iii)
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Solution :

COSA cos B cosC
+ +

(1) L.H.S.= - :
B b* +c? - a? ] ra’-p? ] a*+b* =
2bc X 2ca T 2ab
I e e it A S
2abc
2,72 .2
@bt s
2abc
5y LS. = fanC sinC cosA
() LHS.= 5% = cosC sinA

| b +c?—a?
2R 2be

i[a2+b2 —czj

ZR 2ab
b* + ¢ - a?
= 2. -2 - RHS

Example 10 : In AABC, prove that

10.

(a + b)cosC + (b + ¢)cosA + (¢ + a)cosB = a + b + ¢
Solution : L.H.S.= (a + b)cosC + (b + c)cosA + (¢ + a)cosB

= bcosC + ccosB + ccosA + acosC + acosB + b cosA

a+ b+ c=RHS.

Exercise 6.2

For AABC, prove (1 to 9) :
asin(B — C) + bsin(C — A) + csin(A — B) =0

a*(cos’B — cos?C) + bX(cos’C — cos?A) + c*(cos’A — cos’B) = 0

a’sin(B—C) = b%sin(C—A) | ?sin(A—B) _
sin A sin B sinC B

0

a’sin(B — C) + b3sin(C — A) + 3sin(A — B) = 0

asin(%#—C) = (b + ¢)sin %

B-C _ A
acos| =5 = (b + c)sin 5

sin(A_B) = a-b cos ¢
2 c 2

an(4+B) = 5 a4

1+cosA cos(B—C) b*+c?
l+cosC cos(A—B) ~ p? +4°

Prove : sin?A + sin’B = sin’C = AABC is right angled at C.

acosC + b cosC + bcosA + ccosA + ¢ cosB + acosB

X % (cosine rule)
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11.
12.

13.

14.

15.
16.

17.
18.

19.

20.

Prove : (a® + b2)sin (A — B) = (a* — b?)sin (A + B) = AABC is either isosceles or right angled.
2 — HeotA + (¢ — a*)coB + (a* — b?)cotC = 0

 (
b? ct-a? a*-b?
Prove : (_]snﬂA + (_2 ]sinZB + (_2 ]sinZC =0
a b c
12

(asinZ% + csin? A) =c+a-—-5>

Prove

Prove >

Prove : 4 (bccos? & + cacos* B + abcos? &) = (@a+ b+ c)?
2 2 2

Show that a triangle having sides equal to 3, 5, 7 is an obtuse angled triangle and determine the
measure of the obtuse angle.

If the angles of a triangle are in the ratio 1:2 : 3, find the ratio of sides opposite to these angles.
The measures of angles A, B, C of a AABC are in A.P. and it is being given that b : ¢ = 342,
find A.

sin A sin (A — B) 2 2,

If in a AABC, 5, = Sin(B_C) brove that a°,

c? are in A.P.

In a AABC, a = 2b and|A—B|=§. Find C.

*

Miscellaneous Problems :

Example 11 : Solve sin30 = 4sinQl sin(x + ) sin(x — OU), where OL # kT, k € Z

Solution : sin30L = 4sinQ. sin(x + ) sin(x — O), where 0L # kT, k € Z
sin30, = 4sin0Q, (sin®x — sin*0l)
3sinQlL — 4sin’0L = 4sinOL sin®x — 4sin3 0l

3sinQL = 4sinOL sin’x

sin’x = 2 (Since OL # AT, sinO. # 0)

x=kn+ ¥ ke Zorx—kﬂ:+(—1)k(—%),ke Z
x—kTC+ ke Z

Hence, the required solution set is {Im + % | k € Z}.

Example 12 : Solve : tan( + 9) + ftan (% 9) =4

Solution : tan( + 9) + tan(% — 6) =4

1+tan© 1—tan9_
1—tan 6 + 1+tan®

(1+tan®)® + (1—tan®)>
(1—tan®)(1 + tanB)
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2+ 2tan’0
1—tan’0

2 + 2tan’0 = 4 — 4tan’0

6tan’0 =2

20 =1
tan*0 3

tan® = iﬁ = tan(iﬂ)

9=kni%,kez

6

Hence, the required solution set is {k‘lt + % | k € Z}.

sin A sinB _ sinC COSA _ cosB cosC
Example 13 : If T T ¢ , show that 5 -9 - 3
of cosA + cosB + cosC.
Solution : We have SinA _ sinB _ sinC
4 5 6
a b c
2R _ 2R _ 3R
4 5 6
a b _c -
. ) c k (say), where k > 0
a=4k, b = 5k, ¢ = 6k
b>+c*—a® o5k 4 36k% - 16k> 2
_ _ _ 45k _ 3
Now, cosA = be = BT RPTYER:
COSA _ |
12 16
.. cosB _ 1 cosC _ 1
Similarly, —5 " 16 and — T3¢
H COSA _ coSsB _ cosC
ence, — 5 3
=12 . 9 . 2 _23
Also, cosA + cosB + cosC T + T + T T
Exercise 6
Solve (1 to 10) :
1. 2(sec’® + sin°0) = 5 2. 2 — cosx = 2tan%
3. 4sin0 sin20 sind0 = sin30 4. sin*O — cosO = %
5. Jgtan39 + \/gtan29 + tan30 tan20 = 1
6. cosecx = 1 + corx 7. sindx 4+ cosdx = %

and hence find the value
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10.

11.

12.
13.

14.
15.

16.

17.
18.

19.

20.

21.

T 2T
tan® + tan(e + 3) + tan(e + T) =3
sinx — 3sin2x + sin3x = cosx — 3cos2x + cos3x
2sin0 + chose +1=0
For AABC, prove (11 to 14) :

abc

acosA + bcosB + ccosC = 4RsinA sinB sinC = RZ

a(cosC — cosB) = 2(b — c)cos2%

a’cos(B — C) + b3cos(C — A) + 3cos(A — B) = 3abc

b+tc _c+ta _ a+b N cosA _ cosB _ cosC
11 12 13 7 19 25

Prove : cosine rule using sine rule.

Prove : (a — b)? cos? % + (a + b)? sin? % =2

Prove : abc(cotA + cofB + cotC) = R(a? + b2 + ¢?)

If length of the sides of a triangle are 4, 5 and 6, prove that the largest measure of an angle is twice
that of the angle with smallest measure.

If length of the sides of a triangle are m, n, ‘,mz +mn +n2 > prove that the largest measure of an

angle of the triangle is 2Tn

If length of the two sides of a triangle are the roots of the equation x2 — 23x +2 =0 and if

the included angle between them has measure %, then show that the perimeter of the

triangle is 2\5 + JE .
Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the right
so that the statement becomes correct :

tan3x —tan2x

(1) The set of values of x for which T97———"m = 1 is ... ]
T
(@) ¢ ) { %}
T T

(c){kﬂ:+Z|keZ} (d){2kn+z|kez}

(2) Number of ordered pairs (a, x) satisfying the equation sec? (a + 2)x + a*> — 1 =0;
—NM<x<Tis...
(a) 2 (b) 1 (©) 3 (d) infinite

(3) The general solution of the equation sin>% — cos>'x = 1 is ... [ ]
@ 2%+ % ke z () 24n + L. ke z
(c)kﬂ:+%,kez (d)kn+%,kez

(4) The number of solutions of the equation 3sin’x — 7sinx + 2 = 0, in the interval [0, 5T
is ... [ ]
(@ o0 (b) 5 (c) 6 (d) 10

TRIGONOMETRIC EQUATIONS AND PROPERTIES OF A TRIANGLE 127



(6)

(7

3

)

The real roots of the equation cos’x + sin*x = 1, in the interval (=T, T), are ...
T _T n _n n _n n T 1
(a) 07 ?9 3 (b) 03 4) 4 (c) 0’ 27 2 (d) 23 37 4
The number of points of intersection of 2y = 1 and y = sinx, =270 < x < 2T is ...
(a) 2 (b) 4 (©3 (d) 1
The general solution of sin® + cos® = 2 is ...
(@) kT, k€ Z (b)2/m+§,kez
(c) 0 (d) 2k + 1)%, ke Z
The general solution of cos20 = cos?0 — sin®0 is ...
(a R (b) kT, k € Z
(c) (d) 2k + 1)%, ke z
A B C
In a AABC, if COZ = COZ = coz and a = 2, then the area of the triangle is ...
() 1 (b) 2 © L @ V3

(10) In a AABC, a = 5, b = 7 and sinA = %, numbers of such triangles are ...

[]

[]

[]

[]

[]

[]

(a) 1 (b) 0 ()2 (d) infinite
(11) The perimeter of AABC is 6 times the arithmetic mean of the sines of its angles. If a is 1,
then A is ...
T yis T
(@) 2 (b) Z () L @7

(12) In a AABC, a = 2b and A = 3B, then A = ......

[]

[]

@ L b L © L @
(13) If A, B, C in a AABC are in A.P. and the sides a, b, ¢ are in G.P., then a2, b2, c?
are in ...
(a) GP. (b) A.P.
(c) a_lz» b%’ CLz are in A.P. (d) no relation

(14) In AABC, A

%,c=%,thena+c\5= ......

(a) b (b) /30 (c) V2 b (d) 26

(15) In a AABC, 2acsing (A = B + C) = .....

(a) a® + b2 — 2 (b) 2 + a* — b? (c) b2 — % + a&? (d) 2 — a* — b?
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Summary

We studied following points in this chapter :

1.

Pe

sinD =0 0=km, ke Z
cosG=O<:>9=(2k+1)%ke Z
tan® =0 & 0 =km, ke Z

Solution set of sin® = a, —1 < a < 1 is given by {kTt + (=1)OL | k € Z}, where O € [—%,

wla

and sin® = a = sinQL.

Solution set of cos® = a, =1 < a < 1 is given by {2kt £ O | kK € Z}, where O € [0, T
and cos® = a = cosOL.

Solution set of tan® = a, a € R is given by {kTL + O | kK € Z}, where Ol € (—%, %) and
tan® = a = tanQL.

If ¢2 < a* + b2, the general solution of acosx + bsinx = c is

x =2kt + o £ B, k € Z, where 00 € [0, 2T) such that a = rcosO and b = rsinQ. and

COSB = %’ B € [O: TE]’ r= "Clz'f'bz

If ¢2 > a? + b2, the solution set is §.

. . a _b _c¢
The sine rule is : SinA — sinB — sinC — 2R
The cosine rule is :
b2 2 _ g2 2 522 a2 +b? - c?
cosA = ——— cosB = cra b and cosC = —————
2bc 2ca 2ab

10. Projection Formula :

a = bcosC + ccosB, b = ccosA + acosC, ¢ = acosB + bcosA

— ‘ —
e

Aryabhata gave an accurate approximation for 7t. He wrote in the Aryabhatiya the following :

Add four to one hundred, multiply by eight and then add sixty-two thousand. The result
is approximately the circumference of a circle of diameter twenty thousand. By this rule the
relation of the circumference to diameter is given.

62832

This gives Tt = 20000

= 3.1416 which is a surprisingly accurate value. In fact T = 3.14159265
correct to 8 places.

He gave a table of sines calculating the approximate values at intervals of 90°/24 = 3° 45",
In order to do this he used a formula for sin(n + 1)x — sin nx in terms of sin nx and sin(n — 1)x.

He also introduced the versine (versin = | — cosine) into trigonometry.

Aryabhata gives the radius of the planetary orbits in terms of the radius of the Earth/Sun orbit
as essentially their periods of rotation around the Sun. He believes that the Moon and planets
shine by reflected sunlight. Incredibly he believes that the orbits of the planets are ellipses. He
correctly explains the causes of eclipses of the Sun and the Moon. The Indian belief up to that
time was that eclipses were caused by a demon called Rahu. His value for the length of the
year at 365 days 6 hours 12 minutes 30 seconds is an overestimate since the true value is less
than 365 days 6 hours.

TRIGONOMETRIC EQUATIONS AND PROPERTIES OF A TRIANGLE
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Chapter 7

L SEQUENCES AND SERIES )

7.1 Introduction

The word ‘sequence’ used in the English language and in mathematics has the same sense.
That is the sequence emphasises on the order of occurrence. When we talk about a sequence of events,
it clearly indicates the order of occurrence of the events. For example, India won the ICC World
Cup-2011. As we know that Indian team played a sequence of matches and won certain number of
them and finally won the final match. Here, we can see the sequence of events taking place in a
definite order. Similarly, in mathematics, when we talk about a sequence of numbers, it clearly
indicates the first number, the second number, the third number and so on. Historically, Aryabhata was
the first mathematician to give the formula for the sum of the squares of first » natural numbers, the
sum of cubes of first #» natural numbers etc. This is found in his work Aryabhatiyam. Such kind of
work is also observed in the work of famous Italian mathematician Fibonacci (1175-1250). The
numbers of Fibonacci sequence are also known as Fibonacci numbers and they are applied in

many fields of knowledge.

Now, let us discuss about sequences mathematically. Observe the sequence of even numbers

2,4, 6, ..., we can easily see that the sequence is 2(1), 2(2), 2(3), ..., so we can generalise that nth even
number must be 2(n). So we can think of a function f: N — R, f(n) = 2n. Similarly the sequence
1, 4,9, 16, ... can be written as f: N — R, f(n) = n%. So we define sequence as a function whose
domain is N or {1, 2, 3, ..., n}.

Sequence : A function f : N — R or f: {l, 2, 3,.., n} — R is called a sequence.
{1, 2,3,..., n} — R is called a finite sequence. Here n € N.

For instance, f : N — R, f(n) = 3n — 1.

Taking n =1, 2, 3, ... we get f(1) =2, f(2) =5, f3) =38, .... 2,5, 8, ... are called respectively
first, the second, the third, ... term of the sequence. f(n) is called the nth term or a general term.
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f(n) is also denoted by a, or 1, or T, or u, etc.

{f(m)} or {a,} or {1} indicates the sequence having the nth term as f(n) or a, or 1,
respectively.

According as codomain of the function is N, Z or R, the sequence is called a sequence of

natural numbers, a sequence of integers or sequence of real numbers respectively.

The nth term of a sequence may be in the form of formula, but it is not necessary that every
sequence is defined by means of some formula. For example, the sequence of prime numbers
2,3,5,7, 11, 13, ... There is no formula to get the nth prime number, so the sequence is not expressed

by defining a rule.

Let us see one interesting sequence, f(n) = (n — 1)+ (n — 2)-(n — 3) + (2n — 1). Obviously
(=1, f2) =3, f(3) = 5. We may be tempted to say that f(4) = 7, but it is not so, it is 13.
Thus by using a few terms only we can not guess the general term of a sequence.

Example 1 : Find first five terms of the sequence : f: N — R, f(n) = 2n* — 4.
Solution : Here f(n) = 2n2 — 4
f() =20 —4 =2, f2)=227-4=4,
fBR) =203 —4 =14, f(4) =242 —4=28 f(5 =25)?>—4=46.
Thus, the first five terms are —2, 4, 14, 28 and 46.
Example 2 : For f: N — R, f(n) = n(—1)", find the difference between 17th and 16th terms.
Solution : Here f(n) = n(—1)"
f(16) = 16(=1)1° = 16 and f(17) = 17(-D)V7 = —17
Now, f(17) — f(16) = (=17) — (16) = =33
The difference = | £(17) — f(16) | = 33
Example 3 : f/: N — R, f(n) = 8 — n3. Find the first four terms of the sequence.
Solution : f(1)=8— (1P =7,f2)=8—-(2) =0, f3) =8 — (3)° = —19 and
f(4) =8 — (4} = -56.
The first four terms are 7, 0, —19 and —56.
Example 4 : Let the sequence f: N — R be defined by f(1)=1and f(n)=f(n—1)— 1 forn = 2.

Find the first five terms of the sequence.

Solution : Here f(1) = 1

Now f(n) =f(n—1)—1,forn 22
fO=fe-n-1=f0-1=1-1
@) =f@—1=-1, f@#=/3)— I
The first five terms are 1, 0, —1, —2 and —3.

0
=2, fO)=fW—1=-3

Example 5 : If f: N — R, f(n) = cos%, find the first six terms of the sequence f.

Solution : Here f(n) = cos%
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(= cos% =0, fQ2)=cosmw=-1, fQ3)= 003377E =0

f@) =cos2mw =1, f(5) = 003577E =0, f(6)=cos3m =—1
So the first six terms are 0, —1, 0, 1, 0 and —1.
Example 6 : What will be the 10th term of the sequence defined by
fm)y=@m—Dn+2)n—3)7?
Solution : Here, f(n) = (n — 1)(n + 2)(n — 3)
f(10)= (10— 1)(10 + 2)(10 = 3)=9-12-7 = 756
Hence the 10th term is 756.
7.2 Series :
Let ay, a,, as, ..., a,, .. be a given sequence. Let us think of the sequence formed
by using the terms of the given sequence as follows :

a,a taya +ay,t+aza tatatayg.a tatagt..ta,.. Such a new sequence
is called a series derived from sequence {a,}.

Usually, S, denotes the sum of the first » terms of a sequence. So the sequence
S, S5, Ss...., S, becomes the series corresponding to the given original sequence.

Hence every series is a sequence and nth term of the series is the sum of the first
n terms of its corresponding sequence.

For instance, take the sequence of odd natural numbers. i.e. 1, 3, 5, 7, 9, ...
S;=a;, =1
S,=a,+a,=1+3=4
S;=a+a,ta;=1+3+5=9
Sy=a+taytayta=1+3+5+7=16

We get the sequence 1, 4, 9, 16, ... which is the sequence of squares of natural numbers.
ie. S, = n?. 1t is called the series derived from the sequence f(n) = 2n — 1.
Let us obtain nth term a, of a sequence from the sum of first #» terms S, of the same sequence.
We can derive the formula for a, as follows, if we are given the formula of S, :
S;=a
S,=a,+a, =85, +a,
S;=a,tay+a3=5,+ag

S4=a1+a2+a3+a4=S3+a4

S,=a;t+a,+ay+.+a,_ | +a, =5S,_|+a

n n n

We observe that S, =S, _ | +q, forn =2, 3, 4, ..
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S,—S,_1=4, Vn=2andS,=aq
This gives the formula for a,, when the sum of first #» terms S, is given.

Example 7 : For the sequence {a,}, S, = n3 — 2n, find the first four terms and 8th term of {a,}.
Solution : S, = w — 2n
S, =P -2)=1-2=-1, S, =P -22)=8—-4=4,
S;=(3)P—-23)=27-6=21, S,=(4)>—-204)=64—8=56
So, ay=S;=-1, a=S,—S;=4—(-1)=5, a3=8;—-85,=21—-4=17,
a; =S, —S;=56—21 =35,
The first four terms of {a,} are —1, 5, 17 and 35.
The 8th term, ag= Sg — S,
= [(8 — 2(8)] — [(7)* — 2(7)]
=[512 — 16] — [343 — 14] = 167

Example 8 : From the formula for the series, S, = 4" — 1, obtain the formula for the corresponding

sequence.
Solution:a1=Sl=41—1=3’ S, =4"— 1
- -1
Sn—l_ 4" =1
a, =S,=S, . Vn22=@"-1—-@"1-1
:4n_4n—l

=3.47-1 Vn2>2
Takingn=1,3-41‘l=3=a1
a,=3-4"-1,Vn2>1

Exercise 7.1

1.  Write the first five terms of the following sequence :

M fm=3n+1 2)f(n)= # (3) f(n) = nth prime number
2. The Fibonacci sequence is defined by,

ay=a,=1landa,=aqa,_ |+ a,_, n>2, find a5, a4 as, a.
3. Obtain a,, as, a, for the following sequences :

(1) ay=-3anda,=2a,_,+ 1, Vo> 1.

) a, =+ and a,=3a, |+ (1), Vn22.

4. Find the first three terms and tenth term of the sequence {a,} :
nn+1)

1 s, =n*—=1 (28, =

5. From the following formula for the series S,, obtain the formula for corresponding sequence :

_ar -1 _ _
(H s, = p— cr#ELa#z0  (2)S,=4{1 —(3) Iy

%
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7.3 Arithmetic Progression (A.P.)

Observe the sequence 1, 3, 5, 7, .... . Here each term (after the first) is obtained by adding the same
number 2 to its preceding term. The difference between two consecutive terms is a non-zero constant.
Such a sequence is called an arithmetic progression. We define it as follows :

Arithmetic Progression : A sequence f : N = R, f(n) = an + b, a, b € R, a # 0 is

called an arithmetic progression (A.P.). Thus an A.P. is a linear function of n, where n € N.

For example, the sequence f(n) = 3n — 4, n € N is an A.P., its terms are —1, 2, 5, 8, 11, ...
Here difference between any two consecutive terms is 3, a constant.

In the above discussion, we can observe that the difference between any two consecutive terms
is a non-zero constant and f is a linear function of n, » € N. Now we shall combine these two
properties in the following theorem.

Theorem 1 : Difference between any two successive terms in an A.P. is a non-zero constant.

Proof : Suppose {f(n)} = {an + b} is an AP, a, b € R, a # 0.

For any k € N, f(k+ 1) — f(k) = [ak + 1) + b] — (ak + D)

=ak+a+b—ak—0>b
= a, a non-zero constant

Thus, the difference of between any two successive terms f(k + 1) and f(k) is a non-zero
constant. We call it the common difference of the A.P. and usually denote it by ‘d’. Now, onwards
the common difference will be termed as difference. Here we take d = f(k + 1) — f(k) which may
be positive or negative.

The converse of above theorem is also true. Suppose the first term of a sequence {f(n)} is ‘@’ and
the difference f(k + 1) — f(k) = d, d # 0 for all kK € N. Then it is clear that the sequence is an
A.P. In general we conclude that nth term of the A.P. as f(n) = a + (n — 1)d, d # 0 and it is a
linear function of #. We shall prove our conclusion by the method of mathematical induction.
Theorem 2 : If the first term of a sequence {f(n)} is a and if the difference of two

successive terms is d # 0, then f(n) = a + (n — 1)d, Vn € N and so it is an A.P.

Proof : Let the statement P(n) : f(n) = a + (n — 1)d, Vn € N

(1) Form =1, f(1) = a, the first term and

atmn—10Dd=a+ (1 —1)d=a

P(1) is true.
(2) Let P(k) : f(k) = a + (k— 1)d be true for some kK € N. (i)
Then we shall prove that P(k + 1) is true.
S+ 1) =fk) +d K+ —=fk) =d)
=la+ (k— 1)d] +d (from (i))
ftk+1) =a+ kd

a+[(k+1)—1]d
Thus P(k) is true. = P(k + 1) is true.

By the principle of mathematical induction P(») is true for all » € N.
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Here, f(n) = a + (n — 1)d = dn + (a — d) is a linear function of »n (as d # 0), so fis an A.P.

We conclude from these two theorems that if ‘a’ is the first term and ‘d’ is the common difference
of an A.P., then the A.P. can be written as a, a + d, a + 2d, .., a + (n — 1)d, ...

Thus the formula for nth term of an A.P. is f(n) = a + (n — 1)d. a, is also used for the last
term of a finite A.P. having domain {1, 2, 3, ..., n}.

If we denote nth term by ¢, then 1, = a + (n — 1)d, where a is the first term and d is the
common difference.

Note : a, b, ¢ are consecutive terms in AP. & b—a=c—>
S 2bh=a+c
Example 9 : For an A.P. 3, 8, 13, 18, ... find the 17th and 40th terms.
Solution : a =3, d =5
nth term of the AP. is¢, =a+ (n — 1)d
=3+ m—1)5
=5n—2
Taking n = 17, 1,7 = 5(17) — 2 = 83 and
taking n = 40, 14, = 5(40) — 2 = 198.
17th term is 83 and 40th term is 198.
Example 10 : Which term of the A.P. 3, 14, 25, 36, ... will be 121 less than its 37th term ?
Solution : Here a = 3, d = 11, given m = 37
mth term, 7, = a + (m — 1)d
3+ @37-1l1
=3+ 396 =399
Let 7, be the term 121 less then /5.
t, =t3; — 121 =399 — 121 = 278
a+ m— 1)d=1278
3+ (n—1)11=278
(m— DIl =278 —3 =275
n—1=25
n =26
Thus, the 26th term is 121 less than its 37th term.

I37

Note : Order of the term 121 less is % = 11 less than 37th term (here d = 11).

So 37 — 11 = 26th term is the required term.

Example 11 : If the 11th term of an A.P. is zero, then prove that its 31st term is double than the
21st term.

Solution : ¢, = a + (n — 1)d
t;1=a+ 10d
0 =a+ 10d ()
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Now, 2-1,; = 2(a + 20d)

= 2a + 40d

= (a + 30d) + (a + 10d)

=1+ 0 =1 (from (i))
Thus, 31st term of the A.P. is double than the 21st term.

Example 12 : If the pth term of an A.P. is ¢ and the gth term is p, p # ¢, then find the nth term of
the A.P.

Solution : Here t isa+ (p—1d=gq (i)
and 1 isa+(q—1Dd=p (ii)
Solving (i) and (ii), we get
@—q@d=q—p
Asp#qg,d=—landa=p+q—1
Now the nth term 7, = a + (n — 1)d
=ptqg—1+m—1D(D
=p+q—n
Arithmetic Series :

The series corresponding to an A.P. is called an Arithmetic Series.

The nth term of the arithmetic series corresponding to the A.P.
a,a+d a+2d...a+ n-—1)d is
S,=at+(@+d+(@+2d+..+[a+(n— 1)

Now we shall prove the expression for the sum of first #» terms of the A.P.,

ie. S, = ’21[261 + (n — 1)d] by the principle of mathematical induction.

Theorem 3 : If first term of an A.P. is a and d is the common difference, then the sum of
first n terms is S, = %[2(1 + (n — 1d], Vn € N.
Proof : Let the statement P(n) : S, = %[Za + (n — d), Vn € N.
(I) Forn=1,8,= %[2a + (1 — 1)d] = a, i.e. the sum of the first term is the first term ‘a’ itself.
P(1) is true.
(2) Let P(k) : S, = %[20 + (k — 1)d] be true for some k € N. (i)

Letn=k+ 1
St +1 =S, + (k+ Dth term

= Kpa+ k= Ddl+a+ [(k+1)—11d (from (i)
= %[2ak + k(k — 1)d + 2a + 2kd)

= 2[2alk + 1) + k(k — 1 + 2)d]
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T[2atk + 1) + kd(k + 1)]

=5 e+ (ki + 1) - 1)

Thus, P(k) is true. = P(k + 1) is true.
By the principle of mathematical induction P(n) is true. Vn € N.

Note : Formula for S, of an A.P. of finite term is

S =%[2a+(n—l)d]=g[a+{a+(n—l)d}]=%(a+l)

n

where a is the first term and / is the last term, ie. [ =1, = a + (n — 1)d.

Thus, the formula of S, for A.P. Bnuwbey ZOf terms [first term + last term]

Example 13 : Find the sum of the first fifteen terms of A.P. 15, 11, 7, 3, ...

Solution : Here a = 15, d =11 — 15 =—4 and n = 15
Now, S, = %[2(1 + (n — 1)d]
1

2[2(15) + (15 = 1)(=4)]

Sis

5
2
5130 — 561 = 151061 = —
B30 - 56] = L[—26] = —195

The sum of the first 15 terms is —195.

Example 14 : The sum of #n terms of two AP.s are in the ratio (37 + 6) : (5n — 13), Vn € N. Find
the ratio of their 11th terms.
Solution : Suppose, the first term and common difference of one A.P. are a; and d; and
the same for the other A.P. are a, and d, respectively.
According to the given condition,

Sum of the first # terms of first A.P. n+6

Sum of the first #» terms of second A.P.  51-13

Lay+ (= Dd\] 4,

Lp2a, + (n = dy] M1

2a + (n — )d, _ 3n+6 .
2a, + (n— Ddy, 13 ®

Let 7, and 7, be the nth terms of given A.P.s.

Now, 77— = ————
> 1Y, a, +10d,

_ 2a; +20d,

- 2612 + 20d2

2a; + (21 - 1)d,
2a, + (21 -1d,

So, substituting n» = 21 is (i), we have
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tl—lz 3(21) +6 _69 _ 3
o 52h-13 T 92 4

The ratio of the 11th terms of the two A.P.s is 3 : 4.
Note : Sometimes we need to assume some consecutive terms of an A.P.
If three or five or seven consecutive terms are given, then we assume the middle term as ‘e’ and
preceding terms decreasing by ‘d’ and succeeding terms increasing by ‘d’.

So we assume,

The 3 consecutive terms in A.P. : a —d, a, a + d

The 5 consecutive terms in A.P. : a — 2d, a — d, a, a + d, a + 2d

The 7 consecutive terms in A.P. : a —3d,a —2d, a —d, a, a + d, a + 2d, a + 3d

If four or six consecutive terms are given, then there are two middle terms, so we assume them
as a — d and a + d. Here the difference between consecutive terms is taken as ‘2d’, so preceding
term is decreased by ‘2d’ and succeeding term is increased by ‘2d’. So we assume,

The 4 consecutive terms in A.P. : a —3d, a —d, a + d, a + 3d

The 6 consecutive terms in A.P. : a — 5d, a —3d, a —d, a+ d, a+ 3d, a+ 5d

Example 15 : The sum and the product of three consecutive terms of an A.P. are 24 and 312

respectively. Find the three terms.
Solution : Suppose the three consecutive terms of the A.P. are a — d, a, a + d.

According to the given conditions,
a@—d)+t+a+@+d)=24and (a—d)-a-(a+ d) =312

Thus, 3a = 24.
Soa=8and (8 —d)-8-(8 + d) =312
64 — d*> = 39
d* =25
d=5o0ord=-5

If @ = 8 and d = 5, then the required terms are 3, 8, 13 and if @ = 8§ and d = —5, then they

are 13, 8§, 3.
Thus the required terms are 3, 8, 13.
Example 16 : The sum of four consecutive terms of an A.P. is 24 and the product of first and last

terms is —45. Find the terms.

Solution : Suppose the four consecutive terms of the A.P. are
a—3d, a—d a+d, a+ 3d.

Their sum (a — 3d) + (a — d) + (a + d) + (a + 3d) = 24
4a = 24. So a = 6.

Also (a — 3d)(a + 3d) = —45
(6 — 3d)(6 + 3d) = —45
36 — 9d* = —45
9d? = 81
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=9
d=3ord=-3
If a =6 and d = 3, then the required terms are —3, 3, 9, 15 and if a = 6 and d = —3, then

they are 15, 9, 3, —3.

Example 17 : The income of a person is ¥ 3,50,000 in the first year. He receives an increment

10.

11.
12.

of ¥ 15,000 to his income per year. What will be his income at the end of 15th year ? How
much amount he will receive in 15 years ?
Solution : Here we have an A.P. with ¢ = 3,50,000 and d = 15,000

Now, 1, =a+ (n— 1)d
t15 =3,50,000 + 14(15,000) = 5,60,000
and S, = ’;(a + 1)
= %(3,50,000 + 5,60,000) = 68,25,000

At the end of 15th year his income will be ¥ 5,60,000 and total amount he will receive in
15 years is ¥ 68,25,000.

Exercise 7.2

Find the desired terms in the following A.P.s :
(1) 16th term in —17, =13, =9, ...
(2) 3lstterm in 101, 96, 91, ...

(3) 10th term in 3, 2, 6, 2, ..

If the nineth term of an A.P. is 30, find the sum of its first seventeen terms.
Find the sum of all natural numbers lying between 100 and 500, which are divisible by 5.

The first term of an A.P. is 4 and the sum of first five terms is one-sixth of the sum of the next
five terms. Find the 8th term.

The sum of first # terms of an A.P. is 3n% + 5n. Which term of it is 164 ?

If the sum of the first m terms of an A.P. is » and the sum of the first » terms is m, obtain the
sum of the first (m + n) terms.

If pth, gth and rth terms of an A.P. are /, m, n respectrively, then find the value of
lg —r) + m@r —p)+np —q).

The ratio of the sum of first n terms of two A.P.s is (3n — 13) : (5n — 1) for all » € N. Find the
ratio of their 13th terms.

The ratio of the nth terms of two A.P.s is 2n — 1) : (4n + 3) for all » € N. Find the ratio of
the sum of the first 25 terms.

Find the sum of all integers from 100 to 200 which are divisible by 2 but not by 5.

If the 10th term of an A.P. is % and the 20th term is %, then find the 200th term.

The sum of three consecutive terms of an A.P. is 9 and the sum of their squares is 59, find
these terms.
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13. If the sum of four consecutive terms of an A.P. is 32 and the product of whose 2nd and 3rd term
is 60, find these terms.

14. A man starts repaying his loan with the initial instalment of ¥ 200. If he increases the
instalment by ¥ 20 every month, how much total amount he will pay at the end of 20th

instalment ?

15. Bhargav saves ¥ 50 in the first week of a year and then increases his weekly savings by
% 17.50. In the nth week, his weekly savings become ¥ 207.50. Find » and the amount he
had saved.

16. A spiral is made up of successive semicircles, with centres
alternately at P and Q. Semicircles start with centre P with
radii 1 cm, 3 cm, 5 cm, ...; and centre Q with radii 2 c¢m, 4 cm,
6 cm ... What is the length of the spiral if it is made up of 20
such semicircles ? (See figure 7.1)

% Figure 7.1
7.3 Geometric Progression (G.P.)
Let us observe some sequences like :
(1)3,6,12,24,... (2) 1, % % % (3) 0.1, 0.01, 0.001, 0.0001, ...

We note that each term (except the first) progresses in a definite order.

We observe that in (1) the second term onwards each term is double than the preceding term; and
in (3) each term is 0.1 times the preceding.

So, the ratio of any term to the preceding term is a constant, i.e. same for all terms (except the
first). A Sequence with this property is called a Geometric Progression (G.P.). The constant ratio
is called the common ratio of the G.P. Thus, if the ratio of each term to the preceding is

a non-zero constant, then the sequence is a G.P. We define GP. as :

Geometric Progression : A sequence f: N = R, f(n) = Ar", A€ R— {0}, r€ R— {0}
is called a Geometric Progression. A G.P. is an exponential function.

Putting » = 1, 2, 3,... we get the terms of a GP. as Ar, Ar2, AR, ...
Theorem 4 : The ratio of any two consecutive terms of a G.P. is a non-zero constant.

Proof : Suppose f: N — R is a GP, then for some A # 0 and some » # 0, we have
f(n) = A, Vn € N.

: : _ fkAD  ppk
The ratio of two consecutive terms f(k + 1) and f(k) is Tk~ a0k I amnon-zero

constant.
Converse of this theorem is also true.
Suppose the first term of a sequence is @ # 0 and the ratio of two consecutive terms is 7,
where » # 0, then the terms of the sequence are a, ar, ar?, ..., ar' ~ 1. Thus, nth term L, =ar'"” 1
We will prove this by the principle of mathematical induction.

Theorem 5 : If the ratio of two consecutive terms of a sequence is a non-zero constant,
then the sequence is a G.P.
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Proof : Consider P(n) : f(n) = a1, a r € R — {0}
(1) Forn =1, f(1) = a = q, the first term

P(1) is true.
(2) Let P(k) : f(k) = ar* = ! be true for some k € N.

Now we shall prove that P(k + 1) is also true.

fk+1
G (given)
ftk+1)=r-f(k) = re(@k =1 =gk =qgk+D-1
Thus P(k) is true. = P(k + 1) is true.
By the principle of mathematical induction P(n) is true for all » € N.
Here, {f(n)} is a G.P.
We note that the G.P., whose first term is @ and common ratio is 7, is a, ar, ar?, ..., ar = 1, ...
Here also we write nth term of a G.P. as 7,.
So,t”=ar”_1,a¢0,r¢0.
Note : (1) Now onwards common ratio will be termed as the 'ratio’.
(2) If a, b, ¢ are consecutive terms in G.P. then % = % S b = ac.
Example 18 : Find nth and the 8th term of the G.P. 54, 36, 24, 16, ...
Solution : Here a = 54, r = % = g—6 = %
Now ¢, = ar’" ~ I = 54(%)’1_1 = %
t,=2"-34-n
Taking n = 8 in 7,, we have
g =28.37
— 256
81
The nth term of the G.P. is 27+ 3% ~ 7 and the 8th term is %.
Example 19 : If the third term of a G.P. is 18 and its sixth term is 486, find the 9th term.
Solution : Here 75 = 18 and 7, = 486
Now ¢, = ar' ~ 1
ly = ar? = 18 and lg = ar’ = 486
L _ar _ 486
t ar? 18
P =27
r=23
Also ar? = 18. So 9a = 18
141
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a=72
ty = ar® = 2(3)8 = 13122
The 9th term of the G.P. is 13122.
Geometric Series :
The series corresponding to a G.P. is called a geometric series.

(3%

If first term of a G.P. is ‘@’ and ratio is ‘7’, then the mth term of the geometric series is
Sn=a+ar+ar2+ et a1

Now we shall prove the formula for S, by the principle of mathematical induction.

Theorem 6 : If first term of a G.P. is a and the ratio is 7, then the sum of first n term is

n —
Sn=a(r—l),a¢0,r¢0,r¢1,n€ Nand S = na if r = 1.
r—1 n
a@™ -1
Proof : Let the statement P(n) : S, = —— d 20, r#0,r#1, n e N.
ar -1 . . .
(I) Forn=1,8; = 1 — a le. the sum of the first term is the first term ‘a’ itself.
Thus, P(1) is true.
a(

k _
(2) Let P(k): S, = %11) be true for some k € N.
Letn =k + 1

k
ar® -1 k D=1
Skv1 = —— + ark+ D

k
ar® -1
=—( ) + ark
r—1

=r21 [Pk — 1 4+ bkt 1 — A

a(rk +1_ 1)

r—1
Thus, P(k) is true. = P(k + 1) is true.
Also we have seen that P(1) is true.

By the principle of mathematical induction P(n) is true for all » € N.

If r=1, it is clear that S, = a + a +...+ a(n times) = na

al—r"

Note : The formula for S, can also be written as S, = =

, usually we use this form

when r < 1.
Example 20 : For a GP. 7, = 6 and 75 = 48, find S.
Solution : 7, = 6 and 75 = 48

ar = 6 and ar* = 48

art _ 48
6

r

a
},3: :23

=]

r=2and ar =6
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a=73

_aur" -
Now Sl’l _7
3201
Sg = ~5— = 189

Example 21 : The third term of a G.P. is % and the sum of the first five terms is % times the sum

of the first ten terms. Find the sum of the first four terms.

Solution : Here #; = % and S5 = % S0

ot g S0 - B D
%—r5+1

r5=§—§—]

st b))

Z
)
=
2
|
T
|-

1-r > 1
_ 45
The sum of the first four terms is 47:

Note : Sometimes we need to assume some consecutive terms of a G.P.
If three or five or seven consecutive terms of a G.P. are given, then we assume the middle
term as ‘a’ and preceding terms are obtained dividing @ by r, 72, 73, ... and succeeding terms are

obtained, multiplying a by r, 2, 13, ...

So we assume,

The 3 consecutive terms for G.P. : %, a, ar

. a
The 5 consecutive terms for G.P. : 2 %, a, ar, ar’

. a a
The 7 consecutive terms for G.P. : F’ 2 %, a, ar, ar’, ar’

If four or six consecutive terms of a G.P. are given, then there are two middle terms, so we

assume them as % and ar. The terms preceding to % are obtained by dividing % by 72, ¥4, 15, ...

6

and the terms succeeding to ar are obtained by multiplying 72, #*, 7%, .... So we assume,
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. a
The 4 consecutive terms for G.P. : =%, %, ar, ar3
r
. a a
The 6 consecutive terms for GP. : =5, —%, %, ar, ar3, ar’

r r
Example 22 : Three numbers are consecutive term of a G.P. Their sum and product are % and

1 respectively, find the numbers.

Solution : Let the three numbers in a GP. be %, a, ar

Their product (%)(a)(ar) =1 and sum (%) + (a) + (ar) = %

@ =1 and l+1+r=ﬂ
r 5

a=1 oS —=26r+5=0
Gr—=—1)(r—-=5=0
r=%orr=5

1

Taking a = 1 and r = =

the numbers are 5, 1, %
(If we take » = 5, then the same numbers can be obtained.)
Example 23 : Find the sum of the sequence 5, 55, 555, ... upto first #n terms.

Solution : S =54+ 55 + 555 + ... n terms

n

= 2[9 + 99 + 999 + ... n terms]
= g[(lo — 1)+ (10> = 1) + (10> = 1) + ... n terms]

= 2010+ 102 + 103 +... n terms) — (1 + 1 + 1 + ... n terms)]

|

5 10(10™ = 1)
=§W_” (here a = 10, r = 10)

{00 0]
_ 50 _ 50 _ 5n
- ﬁ(lon) 81 9

Example 24 : The number of bacteria in a certain culture increase at the rate 4 % every hour. If
initially there are 40 bacteria present, then how many bacteria will be present at the end of the 4th
hour ? How many bacteria have increased during the 4th hour ?

Solution : Initially number of bacteria is 40. Bacteria increase at the rate of 4 % at the end of
each hour.

So at the end of the first hour, the number of bacteria will be

40 + 40(%) = 40(1 + 0.04) = 40(1.04)

At the end of the second hour, they are 40(1.04)2. At the end of the third hour they are 40(1.04)3.
Thus, number of bacteria present in the successive hours form a G.P. with T; = a = 40 and » = 1.04
At the end of the fourth hour they are T = 40(1.04)* = 46.7943

i.e. at the end of the fourth hour number of bacteria present is approximately 47.
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10.

11.

12.

13.

During the fourth hour the increase in number of bacteria

= Number of bacteria present at the end of the fourth hour —

Number of bacteria present at the end of the third hour

40[(1.04)* — (1.04)3]
40(1.04)> (1.04 — 1)
40(1.04)3 (0.04)
1.7987

During the fourth hour approximately 2 bacteria have increased.

Exercise 7.3

Find the indicated terms of the following G.P.s :

(1) The 12th term of 4, 4, 1, 1, ..
2

[ee]

1
(2) The 11th term of 7, _—7, %, _?7,

(3) The 8th term of =2, =242, —4, —4J2, ...
Do as directed for the following G.P.s :
(1) #; =96, r =2, find 1, 2) a=2,r= \/5, t, =128, find n.

() a=3,r=3,8,=363, findn. (4 r=%,s3=%,ﬁnda.

The sum of the first three terms of a GP. is 21 and the sum of the next three terms is 168, find

the sum of the first five terms.

2

If the sum of the first two terms of a GP. is >

find G.P.

Sum to first » terms of a sequence :

1y 7,77,777,77717, ... (2) 3, 33, 303, 3003, ...

Find the sum of : a(a + b) + a*(a* + b?) + a3(@® + b3) + ... n terms (a, b # 0, £1)

and the sixth term is 8 times the third term,

The product of five positive numbers in G.P. is 32 and ratio of the greatest number to the
smallest number is 81 : 1, find the numbers.

In a G.P, the (p + ¢)th term is m and the (p — g)th term is n. Find its pth term in terms of m and n.
If 1, a, b, ¢, 2 are consecutive terms in a G.P., then find the value of abc.

If pth, gth and rth terms of a G.P. are themselves consecutive terms of a G.P., prove that p, ¢, r

are in A.P.

1 1

. . 1,1 1
If x, y, z are three consecutive terms in a G.P., prove that 7~ y + vtz y-

Find four positive consecutive terms in a G.P. such that their product is 16 and having sum of
second and third terms equal to 5.

A motorcycle was purchased for ¥ 60,000. If its price goes down by 10 % each year, what
would be its price at the end of the fourth year.

&
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7.4 Means
Arithmetic Mean (A.M.) : If three distinct numbers a, A, b are consecutive terms of an A.P.,

then A is called an arithmetic mean of the two numbers a and 5.

a, A and b are in A.P.

A—a=b-—A
2A=a+ b
_a+b
A= 2

Thus, AM. of a and b is A = #, i.e. it is the average of a and b.

4+12

For instance, the AM. of 4 and 12 is A = = 8.

Arithmetic Means : For given two distinct real numbers @ and b, if numbers a, A, A,, A, ... A,
b are consecutive terms of an A.P., we say that A, A,, A;,...,A are n arithmetic means between

a and b.

Suppose A|, A,, Az, ...,A, are n arithmetic means between a and b.

Here we have n + 2 terms in an A.P.. The first term is a and (n + 2)nd term is b.

L ey=b=a+[n+2)—1]d

n

b—a=m+ 1)d
b—a

n+1

=d

Here, arithmetic mean A| = a + d

B b—a
=a+ n+1

b—a b—a b—a
Thus Ay =a+ | 357 Ay=a+ 2557 A3=a+ 3557 )

n+1

a
n arithmetic means between @ and b are A, = a + k( 1 j, where £k =1, 2, 3, ... n.

Here, A, denotes kth A.M. out of n means between a and b.

b—
Forn=1,Al=a+—a:a+b

P 5> the A.M. of a and b.

a+b

Thus, A.M. of two distinct real numbers a and b is A =

Example 25 : Find four arithmetic means between 8 and 23.

Solution : Here, a = 8, b =23 and n = 4

b—a 23-8 15
So d=57 = FF 0 T3

=3
The four arithmetic means between 8 and 23 are :

8+ 3,84 2(3), 8+ 3(3), 8 + 4(3). They are 11, 14, 17 and 20.
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Example 26 : If »n arithmetic means are inserted between 1 and 31 such that the ratio of (n — 1)th

mean to the 7th mean is 9 : 5, find n.

Solution : Here, a = 1 and b = 31

. b—a 31—1 30
Common difference d = —=7 = 757 = 7 +1

(n-DthAM. g

7thAM. 35 (given)

1+(n- 1)(%)

-9

30 5
1+7(_n+]j

n+1+30n—30 9

n+1+210 5

5(B1n —29) =9(n + 211)
155n — 145 = 9n + 1899
146n = 2044
n=14
Geometric Mean (G.M.) : Given distinct positive real numbers a and b, if G is a positive

number such that @, G, b are consecutive terms of G.P., then G is called a geometric mean of « and b.

a, G, b are in GP.

g:ﬁ
a G

G2 = ab
G = Jab

For instance, the GM. of 2 and 18 is G = J2x18 = 6.

Geometric Means : For given distinct positive real numbers a and b, if the positive numbers
a, G, G,, Gy, ... G,, b are consecutive terms of a G.P,, then G, G,, G5, ... G, are called the geometric
means between a and b.

Now, we shall find the formula for » geometric means between « and b.

Suppose G|, G,, Gj, ... G, are n geometric means between a and b, then a, G, G,, G5, ... G,, b

n’
are consecutive terms in a G.P. in which the first term is @ and the (» + 2)nd term is b.

t,+,=">b=a""1 where r is the common ratio of G.P.

Thus, G, = a(%)m, G, = a(%)”il, G, = a(ﬁ)"il

n geometric means between a and b are

k

Gy = a(L)"*!, where k= 1,2, 3, ...
a
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Here, G, denotes kth G.M. out of » GM.s between a and b.
.
Forn =1, G, = a(%)lﬂ = Jab, the GM. of a and b.

Thus, G.M. of two distinct positive real numbers a and b is G = Jab.

Example 27 : Find three GM.s between 2 and %.

Solution : Here, a =2, b = % and n = 3

b\n+1 2 o 1
= (= = (4 l3+1 p— L4 —
r (a) (SIXZ) (81) 3

Il
8]

Now, Gy = ar

The three geometric means between 2 and % are %, =

=%, G2=ar2=2-(l)2=%, G3=ar3=2-(%)

Example 28 : If the AM. and GM. of two positive real numbers are 7 and 2J6 respectively,

find the numbers.

Solution : Let g and b be two numbers whose AM., A =7 and GM., G = 2./3

A=a-2’_b:7andG=s/a_b=2‘/€

a+ b=14 and ab = 24

p=24
a
a+2 =14
a

@ — lda+24=0
(a—12)a—-2)=0
a=12 or a=2
Now if a = 12, then b = 2 and if @ = 2 then b = 12

The required numbers are 2 and 12.

Example 29 : If G is the GM. of a and b and A, A, are the two A.M.s between a and b, then

prove that GZ = (2A; — A,)(2A, — A)).
Solution : A, A, are two A.M.s between a and b.

a, Ay, A,, b are consecutive terms of A.P.

2

A +b
2

A= andA2=
2A1—A2=aand2A2—A1=b

Now G? = ab = (2A; — A)(2A, — A))

Theorem 7 : If A and G are respectively the A.M. and GM. of two distinct positive numbers

a and b, then prove that A > G.
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Proof : a and b are distinct and positive.

So, A = a;b andG=\/£

A_G:a+b_‘/z

2
=%(a+b—2\/£)
:%(\/__\/Z)2>0 (" a#b;a b>0)

A>G

Example 30 : The difference between A.M. and G.M. of two positive real numbers is 12 and the ratio
of these numbers is 1:9, find the numbers.

Solution : Suppose required numbers are a and b, a, b € R™.

A=a—2|_b andG=@

AsA>G,soA—G=12and%Z%(given)

a+b—@=12andb=9a

2

aroa _ a-9a =12
2

5a — 3a =12

a=6and b =54
The numbers are 6 and 54.

Example 31 : For positive real numbers a, b, ¢ prove that (a + b)(b + c)(¢c + a) = 8abc.

Solution : We know that a:b > Jab.

Similarly % > Jbe and c;a > Jea.

Multiplying the respective sides of the above results, we get

(a;bj(b;cj(c;aj > abe

(a + b)(b + ¢)c + a) = 8abc

Exercise 7.4

1. Place 5 A.M.s between 3 and 4.
2. Place 3 A.M.s between —3 and 29.

3. Insert 5 G.M.s between % and 8.

4. Insert 3 G.M.s between 2 and %

5. Find two positive numbers whose A.M. and GM. are 25 and 15 respectively.

If AAM. and GM. of the roots of a quadratic equation are 10 and 8§ respectively, then obtain the
quadratic equation.
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7. If sec(x + y), secx, sec(x — y) are in A.P. then prove that cosx = 42 cos %, where cosx # 1;

cosy # 1.

1 1 r+ +r
8. If q is A.M. of ) and %, then prove that qp is the A.M. of p;l-q and qT, where p, g,

r# 0.

7.5 Sums of Some Special Series

Sequence of powers of Natural Numbers : We have obtained the formula for the sum of first
n terms of an A.P. and a G.P,, but it is not possible to find such formula for every sequence. There are
some important sequences which are neither A.P. nor G.P. and we are able to calculate the sum of their
n terms. We shall consider some such special sequences. We shall find formula for the sum of first
n natural numbers, their squares and their cubes.

We shall introduce the notation ‘X’ pronounced as ‘sigma’, which is to be specially used for such

series. It is the enlarged form of the upright capital Greek letter sigma, X means summation.

6

!, reads as ‘sigma’ 7, where n runs from 2 to 6 and it denotes sum of 7, for n =2, 3, 4, 5
2

n

M

n
n==6

and 6. ie. 2 1, =1, + 13+ 1, + 15+ 1
n=2

For example,

n==6
Z 2n+3) ={2(2) +3} + {23) + 3} + {2(4) + 3} + {2(5) + 3} + {2(6) + 3}
n=2

=7+9+11+13+15
=55
i.e. we have to substitute n = 2, 3, 4, 5 and 6 in (2n + 3) and we shall add the resulting numbers.
6 n=6

It is customary to write Zztn instead of writing Y, t,.
n= n=2

The symbol X has the following properties which can easily be proved. (Try yourself!)

H i(al.+bl.)= iai+ ibi

i=1 i=1 i=1

2 ma; = m > a;, where m is a constant not depending on 1.

10420430+ +p0

3 X1= 320

l+1+1+..+ 1 (ntimes)

=n

4) Y.m=m, 1 = mn, where m is constant.
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Note : (1) i(ai‘bi)i iai’ ibi
i=1 i

i=1 i=1

n
2 i§1ai
@ Y|p |2z b;#0Vie N
i=1

1
b
i=1
Now we shall find the sum of first #» terms of some special series, namely

) Xro@ X7 @) 2.

r=1 r=1 r=1

nn+1)
2

n
Now, 2r=1+2+3+..+n-=
i=1

, we can prove it by the formula for sum of first

n terms in A.P. (Try it !).

Note : It is believed that the great mathematician Gauss obtained the sum 1 +2 + 3 + ... + 100
at the age of 5 to 6 years. When his teacher had asked to sum the numbers 1 to 100, he had answered
the question in no time. He had paired the numbers and added numbers in pairs as 1 + 100 = 101,

2+99=101,3 +98 =101, ... 50 + 51 = 101, each pair giving the same sum 101 and there are such
fifty pairs, so the sum of 1 to 100 is 50 X 101 = 5050.

n
From this also, we can have .7 = n(n2+ D .
r=1
T 2 nE2n +1
Theorem 8 : X7 - nerbenth ne N

r=1 6 ’
Proof : Here S, = 17 4+ 22 + 32 + .. + n’.
We consider the identity : x3 — (x — 1)3 = 3x2 — 3x + 1
Putting x = 1, 2, 3, ..., n, we have
13—03=31)2=3(1) +1
22— 13=3022-32)+1

33 -23=33)2-303)+1

W= (m— 1P =30)?—-30)+1
Adding all the above results, we have

m—03=3[124+22+32+ .. +n?]-3[1+243+ ... +n]+[l+1+ 1+ ..+ 1, ntimes]

n
n3=3-Sn—3 Sr+n

r=1

. 3nn+1)
3S, = n + 5 —
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(2n3 +3n? + 3n — Zn)

=

n

N|—

(2n3 + 3n? + n)

A=

-n(2n2+3n+ 1)

%-n(n-l— H2n + 1)

n
Y =242 +R 4+t =La@m+neEn+

r=1

n*n +1)>2
-

n
Theorem 9 : 273 = n € N

r=1

Proof : Here S, = 13 + 23 + 33 + ..+’

We consider the identity : x* — (x — 1)* = 4x3 — 6x2 + 4x — |
Putting x = 1, 2, 3, ..., n, we have

14— 0% =4(1) — 6(1)2 + 4(1) — 1

24 — 14 =42 — 6(2)2 + 4(2) — |

3% =24 =4(3) — 6(3)% + 4(3) — 1

nt— = D =4n3 —6n* + 4n — 1
Adding all the above results, we have
nt =0t =413+ 23 +33+ .+ m3]—6[12+ 22+ 32 + ... + n?]

+4[14+2+3+...+n]—=[1+1+1+..+ 1, ntimes]

n ) n
nt=4.8 —62r° +43r—n

r=1 r=1

nn+hH2n+1) 4 nmn+1)

G 3 +n

48, =n*+6

S, =+ [n* + nn + D@n + 1) = 2n(n + 1) + n]

A=

B+ @+ D2+ 1) =20+ 1)+ 1]

— Lo (P2 +3n+1-2m-2+1)
=%-n(n3+2n2+n)
=%n-n(n2+2n+l)
=%n2(n+1)2

S” zi-nz(n+ l)2 or Sn= [% n(n + 1)]2
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n
SP =B+ +3 4+ +nd= %112(11 + 1)?

r=1

n
Sy, zrz, ZFS are also denoted by Xn, Xn?, Xn3 respectively.

r=1 r=1 r=1

Example 32 : Obtain the following sums :

16 3 20 )
(h 22r°, @ XQ@Br-r7)
r=7 r=10

16 3 16 3
Solution : (1) 2.2r° =2 Xr
r=7 r=7

16 6
=2[ S - Zr3:|
r=1 r=1

- 2[06)2-(17)2 _ (6)2-<7>2]
4 4

= 2 [18496 — 441]
= 2 [18055] = 36110

20 9
@ Sar-A=3| Tr- zr] | 3o %rz]

r=10 r=1 r=1 r=1 r=1

=3 2020+ 99 +11 _ 12020+1)(202) +1) 90O+ 1) (29 + D
== ool Bl B o

_ L [CO)Q2D  910)7 _ 1202 (41) _ 9(10) (19)
_3[ 2 2 ] [ 6 6 ]

=3 (210 — 45) — (2870 — 285)
= 495 — 2585 = —2090

Example 33 : Sum to n terms 13 + 33 4+ 53 +_.
Solution : Let us think of the nth term (general term) of the series 1, 3, 5, ... It is an A.P. with
the first term @ = 1 and d = 2.
t,=a+m—1d=1+m—-12=2n-1
the nth term of the given sequence is (2n — 1)°.

Note : To get general term, it is not necessary to show the method how we get it. For example
in this question it is clear that 1, 3, 5.... is a sequence of odd natural numbers, so the nth odd

natural number is obvious 2n — 1.

Now, S, = 13 +33+ 53+ ..+ @n—1)

n

2 @r—1y

r=1

n
> (83 — 12/ + 6r — 1)

r=1
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n3 n2 n n
=8>r —12Yr"+6yr— )1

r=1 r=1 r=1 r=1

n*(n+1* nn+1H2n +1) nn+l
S-T 12 —_— +6 5

nn+ 1) [Qn(n + 1) —2Qn+ 1) + 3)] — n

nn+ 1) QCn* +2n—4n—2+3)—n

nn+1) Q2 —2n+ 1) —n

nf(n + D2r? —2n + 1) — 1]
=n@nd +2m2 =22 —2n+n+1-1)

= n(2n3 — n)

n?(2n? — 1)
Example 34 : Sum to » terms the series 1 4 + 25+ 36 + ... and hence obtain the sum of first
50 terms.

Solution : Here, to begin with we see that the nth term of 1, 2, 3, ... is » and that of 4, 5, 6, ...
is (n + 3).

t, =n(n + 3)
n
S, = 2 rr+3)
r=1
n
= 2 (”+3r)
r=1
n 2 n
= Yr°+3>r
r=1 r=1

nm+H2n+1)  3nm+1)
6 2

nn+1H2n+1)+9n(n+1)
6

nm+1)2n+1+9)
6

nn+1)-(2n+10)
6

nn+1{m+5)
3

Substituting » = 50, we have
_ 50G5D(GS5) _

nn+1)n+5)

Thus, sum of the first n terms, S, = 3

and the sum of the first fifty terms is 46750.
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Example 35 : Sum the series :

T+x)+(+x+xD)+ A +x+x2+x)+ .. nterms. (x # 1)

1—x? 1—x° 1-x*
e + T + > +... n terms

Solution : Here, S,

l_lx [(1+1+1+.nterms) — (x> + x> + x* + .. n terms)]

! [ xz(l—x"):|
n__
1—x I=x

(x* + x3 + x* +... n terms is a geometric series; a = x%, r = x)

Example 36 : If the sum of the first » terms of the series,

2
1242224324242 +52+ . is w when 7 is even, then what is the sum of the series

when » is odd ?
Solution : When 7 is odd, then last term will be n2.
Series is 124+ 222+ 32+ 2:42+ 52+ .+ 2(n — 1)? + n?

_ (m-D((m-D+1)?
2

+ n? ((n — 1) is even)

n-1-n?+2n?
2

_nP(n—1+2)
2

_ n*n+))
2
(Verify your answer !)

Example 37 : Sum the series, 1 + %(1 +2) + %(1 +2+3)+.. 16 terms.

Solution : Here, ¢, = %(1 +2+34+..+n-= %Zn

_ 1 nn+)
n 2
n+1

_.

TN

~

0f +

o

~—
Il

2
16 16
% Yr+ 1

r=1 r=1

16(17)
[—2 + 16]
= 1(136 + 16)

= l =
= 1(152) =76
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Exercise 7.5

1. Obtain the following sums :
10 10 15 20
D Y @r+3) Q) X @—=28r+49 3) X (F-r—=1) @& Y 2-r
r=1 r=2 r=6 r=8
2. Find the sum of the first » terms of each series below :
() 32+ 72+ 112+ ... Q) B+43+73+..
3 2-1+5-3+8-5+.. 4) 3-4-5+4-6-5+5-8:5+ ..

2 2 2 2 2
5) Gr—1H+ @ —4H+ 114 =TH+ ... (6) 12+(1 ;2 )+(1 *23” )+

(7 22—=1H+ @2 =3)+62—5)+.. (8 1:22+42:32+3.42+ ..
9) (1 —1%) +2(m? — 22) + 3(n? — 3%) + ...
3. Sum the following series :
() 22-33+43—-53+ .+ 223 — 233
(2) 127=22432-42+52—-62+ ..+ 292 — 302
*
Miscellaneous Examples :
Example 38 : If O, is the sum of the first » natural numbers, O, denotes the sum of their squares

and O is the sum of their cubes, prove that 90(22 = 04 (I + 80L)).

2 02 6 >3 4

2 2
Solution : o = 2HD o - MeAD@RAD o _ m+D

_ ni(n+1)?

Now, 04 [1 + 80(] 2

[1 1+ 8. n(n+1)]

2

_ n*(n+1)?

- [4n? + 4n + 1]

_ nPm+1*C2n+1)?
4

2
X9

(n(n +H@2n+1)
6

2
) -9 =901,”
Example 39 : Obtain the sum of the series,
2 2 2
(x+l) + (x2+%) + (x3+%) + ... nterms (x # 0, x # £1)
X X X
o (42 L 4 €L 6 €L
Solution : (x + 2 + xz) + (x + 2 + 4) + (x + 2+ xﬁ) + ... n terms
+

1 1
-+ o +... nterms) +(2+2+2+ .. nterms)

P I D W
-y 2l o
1

= X2—1 _ 1 + 27’1
2

22—y 2 ,

x* -1 x> -1 x" +on
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10.

11.
12.
13.

14.

15.

16.

17.

Exercise 7

Find the 30th term of the sequence 5, 0, =5, —10, ... . Also find which term would be —200, if any.
For an A.P., the 12th term is 64 and the 20th term is 112, find the A.P.

Ramu travels at the speed of 40 km/hr. He reduces his speed every hour by 4 km. How much
time would he take to travel 216 km ?

200 wooden blocks are stacked in such a way that 20 blocks are in the bottom row, 19 are in
the next upper row, 18 are in the upper row next to it and the process is continued. How many
rows will be formed ? How many blocks are there in the upper most row ?

1, 5, 25 are the pth, the gth and the rth terms respectively of a G.P. Prove that p, ¢, » are in A.P.

If a, b, ¢ are consecutive terms of A.P. and a, ¢ — b, b — a are consecutive terms of G.P., then
find a: b : c.

Sum to n terms of the series : 6 + 6.6 + 6.66 + 6.666 + ...
If the sums of first n, 2n, 3n terms of A.P. are O, 3, 'y respectively, prove that Y = 3(B — o).

Find S,, for an A.P. having 7; as 7 and 7, is 2 more than three times its ;.

If a, b, ¢ are consecutive terms of A.P., a2, b2 ¢? are consecutive terms of GP., a + b + ¢ = %
and a < b < ¢, find a.

If a, =3 — 5n, find S,

If S5, of an A.P. is 1635 and 73, is 98, find A.P.

If A.M. is three times G.M. of two positive numbers a and b, find a : b.

3,43 3,43, 43 3,43, 43 3
Sum the series : 1 + ! ;2 + ! +23+3 + ...+ I +2 +;0+'"+20 .

Sum of six consecutive terms of an A.P. is 48 and the product of the first and the last numbers is
39. Find these numbers.

Product of five consecutive terms of G.P. is 243. If the sum of the second and the fourth number
is %, find the numbers.

Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the right
so that the statement becomes correct :

n+(—n"
(1) In a sequence {T}, the difference of the 12th and the 21st term is ... ]
=1 7 33
(@ 0 (b) 5 © 1 (@ 2
(2) If the 5th term of an A.P. is 7, then the sum of the first 9 terms is ... ]
(a) 36 (b) 49 (c) 45 (d) 63
(3) If the third term of an A.P. is 9 and its tenth term is 21, then the sum of its first 12 terms
is ... [ ]
(a) 180 (b) 360 (¢) 150 (d) 210
(4) AM. of two positive numbers is 2. If a larger number is increased by 1, then their GM. is
also 2, then the numbers are ... [ ]
1 7 2 10
(@ 1,3 ® 3. 7 © 5 5 (d) 0.7, 3.3
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(5) If fora GP, r= % and S, = 30 thena= ... [ ]

27°
2 3
(@) 5 (b) 3 (c) 2 (d) 5
(6) If 25, x — 6 and x — 12 are consecutive terms of G.P., then x = ...... [ ]
(a) 8 (b) 12 (©) 16 (d) 20
7 El (mZ:fl’n) — ]
(@) oEhen+D n(n+1)(n+2) © n*(n+1)>2 (d) MEhentn

6 4 12

(8) If Sy, S, and S5 are the sums of the first n, n,, ny terms of an A.P. respectively then

28, 28, 28, B
n_l(nz - 1’13) + 7(”3 - nl) + n_3(n] - nz) T eeesen E]
(a0 ) 1 (©) Sy S, S (d) ny ny ny

(9) If the first term of a G.P. is 3 and the common ratio is 2, then the sum of first five to ten terms
is ... ]
(a) 2976 (b) 3024 (c) 1488 (d)3114

(10) 3+4+8+9+ 13+ 14+ 18+ 19 + ... 20 terms is ... ]
(a) 511 (b) 536 (c) 549 (d) 520

(11) If third term of a G.P. is 3, then the product of first five terms is ... [ ]
(a) 3° (b) 5° (c) 3° (d) 5°

(12) A, and A, are two A.M.s inserted between a and b, while G; and G, are two GM.s

G,G
inserted between a and b, then A, Liz = . ]
a+ b 2ab ab
(a) 2ab (b) (©) a+b (d) a+b
(13) If the length of the sides of a right triangle are in A.P. then the cosines of their acute
angles are ... ]
3 34 JZ JI
@ L. 1 (b 3. 12 @2, 4 @ (2. |2
- 141 ]

(14) Let S, =1+ 5 + 3 +.+ R € N, then... [ ]
(@) Sypo < 100 (b) S;pp> 100 (€) Sypo = 100 (d) Sy > 200

(15) If a, ay, as, ... a, are in A.P. with common difference d, then
sin d [cosecay - coseca, + coseca, - cosecay + ...+ coseca, _ | -coseca,] = .. ]
(a) coseca; — coseca, (b) seca; — seca,

(¢) cota; — cota, (d) tana, — tana,

(16) For an A.P, if 41, = 7t,, then 1;; = ...... ]

(a) —1 (b) 0 (c) 11 (d) 44
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17) 0 <0< %, then the minimum value of sin30 + cosec30 is ...

(a) 2 (b) 1 (© 0 (d) not possible
(18) a, b, ¢, d, e, fare in AP, thend — b = ......
(@) 2(c — a) (®) 2(f = o) (c) 2(d — ¢ (d) 2(f — b)
*
Summary

We studied following points in this chapter :

1.
2.

If'S, is given then to find a,by a; =S;;a,=S, =S, _,n> 1.
The nth term of A.P. is £, = a + (n — 1)d where, a is the first term and d is the common
difference.

The sum of the first n terms of an A.P. is S, = %{Za + (n — 1)d}.

The nth term of a GP. is 7, = ar" ~ 1 a#0, r#0, where a is the first term and r is the common

ratio.
. ar™ -1
The sum of the first » terms of G.P. is S” =)= 7 1
na r=1
a+b

The arithmetic mean of two numbers a and b is A = . If there are »n arithmetic means

—da
n+1

inserted between a and b, then d =

where k = 1, 2, 3, ... n.

The geometric mean of two positive numbers @ and b is G = yab . If there are n geometric means
P k

inserted between a and b, then r = (%)”H and the kth mean is given by G, = a(ﬁ)”“,
a

b—
and the Ath mean is given by A, = a + k(—aj,

n+1

where k=1, 2, 3,..n (G >0, Gi>0Vie N)

n
ir _nmtl) Y2 nm+hen+) ir?a _ n*n+1)?
2 T =1 6 ’ 4 ’

r=1

— ‘ —
e

Bhaskara (1114—1185), also known as Bhaskara Il and Bhaskaracharya ("Bhaskara the
teacher"), was an Indian mathematician and astronomer. He was born near Vijayvada. Bhaskara
is said to have been the head of an astronomical observatory at Ujjain, the leading mathematical
center of ancient India.

Bhaskara and his works represent a significant contribution to mathematical and
astronomical knowledge in the 12th century. He has been called the greatest mathematician of
medieval India. His main work the Siddhanta Shiromani, Sanskrit for "Crown of treatises,"
is divided into four parts called Lilavati, Bijaganita, Grahaganita and Goladhyaya. These
four sections deal with arithmetic, algebra, mathematics of the planets and spheres respectively.
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Chapter

CONICS J

Proof is an idol before whom the pure mathematician tortures himself.
— Arthur Stanely Eddington

In most sciences one generation tears down what another has built and what one has
established another undoes. In mathematics alone each generation adds a new story to the
old structure.

— Hermann Hankel

8.1 Introduction

We shall study about some special curves, viz., a circle, an ellipse, a
parabola and a hyperbola in this chapter. The curves mentioned above can
be obtained by taking intersection of a plane with a double napped right
circular cone. These curves are called conic sections or more commonly
conics. The names parabola and hyperbola are given by Apollonius. He
is in fact considered as pioneer of studying such curves. These curves have
a very wide range of applications in many fields of physics, optics etc. In
the sixteenth century, Galileo observed that the path of a projectile is a
parabola. This fact is now used in the design of an artillery. In the seventeenth
century after prolonged observations Keplar gave laws of planetary motion

in which it is said that the orbits of the earth and other planets around )
. . Apollonius (262 BC- 190 BC)

the sun are ellipses. Afterwards, Newton gave theoretical proof of Keplar’s
laws in a more general situation. Now a days a dish antenna for television and for other communication
is also designed using the concept of conics. Thus, the study of conics is very important; and it has got
applications in mechanics, space science, communication, optics etc. In this chapter we will discuss these
curves, their equations and their properties.
8.2 Circle

We know that the set of all points in a plane at the same distance from a fixed point is called
a circle. The fixed point is called the centre and the fixed distance is called the radius of

the circle.
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Cartesian Equation of a Circle Centered at (%, k) and Radius r :
Let the point C(h, k) be the centre of a circle and P(x, y) be any point on the circle. Now since

the radius of the circle is given to be r, we get Y
CP =r & CP2 = 2 1
S x—h2+ @ — k=2
Thus the cartesian equation of a circle with centre P(x, )

C(h, k) and radius r is given by
x=h*+@—kt=r
This form of the equation is also called the

centre-radius form of the equation of a circle. 2 0 5 X

W

8.3 Standard Form of the Equation of a Circle Liguiv v

The standard equation of a circle is obtained by taking origin as the centre. Thus in this form

of the equation of the circle, centre is the origin and radius is, say r. Hence we put 2 =0, k = 0

2 = y2. This form of the equation is called the standard

in above equation of a circle and get x* + y
form of the equation of a circle.

Further, if radius 7 = 1, the standard form reduces to x* + y? = 1. This is called the equation of

the unit circle.
Example 1 : Obtain the equation of the circle with centre (1, —1) and radius 2.
Solution : Here the centre is (1, —1) and the radius is 2. So, the equation of the circle is
x—12+@+1)Y2=22=4
That is, x> + 3% — 2x + 2y — 2 = 0.
Example 2 : Show that the point, (2 sinQ, 2 cosQ); 00 € R, lies on the circle, X2 + y2 =4,
Solution : We know that a point lies on the circle, if the coordinates of the point satisfy the equation
of the circle. Substituting x = 2 sinQ, y = 2 cosQ( in the given equation, we get
L.H.S. = (2 sin0)? + (2 cosO)?
= 4 sin*0L + 4 cos>0t = 4 = R.H.S.
(2 sinQL, 2 cosOl), 0. € R is on the circle x2 + y2 = 4.
Example 3 : Find the equation of the circle whose radius is 5 and centre is point of intersection of the
lines x + y =1 and 4x + 3y = 0.
Solution : The point of intersection of the lines is the point satisfying both the equations
x +y =1 and 4x + 3y = 0. Solving them (=3, 4) is the centre of the circle.
Also radius is 5. So the equation of the required circle is,
(x + 3% + (y — 4)? = 5% that is x> + y?> + 6x — 8y = 0.
Note : If the centre is the point of the intersection of two lines, then the lines contain diameters
of the circle.

Example 4 : Find k, if the circle x2 + y2 — 2x + 448y + k = 0 passes through the origin.
Solution : The circle passes through (0, 0). Substituting x = 0 = y in the equation of the circle
0+0—0+0+k=0. Thus we get k£ = 0.

Note : A circle passes through the origin if and only if the constant term in the equation is
equal to zero.
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Example 5 : Find the equation of the set of complex numbers z = x + iy, so that | z — z;| = 5,
where z; = 1 — 2i.
Solution : We have | z — z;| = 5 4
| z — z, |2 =52
| (x + i) — (1 —2i)]2 =25 P(z)
| — 1)+ iy +2)2 =25 #
x—1D2+@+22=25 () C(z)
x24+y2—2x+4y—20=0 0
From (i) it is clear that the set is a circle with centre v
(1, =2) and radius 5.

M
v
>

Figure 8.2

Note : In general the set of all complex numbers z satisfying | z — z;| = a, a € RT represents
a circle with radius a, centered at z;. The Argand diagram of the given circle is shown in figure 8.2.
In fact if C and P represent z; and z respectively in the Argand plane and if CP = |z — z,| = a
then P is on the circle with centre C and radius a.
Y

Example 6 : Find the equation of the circles which touch X-axis. 1

Solution : If the radius of the circle is a, then the

coordinates of the centre C are (h, La) or (—h, ta) (figure (h, a)

8.3). The equations of the circles are,
x—h*+@ta?=a or
x+h?+@xa?=d
¥2+y2 —2hxt2ap+ K =0 or

X' €

- <

(h, —a)

©)

X2+ )2+ 2 £ 2ap + K =0 |
Y

Thus, these four equations represent required circles.
Figure 8.3

Note : If a circle of radius a touches Y-axis
(figure 8.4) then its centre will be (Xa, k) or
(fa, —k), and hence the equations of such circles
are of the form,

X2+ 2t 2ax +2ky + k2 =0
or
x2+ )2+ 2ax —2ky+ k2 =0

-g :O g<

Example 7 : Find the equation of the circle with radius a in the

first quadrant, if it touches both the axes. Figure 8.4

Solution : If the circle touches both the axes in first quadrant, then its centre will be C(a, a)

(figure 8.5) and radius a. Hence its equation is (x — a)*> + (y — a)? = a%.

x2 4+ y2 — 2ax — 2ay + a* = 0 is the equation.
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Note :

coordinates as given in the following table. (figure 8.5)

1.

For the circle of radius a, touching both the axes in the other quadrants, the centre has

37
Quadrant Centre . .
I (a, a) o & (_“’WQ’ 3
O
11 (—a, a) (_a,_% 6 )
111 (—a, —a) E .
v (a, —a)
Y
Figure 8.5

Exercise 8.1

Find the equation of the circle which radius and centre given below :

No. Centre Radius
1. (-2, 3) 5
2. 11 B
3. (—4 cosQ., 4 sinQL) 5

4. -2, -5) V5

5. (1, 0) 1

2. Find the equation of the circle for which lines containing the diameters are x —y =5, 2x +y =4

and radius is 5.

Find the equation of the circle which touches Y-axis and has centre (=2, —5).

Find the equation of the circle in the third quadrant having radius 3 and touching both the axes.

Find the equation of the circle passing through the origin, having radius J5 and having centre

%
on OX.

8.4

*k

General Form of the Equation of a Circle

As discussed above each circle has unique centre and radius. Let for a circle the centre be (4, k)

and radius be r. So, any circle has an equation of the form (x — h)? + (y — k)? = r

201‘

x> + 2 — 2hx — 2ky + h* + k* — 2 = 0. Here h, k are real numbers and r is a positive number.
From this equation, we observe the following :

e
2

3

The equation of any circle is a quadratic equation in two variables.
In the equation of a circle, coefficients of x* and y? are non-zero and equal (We will take
these coefficients equal to 1)

There is no xy-term, i.e. the coefficient of the xy-term is 0.
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Thus, we take the general form of the equation of a circle in the form
2 +2+2ex+ 26 +c=0
Now if the equation of a circle is given in the above form, then we wish to determine the centre
and radius of the circle. For this we will rearrange the terms, so that the equation reduces to the
centre-radius form. Thus,

X+ +2ex+ 2/ +c=0 @
S A2+ 2+ A2+ P -2 —f+c=0
© @+ + o+ =g+f-c

If g + f> — ¢ > 0, then above equation can be written as,

2
(+ Q'+ (P = (»/g2+f2—0j

In fact, above relation tells us that the distance of the point P(x, y) from the point C(—g, —f) is

Vel +fi-c

Thus the equation (i) represents a circle if the constants g, f and c satisfy g2 + f2 — ¢ > 0;

and in this case the centre of the circle is C(—g, —f) and the radius is ‘,g2+f2—c-

Equation (i) is called the general form of the equation of a circle.
Note : If g2 + f2 — ¢=0, only (—g, —f) satisfies equation (i).
Example 8 : Does the equation x2 + 32 + 6x — 8y + 20 = 0 represent a circle ? If yes, find its
centre and radius.
Solution : Comparing the equation with the general form, we find that g = 3, = —4 and ¢ = 20.
Thus, g2 + f2 — ¢ =324+ (—4)2 =20 =5 > 0.
Hence the given equation represents a circle.

The centre of the circle is (—g, —f) = (-3, 4) and the radius is ‘)gz +f2 —c = 5.
Another Method :

Adjusting the terms in the equation to get sum of squares, we write
¥ +3y2+6x—8 +20=0
¥+6ex+9+)2—8 +16—5=0
x+32+@—42=5
This is the equation of the circle centered at C(—3, 4) and radius as r = \/g .

Example 9 : Determine which of the following equations represents a circle. Find the centre and
radius for those which represent a circle.

() ¥2+22—2x+6y—8=0
2 2x2+22—2x+6y—8=0
3) x2+y2—2s/5x+y—%=0
4) x*+y* —2xcosP + 2ysinp =0; B € R
(5) 2x%+ 2)% — 2xy + 6y + 22x — 1008 = 0
6) x>+ —4x—6y+13=0
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Solution : (1) In this equation coefficients of x2 and y? are not equal and hence it is not an
equation of a circle.

(2) Dividing the equation by 2 gives x> + y> — x + 3y — 4 = 0. This gives g = —%,
2 2
f= 3 and ¢ = —4. Now, 2+ fr—c= (—l) + (l) - (—4) = L > 0, hence the equation
2 2 2 2
represents a circle with centre (%,—%) and radius %

3) Here,g=—ﬁ,f=%andc=—%. Now, g2+f2—c=2+%+%=25>0. Hence the
equation represents a circle with centre (ﬁ ,—%) and radius 5.
(4) Here, g = —cosP, f = sinf and ¢ = 0.
Now, g2 + f2 — ¢ = cosZB + sinZB =1 > 0. Hence the equation represents a circle with
centre (cosf, —sinf}) and radius 1.
(5) This equation contains a term with xy and hence it does not represent a circle.
(6) Here, g=—2,f= -3 and ¢ = 13. Now, g* + 2 — ¢ = (=2)*> + (=3)*> — 13 = 0, hence this
equation does not represent a circle.
Note : In above examples for equations given in (2), (3), (4) and (6), we can use the
method of sum of squares. Also see that if ¢ < 0, then g% + f2 — ¢ is always positive. Hence

¥z + 32 + 2gx + 2fp + ¢ = 0 always represents a circle, if ¢ < 0.

Example 10 : Find the equation of the circle passing through the points (1, 1) and (=5, 1) and having
centre on the line x + 3y — 1 = 0.
Solution : Let the equation of the circle be x2 + y2 + 2gx + 2y + ¢ = 0 (i)
We need to determine the values of constants g, f and ¢ using given conditions. The centre
of the circle given in (i) is (—g, —f). Now given that the centre of the required circle lies on the line

x+ 3y —1=0, (—g —f) satisfies the equation of the line and hence, we get

—g—3f—1=0 o g+3f+1=0 (i)
Also using coordinates of given points in (i), we get
2¢+2ftc+2=0 (iii)
—10g+2f+c+26=0
ie, 10g—2f—c—26=0 (iv)

In (ii), (iii) and (iv), we have a system of three linear equations in three unknowns g, f and c.
Using (iii) + (iv), we get 12g — 24 =0
g=2
g+ 3f+1=0gives f=—1
Further, 2g + 2f+c+2 =0
4—2+c+2=0 (by taking g = 2 and f = —1)
c=—4

x2 4+ 32 + 4x — 2y — 4 = 0 is the equation of the required circle.
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Example 11 : A(x;, y;) and B(x,, y,) are given end-points of a diameter of a circle. Find the equation

of the circle.

P(x, »)
Solution : As shown in the figure 8.6, let A(x;, y;) and y B(x,, ¥5)

B(x,, y,) be given end-points of a diameter of a circle and

P(x, y) be any point on the circle other than A or B. Now as

we

have studied in standard 10, the angle inscribed in a

semi-circle is a right angle. Thus, APAB is a right angled triangle

with right angle at P (figure 8.6). According to Pythagoras Alxp, ¥p)

theorem we have,

Figure 8.6
PA2 + PB2 = AB2

Also we have, PAZ = (x — xl)2 + (v — yl)2
PB? = (x — x> + (v — 1)’
AB? = (x; — x,)> + (] — »,)?
(=3P + (0 =P = G X2 =P+ P+ - )
& xl2 — 2xx, + xz2 + yl2 -2y, t+ yz2
=x2 - 2xx; + xl2 + )2 — 2py, + yl2 + x2 — 2xxy + x22 + )2 — 2yy, + y22
S 2%y = 20, = X2 - 2xx; + y2 — 2yy, + X2 — 2xxy + y2 - 2y,
& 22+ 2 — 2xx; = 2yy; — 2xx5 — 2pyy + 2x0x5 + 2y, = 0
= x2+y2—xx1 —W X — Wy txpxy, Fypy, =0
This equation can also be written as (x — x))(x —x)) + (v =y — ) =0 (i)
A(xy, y;) and B(x,, y,) also satisfy equation (i).
Hence equation (i) represents the circle having diameter AB.

Other Method :

— X+ x +
AB is diameter. Hence the centre is (%%%)
2 2
.o X+ X yty Cdoxn =)+ (v — vy)?
Radius is ‘/(%—xl) +(1T2_y1) = v/( | — %) , Vi—y)

The equation of the circle is

2 2
(x-%) + (y—y];yzj = (xl_xz)z':;(}’l_)’z)z

2 2 2 2
o 42 +y2—(x1+x2)x—(y]+y2)y+ (X + X)) +(y+ ¥,) ;(Xl N =M=

= x12 +y2 — (X Fx)x =ty +xx, +yy, =0
Rt (x—x])(x—xz)+(y—y1)(y—y2)=0
This is called the diameter form of the equation of a circle.

Note : AP and PB are perpendicular, hence product of their slopes is equal to —1. Using this

also the equation of circle having diameter AB can be derived.
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Exercise 8.2

1.  Which of the following equations represents a circle ? Find the centre and the radius if the equation
represents a circle :

() x—y+4=0 Q) xX2+y*=1

B >+’ —-2x—-2y+1=0 4) x2—)?>—2x+2y=1008

G) ¥+32—6x+8 =0 6) 3x2+32—5x+6y+8=0
7 ¥+ —x+y=0 (8) 9x2—6x+9y—35=0

) x2+y2—2xtan0€+2yseco€+2tan20€=0; (OCE R,aiw;ne Z)

(10) x2 + 32 — 2xy tan®i, + 2y secO. + 2 tan*0, = 0; O, € [0, %)
Find the equation of the circle with centre (3, 4) and passing through the origin.
Find the equation of the circle which passes through the point (2, —1) and whose centre lies on
both the lines x + y = 5 and 4x + y = 5.
4. Obtain the equation of the circle that touches both the axes and passes through the point (=6, 3).
5. Show that the centres of the circles x2 + 2 —4x — 2y +4 =0, x2 + )2 —2x —4y+ 1 =0 and
x2 + 32 + 2x — 8y + 1 = 0 are collinear. Also show that their radii are in G.P.
6. Obtain the equation of the circle for given extremities of diameter using slopes of line segments.
*
8.5 Eccentricity

Geometric Definition of Conics : The set of points whose distance from a fixed point and
whose perpendicular distance from a fixed line not passing through the given point are in a
constant ratio is called a conic. The fixed point is called a focus of the conic and the fixed
line is called a directrix of the conic. This constant ratio is called eccentricity of the conic
and it is represented by symbol e.

8.6 Parabola

In 17th century, Galieo discovered that when an object,
say a stone, is thrown in the air, then it follows parabolic path.

Here ‘para’ means ‘for’ and bola means ‘throwing’. Hence

the name parabola. This discovery by Galileo made it possible

Figure 8.7 for cannoneers to work out the kind of path a cannonball would
travel if it were hurtled through the air at a specific angle. A formal definition of a parabola is as follows :

Definition : A parabola is the set of all points in a plane

which are equidistant from a fixed line and a fixed point (not A
on the line) in the plane (figure 8.8). Here by the distance of P,
a point from the line, we mean its perpendicular distance. E;
Points P, P, and P; are shown on the parabola. B, S
By definition, B,P, = SP,, B,P, = SP,, B;P; = SP;. Focus
Similarly for all points on the parabola. Directrix
Let S be a fixed point and let / be a fixed line not passing J

through S. S is called the focus and / the directrix of the parabola. .
Figure 8.8
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If P is a point on a parabola and perpendicular distance of P from the directrix is PM, then
according to definition of parabola SP = PM.

SP
PM

According to definition of eccentricity of a conic, parabola is a conic with eccentricity 1.

Let Z be the foot of the perpendicular from S to the line /. Let A !

A A
be mid-point of 7ZS. Thus SA = AZ and ZS is perpendicular to the
directrix /. Hence A lies on parabola. M g
Choose A as origin, AF>S as X-axis and direction of Zé as positive . >
direction of the X-axis. Further, we take distance ZS = 2a. Then S would = 2
be (a, 0) and Z(—a, 0). The equation of the directrix / would be x = —a.
Let P(x, y) be any point on the parabola and let M be the foot of | A |
the perpendicular drawn from P to the directrix /. Then the coordinates Figure 8.9
of M are (—a, y). Now as the point P is on the parabola,
SP = PM
SP? = PM?
(x —ay + 2 = (x + a)?
V=t a? - (x - a)
2 = dax (@

If a point P(x, y) satisfies the equation y? = 4ax, then by taking above steps in the reverse order,
we get SP = PM, i.e. the point P is on the parabola.
The equation of the parabola is y2 = 4ax.
This equation is called the standard form of the equation of a parabola.
Example 12 : Find the standard equation of the parabola whose focus is (4, 0) and equation of

the directrix is x + 4 = 0.
Solution : As the focus is at (4, 0) and the directrix is x + 4 = 0, a = 4. The equation of the
parabola is, y2 = 4(4)x.
y2 = 16x is the equation of the parabola.
8.7 Some definitions and results related to parabola
(1) The axis of a parabola is defined as the line passing through the focus and
perpendicular to the directrix. Accordingly for the parabola y? = 4ax, X-axis is axis of
the parabola.
(2) The point of intersection of the parabola with its axis is called the vertex of the
parabola. For y* = 4ax, the origin is the vertex.
(3) If the axis of the parabola is chosen as Y-axis and vertex at the origin, then the
equation of the parabola comes out to be x> = 4by (figure 8.10(ii)). In this case focus
is (0, ) and the equation of the directrix is y = —b. Here | b | is the distance between the

vertex of the parabola and its focus.
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(4) If the point P(x, y) is on the parabola y* = 4ax, then P(x, —y) is also a point on the parabola.
Thus the parabola y? = 4ax is symmetric about X-axis. (i.e. replacing y by —y there is no change
in the equation.) Similarly, the parabola x2 = 4by is symmetric about Y-axis. (i.e. replacing x
by —x, there is no change in the equation.)

(5) Parabolas y2 = 4ax and x> = 4by are shown in the figures (a # 0, b # 0).

Y Y
A A A A
l i
Focus Focus Z(-a,0)
€ ® > X £ & 3
7(~a,0) ANO0) g4 0) S@0  AfCO
v W L 4 _\f
X =-a y2:4ax(a>0) y2:4ax(a<0) x=-a
directrix directrix
Figure 8.10 (i)
Y
F F
ra l -
i zfo,-»  y=_
directrix
Focus & S(0, b) Al©.0)
< 2 > X
< > X
Al 0.0 Focus & S(0, )
/
" > y N _b L 4
z](0.75) directrix
2 =4by (b>0) 2 =4by (b<0)
Figure 8.10(ii)

(6) The line segment joining any two points of a parabola is called a chord of parabola. A
chord passing through the focus is called a focal-chord. A focal-chord perpendicular
to the axis, (or equivalently, parallel to the directrix), is called the latus-rectum
of the parabola.

8.8 Latus-rectum of a parabola

>
Let the end-points of the latus-rectum of a parabola y*> = 4ax be L and L'. Hence the line LL’ is

a vertical line. Since it passes through the focus (a, 0), its equation is x = a. Now as the points L and
L' are on parabola also, using equation of the parabola we get, y* = 4ax = 4a-a = 4a?, which

means y = X2a. Thus, the coordinates of the end-points of the latus-rectum are L(a, 2|a|) and

L'(a, =2| a). The length of the latus-rectum is the distance LL'
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Length of the latus-rectum = LL'

= J(a-a)*+2lal+2la1)?

=4|a| < >
A S(a, 0)
Note : For the parabola x> = 4by, the end- % =l-a
points of the latus-rectum would be L(2| 5|, b)
and L'(=2|b|, b); and hence the length of the \
L’
latus-rectum would be 4|5 |. & ! !
Figure 8.11

8.9 Parametric equations of a parabola
For any real parameter ¢, x = ar®> and y = 2at satisfy the equation y> = 4ax. Conversely, suppose
a point (x;, ;) lies on the parabola 2 =4dax. Let t = 2y_clz’ then x; = at®. In other words corresponding
to any point on the parabola y? = 4ax, there exists a real number 7 such that x = a2 and y = 2ar.
Thus, (af?, 2at) is a point on the parabola y* = 4ax and any point on y? = 4ax is of the form
(at?, 2at) for some t € R.

x = af®, y = 2at are called parametric equations of the parabola y? = 4ax. The
point P(ar?, 2af) is called a t-point of the parabola and it is denoted by P(7).

Example 13 : Find the equation of the parabola whose focus is (2, 3) and directrix is
3x +4y — 10 = 0.
Solution : Let P(x, y) be a point on the parabola. Now by the definition of a parabola, if focus is

S and PM is perpendicular distance of P from the directrix, then
SP = PM, i.e. SP? = PM?
_ 2 a2 = wz _ (Bx+4y—10)
x—=2+ 3)—( forio ) s
25(x2 —4x + 4 + 2 — 6y + 9) = 9% + 16y + 24xy — 60x — 80y + 100
16x2 — 24xy + 992 — 40x — 70y + 225 = 0 is the equation of the required parabola.

Example 14 : By shifting the origin to (4, 3) find the coordinates of the focus and the equation of the
directrix for the parabola (y — 3)% = 16(x — 4).

Solution : Let (x', ') be coordinates of P(x, y) with respect to the new origin, then
x=x'+h=x"+4 y=y+k=y+3
The equation of parabola becomes ()2 = 16x".
4a = 16, i.e. a = 4

New coordinates of the focus (x', ') are (a, 0) i.e. (4, 0).

Now,x =x'+4, y=»"+3

Original coordinates of the focus are (8, 3).
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The equation of the directrix in new coordinate system : x' + a = 0
X+4=0
Its equation is x — 4 + 4 = 0.
The equation of the directrix is x = 0.
Verification : From SP = PM, (x — 8)2 + (y — 3)? = x2%,
(v — 3)2 =x2 — (x2 — 16x + 64) = 16(x — 4).

Example 15 : For each equation given below, find the coordinates of the focus, the equation of the directrix,
length of the latus-rectum and coordinates of the end-points of the latus-rectum for the parabola :

(2=—=8 @ =8 ()r2=3y (@) =-10x

Solution : (1) Comparing x> = —8y with the standard equation x* = 4by we get, 4b = —8. So
b = —=2. Here the axis of the parabola is Y-axis. Hence the focus is (0, b) = (0, —2).

The equation of the directrix is y = —b, so y = 2 is the equation of the directrix.

The length of the latus-rectum is 4| 5| = 8.

The end-points of the latus-rectum are L(2| b |, b) = L(4, —2) and L'(=2| b |, b) = L'(—4, =2).

(2) Comparing y*> = 8x with the equation y* = 4ax, we get a = 2. Here the axis
of the parabola is X-axis.

Focus is (a, 0) = (2, 0).

The equation of the directrix is x = —a, i.e. x = =2 or x + 2 = 0 is the equation of the directrix.
The length of the latus-rectum is 4| a| = 8.

The end-points of the latus-rectum are L(a, 2| a|) = L(2, 4) and L'(a, —2| a|) = L'(2, —4).

(3) Comparing x2 = 3y with the standard equation x> = 4by we get, 4b = 3, i.e. b = % Here
the axis of the parabola is Y-axis.

Focus is (0, b) = (0,%).

The equation of the directrix is y = —b, so y = —% or 4y + 3 = 0 is the equation of the directrix.
The length of the latus-rectum is 4| b | = 3.

The end-points of the latus-rectum are L(2| b |, b) = L(%,%) and L'(=2| b, b) = L'(—%,%).

(4) Comparing y* = —10x with the equation y* = 4ax, we get a = —%. Here the axis of the

parabola is X-axis.

Focus is (a, 0) = (—%,0).

The equation of the directrix is x = —a. So x = % or 2x — 5 = 0 is the equation of the dirextrix.

The length of the latus-rectum is 4 | a| = 10.

The end-points of the latus-rectum are L(a, 2|a|) = L(—%,S) and

L(a, —2|a)) = L(-2,-5).
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Example 16 : Find the standard equation of the parabola having vertex at origin, focus at (0, —3) and

directrix y = 3.

Solution : Here focus (0, —3) is on Y-axis and the directrix y = 3 is parallel to X-axis. Thus the
equation of the parabola is of the form x2 = 4by, with b = —3. Thus the equation of the required
parabola is x2 = —12y.

Example 17 : Find the standard equation of the parabola symmetric about X-axis, vertex at origin and
passing through (5, =5).

Solution : Given that the parabola is symmetric about X-axis and vertex is at origin. Hence the
standard form of the equation is y? = 4ax. Further since the parabola passes through the point

(5, =5), we get (—5)% = 4a(5)

25 = 20a

Hence the equation of the parabola is y* = 5x.
8.10 Properties of a Parabola
Property 1 : Let P(¢;) and Q(#,) be two points on a parabola ¥y = dax. If m is a focal chord,

then 7,1, = —1.
Proof : If E is the latus-rectum, then P(a, 2a).

2
atl

=a, 2at; = 2a
Similarly for Q(a, —2a), 1, = —1
Now, suppose ﬁ is not the latus-rectum.

atl2 Z a, a122 Z a.

<> >
Now, slope of SP = slope of SQ

2at, 2at,
at> —a — at’—a

12 = 1) = (62 = 1)
L2 — 1 = Lt? — 1,
L2 — L2 =1 =1,
hity (b, = 1) = —(t, = 1;)
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Property 2 : Let S be the focus of the parabola y2 = 4ax, (a > 0) and ﬁ be a focal chord. Then
1

S_IP + ﬁ T a
Proof : Let P(¢;) and Q(z,) be the end-points of a focal chord. The coordinates of the focus are
(a, 0). The coordinates of the points P and Q are (atlz, 2at;) and (at22, 2at,) respectively.
SP? = (at;? — a)> + (2at,)?
= (at]2 —a) + 4azt12
= (at]2 + a)?
SP = a(t,?> + 1) Similarly, SQ = a(t,” + 1) (a > 0)

I 1 1
Now, == + 55 = -
5P T SQ T 2+ | a4

1+ +83+1
at + )3 +1)

:1+ﬁ+é+ﬁé = 1)
at? + )t +1) 12

A+Ha+5)

Tar+nEE+y  a

Property 3 : Let P be any point on a parabola and S be the focus of the parabola y? = 4ax. Let
&~
PQ be a line parallel to the axis of the parabola. Let the bisector of the angle ZSPQ intersect

axis of the parabola in point G. Then SP = SG.
Y

A

—
Proof : Here PQ is parallel to the axis of the parabola, that
—
is to X-axis. Also PG is the bisector of ZSPQ. Thus as shown in

. . > —
X' > X the figure 8.12, PG is a transversal to parallel lines PQ and SG.

Hence mZSGP = mZQPG. Also, mZSPG = mZQPG. Thus,
mZSGP = mZSPG. Hence ASPG is an isosceles triangle with
4 S—P = %

Y Figure8.12

Note : This property has some applications in optics, for designing the mirrors. If a light
source is placed at the focus of a parabolic mirror, then the light will travel parallel to the axis of the
mirror. This fact is used in head-light of a vehicle, whereas any light ray which is parallel to axis of
a parabolic mirror is reflected in to the focus. This is used in a dish antenna of television.

Exercise 8.3

1. Obtain the coordinates of foci, the equations of directrices and draw a rough sketch for following

parabola :

(1) 22 =x (2) x2 = —4y (3) 4x2 = —y (4) »* = 12x
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2. Find the standard equation of the parabola satisfying conditions given below :
(1) Vertex (0, 0), focus (0, —2).
(

2)
3. (1) Find the equation of the parabola whose focus is (—1, 2) and directrix is x —y + 1 = 0.
2)

(

4. Find the length of the latus-rectum and the equation of the directrix of the parabola
(x + 1)2 = 4(y + 2) by shifting the origin to (=1, —2).

Vertex (0, 0), X-axis as axis of the parabola and pasing through (1, —4).

Find the equation of the parabola whose focus is (=3, —4) and directrix is 3x — 4y — 5 = 0.

5. Find the area of the triangle formed by the end-points of the latus-rectum and the vertex of the
parabola x2 = 12y.
6. One end-point of a focal-chord of the parabola y? = 4ax is (atlz, 2at,), find its other end-point.

2
From this show that the length of the focal-chord is (tl +tij .
1

7. Distance SP of a point P on the parabola y? = 12x from its focus S is 6 units. Find the coordinates

of the point P.

8.11 Ellipse

Any cylinder sliced at an angle will reveal an ellipse in
cross-section. To demonstrate this tilt a glass of water and the

surface of the liquid acquires an elliptical outline (figure 8.14).

Also in salads, cucumber is often cut obliquely to obtain

elliptical slices. Figure 8.13

The early Greek astronomers thought that the planets
moved in circular orbits about the unmoving earth, since the circle
is the simplest mathematical curve. In the 17th century, Johannes
Kepler eventually discovered that each planet travels around the

sun in an elliptical orbit with the sun at one of its foci.

Figure 8.14 Y
A

We have discussed eccentricity of a conic
A'(—=a,0)
X' < ®

it
s

section. A conic section with e < 1 is called

an ellipse.

Y
Figure 8.15
Standard equation of an ellipse :
Suppose S is the focus, / is the directrix and e is the eccentricity of an ellipse. Let P be a point on

the ellipse. Let M be the foot of perpendicular from P to /.
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By definition e = % (i)

Let Z be the foot of the perpendicular from S to /. Let A and A' be two points that divide Sz

from S in the ratio e : 1 and —e : 1 respectively.

SA _ SA. _
Thus, AR Also, ARG

SA = distance of focus S from A
AZ = perpendicular distance of A from /. This holds for A" also.

Thus, % = % = ¢ and hence A and A' are both on the ellipse. Suppose C is the mid-point of
— —

AA'. Let C be the origin and direction of CA as the positive direction of the X-axis. Let CA = a.
Hence coordinates of A and A' are (a, 0) and (—a, 0) respectively. Let the coordinates of S be (p, 0)
and coordinates of Z be (¢, 0). As A(a, 0) divides SZ from S in ratio e : 1, we get

eq+p ..
a=er1 (i)

Similarly for A' the ratio of division is —e : 1.

—eq +p
ey (iii)
From (ii) and (iii) we have,
eq +p =ae + aand —eq + p = ae — a. Solving these equations for p and g,

p=aeandq=%

Thus focus is S(ae, 0) and coordinates of Z are (%,0). The directrix passes through Z and it is

a vertical line. Its equation is x = %.

Let P(x, y) be any point on the ellipse. Then from (i)

SP_ =
S = ¢ & SP = o(PM)

& SP? = e2(PM2) (iv)
Here PM = distance of P(x, y) from the line /,

= distance of P(x, y) from the line x — % =0

3 ‘ e Iax1+by1+cI]

— (by the formula Jm

N

Q

B

— x4
o e
2
PM2 = (x—%) v)
Also, SP? = (x — ae)? + )? (vi)

Using (v) and (vi) in (iv), we get

CONICS 175



2
SP _ N2 2_ 2 (,._a
M e & (x—ae) +y e (x e)

2 _2ax , a?
e
S x2 — 2aex + )2 + a?e? = 22 — 2aex + &?
S XX — b))+ =aX 1l — &?)

& (x — ae)? + )2

2 Y N
S ot T ! o

Now, as @ > 0 and e < 1, a¥(1 — ) > 0
Thus, we can choose b > 0 such that ¢*(1 — ¢2) = b2. So (vii) takes the form

2o Y
pel + = 1.
2 2
;—2 + Z—Z 1 is called the standard equation of the ellipse.
Conclusion : Y

(1) If the equation of an ellipse is given as

e _ (—x.») = P(x,y)
+ e = 1, then the relation b2 = g%(1 — e?) / 4

5 : X
(a > b) can be used to determine eccentricity !//
of the ellipse. (~x, (x,—)

(2) Symmetry :

amlx

v

From the standard equation of an ellipse we Y
observe that for any point P(x, y) on the ellipse Figure 8.16

(1) the point (x, —y) is also on the ellipse, that is, the ellipse is symmteric about X-axis.
(i) the point (—x, y) is on the ellipse, that is, the ellipse is symmetric about Y-axis.

(i) the point (—x, —y) is on the ellipse, that is the ellipse is symmetric about the origin
C(0, 0). This point C is called centre of the ellipse. And hence ellipse is also called a
central conic.

(3) Intersection with coordinate axes :

In the derivation of the equation of an ellipse we

have taken A(a, 0) and A'(—a, 0) on the ellipse. Y
Thus the ellipse intersects X- axis atx = *a. To find B(0,5)
2

the intersection of the ellipse = + b_2 = 1 with

Y-axis, we put x = 0 and hence we get y = Tb. X /‘ 4\ S X
Thus the ellipse intersects Y-axis in point B(0, b) ~ A(-a.0) C A(a, 0)
and B'(0, —b) as shown in the figure 8.16. Similarly

it can be observed that the ellipse intersects

X-axis in A and A' by taking y = 0 in the equation {E. B0, -b)

of the ellipse. These points A, A", B and B' are Fioure 8.17
gure 8.

called vertices of the ellipse.
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(4) Two pairs of focus and directrix :

2

2
The equation of the ellipse is % + [};—2 =1(a>b) (i)
We know that, 52 = (1 — e?)
2
2, Y
<t ea-ea T
¥(1 —e2) + 2 =a*(1 — &?)
x2 _ x2e2 + y2 — a2 _ aZeZ
x2 + 2aex + a*e? + y? = x%e? + & + 2aex
2
(x + ae)> + % = ¢2 (x+%) (i)
To interprete (ii) we take S' = (—ae, 0) and /' the line x + % =0.
Now, the perpendicular distance of P(x, y) from /' (say PM') is given by
a
x+4
pm =L <l = x+ 4 \ X
140 ¢ B
2 M
PM2 = (x+2) (i) ’ P \
X A\ S(-ae0)|0 RS
Also, SPZ = (x + ae)> + y?  (iv)
From (iii) and (iv), (ii) gives, x+o=0} . B
Y
(S'P)2 — 62 (PM|)2
Figure 8.18

S'P _

== =e

PM'

By the definition of eccentricity, S' can be taken as focus and /' as directrix. Thus an ellipse has

two foci (fae, 0) and two corresponding directrices x + %

(5) It was seen that an ellipse is symmetric about A A' and BB'. These line segments are called

semi-major axis.

axes of the ellipse. Also AA' = 2a and BB' = 2b and » < a. Thus AA' is called major axis and

BB' is called minor axis and b is called the length of semi-minor axis, a is called the length of

Here major axis is along X-axis. If major axis is along Y-axis. Then foci of the ellipse are on

2 2
2— + Z—z = 1 with b > a and also a? = b%(1 — €?).

Also, the coordinates of foci are (0, Tbe), the equations of corresponding directrices are y +

Y-axis and directrices are parallel to X-axis. The equation of such an ellipse is,

NN

=0.
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(6) In analogy with the case of a parabola, chord and Y
focal chord of an ellipse are defined. But, as an L, L,
ellipse has two foci, it has two latera-recta
(figure 8.19). As shown in the figure end-points of o

e,
S S
latera-recta in different quadrants are denoted by \LF/[/
L, L,, Ly and L,. LjLy and L,L; are two L

latera-recta. y

(7) Length of latera-recta : Figure 8.19

Consider a latus-rectum L;L, passing through
the focus S(ae, 0). Since m is parallel to Y-axis,
its length is the difference of y-coordinates of
L, and L,. To determine y-coordinates of L,

and L,, we put x = ae in the equation of the

2 2
ellipse % + Z—z =1.
Thus, we get
2
2 Yo _
e- + b—2 =

V=01 = &)

2
Butl—ez=%
_ b
=
-+ b
Y T a

y-coordinates of L; and L, are 121_2 and —Z—z respectively. Hence

_ b _b2)Y _ op?
L1L4‘7‘( a)=

2
L](ae, Z—Z) and L, (ae, —%).

2
Similarly L, = (—ae, ba—Z) and Ly = (—ae, —%)_

The length of a latus-rectum = =—
Example 18 : Obtain the equation of the ellipse whose focus has coordinates (2, 0), the equation of

corresponding directrix is x — 5 = 0 and eccentricity is Wk
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Solution : Let P(x, y) be any point on the ellipse, S be the focus and PM the perpendicular

distance of P from directrix.

SP2 = ¢?PM?
2
x—22+)%= (%) (x — 52

20 —4x + 4+ ) =x% — 10x + 25
x% 4+ 2y%2 4+ 2x — 17 = 0 is the equation of required ellipse.

x=0* =2’
Example 19 : By shifting the origin to (1, 2), prove that =g ) + - ) =1 is the equation of an

ellipse. Also find the coordinates of foci and the equation of directrices.
Solution : In standard notations taking x = x'+ 1, y =)'+ 2,

. x)? "? . .
the transformed equation takes the form % + y9 = 1, which represents an ellipse.

a? =16, =9
As b2 = d*(1 — e?), we get 9 = 16(1 — ¢2)
62:1— 9 _ 7

16 16
e = g (e >0
The coordinates of foci (ae, 0) = (iﬁ , 0) and the equations of corresponding directrices are
x + % =0 (in x' — )" coordinate system )
In the original coordinate system the coordinates of foci are (1 t @, 2) and

. . . . — 16
the equations of corresponding directrices are x — 1 + el 0.

Example 20 : Find the coordinates of foci, the equations of directrices, eccentricity and length of the

latus-rectum for each of the following ellipses :

) %2+y2=1 Q) 4x2 + 32 = 25

Solution : (1) %2 +)2=1givesa?=9,b2=1.S0a=3,b=1.
As a > b, the major axis is along X-axis.

(i) Eccentricity : We have b2 = a*(1 — &2)

1=9(1 —¢?)

1__2

5 1 e

2=t

=45 21
3 3

(i) Foci : (*ae, 0) = (i3(7],0] = (1242, 0)

(iii) Directrices : x = 4

9

v=s(F) -5k =155
9

The equations of directrices are x * =0.
22
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Example 21 : In each of the following cases, find the standard equation of the ellipse :

26>

(iv) Length of latus-rectum : %
4x*
25

2
(2) From the given equation, we get =— + % =lie X4+ 2 =1

Thus, a* = %, b =25
a=%,b=5.Henceb>a
The major axis is along Y-axis.

(i) Eccentricity : a2 = b*(1 — €?)

2 =25(1 — ey
l—ez=i
2 =3

(i) Foci : (0, the) = (0,15(@]) _ (o,i%j

(iii) Directrices :

so.v=2{% )

10
T 0 are the equations of directrices.

II
I+
|

(iv) Length of latus-rectum : 2272 = 2(2?5)(%) = %

(1) Length of the major axis 6, eccentricity % and major axis along X-axis.

(2) Length of the latus-rectum 8, eccentricity %, major axis along Y-axis.
Solution : (1) Here major axis is along X-axis and length of the major axis is 6.
2a = 6. S0, a=3

Hence ¢ = 9. Further ¢ = %
Now, b% = a*(1 — ¢?)
2 = —ey=09(1-1) = o(8) =
b2 =9(1 — ) =91 1) 9(9) 8
2
The equation of the ellipse is %2 + y? = 1.

(2) Here the major axis is along Y-axis.

Length of the latus-rectum % = 8. Hence a? = 4b
Also, eccentricity e = ﬁ and @ = b¥(1 — &%) = b? (1—%)

2 _ 132
a 2b

®

(i)
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From (i) and (ii), we get

lzz

b? = 4b

b —8bh=0
b=8as b #0.
b? = 64

2 _ b2 _ 64 _
a 3 > 32

X2y
w T b
Example 22 : Find the equation of ellipse whose major axis is along X-axis, length of semi-minor

Thus, the equation of the ellipse is

axis is 4 and distance between two foci is 5.
Solution : Here, length of the semi-minor axis b = 4. Major axis is along X-axis

Let S(ae, 0), S'(—ae, 0) be foci. Then the distance between them is SS' = 2ae = 5.

ae = % @)

Also, b? = d*(1 — €2) = a* — a%e?

6=~ (3 = - 2 (from (i)

a 16+4 n

2

2
Thus, the equation of the required ellipse is )gcz + 2L =1.

4 16

2 2
S S |

89 16

Exercise 8.4

1. Find the standard equation of the ellipse in each of the following :
(1) Foci (%2, 0), eccentricity = %
(2) Foci (4, 0), vertices (£5, 0)
(3) Length of the semi-minor axis 6, eccentricity %, major axis along X-axis.
(4) A focus (0, 4), eccentricity %
(5) Eccentricity %, length of a latus-rectum 5, major axis along X-axis.

(6) Length of semi-major axis 4, eccentricity %, major axis along X-axis.
(7) Length of semi-minor axis 8, a focus (0, 6).

2. If possible, find the equation of the ellipse whose foci are (3, 0) and which passes through the
point (4, 1).

3. Find the coordinates foci, eccentricity, the equations of directrices and length of the latus-rectum
for the following ellipses :

) &+ =1 @ &+ =1 (3) x2+ 2y2 =100
X2 7Y 2 2 _
@ L+ === (5) 5x2 + 92 = 81
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4. Find the eccentricity of the ellipse in which the distance between the two directrices is three times

the distance between the foci.

5. Find the equations of directrices of the ellipse 16x2 + 25y2 = 1600. Show that the point (5\/5 , 4)
lies on the ellipse. Find the ratio of distance of this point from a directrix to its distance from the
corresponding focus.

6. Show that the line x + y = 3 contains to a focal chord of the ellipse 20x* + 36y = 405.

7. Find the equation of the ellipse passing through the points (4, 3) and (—1, 4).
8. Find the equation of the ellipse having eccentricity %, a focus (3, 2) and corresponding directrix
y =5.
: . x-2> - : .
9. Shift the origin (2, 1) and prove that T + ) = 1 represents an ellipse. Find the

coordinates of foci and the equations of directrices.

*k

8.12 Parametric Equations of an Ellipse

2

2
The equation of an ellipse is given by % + 2)—2 = 1. Hence (%,%J is on the unit circle.

Sum of two squares is 1.

10 € (—m, 1] such that % = cos0, % = sin®
x = acosB, y = bsin®
2

X
bz
x = acosO, y = bsin®, O € (—m, 7] are parametric equations of the ellipse. The point (a cos0, b sin©)

2
Further elimination of © from x = acosO, y = bsin® gives % + = 1. Thus we see that

on the ellipse is called the B-point.

Properties of an Ellipse : .
B(0,h)
Property 1 : The distance of a focus of an
ellipse from an end-point of the minor axis is equal to
the length of the semi-major axis. — P >
. . . . (~ae0)|C S(ac0)/ A 0)
Proof : An end-point of the minor axis of the
2 y?
ellipse % + o 1 is B(0, b). The coordinates of one B
Y
of the focus S are (ae, 0). Figure 8.20

SB2 = a2 + b2 = a?e? + d*(1 — &%) = 4?

SB =a

Similarly, for S'(—ae, 0); S'B2 = a?e2 + b2 = &2

SB =a

Also, the other end-point of the minor axis is B'(0, —b). For this point we also can show that,
SB' = a = S'B".
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Property 2 : If S is a focus and A and A' are extremities of the major axis, then AS - A'S = 52,
Proof : Here focus is S(ae, 0), A(a, 0) and A'(—a, 0).

AS-A'S = ‘/(a—ae)2 ‘/(a+ae)2
=a(l —e)a(l + e) 0<e<]
=d? (1 —e)=0b

2 2
Property 3 : For every point P(x, y) on the ellipse 2—2 + Z—z =1, SP + SP = 2a, where S and §'
are foci and b < a.

Proof : The directricies of the ellipse are x = % = 0. Thus the distance of the point P(x, y)

from respective directrices is %1 X|. By definition of the ellipse we have,
SP =e¢ %—x =|a— ex]|
SP =e %+x =|a+ ex|
2 2 2
X Yy _ X
Alsoas?+b—2—l,so e <1

|x| < a Also e <1

lex| <a or —a<ex<a
a—ex >0 and also a+ex >0
SP=a—ex, SP=a + ex

SP + SP = 2a

The converse of above property is also true. That is, the set of all points in the plane, the sum of
whose distances from two fixed points in the plane is a constant is an ellipse whose major axis has the

same length as the constant.

To prove this result we proceed as follows :
Suppose S(c, 0) and S'(—c, 0) are two fixed points in the plane. These points are selected so that
the origin C the is mid-point of SS' and the direction of CS is the positive direction of the X-axis. Suppose

P is a point in the plane such that SP + S'P = 2a, where a is a constant. (a # ¢)

Pg SS (IfP € SS', SP + S'P = SS' i.e. 2a = 20)
SP + SP > SS'
2a > 2c ()

Now, SP + SP = 2a

‘/(x+c)2+y2 +‘/(x—c)2+y2 = 2a
Va+o? +3? =2a— J(x-of +?
(x + ¢ +? = 4ad® - 4a\/(x—c)2+y2 + (x — ¢)? +)?
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a\’(x—c)2+y2 =a?> — cx
‘/(x—c)2+y2 =a— gx

P(x, y)

X € 4 B
Taking 5 =e, \[()c—c)2 + y2 =q— ex S'(~ae,0) Cy
‘/(x—ae)2 +y2 =a—ex

(c = ae)
(x — ae)> + Y2 = (a — ex)?
x2 — 2aex + a*¢* + y* = a? — 2aex + €22

(1 —e)+)y?=a*( - &)

2
X2 Y

2 T aa-o)

1

Since by (i) a > ¢, e = 5 < 1. Hence a? (1 — e2) > 0.

Yl
Figure 8.21

Thus there exists a positive real number 4 such that 5% = g%(1 — &?).

2 yz
Thus, we get 2—2 + el 1.

This is an ellipse with length of major axis equal to 2a.

This property is often used as a definition of an ellipse.

An important application of ellipse :

then after reflection from the mirror, light will reach the other focus S'.

If a source of light (or sound or in general any wave) is placed at one focus S of an elliptic mirror,

This property of ellipses was used by ancient Indian architects in construction of whispering

gallaries. Some whispering galaries are found at Bijapur in Karnataka and Golkonda Fort in Hydrabad.

In the design of telescopes this property of an ellipse is also used.

stones in kidney or bladder. Here, the lithotripper is placed at one focus of an ellipse and ultra-high
frequency, shock-waves are produced at the other focus. The reflected waves break the kidney

Further, in medical science, this property of ellipses is used in lithotripper which is used to break

stone.

Example 23 : Find parametric equations of the ellipse 3x2 + 5y% = 15.

Solution : Dividing given equation by 15, we get

XY
5+Tl

Thus we get a = J5 , b= J3 and hence parametric equations of the ellipse are x = J5 cos9,
y = ﬁsin@. 0 € (-m, m

Example 24 : Find the coordinates of foci, the equations of directrices and eccentricity of the ellipse,

x = 2cos0, y = 5sin0.

Solution : Here @ = 2, b = 5. Since b > a major axis of the ellipse is along Y-axis.

(1) Eccentricity : We have a? = b%(1 — ¢2)
4 =251 — €%
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2—5 e
2 4 _2 _ 21
e 1 35 s Thus e 5
(2) The coordinates of Foci : (0, Xhe)= 0,i5@j = (0, £v21)
(3) The equations of Directrices : y = i% =15 X % = i%
Exercise 8.5
1. Obtain parametric equations of the following ellipses :
240 240
(1) TR 1 ) =t 1
2
3) 32 +42—-12=0 @ L+ L=

G) ¥*+22—-18=0
2. Find eccentricity and foci of the following ellipses :
(1) x=2cosO, y = 3sin0, 0 € (-m, )
(2) 3x = 5cos0, 5y = 7sin®, O € (—m, ]
(3) x = 4cos0, y = 3sin0, 0 € (-m, m
3. If the sum of distances of a variable point P from points S(1, 0) and S'(—1, 0) is constant and

equal to 8, then find the set of points.
*

Hyperbola : Hyperbola is an important curve used in military sciences. For example, source of a
fired bullet can be determined by properties of a hyperbola and intensity of sound.

A conic with eccentricity e > 1 is called a hyperbola.

Y
Standard Equation of a Hyperbola : p
Suppose S is the focus, line / is the directrix
and e is the eccentricity of a hyperbola. Let
X o * X
Z be the foot of the perpendicular on / drawn S Al Lz S RC |7 A S
from S. Now let A and A’ divide SZ from S in
W
the ratio e: 1 and —e: 1 respectively. Since ,
' Y
% = e and % = e, A and A' are on the
Figure 8.22
g
hyperbola.

Let AA' = 2a and C is the mid-point of AA'. Also CA = CA' = a.

Let C be the origin and take CA as the positive direction of X-axis. Then A = (a, 0) and
A' = (—a, 0). Let the coordinates of S and Z be (p, 0) and (g, 0) respectively. Since A and A' divide

SZ in the ratio e and —e,

eqtp
e+1

—eq+p
—e+1

= a and —a

eq tp=ae+aand —eq+p=ae—a
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a

p = ae andq=e

The coordinates of the focus S are (ae, 0) and the equation of the directrix 7 is x = <.

e

Suppose P(x, y) is a point on the hyperbola and M is the foot of the perpendicular on

directrix / drawn from P. Thus coordinates of M are (%, y).

Now, 5—& = ¢ & SP2 = 2 PM2

& (x — ae)> + y2 = (ex — a)?
& x2 = 2aex + a?e? + y? = e*x? — 2aex + a*
S E2— 1 —yr=d2@E*-1)

2
x>y
&L -mn =

Here > > 0 and ¢ > 1. Hence ¢2 — 1 > 0

a* (e — 1) > 0. Thus there exists a real number b such that a? (¢2 — 1) = b2

"

x> y-

a? b?

= 1 is the standard equation of a hyperbola.

Some conclusions can be drawn from the standard equation, they are discussed below :
(1) Symmetry :

Hyperbola is symmetric about both the axes and also symmetric about the origin. Also, origin is

centre and hence hyperbola is also a central conic.

(2) Intersection with axes :

To obtain intersection of a hyperbola with axes, we put y = 0 in the equation of the hyperbola.

2
We get, &5 = 1 = x=*a
a

So the hyperbola intersects X-axis in the points A(a, 0) and A'(—a, 0). A and A' are called the
vertices of the hyperbola.

Putting x = 0 in the equation of hyperbola we get y> = —b%. As b # 0, for no real value of y,

y2 = —b%. Thus hyperbola does not intersect Y-axis. In analogy with ellipse the points B(0, 4) and

B'(0, —b) are also called vertices of the hyperbola, here we note that these points are not on the
hyperbola. In the case of a hyperbola AA' and BB' are called Transverse axis and Conjugate axis

respectively.
2 2
The hyperbola 2—2 - Z;—z =1, does not intersect Y-axis but it lies on both sides of the Y-axis. Two

parts of the hyperbola have no point in common and they are called branches of the hyperbola.

(3) A second pair of focus and directrix :
2

2
The equation of hyperbola is ;C_z - 1)7)_2 = 1.
2y
@ de-n !
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(2 — 2 —y2=da* @ —1)
x2 + 2aex + a*e? + 12 = a® + 2aex + 22
2 2 — 2 a2
(x + ae)s +y e(x+ e)
Let S'(—ae , 0) and line /' : x + % =0
Let M' be the foot of perpendicular drawn from P(x, y) to /.
(SvP)Z — eZ(PvM)Z

The second directrix of the hyperbola is x + % = 0.

2

Thus, for the hyperbola a_2 - b_2 = 1, there are two foci (£ae, 0) and corresponding directrices

arex¢%=0.

(4) Chords, Focal chords and Latera-recta :

A line segment joining two points of a hyperbola is called a chord of the hyperbola. If a chord
passes through a focus, then it is called a focal chord of the hyperbola. A focal chord perpendicular to
the transverse axis of the hyperbola is called a latus-rectum of the hyperbola.

(5) Length of a latus-rectum :

Consider a latus-rectum L,L, passing through a focus S(ae, 0), as shown in the figure 8.23.

«—>
The equation of the latus-rectum LiLy is x = ae. Thus x-coordinates of L; and L, both are ae.
2 2
Using x = ae in the equation of hyperbola % - l);—z =1,
(@e? _ Y _,
a’ b? L Y L
y2 R 2 ) i 1/'
— =e-— 1
b2
y= b - S'(-ae,0)
: X
5 b A C A S(ae,0)
=pr =
a
B i W W
e /L3 v L4\ji
e Figure 8.23
Y T a
b’ _b
( 7) and L, (ae, - )
b

LyL,

(6) Another form of the equation of a hyperbola :

In analogy with ellipse, we can consider hyperbola with transverse axis along Y-axis. The equation

would be
X
w !
2 2
This hyperbola is said to be conjugate hyperbola of the hyperbola % - 1)9]_2 =
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Parametric equations of hyperbola :
5 2

Comparing the equation % - Z—z = 1 with the trigonometric identity,
sec?® — tan®0 = 1.

Now for a given point (x, y) on the hyperbola, we choose O such that -t < @ <m; 0 = £ L

272
such that x = asecO, y = b tan®.
Conversely, for any 0 € (—T, ] — {%, —%}, if we take x = a secB, y = b tan0, then the point
2 2
(x, ¥) is on the hyperbola % - Z—z = 1. Here O is a parameter. In analogy with earlier situations

the point (a secO, b tanB) is referred to as O-point of the hyperbola. Similarly parametric equations

2 2
of the hyperbola 2}—2 - % =1larex=atan®, y = bsecO, 0 € (—m, W] — {%,—%}

Rectangular Hyperbola :
2

2
If a? = b? for hyperbola % - z—z =1, then it is called a rectangular hyperbola. Thus the standard

equation of a rectangular hyperbola is

2 2

2 2
X Yy _
> — = =1 or x

D _
—_ = qa
a a y

Eccentricity : For a hyperbola, eccentricity is given by b2 = a%(e? — 1).
For a rectangular hyperbola, we have a? = b2.

a* = d*2 — 1)

e2=2

e = ﬁ (ase>1)
0-point : A O-point on a rectangular hyperbola is (a secO, a tan9).

2
Length of a latus-rectum : Length of the latus-rectum of a hyperbola is given by %. Here

b? = 4. Hence length of the latus-rectum of a rectangular hyperbola is 2a.

Y
Properties of a hyperbola : 4
If S and S' are foci of a hyperbola
2y . .
Pl 1 and P is any point on the hyperbola
. X . 1f - rd X
then | SP — S'P | is constant. S C S(ae,0)
(_aeao)
Proof : The foci are S(ae, 0) and S(—ae, 0).
Now, SP = ePM
_ Figure 8.24
Here PM is perpendicular to the directrix x = % from P(x, y).
SP = ePM = e[x—£&| = |ex — a

e

SP = |ex — a]. Similarly S'P = |ex + a|
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(SP — S'P)2 = SP2 + S'PZ — 2SP - S'P
= (ex — a)® + (ex + a)? — 2| eXx? — &?|
= (ex — a)® + (ex + a)? — 2(e%? — &?) @>1,x22 a2 = &2 > dd)
= 44°

|SP—SP| =2a

Note : The converse of above is also true. Thus we have an equivalent definition, “hyperbola
is the set of points (in a plane), the difference of whose distance from two fixed points in the plane

is constant.”
Using this definition also the equation of a hyperbola can be derived.

Suppose S and S' are two fixed points and let P be a point in the plane so that | SP — S'P | = 2a.
Let (c, 0) and (—c, 0) be the coordinates of S and S' respectively and mid-point C of SS’ be

the origin.

|‘/(x+c)2+y2 - ‘/(x—c)2+y2 =2a

‘/()c+c)2+y2 - J(x—c)2+y2 = $2a

‘/(x+c)2+y2 :J(x—c)2+y2 T 2a
(x+c)2+y2=(x—c)2+y2i4a‘,(x_c)2+y2 + 4a?
— 42 =
cx — a —ia"(x_c)z.,.yz v
2

c Sl
Taking = =e, ¢ = ae
a X
(ex — a)? = (x — ae)* + )2 5 ¢
2 2 2 a 2 :
(x —ae) +y Ze(x—;) >i)
Further, S = (¢, 0) = (ae, 0) Y
Figure 8.25
Suppose /: x — % = 0 is a line, then from (i)
(SP)2 = ¢X(PM)?2
SP _
M ¢
> —_—
Also | SP — S'P | = 2a < SS' = 2¢ (Pé SS’—SS’)
£>1
a
e>1

The point set of P is a hyperbola with eccentricity e > 1.
Example 25 : Obtain the equation of the hyperbola whose focus is (0, 1), the equation of the directrix

is x + 3 = 0 and eccentricity is \/5
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Solution : SP2 = ¢ZPM?
¥+ (y— 12 =2x+ 3)?
¥ +32—2y+1=2x%4+ 6x+9)
x2 — 32+ 12x + 2y + 17 = 0 is the equation of the required hyperbola.
Example 26 : By shifting origin to (—1, —2), show that (x + 1)2 — (y + 2)? = 16 represents a hyperbola.
Find its eccentricity, coordinates of foci and equation of directrices.
Solution : In the standard notations taking x =x' — 1, y =)' — 2,
) — (/)* = 16
This equation represents a rectangular hyperbola with ¢ = b = 4 and e = J2.
The coordinates of foci are (i4\/5 , 0) and the corresponding equations of directrices are
¥F2d2 =o0. (in x' — y' system)
In original coordinates system, coordinates of foci are (i4\/5 —1,—2) and

The equations of directrices are x + 1 = 2J2 =o.
Example 27 : Point P is a variable point such that difference of its distances from fixed points S and
S', which are 12 units apart, is constant 8. Find the point set of P.
Solution : | SP — SP | =2a =8
a=4,SS'"=2¢c=12. Hence ¢ = 6

Now, b2 = aX(e2 = 1) = 16(2 =1} = 36 — 16 = 20

2 2
The equation of the hyperbola is )16_6 - % = 1.

Example 28 : For the following hyperbola, find the coordinates of foci, the equations of directrices,

eccentricity, length of the latus-rectum and length of transverse and conjugate axes :

2 _ 162 = X2y
(1 x 16y 16 2) = T o 1
2 2
Yoo Xt — 2 .2 —
3) 5= 5 1 4 x y- =4
Solution :
2
(1) This equation can be written as )lc—z - yT =1.
a=4,b=1
as b2 = a*(e2 — 1), 1 =162 —1)
2 _1=_1L 2 - 17
e 1 T or e T3
-7
e T

Foci are (t ae, 0) = (14(@],0) = V17, 0).

. . . 4
Direct =+ 4 je x=14|—|.
irectrices are x . e X 7s

16 . . .
x== 7 are equations of directrices.
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Length of the latus-rectum = £~ = = = =
Length of the transverse axis = 2a = 8
Length of the conjugate axis = 2b = 2

(2) Here a? = 25, b* =24

b = az(e2 - 1)

24 =25 —1)
ez—l=%
e2—%

Foci : (tae, 0) = (+5(2),0) = &7, 0)
Directrices : x = % =+

The equations of directrices are x = * %

Length of the latus-rectum = T T

Length of the transverse axis = 2a = 10

Length of the conjugate axis = 2b = 2@ = 4J€

(3) In this hyperbola, directrices are parallel to X-axis. Here a? = 9, % = 25

For eccentricity, we have

a? = bz(e2 - 1)

9 =25(@2—1)
2 _ 9 _ 34
=1+ 5 =%
5
Foci : (0, = be) = (O,iS(@D = (0, £ /34)
: . b 5 25
cy=t+L 45| 2| =+ ==
Directrices : y T _5[J3_4j + 757

25 . . . .
y==% 3 are equations of directrices of the ellipse.

20> _ 29 _ 18

Length of the latus-rectum =

b 5 5
Length of the transverse axis = 26 = 10
Length of the conjugate axis = 2a = 6
2
(4) This equation can be written xT2 - yT = 1. This is a rectangular hyperbola. o> = b* = 4

Eccentricity : e = 2 , the coordinates of foci (i2\/5 , 0), the equations of directrices : x = +J2
Length of the latus-rectum = 2g = 4

Length of the transverse axis = 2a = 4
Length of the conjugate axis = 2b = 4
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Example 29 : Find the equation of the hyperbola from the following conditions :

(1) Foci (7, 0), vertices (£5, 0)

(2) Foci (0, £ 3), eccentricity = 2

(3) Distance between foci 16 (foci on X-axis), eccentricity = \/5
Solution : (1) Here, foci are (X ae, 0) = (X7, 0)

ae =7 i)
Now vertices are (X5, 0).

a=>5 (ii)

ae = Se =7

=1
Now b2 = a2 (2 — 1) = 25(;—2— ) =24

. . x_2 . y2 _
The equation of the hyperbola is T 1.

(2) Foci (0, £3). Foci are on Y-axis. Thus directrices are parallel to X-axis.
Given that ¢ = 2

be =3
2b=3
=3
b_z

Now a2 = b?(e2 — 1)

2=24-1=23)=2

2

2
The equation of the hyperbola is Z—z - % =1
: X
The equation of the hyperbola is <5~ — 57 =1
4 4
47 ax
Yo — 27 =1
(3) Distance between foci = 2ae = 16. Thus ae = 8 (i)
e=2
av2 =
_ 8 _
a = E = 4\/5

Now b2 =22 — 1) =422 2 —1)=32
2

: N X 2_ 2
The equation of the hyperbola is ahy  m I or x*—y-=32

Exercise 8.6

Find the coordinates of foci, the equations of directrices, length of the latus-rectum, lengths of
transverse and conjugate axes of the following hyperbolas :
2

2
) & -=1 Q) x2—)? =64 () 262 =32 =5

2 162 Yo xXE
) 92 — 16x2 = 144 ) L& =1

192

MATHEMATICS-2



2. Find the equation of the hyperbola for the following situations. Also write their parametric
equations :

(1) Eccentricity e = %, Vertices (0, = 7)

(2) Foci (& Vi3, 0), Eccentricity @

(3) Foci (= 345 , 0), Length of the latus-rectum = 8

(4) Foci (0, £ 8), Eccentricity v2

(5) Distance between foci (on Y-axis) = 10, Eccentricity %

2 2 2 2

3. If the eccentricities of % - ]);—2 =1 and 1}9]_2 - % = 1 are e and e, respectively, then prove that
elz + e22 = 612 e22.

4. Find the equation of the hyperbola for which distance from one vertex to two foci are 9 and 1.

2o

2
5.  Write parametric equations of the hyperbola % ==

k

Miscellaneous Problems :

Example 30 : The two supporting pillars of a suspension bridge in the shape of a parabola are 30 m
high and 200 m apart. The height of the bridge above its centre is 5 m. There is a pillar of height
11.25 m. Find its distance from the centre.

Y
Solution : As shown in the figure 8.26 CAB C 4 B
A g
is the suspension bridge in the shape of a
parabola. The centre of parabola is vertex,
e
which is at height 5 m. Taking A as origin, OA as 30 m 30m
Y-axis, the equation of the parabola is x> = 4ay. A0, 5 Pl
5 m
Now the coordinates of O are (0, —5), thus by p Sm|o & v oy x
shifting the origin at O, the equation of the . W .| oz g
parabola is, Figure 8.26
()? = 4a(y' — 5) (@

For the supports C and B, we are given that coordinates are (—100, 30) and (100, 30) respectively.
Using these in (i), we get
(100)? = 4a(30 — 5)
10000 = 100a
a=100
Thus, (i) gives x2 = 400(y — 5) (ii)
Further to find the distance of supports at height 11.25, we substitute y = 11.25 in (ii).
x2 = 400(11.25 — 5) = 400(6.25) = 2500
x =150
Hence there are two supports on each side of the centre at distance 50 m from the centre
having heights 11.25 m.
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Example 31 : A 12 m long rod slides in such a way
that its ends stay on the two axes. Find the
point-set of the point on the rod 3 m away

from its end-point on the X-axis.

Solution : The end-points of the rod are
A(a, 0) and B(0, ») and the point on the rod 3 m
away from A is P(h, k).

Thus, AP =3 m, PB =9 m

P divides AB from A's side in the ratio
1:3.

h= 7} and & 7}

a= % and b = 4k

Now, in the right AAOB, OA% + OB2 = AB2. So a2 + b? = 144

16 4 16k” — 144

h—zk—zz
st o 7!

2 2
Point-set of P is 2 + yT = 1. It is an ellipse.

81

Example 32 : The orbit of the earth around the sun
is an ellipse. The sun is at one of the foci of this
ellipse. If the length of the major axis of this ellipse
is 300 million km and the eccentricity is 0.0167,
find the minimum and maximum distance of the

Y

4

B(0, )

h

\
P(h, k)
3
X

F.

4

Ala, 0)

Figure 8.27

earth from the sun. X«

Solution : Take the focus of the orbit at S
(where the sun is) and take a point P on elliptical
orbit. Then the focal distance of P is

SP = a(l — ecos0).
Now, 2a = 3 X 108 km
a=15Xx 108 km
SP = 1.5 X 108 km (1 — 0.0167 cosO)

Y
Figure 8.28

When the earth-sun distance is minimum, the earth is on the major axis at its end. So 8 = 0 and

cos® = 1. Hence minimum distance of sun from earth is
1.5 X 108 km (1 — 0.0167 cos0)

1.5 X 108 (1 — 0.0167)
147,495,000 km

Earth is at its maximum distance when it is at the other end of the major axis and away from S.

The maximum distance is
1.5 X 108 (1 — 0.0167(=1)) km

1.5 X 108 (1 + 0.0167) km
152,505,000 km
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10.

11.

12.

Exercise 8

Find the equation of the circle having (1, 2), (2, —3) as extremities of a diameter.

Find the equation of the circle which passes through the points (4, 0), (—4, 0) and (0, 8).

Find the equation of the circle concentric with x2 + y2 — 4x — 6y — 5 = 0 and touching X-axis.

Find the focus and the length of the latus-rectum of the parabola y* = x.

Find the standard equation of the ellipse whose foci are on X-axis and 8 units apart from each
1

other and eccentricity is 3

Obtain the standard equation of hyperbola having directrix parallel to X-axis.

Using definition, find the equation of parabola having focus at (—4, 0) and directrix x = 2.

P
A / [*
A cross-section of a parabolic reflector is
shown. The diameter of opening at the focus 5 s
is 10 ¢m. Find the equation of the porabola. 0 = ——
— 5]
Find diameter of the opening pQ at 11 cm \
from the vertex. (See figure 8.29) | B\ﬁ
Q
Figure 8.29

A parabolic reflector is 24 ¢m in diameter and 6 c¢m deep. Find coordinates of the focus.
An arch is in the form a semi-ellipse. It is 10 m wide and 4 m high at the centre. Find the height
of the arc at a point 2 m from one end.

A toy train moves such that sum of its distances from two signals is always constant and equal
to 10 m and the distance between the signals is 8 m. Find the path traced by the train.

Select the proper option (a), (b), (c) or (d) from given options and write in the box given on the right
so that the statement becomes correct :

(1) The equation of the circle whose extremities of a diameter are centres of the circles,

¥4+ 2+ 6x— 14y =1and x2+y2 — 4x + 10y = 2 is ... ]
@x+)y>+x—2y—41=0 G2+ +x+2y—41=0
©)x2+)y2 +x+2y+41=0 x2+y?—x—2y—41=0

(2) If one end of a diameter of the circle x2 + y2 — 8x — 4y + 5 = 0 has coordinates (-3, 2),
then the coordinates of the other end are ... ]
(@) (5, 3) (b) (6, 2) (c) (1, =8) (d) (11, 2)

(3) If a circle has centre on X-axis, radius 5 and it passes through the point (2, 3), then the
equation of the circle is ... ]
@x2+)y2—12x+11=0 b)x2+y2— 12y + 11 =0
©)x2+3y2—12x—11=0 dx2+y2—4dx+12y=0

(4) The equation of circle, with centre at (4, 5) and passing through the centre of the circle
¥+ 32+ 4x — 6y = 12 is ... ]
@x2+y>+8x—10y+1=0 b)x2+)y2—8x — 10y +1=0
©)x2+y>—8x+10y—1=0 (dx2+)y2—8x—10y—1=0
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(5) Area of the circle centred at (1, 2) and passing through the point (4, 6) is ... [ ]

(a) 30T sq units (b) 5T sq units (¢) 157 sq units (d) 25T sq units
(6) Coordinates of the centre of the circle passing through the points (0, 0), (a, 0), (0, b)
are ... [ ]
b b
(@ (2.4) ® (£.2) © (b a) A (a b)
(7) The parametric equations of the parabola x2 = 4ay are ...... ) ]

(@ x=ar®, y=ar* (b)yx=2at,y=2at (c) x =2at, y = a* (d) x =2ar%, y = at

(8) The line 2x — 3y + 8 = 0 intersects the parabola > = 8x in P and Q. The mid-point of

PQ s ... ]
(@ (2, 4) (b) (8, 8) (c) (5, 6) (d) (6, 5)
(9) The eccentricity of the ellipse whose latus-rectum is half of the minor axis is ... []
1
@ F (b) L © 1 @ V2
(10)The eccentricity of the ellipse whose minor axis is equal to the distance between foci
is ... ]
1 2
@ F (b) L © L OWG
(11)The eccentricity of the ellipse 9x% + 25y% = 225 is ... ]
2 4 3 0
(@) < (b) 3 (c) 5 (d)
(12)Length of the latus-rectum of the ellipse 4x2 + 9y = 1 is ... ]
4 9 2 2
@) 7 Oy ©) 5 (d) 3
13)...... is a focus of the ellipse 9x2 + 4y% = 36. []
(@ (V5. 0) (b) (0, ¥5) () 3Y/5. 0) (d) (0, 345)
(14)Length of the major axis of the ellipse 25x% + 92 = 1 is ... ]
2 2 1 1
(@) < (b) 5 (©) < (d) 9
(15)The foci of the hyperbola 9x2 — 16y = 144 are ... ]
(a) (¥4, 0) (b) (0, 4) (c) (£5, 0) (d) (0, £5)
(16)The length of the latus-rectum of the hyperbola 16x* — 9y2 = 144 is ... ]
32 16 8 4
(@) 5 (b) 5 (© 3 (d) 3
(17)The eccentricity of the hyperbola 16y2 — 9x2 = 144 is ... ]
@ 3 ®) 2 (©) 2 @ 2
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(18)The eccentricity of the hyperbola x2 — 4y = 1 is ... ]

V3 J5 2 2
(a) £ (b) £ © 5 @)
(19)If the parabola »?> = 4ax passes through the point (2, —6), then the length of
the latus-rectum is ... []
(@) 9 (b) 16 (c) 18 (d) 8
(20)The length of the latus-rectum of the ellipse 5x% + 9y? = 45 is ... ]
55 5 245 10
(a) = (b) 3 (©) -3 (d) 3
Summary

We have studied following points in this chapter :

1. Standard equation of a circle : x2 + )2 = 2

General equation of a circle : (x — k)2 + (y — k)2 = 2

2. Centre of the circle : x2 + y2 + 2gx + 2fy + ¢ = 0 is (—g, —f) and radius ‘,gz +f2-c if
2>+ f2 — ¢ > 0 and does not represent a circle if g2 + 2 — ¢ < 0.

3. The equation of a parabola y? = 4ax, Parametric equations x = ar?, y = 2at, t € R,

Latus-rectum 4 |a|.

4. A property of a parabola : for a focal chord 7,7, = —1

2 2
5. Standard equation of the ellipse : 2— 1F Z—z =1 (a > b)
Foci (Zae, 0), the equations of the directrices x * % =0

2
Parametric equations x = acos0, y = bsin®, 0 € [0, 27), length of the latus-rectum %,

major axis 2a, minor axis 2b.

6. A property of an ellipse : SP + S'P = 2a
2 2
7. Standard equation of hyperbola ;C—2 = Z—z = 1.

Foci (Zae, 0), Equations of directrices x + % =0
Parametric equations x = asecO, y = btanf, 6 € R — {(Zk — l)% | k € Z}, length of

2
latus-rectum %.

8. A property of hyperbola : | SP — S'P| = 2a

— ‘ —
R X
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APPENDIX

Intersection of a Double Cone and a Plane

Let / be a fixed vertical line and m be another line intersecting
it at a fixed point V and let the measure of the angle made
by m with / be 0 (0 < O < %), as shown in figure A.1. Suppose
the line m is rotated around the line / in such a way that the
angle O remains constant. Then the surface generated is
called a right circular cone. The point of intersection V separates
the cone in two parts. Hence it is called a double napped

cone or a double cone. For simplicity we will refer this as a

A 4

Figure A.l

cone. Since the lines / and m are of infinite extent, the cone
is extending indefinitely in both directions (figure A.2). The
point V is called the vertex. The line / is the axis of the
cone and the rotating line m is called a generator of the
cone, and two parts of the cone are called napes. We note
that looking at a given cone we cannot observe the line m
actually. Any of the line on the surface of the cone can be

Now we consider the intersection of a plane with a cone,
the section so obtained is called a conic section. Thus, conic
sections are the curves obtained by intersecting a right

[
Axis

Upper m . Generator
nappe

\Y
Lower taken as the generator.
nappe

Figure A.2

circular cone by a plane and hence the name conics.

There are many possibilities when we consider intersection
of a cone with a plane depending on the position of the
intersecting plane with respect to the cone and by the angle
made by it with the vertical axis of the cone. Let B (0 < B < %)
be the angle made by the plane with the vertical axis of the cone
(figure A.3). There are two possibilities : (1) the plane passes
through the vertex; or, (2) the plane does not pass through the
vertex. Accordingly the intersection takes place at vertex or at
any other part of the napes above or below the vertex.

Various situations of intersection are discussed below; in
each case above two possibilities are discussed separately.

Plane

Cone

Figure A.3

Let the angle made by the plane with the axis of the cone be right angle, i.e. B = % If the

plane passes through the vertex, then the intersection is the vertex itself (figure A.4 (a)); and if the

Figure A.4(a)

| = =,
7

Figure A.4(b)
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plane does not pass through the vertex, then the intersection is a circle, either in the upper nape of the
cone or the lower nape of the cone depending on the position of the plane as shown in the figure A.4(b).
In the first case we got the intersection as a point. Thus it is a degenerate case of the circle.
Suppose O < B < % again. If the plane is passing through the vertex, then the intersection is the
vertex itself. If it is not the case, then the intersection is an ellipse (figure A.5). Here also, the first

case is degenerate ellipse — a point. (Try to visualize this!).

Figure A.5(a) Figure A.5(b) Figure A.5(c)

Now, consider the case, when o = [B. In this case the intersecting plane is parallel to a generator.
If the plane passes through the vertex, then the intersection is a straight line. It can be seen that the
line of intersection is a generator of the cone. If the vertex is not on the plane, then the intersection is
a parabola as shown in figure A.5(c). The intersection being a straight line is actually degenerate
parabola, i.e. as if the parabola is opened up straight to get the line.

Finally, consider the case B < 0O In this case the plane
intersects both the napes. This did not happen in earlier cases.
The intersection is a hyperbola and it has two branches as
shown in the Figure A.6. Here the degeneracy occurs in a
particular case. In this case the plane passes through the
vertex and the intersection is a pair of lines.

In this section we have seen that, circle, ellipse, parabola
and hyperbola are various conics, with point, line or a pair of
lines as degenerate cases. This discussion about conics is useful Figure A6
for the practical consideration.

— ‘ —
o

Some of Bhaskara's contributions to mathematics include the following :

B A proof of the Pythagorean theorem by calculating the same area in two different ways and
then cancelling out terms to get a® + b2 = 2.
In Lilavati, solutions of quadratic, cubic and quartic indeterminate equations are explained.
Solutions of indeterminate quadratic equations (of the type ax? + b = y?).
A cyclic Chakravala method for solving indeterminate equations of the form ax? + bx + ¢ = y.
The solution to this equation was traditionally attributed to William Brouncker in 1657,
though his method was more difficult than the Chakravala method.

B  The first general method for finding the solutions of the problem x2 — my? = 1 (so-called
"Pell's equation") was given by Bhaskara II.
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Chapter

THREE DIMENSIONAL GEOMETRYJ

As far as the laws of mathematics refer to reality they are not certain and as far
as they are certain they do not refer to reality.
— Albert Einstein

9.1 Introduction

Earlier the concepts of plane coordinate geometry were initiated by French mathematician
René Descartes and simultaneously also by Fermat in the beginning of 17th century. It was later
systematized by Bernoulli and Euler in the 18th century. In the 19th century, it was further extended
to highter dimensions and found interesting applications in the last century only.

In this chapter, we will discuss some basic concepts of quantities called vectors useful in mathematics
and sciences. Also the study of coordinate geometry in plane will be extended to three dimensions,
i.e. we will discuss coordinate geometry in the space. This is useful in studying solid objects and things
in the space around us. We will use vectors as a tool to discuss three dimensional geometry.

9.2 Vectors

Some physical quantities require magnitude and direction both to completely specify position and
application. Such quantities are called vectors. Velocity is a vector, as its complete description requires
both magnitude as well as direction. Otherwise the meaning is incomplete. We already know about
the representation of complex numbers in the Argand plane. In a polar representation of a complex
number z = r(cos® + isin), there are two important parameters » and 0. Here r is its magnitude and
by 0, we can decide its direction. Thus, every complex number is a vector as it has both magnitude and
direction. Suppose Dev walks 300 m towards East and then he walks 400 m towards North. Hence
to know his final position from original position, we should know direction and magnitude both. This is
also a primary illustration of a vector.

In mathematics also we can think of quantities that have both magnitude and direction. For instance,

we are familiar with the set R% of ordered points of real numbers. Also it is known that there is a
one-one correspondence between R and the points in a plane. Taking O(0, 0) as the origin, we can associate
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magnitude and direction with any element other than O, say (I, —2) of R2. Suppose the point P
represents (1, —2) in the plane. Then with (1, —2), we can associate the magnitude of oP (that is length
OP = ‘,(1)2 + (_2)2 and the direction of OP. Thus (1, —2) can be regarded as a vector. Similarly, it

is possible to regard elements of set of ordered real triplets of R3.

Having considered elements of R? or R3 as vectors, we can think of the collection R? or R? of
vectors as vector spaces.
9.3 Vectors in R and R3

Taking R% and R3 as sets of ordered pairs and triplets of real numbers respectively, an element
in R or R? is denoted by a letter with an overhead bar, say x. Thus, x = (X]> X5, X3) in R3 and
X = (X}, Xx,) in R2.

We first define the notion of equality in R? and R3 as follows :

In R2, (x> X5) = vy, o) if x| = y; and x, = p,.

In R3, (Xp> X35 X3) = (V1> Voo ¥3) i x; =y, Xy =y, and x5 = y3.

Thus (1, 2) and (2, 1) are distinct elements in R2.

In the further discussion, we shall study R3 in detail. All these results would be essentially true for
R2 also.

Definition : Let X = (x;, x,, x3) and y = (vys ¥25 ¥3) be two elements of R3. Their addition
is defined by ¥ + ¥ = y + v Xy + 3 X3+ p3). Thus if z = (2, 25, 23) = X + Y, then
21 =x1F v 5 =Xty 23 = x5+ ;.

Clearly, for ¥ € R3, Y € R} we have ¥ + Y € R3 i.e. the addition defined above has
closure property. ¥ + Y is called the sum of X and ).

Definition : Let x = (x;, x,, x3) and kK € R. We define multiplication of X by k as
kx = (kx;, kx,y, kx3).

Obviously, for k € R and ¥ € R3 kX € R3.

Some obvious results :

Foranyf,y,Z€R3andk,lE R

@ x+y=y+x (Commutative law)
i x+OQ+27)=(x+Yy)+72 (Associative law)
(iii) If 0 = (0, 0, 0), then X + 0 = X (Existence of identity)

Identity element is unique.
(iv) For each ¥ € R3,3Y € R3such that ¥ + ¥y = 0 (Existence of inverse)
(It can be proved that if X = (x;, x,, x3), then y = (—x;5 —x,, —x3) so that x + Yy =0.
Y is called an additive inverse of X and for every X there correspond a unique Y.
Additive inverse of x is denoted by —Xx.
=X = (=X, =X, —X3)

(V) Kx +Y)=kX + kY

i) (k+1)x = kx +Ix

(vii) (kI )x = k(I X)

(viii) 1¥ = ¥

THREE DIMENSIONAL GEOMETRY 201



The set R3 with all above properties is called a vector space over R. There are other sets
also which are vector spaces. Mathematically, elements of a vector space are called vectors.
Thus any element of R3 is called a vector. R? is also a vector space over R.

The sum defined above in R3 (or R2) is called a vector sum. When R3 (or R2) is
considered as a vector space over R, the elements of R are called scalars. Thus a real

number is a scalar in this context. Accordingly for kK € R, ¥ € R3, kx is called the
multiplication of vector X by a scalar k. The product kX is a vector. 0 = (0, 0, 0) is called

the zero vector.

9.4 Magnitude of a Vector

If X = (x|, X, x3), then the magnitude of ¥, is defined as ‘, x{ +x3 +x3 and it is denoted by

| x |. Thus, [ x| = \/xl +x%-|—x3
In a similar manner for a vector X in R2, magnitude is defined. If ¥ = (x|, Xx,), then | X | = ‘, xlz + x% .

The following are obvious results :

(1) |X| = 0 because |7|=1,x12+x2+x3 >0

2 |X|=0&X=0
3) | kx| = | (kxl, kxz: kx3)|

- J22 1R+ 123
= ‘/kz(xlz +x% +x§)

Vi2 \/xlz +x§ +x§

| k|| X |; Here yk2 = |k| is the magnitude of the real number & and

| x| = ‘, x? + x5 + x5 is the magnitude of vector X.

S kX | = kX
Definition : A vector x is said to be unit vector, if | x | =

Some examples of unit vectors in R? are ( 7 J_j (1, 0), (0, —=1), (sin0t, cost), O, € R. In R3,

some such examples are (ﬁ,ﬁ,ﬁj, (1,0,0), ( J_ J—] For 0, 0L € R, (cos0 sin0L, cosO cosL, sinO)
is also a unit vector.
Example 1 : If u = (3, —1,4), v = (1, =2, =3), find 3u + V.
Solution : 3u + Vv =33, —-1,4)+ (1, -2, -3)
=(9, -3, 12) + (1, =2, =3)
=0O9+1,-3-2,12-3)
= (10, =5, 9)
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Example 2 : Find ¥ — 2Y, where ¥ = (1, =1, 3), ¥ = (1, 1, 1).
Solution : X —2Y =X + (=2)Y

(I, =1,3)+ (—2)(1, 1, 1)

=(1,-1,3)+ (=2, =2, =2)

=(1-2,-1—-2,3-2)

=(—=1,-3,1)

Example 3 : For vectors X, ¥, z in R3, show that, Y + Yy =X +7 = YV = 7.

Solution : Let X = (x{, X, X3), y = V1> 2. ¥3) and 7 = (24, 25, 23).
X+Y=3+12
(0 Xp, X3) + (Vs Vpe ¥3) = (X1, Xp, X3) (2, 2, 23)
(x; T Y X F ¥y, X3+ ¥3) = (X1 + 29, Xy + 25, X3 + 23)
Xyt =x 0zt Y, =x 0 by =Xtz
N T2 =5V 74
(yp Yos J’3) = (Zp 275 23)

Y=z

Another method :

X))+ (x+Y)=(C-x)+x +7z (—X exists uniquely)

Example 4 : Solve : x(3, 1) + y(4, 2) = (1, 0)
Solution : x(3, 1) + (4, 2) = (1, 0)
B, x)+ 4y, 2y) =(1,0)
Gx + 4y, x + 2y) = (1, 0)
3x+4y=1,x+2y=0
1

x=1 y=—
Exercise 9.1
1. Find:
(D) x(1, 0) + x,(0, 1); (x;, x, € R) (2) x(1,0,0)+ »0, 1, 0) + z(0, 0, 1); (x, ¥, z€ R)
(3) 2(1,2, 1)+ 3(1,—2,0) @ 2(1,-1,-1)—2(-1,1,1)
B) —2(1,2,3)+(1,0,-1) 6) 3(1,—-1,0)—(2,2,2)
2. Solve the following equations to find x and y :
(1) xG3,2) +y1, =1)=(2, 3) (2) x(1, 1)+ ¥(1, =1) = (0, 0)
(3) M1, 2)=x@E, 1)+ (1, 3) 4 x(1,0)+»0,1)=0
3. Find magnitude of the following vectors :
1 (1,1, D 2) 1, -1,-D 3) (3,-4,0
@) (-1.-2.-3) (5) (2.3,-5) (©) (ﬁ%,ﬁ]
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4. Verify |[X + Y| <|X|+|Y | for the following vector X and Y.

(1) T=(.-1,2,5 =(1,2 4 @ 7 =(3,9,-9). 5 = (-1 6, -6)

5. If u =(2,3)and v = (2k, k + 2) are equal then, find .

6. 1fw=(33 0) and v = (%‘—320) find 37 — 2v.

*
9.5 Direction of a Vector

As discussed earlier vectors in physics are specified with magnitude and direction both. Now we
shall associate a direction with every non-zero vector. We will restrict our discussion about direction
to define equality of directions of two non-zero vectors, two non-zero vectors with opposite directions
and two non-zero vectors with different directions. This discussion will help in giving geometric meaning
to the vectors in R? and R3.

Suppose X and y are two non-zero vectors in R2 or R3. ¥ and ¥ are said to have the
same direction, if y = kx for some real number £ > 0. If A < 0 and ¥y = kX, then X and y
are said to have opposite directions. Further, if X and y have neither same nor opposite
directions, then they have different directions. If directions of X and y are equal, then they
are called equi-directed vectors. If X and y have opposite directions then they are called
vectors of opposite directions.

Thus, (1, —1, 1) and (2, =2, 2) have same direction, because

2,-2,2)=2(1,=1,1)and 2 >0

Also (—1, 1, —=1) = (=1)(1, =1, 1). So (1, —1, 1) and (=1, 1, —1) have opposite directions.

The vectors (1, —1, 1) and (2, 0, 2) have different directions, because there is no £ € R such
that (1, —1, 1) = &(2, 0, 2).

The direction determined by a non-zero vector (x;, x,, x3) is denoted by <x, x,, x3>. The
direction opposite to <x|, x,, x3> is denoted by —<x;, x,, x3>.

If k> 0 then <kx,, kx,, kx3> = <x|, x,, x3> and if k < 0 then <kx, kx,, kx3> = <—x;, —x,, —x3>.
We note that, we can not write (kx,, kx,, kx3) = (xy, X5, x3) unless k£ = 1.

9.6 Magnitude and Direction of a Vector and Unit Vector

Theorem 1 : Non-zero vectors X and Y are equal if and only if | X | =|Y | and X and Y have the
same direction.
Proof : Suppose X = Y
(xp X5, x3) = (Vla Yo y3)

Xy =V X TV X3 7 )3

| x| = Jx12+x%+x§ = ‘/y12+y§+y32 =1V
Also since X =Y, X =kY withk=1>0

% and Y have the same direction,
Le. <xp, x,, X3> = <YL, Vo, V37

Thus, ¥ =Y = |X|=]|Y | and X and Y have the same direction.
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Conversely, suppose X # 0, Y # 0, | x| =] | and X and Y have the same direction.
As X and Y have the same direction, so ¥ = kx for some k > 0.
Now, | V| = [ kX | = [k[|¥]|
But we are given that |[X|=]Y | So, |X|=|k||X|
AsX # 0, |k|=1
k=%1 Butk>0
=1

>

Yy=kx=1x =X
|X|=1Y |and X, ¥ have the same direction = X = ¥
This theorem is in confirmity with the definition of a vector generally given in physics.
Theorem 2 : If X # (), then there is a unique unit vector in the direction of X.

Proof : As X # 0, so | x| # 0.

=k7;wherek=L>O

L

X |

| =1%D

=1

- 1 - _
|x|:|;||x|—1 (||

y is a unit vector and as y = kx with £ > 0. y is in the same direction as X has.

To prove uniqueness of unit vector y, suppose z is also a unit vector in the same direction as x

has. Then, | y | =]z |=1and y and z are in the same direction (the direction of X).
By theorem 1, y = 7
Thus, there is a unique unit vector in the direction of every non-zero vector.

To find the unit vector in the direction of X = (2, 1, 2), we note that

| x| = ‘/22+12+22 =Ja+1+4 =3

i_(z 12

So, y =75 = 3,3,5), is the required vector.

9.7 Three Dimensional Coordinate Geometry

Our study of geometry so far was confined to a plane. Many times we need to study objects which
are not in a plane. In fact in actual life, the concept of plane is inadequate. For example, consider the
position of a ball thrown in space at different points of time or when a kite is flying in the sky. Its position
from time to time changes in the space. Recall that to locate the position of a point in a plane; we need
two intersecting mutually perpendicular lines in the plane. These lines are called the coordinate axes
labelled as X-axis and Y-axis; and the absolute values of coordinates of the point are distances measured
perpendicular to the axes. These are called the coordinates of the point with respect to the axes. Thus
using these lines, we can associate a unique ordered pair of two real numbers to every point in the
plane. Also for each given ordered pair of real numbers, a unique point in the plane can be found of
which the given pair are the coordinates. Thus there is a one-to-one correspondence between points in

a plane and the set R2.
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If we were to locate the position of a point in the spaces, then two real numbers are not sufficient.
For example, to locate the central tip of a ceiling fan in a room, we will require the perpendicular distances
of the point to be located from two perpendicular walls of the room and the height of the point from the
floor of the room. Therefore, we need three numbers representing the perpendicular distances of
the point from three mutually perpendicular planes, namely the floor of the room and two adjacent walls
of the room. In general, a point in the space can be located by describing its perpendicular distances
from three mutually perpendicular planes. Its position can be determined using these distances.
These mutually perpendicular planes are called coordinate planes. In analogy with coordinates of a
point in XY-plane, here also a coordinate of a point in space can be positive or negative. So, a point in
space has three coordinates. Also, for a given triplet of real numbers, we can find a point in the space
for which the given triplet represents coordinates. Here we note that there is one-one correspondence

between R3 and points in the space. In this Chapter, we shall study the basic concepts of geometry in

three dimensional space. 7
9.8 Coordinate Axes and Coordinate Planes T X

in Three Dimensional Space /

In the case of plane, two mutually perpendicular //
lines are taken as reference lines. While assigning / /
coordinates to a point in the space three mutually Y'€ 0 >Y
perpendicular planes are taken as reference. / y /
Consider three planes intersecting at a point O /
such that these three planes are mutually ‘/
perpendicular (figure 9.1). Among these three X &
planes any two planes intersect along the Figuzr;Q.l

lines X'OX, Y'OY and Z'OZ, called the X-axis,

Y-axis and Z-axis, respectively. We may note that these lines are mutually perpendicular to each other.
Since these lines are mutually perpendicular, they constitute the rectangular coordinate system. We
will refer to these three mutually perpendicular lines drawn passing through the point O as coordinate

axes or simply axes (figure 9.2). 7
H

The point O is called the origin of the
coordinate system. The planes XQOY, YOZ and
70X, called, respectively the XY-plane,
YZ-plane and the ZX-plane, are known as the
three coordinate planes. We will take the XOY
plane as the plane of the paper and the line o

passing through O perpendicular to the plane as
the line ZOZ'. If the plane of the paper is

considered as horizontal, then the line Z'OZ x

will be vertical. In the case of plane we have Figure 9.2

seen that the coordinate axes divide the plane into four parts called quadrants, in the same manner
the three coordinate planes divide the space into eight parts known as octants. These octants could
be named as XOYZ, X'OYZ, X'OY'Z, XOY'Z, XOYZ', X'OYZ', X'OY'Z' and XOY'Z' and denoted
by octant I, II, III, ..., VIII, respectively.
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Note : The coordinate system discussed here is one of the methods for assigning coordinates to
a point in the space. This is called Cartesian coordinate system, named after French mathematician

René Des Cartes. There are other popular coordinate systems also.

Coordinates of a Point in the Space

Following the method of assigning coordinates to a point in the plane with the help of
coordinate axes and the origin, we will now discuss how to associate three coordinates to a given
point in the space. Also we will see how a given triplet of real numbers can be associated with a point
in the space.

Through the point P in the space, we draw Z
three planes parallel to the coordinate planes,
meeting the X-axis, Y-axis and Z-axis in the points A,
B and C, respectively as shown in the figure 9.3. Let
A(x, 0, 0), B(0, y, 0) and C(0, 0, z). Then, the point P

C
~
will have the coordinates x, y and z and we write iz
v
<

P(x, y, z). Conversely, given real numbers x, y and z, o

we locate the three points A(x, 0, 0), B(0, y, 0) and g STy ~7'B

C(0, 0, z) on X-axis, Y-axis and Z-axis respectively. D

Through the points A, B and C we draw planes
parallel to the YZ-plane, ZX-plane and XY-plane, Figure 9.3

respectively. The point of intersection of these

three planes, namely ADPF, BDPE and CEPF is obviously the point P, which corresponds to the

)

ordered triplet (x, y, z). We observe that if P(x, y, z) is any point in the space, then | x

y| and |z |
are perpendicular distances from YZ, ZX and XY planes, respectively. Thus, there is a one to one
correspondence between the points in the space and ordered triplets (x, y, z) of real numbers. Thus, the

space is identified with the set R3 of ordered triplets.

Note : The coordinates of the origin O are (0, 0, 0). The coordinates of any point on the X-axis
will be (x, 0, 0) and the coordinates of any point in the YZ-plane will be as (0, y, z). Similar

remarks apply to the other coordinate axes and other coordinate planes.

Remark : The combination of positive and negative coordinates of a point determines the octant

in which the point lies. The following table shows this fact :

Table 9.1

Octants — I || m v \Y% VI vl | v
. l’ OXYZ | OX'YZ [OX'Y'Z | OXY'Z | OXYZ' | OX'YZ'|OX'Y'Z'| OXY'Z!
Coordinates

x + - — + + - — +
y + + — - + + — -
z + + + + — - — -
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Example 5 : Let coordinates of the vertex A of a cuboid be 7

.
-

(1, 3, 2) as shown in the figure 9.4. AB is perpendicular
to Z-axis. Find z-coordinate of the vertex B. If the side

AB measures 3, then find y-coordinate of B.

A(l,3,2) B
Solution : Vertices A and B are on the same heights and
hence their z-coordinates are equal and hence z-coordinate >y
of B is 2. O
Now, side AB is parallel to Y-axis. % ‘
Figure 9.4

Thus y-coordinate of B = y-coordinate of A+ 3 =3 +3 =6

Exercise 9.2

1. Fill in the blank in the column, in the following table, by writing the name of the octant of the
point in first column :

Point Octant

(1, 2, 3)

(1> _29 _4)
2 .2,-D

(-1,-2,0)

=0, =1, =)

%
2. Ram starts walking from a point (=1, 2, 0). He walks 1 unit along OX and then moves in the
QY' direction and walks further 2 units. What will be Ram's final position ?
*

9.9 Geometric Representation of Vector
Suppose P is a point in the coordinate plane other than the origin. The line segment OP with the
— — —
direction from O to P, i.e. the direction of the OP will be denoted by OP. Thus, OP is a directed line

segment with the same direction as the ray OP.

We know that any point P in the coordinate plane can be identified with an ordered pair of real
numbers, say (x;, x,) and conversely, corresponding to any ordered pair of real numbers (x,, x,),
there exists a point in the plane. We say that the coordinates of the point are (x;, x,). In this
manner the plane is identified with the set R? of ordered pairs of real numbers. Thus we will use R2

and plane interchangeably.

Position Vector : Let P be a point other than origin in the coordinate plane having coordinates
(x{, x,). The directed line segment OP is called the position vector of the point P with respect to the
origin O. The coordinates x; and x, of the point P are taken as components of the position vector OP.

For simplicity (x;, x,) will be called the position vector of the point P.
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The position vector of the origin has components 0 and 0. Using the definitions of addition of
two vectors and multiplication by a scalar it is easy to define addition of two position vectors and
multiplication of a position vector by a scalar.

Now we consider a line segment AB. It is possible to associate direction with this line segment in
analogy with the concept of a vector. The direction of the line segment AB is same as the direction of
the ray from the point A towards the point B. Thus we define directed line segment A?% whose length
is AB and direction is the same as the direction of the ray 33 Using this we define the position
vector of point B with respect to point A as the directed line segment AB . Here position vector of a point
with respect to itself is zero vector.

Look at the following diagram :

A
v
>

0 :
Figure 9.5

We define equality of two directed line segments in analogy with equality of two vectors. Thus,
CD, if AB = CD and AB and CD have the same direction. For every AB there is a directed
— - . = .

e segment OP, such that AB = OP. In the figure, it can be observed that AB = OP and also

%
CD = OP. In fact, in the plane there are infinitely many directed line segment that are equal (as

zl

=

i

\

directed line segments) but distinct as line segments. For every directed line segment AB there is
a position vector OP such that AB = OP. Thus, OP represents the class of all directed line
segments that are equal to AB . The position vectors like QP are called bound vectors because one
of their end-points namely, O is fixed, whereas the other directed line segments equivalent to OP
(like AB) are called free vectors as both their end-points can be chosen arbitrarily, without
changing the vector.

Now look at the figure 9.6.

EEEF _WEEF - SNEF:INEFy SESFI NN NSNS (NNED (SEEE INSEP (EENL 18

Figure 9.6
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Here all the segments are directed in the same way and the end-point of each is obtained by moving
horizontally 2 unit towards right and then 1 units vertically upwards (like moving a knight on the chess
board) from the initial point. This means each is equal to the position vector (2, 1). In other words the
vector (2, 1) represents all the vectors in the figure 9.6. Thus, for every free vector, there exists a bound

vector equal to the given vector.

Y / B(yp yz)
A(xy, x5)

Py =x, yp=xy)

F.
W
>

Figure 9.7

Suppose A(x, x,), B(y;, »,) and P(y; — x|, ¥, — x,) are points as shown in the figure 9.7. We

— —
have direction of AB = direction of OP and AB = OP = J( y1—x1)° +(y» — xp)? - Thus free vector

— —>
AB is equal to the bound vector OP. Also,

- =
AB = OP (they have the same direction and the same magnitude)

01 =Xy —x)
= (yp yz) - (xp x2)

Position vector of B — Position vector of A

In a similar manner, we can define position vector of point in the space. Also we define free
vectors and bound vectors in the space analogously. Suppose A(x|, x,, x3), B(y;, ¥,, y3) and

P(y; — xy, ¥, — X5, ¥3 — x3) are points in the space. Then we, write the free vector AB as,
-2 =2
AB = OP = (yy = X}, ¥y = X3, V3 = X3)
= (YP Yoo y3) - (xla X9, x3)

Position vector of B — Position vector of A

Also, corresponding to this free vector AB there is a bound vector OP such that
- =
AB = OP

This is how, we represent a vector in space geometrically.

Example 5 : In each of the following pairs of vectors, determine whether the two vectors have the
same or opposite directions or different directions :

1 (1,1, 1),@2,2,2) 2 1,-1,2),(0.5,-05,1)
3) (1,-1,0), (0,1, -1) @ @GB,6,-9),(-1,-2,3)
) (1,0,0), (0, 1,0) 6 2,5 7,25 -7

Solution : (1) (2, 2,2)=2(1, 1, 1). Here k=2 >0

The vectors have the same direction.
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(2) (0.5,-0.5, 1) =(0.5)(1, —1, 2),
Here £k =05 > 0
The vectors have the same direction.
(3) If possible, let (0, 1, —1) = &(1, —1, 0), where £k € R — {0}.
0=k 1l =—k—-1=0
k=0, k=—1 and —1 = 0 which is not possible.
Thus there is no such k. Hence the vectors have different directions.
4) (3,6,—9)=-3(—1,-2,3). Here k= -3 <0
The vectors have opposite directions.
(5) As we did in (3) above, for no k € R,
(1, 0, 0) = k(0, 1, 0)
The vectors have different directions.
(6) If possible, suppose, for some £ € R — {0}.
(2,5, 7) = k(—=2, 5, =7) then
2 =2k 5=5k 7=-T7k
k=-1, k=1 k=-1
This is not possible as, the first equation is satisfied for £ = —1, but second one is not satisfied.
Thus, the vectors have different directions.

Note : (1) Suppose x and Y are non-zero vectors and x,20,y,#0 (G =1, 2, 3)

If % = i—; = i—j = k then according to k > 0 or k < 0, ¥ and ¥ have the same direction or

= or 2 * 2y * 3;—1, then their directions are different.

opposite directions. If i—i % TN T X3

(2) If x; =0 =y, and i—i = i—z =k > 0, then X and ¥ have the same direction and if k < 0

then X and Y have opposite directions.

»

% 7 i—j, then their direction are different. Similar results are true, if x, = 0 =y, or x; =0 = y;.

(3) Finally, if x; = x, = y, = y, = 0, then for i—; > 0, the directions are same and for i}_j <0

the directions are opposite.

We note again that 0 = (0, 0, 0) has no direction.

Example 6 : Find unit vector along the vector u = (6, —7, 6).

Solution : Here |u | = ‘/62+(—7)2+62 = J121 =11

. . . . —_ u —
The unit vector in the direction of u is, T (%,]—?,]—61).
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Example 7 : Find the unit vector in the direction opposite to the direction of X — 2, given that,

X=(4,7-2,Y =(,2,2).
Solution : X —2Y = (4,7, =2) — 2(1, 2, 2) = (2, 3, —6) = 7 (say)
Now |Z | = 22 +32 4+ (-6)> =449 =7
The unit vector in the direction opposite to direction of 7 is,
&= (-2.-3.9)
1z 1 7 7°7)
Example 8 : For the pairs of points A, B given below find vector AB .
(1) AL, =1), B(, 2) (2) A(l, =1, 1), B(1, 1, =1)
(3) Al 2,3), B4, 5, 6) 4 A(l, =2, 1), B(=1, 1, 1)
%
Solution : AB = Position vector of B — Position vector of A
%
(1) AB =(1,2) =1, =1)=(0, 3)
%
@ AB =(. 1, =)=, -1 1) =(0,2,-2)
%
) AB =(4,5.60)—(1,2,3)=(,3,3)

“) A_]>3 =L 1, 1DH—-(,-21)=(2,3,0)

Exercise 9.3

1. For the following pairs of vectors, determine whether the two vectors have the same or opposite

directions or different directions :

(1) (@,-5,3),(0.4,—1,0.6) 2) (1,2,4),(3,4,6)

3) (2,4,-6),(—1,-2,3) 4) (1,0,1), (0,1, 1)
2. Find the unit vector in the direction of the following vectors :

I ¥=G, -4 ) ¥ =(-3.-4
@ ¥ =(14.9) (5) ¥ =(1,0,0)

3. If ¥ =(x, xy and ¥ = 01, 2) + B2, 1), find 0, P.

*

9.10 Distance Formula

=|
I

3) 1, 3,5)

6) ¥ = (=5, 12)

Let 7| and 7, be the position vectors of points A and B respectively and let 7| = (x, y;, z;)

and ) = (xy, ¥y z,). We know that,
AB = Position vector of B — Position vector of A
= (xp ¥o 2p) = (¥ ¥y 7))

= =X, ) Ty 2 Tz

%
AB = | AB | = i —x)? + (- 2+ (=)
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This is called distance formula, it gives distance between two points A(x;, y; z;) and
B(xy, ¥y 25) in R3.

Note : In XY-plane z-coordinates of a point is zero. Hence setting z; = z, = 0 in the distance
formula we get the distance formula in plane which was studied in std. 10.

Example 9 : Find the distance between points (1, —1, 2) and (=2, 1, 8).
Solution : Taking P(1, —1, 2) and Q(—2, 1, 8) we have

PQ = J(l—(—2))2+(—1—1)2+(2—8)2 = J32+(—2)2 +(=6)2 = V49 =7
Thus the distance between two given points is 7.
Example 10 : Using distance formula, show that the points P(4, =3, —1), Q(5, =7, 6) and R(3, 1, —8)

are collinear.
Solution : We have,

PQ = J(4—5)2+(—3+7)2+(—1—6)2 = Ji+16+49 = J66
QR = J(5-32 + (-7 -1 +(6+8)> = J4+64+19 =266
PR = J(4-3)2 4+ (3-1)2+(-1+8)> = {T+16+49 = {66

Thus, PQ + PR = QR and hence Q—P—R.
The given points are collinear.
Example 11 : If A(1, 2, 4), B(1, 2, 0) and C(1, 5, 0), show that AABC is a right angled triangle.
Solution : AB2=(1—1)2+2—-22+ (4 —0)2=16. So AB=4
BC2=(1-124+Q2-5%2+0—-02=9. SoBC=3
ACZC=(1—-12+4+G—-22+(0—-4)2=25SAC=35
A, B, C are non-collinear and form a triangle.

Also AC2 = AB2 + BC? and hence AABC is a right angled triangle with right angle at B.

Example 12 : Find coordinates of points on X-axis at distance 343 from the point A2, —1, 1).

Solution : A point on X-axis is P(x, 0, 0). Now AP = 3\/5

Jx=2)2 0+ D> +(0-1)2 =343
XX—dx+4+14+1=27
X2 —4x+4=25

(x—22=5
x—2=15
x=7 or x=-3

Thus, there are two such points namely P(7, 0, 0) and P(=3, 0, 0).

Example 13 : Find the equation of the set of points which are equidistant from the points (2, —1, 1)
and (1, 3, 1).
Solution : Let (x, 3, z) be the coordinates of the points equidistant from the given points (2, —1, 1)

and (1, 3, 1).
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=22+ 0+ 1)+ 1P =x—-1P+@ -3+ 1)
X2 —dx+4+y2+2p+ 1 +22 -2+ 1
=x2—2x+1+4+yP—6y+9+22—-22+1
—4x+2y+5=-2x—6y+ 10
2x—8 +5=0
This is the equation of the required set.

Note : In the plane this type of set is called the perpendicular bisector line of the given
segment. In space this is called the perpendicular bisector plane of the given segment. It is a plane
perpendicular to the segment and passes through the mid-point of the segment.

Exercise 9.4

1. Find the distance between the following pairs of points :
(1 a1,-1,3), (1, -1, 3) 2) (1,2,3),(3,4,5)
(3) (2,-3,18), (0, 1, 14) @ (1, J2,-1), (3,342, 1)
(5) (1,-2,5014), (4,2,5014)  (6) (1,1,0),(0,1,0)
2. Using distance formula, determine whether the following points are collinear or not :
(1) P, 3,2), Q01,2 1),R(2,3,1) (2) A(0, 1, 0), B(0, —1, 0), C(0, 2, 0)
3) L(1,2,3), M(—3,—1, 1), A(-3,2,7) (4 V(,2,3),AQ2,3,1),H@G, 1,2
3. Given that A(0, 7, 10), B(—1, 6, 6), C(—4, 9, 6), determine the type of AABC.
4. Find the points on Z-axis which are at a distance x/ﬁ from the point (=2, 1, 3).
5. Find the equation of the set of points P such that PAZ + PB2 = 2k2, where A and B are the
points (3, 4, 5) and (—1, 2, 7) respectively, £ € R.
6. Show that O(0, 0, 0), A(2, =3, 6), B(0, —7, 0) are vertices of an isosceles triangle.
%

9.11 Section Formula

We have studied section formula for a line segment joining two points in RZ. Now using vectors
we will derive section formula for a line segment joining two points in R3.

Let 71 = (x;, ¥}, z;) and 75 = (x,, ¥, z,) be the position vectors of two points A and B in the
—
space respectively. Suppose P € AB (P # A, P # B). As the points A, B and P are on the same line,

the directions of AP and PB are same or opposite. Thus, we have

-
AP = kPB, where k # 0 @)
— —
| AP | = |k| |PB| or AP =| k| PB B
AP _ P
o~ |l

A-P-B

Let the position vector of P be ¥ = (x, ), z).

— A .
Now let P divide AB from the side of A in the ratio A. Figure 9.8
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(i If A > 0 and A—P-B and % = A, we say that P

divides AB internally from the side of A in the ratio A.
(figure 9.8)

& = =
o5 = |kl =2
— —
Further, as AP and PB have the same direction, £ > 0

So, | k| = k.
Since, |k| =\, k= A

—> —>
AP = A PB.

(i) If A <0 and P-A—B or A—B—P and % = —\, we say

(using (i)

P divides AB externally from the side of A in the
ratio A. As shown in the figures 9.9 and 9.10, it is

clear that AP and PB have opposite directions, so £ < 0.

k| = —k
AP _ - _ AP _ _
S5 = | k| = —k and oS¢ A
Hence k = A
—> —>
AP = A PB

— —
Thus, in each case AP = A PB

=)

— =M = F)
—F1=7w’2—7uF
(1+AMNF=Ah + 7

=)

Note that by the definition of division, A # —1.
- 1 - -
= %+1 (7“”2 + 1)

@ 3 2) = 7o My ¥y 29) + Oy vpe 21)

|
= My +x, Ay +yp, Azy + 2))

A, +x; Ay, + 7‘12"'11)

(x,y,Z)Z(

A+l 7 A+l T O A+1

A 4

Figure 9.9

S

r\*u*P
A
Figure 9.10

This is called section formula. It gives coordinates of the point which divides line segment AB

in the ratio A from the side of point A(xy, vy 29)-

If the ratio A is m : n, then above formula gives,

1
24
n

ono=(

7:

mx, + nx;
m+n °’

ny, +mny,
m+n °’

mZZ +nZ]
m+n

m= , =\ _ 1 - —\-
(77‘24'7‘1) = Tm+n (mr2+nr1)a m+n £ 0
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9.12 Some Applications of Section Formula
If P is the mid-point of AB, then AP = PB and A—P—B.

(i) Coordinates of mid-points :

~. Let position vector of P be r.
If ri = (x|, ¥, z;) and 72 = (x5, ¥, 2,) and 7 = (x, y, z), then section formula gives

@ % 2) =3 (e vy 2) + (6 ¥y 2) A =1

(Mt oty L t5n
- 2 ’ 2 ’ 2

.. ) . —_ . NtTXH Nty 3+
The position vector of the mid-point of AB is given by T 5 T .
(ii) Centroid of a Triangle : Let ABC be a triangle in R3. Suppose position vectors of A, B and

Care 71 = (X, ¥y, 2)» 72 = (X5, ¥, 2p) and 73 = (x5, 3, z3) respectively.

Alxy, ¥y, 2p)

As shown in the figure 9.11, D is mid-point of BC.
Hence its position vector is LEh

Let G be the point dividing AD in the ratio 2 : 1 from

the side of A. The position vector of G is

1 - - - - - -
2+1 (2'%02 + 1)+ rl) = 1R+ 7+ 7

Symmetry of this result shows that G is on all the B(y»,2) = D T Clry, vy, 73)
Figure 9.11

three medians. Thus, the medians of a triangle are

concurrent in G.
Thus, G is the centroid of AABC and its position vector is %(71 + 75 + 13). So the coordinates of

Nttt 65 ntnty 5+5+3
G are 3 > 3 , 3 .
Find the coordinates of the point which divides the segment joining the points

Example 14 :
A(2, 3, —1) and B(1, =3, 5) from A in the ratio (i) 3 : 5 internally, (ii) 3 : 5 externally.

Solution : (i) Let P(x, y, z) divides AB from A in the ratio 3 : 5 internally. Thus m = 3, n = 5.

Now by section formula,

3 +52)  3+10 _ 13

T IS 8 s

_ 3D+ 9+15 _ 6 _ 3
8 4

345 8
35 +5=) 15-5 19 _ 5
s s i e N

) divides E in the ratio 3 : 5 internally from A.

EN ()

Thus, the point (ﬁ,;,
84
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(i) Here the division is external. Thus m = 3, n = —5. Hence the coordinates of required point are
31)=52) _ 3-10

_ _ =7 _ 1
YTT3Ss T T T2 T 22

C3(3)—53)  -9-15
y=mms = —5— =12

_35)=5(-1) _ 15+5
r=TH—— = 5= =10

Thus, the coordinates of the point which divides AB from A in the ratio 3:5 externally are
z _
(Z.12,-10).

Example 15 : Use section formula to examine collinearity of the points (1, =3, 3), (3, 7, 1), (1, 1, 1).

Solution : If A(1, =3, 3), B(3, 7, 1) and C(1, 1, 1) are collinear, then one of them divides
the line segment joining the other two in some ratio say k: 1. Suppose B divides AC in some
ratio k.

k) +1 k+1

TR T
This is not true. Hence the points are not collinear.

Example 16 : Show that the triangle with vertices (—1, 6, 6), (—4, 9, 6) and (0, 7, 10) is a right angled
triangle. Further verify that the mid-point of its hypotenuse is equidistant from all vertices.

Solution : Let A(—1, 6, 6), B(—4, 9, 6) and C(0, 7, 10).

Now, AB2=(—4+ 12+ 9 —-62+(6—-6>=9+9=18
BC?=0+42+(7—-92+(10—-62=16+4+16=36
ACC=(0+ 1Y+ (7 —-6>+(10—-62=1+1+16=18

AB? + AC? = BC?
Thus, AABC is a right angled triangle and BC is its hypotenuse.
Let M(x, , z) be the mid-point of BC. Then

0—4 749 10+6
x, v z)= R ) = (-2, 8§, 8).

Now as, M is the mid-point of B_C and BC = V36 =6
BM =CM =3

Further AM = \/(—2+1)2 +(8-6)2+(8-6)2 = l+4+4 =3
Thus, AM = BM = CM, i.e. M is equidistant from all the vertices of AABC.

Miscellaneous Problems :

In a plane if four points are given, then they form a quadrilateral provided any three of them
are non-collinear. Using distance formula and section formula, the type of the quadrilateral can be
determined. In the case of four points in the space, they may form a quadrilateral if all these points are
coplanar. Thus, before determining the type of a quadrilateral, we must make sure that the points are
coplanar. Following examples are based on this.

Example 17 : Determine whether the points A(0, 0, 0), B(1, 0, 0), C(0, 1, 0), D(0, 0, 1) are vertices of

a quadrilateral or not. If they form a quadrilateral, then determine its type.
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%
Solution : A?j =(0,1,0), BD =(=1,0, 1).

' B
— —> . o &2 &
AC and BD have different directions. Thus, AC {t BD.
Now let us examine if they intersect in a point.
If they intersect in a point, it may happen the point C

of intersection is A or B or C or D.

Figure 9.12(i)
— — ,
AC =(0,1,0), AD =(0,0, 1) () n /
N N g >
AC and AD have different directions. B

D
.. A, C, D cannot be collinear. .
BC =(=1,1,0), BD = (=1, 0, 1) (i) Figure 9.12(ii)
. B, C and D cannot be collinear. ‘\ -
Similarly from (i) and (ii) A, B, C or A, B, D are not collinear. C e
Now suppose, if possible AB and CD intersect in a point P -
other than A or B or C or D.

Four distinct points A, B, C, D lie in a plane if either AC

Figure 9.12(iii)

and BD intersect in a point or AC || BD. If possible, suppose

they intersect in a point P(x, y, z). Thus P € AC and s Ak D =
VIR -

P € BD. Let P divide AC from the side of A in the ratio B

A and it divide ﬁ from the side of B in the ratio A

WA € R—{0,—1}, L € R— {0, —1}). By section formula, Figure 9.12(iv)
VAN A(0) +0
Pe AC=x=",7 =0
A +0 A
YT A1 T A+ (iii)
_Ao+o
2=+ -0
& 0)+1 1
and P € BD:>x=%=ﬁ
L(0) + 0 .
y= L+1 =0 (iv)
UMD +0 M
ST R TI |

Thus, from (iii) and (iv) x = 0 = ﬁ which is not possible. Thus, AC and BD neither intersect

nor are parallel. Thus the points A, B, C and D are not coplanar. Hence given points are not vertices
of a quadrilateral.
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Note : Four non-coplanar points in the
space form a geometrical figure called a
tetrahedron (figure 9.12(v)). A tetrahedron has
four triangular faces and six edges. A(0,0,

C(0,1,0)

B(1,0,0)

Figure 9.12(v)

Example 18 : Examine coplanarity of the point P(1, 1, 1), Q(=2, 4, 1), R(—1, 5, 5) and S(2, 2, 5). Also
determine the type of quadrilateral formed by them, if any.

Solution : The mid-point of PR = M(0, 3, 3)
The mid-point of QS = M(0, 3, 3)
1?{ and @ Intersect in M.

P, Q, R, S are coplanar.
%
Now, PQ =(—2,4, 1)—(,1,1)=(-3,3,0)
QR = (=1, 5,5 — (=2, 4 1) = (1, 1, 4)
S_l){ =(-1,55—-@2,2,5=(3,3,0)
ITS) =2,2,5—-({,1,1H)=(,1,4)

Thus, PQ and SR have same directions. QR and PS have same directions.

Further,

PQ = /(32 +(3)2+0 = VI8 = RS

QR = ‘/12+12+42 = J18 = PS

Also as seen above diagonals PR and @ bisect each other and also

P

L 4
o

PR = \/(1+1)2+(1—5)2+(1—5)2 = J4+16+16 =6

QS = J(-2-2)2 +(4-22 +(1-5? = {J16+4+16 = 6 Y )

Thus for the parallelogram PQRS, all four
sides are of equal length and diagonals have equal S
length. Thus, [_JPQRS is a square. Figure 9.13

So for collinearity for three points was checked using distance formula and also using
section formula. Suppose three distinct points A, B and C are given. Then they are collinear only if

one of the following is true.

2
.

R

THREE DIMENSIONAL GEOMETRY 219



A—B—C A—C-B C—-A-B

A C
Figure 9.14(i) Figure 9.14(ii) Figure 9.14(iii)

In all three cases AB and BC have the same or opposite directions. Hence three points A, B and

C are collinear only if AB and BC have the same or opposite directions. The following examples are

based on this fact.

Example 19 : Using directions examine if following points are collinear :
(1) A0, 2), B(2, 4), C(=2, 0) (2) P, =1,0), Q(=3, 1, 2), R(=1, 0, 1)
(3) A(l, 2,3), PG5, 2,2), 82,3, 1) (4)  L(0, 0), M(l, 0), N(0, 1)
%

Solution : (1) AB =2, 4) — (0, 2) = (2, 2)

%

BC = (_25 O) - (29 4) = (_4: _4)

— —
Obviously BC = (—2)AB
— — o

Hence AB and BC have opposite directions. Thus A, B and C are collinear. (g  BC)
@ PO = (31,2 = (1. -1, 0) = (4.2, 2)

%

QR=(1L0,1)—(3,1,2)=@2, -1, -1
Here P_Q> = (—2)Q7{. So, P_(S and Q?{ have opposite directions. Thus, P, Q, R are collinear.

— | &2
(PQ ff QR)

_)
(3) AP =(5.2,2)—(1,2,3)=(4,0,—1)

P = (2.3 1) = (5.2.2) = (3. 1, =)
If possible suppose for a non-zero, £k € R

—> —>

AP = k(PS)

(4,0, =1) = k(=3, 1, —1)

4==3k 0=k —1 =—k

— —
For any k € R all there are not satisfied. So, AP and PS have different directions. Hence A, P
and S are not collinear.

@) TN = (1, 0) = (0. 0) = (1, 0)

H
MN =0, 1) —(1,0) =L 1)
If possible suppose for some £k € R — {0},
— —
IM = kK(MN)
(1, 0) = &(=1, 1)
1 = —k, k = 0 which is not possible.

So, LM and MN have different directions. Hence given points are non-collinear.
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Example 20 : Prove that A(1, 2, 3), B(—1, =2, —1), C(2, 3, 2) and D(4, 7, 6) forms a parallelogram.

Solution : Mid-point of AC = (%,%%) Mid-point of BD = (%,%%)
AC and BD bisect each other and they intersect at the mid-point. Hence AC and BD are

coplanar.
A, B, C, D form a quadrilateral in a plane and its diagonals bisect each other.

[J ABCD is a parallelogram.

Alternate Method :

— — —
AB = (=2, =4, —4), BC = (3, 5, 3), DC = (-2, —4, —4)

AB and DC are in the same direction.
AB || CD or A, B, C, D are collinear. But AB and BC are in different direction,
>
Cé& AB
&~
AB || CD
.. > &2 -
Similarly, AD || BC (AD = @3, 5, 3))
A, B, C, D are coplanar and [[] ABCD is a parallelogram.

Note : Solution given below is not proper :
AB = [J4+16+16 =6, CD = ‘/4+16+16 =6, AD = \[9+25+9 = 443 = BC
Opposite sides of [[] ABCD congruent. Hence [[] ABCD is a parallelogram.

If A, B, C, D are coplanar, then this decision is correct. So it is necessary to prove A, B, C, D
are coplanar. See the example given below :

Example 21 : Prove that for O(0, 0, 0), A(1, 1, 0), B(1, 0, 1), C(0, 1, 1), OA=AB =BC=AC=0B = 0C,
but O, A, B, C do not form a parallelogram.

— — —
Solution : OA = (1, 1,0), OB =(1,0, 1), OC=(0, 1, 1)

— —> —
AB =(0, =1, 1), BC = (=1, 1,0), AC = (-1,

OA = OB =0OC = AB = BC = AC = 2
c(,1,1)

But any two of above vectors are not in the B(\eg’ﬂ
same or in the opposite directions.
>Y
O, A, B, C do not form a parallolegram.
That these points are non-coplanar can be
proved. Points O, A, B, C form a tetrahedron. X A1, 1,0)

Figure 9.15

Exercise 9.5

1. Find the points of trisection of the segment E, where A(1, 3, —2), B(2, 4, —1).

2. Using section formula, check the collinearity of points :
(1) P(1, =1, 1), Q(1, 0, 3), R(2, 0, 0) 2) A5, 6,—1),B(,—1,3), C(, 1, 1)
(3) L2 3,4, M1, 2, D.N(-14,2,2) @) 00, 0,0 AL 1. 1), B2, 2, 2)

(5) L, 2, 3), M(—1, =2, =3), N(1, =2, 3)
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Exercise 9

Show that the points A(—2, =3, —1), B2, 1, 1), C(=3, =2, —2) and D(-7, —6, —4) form a
parallelogram. Is it a rectangle ?

Determine the type of AABC, given that A(0, 1, 2), B(2, —1, 3), C(1, =3, 1).

Find the equation of the set of points at the same distance from the points (1, 2, 3) and (3, 2, —1).
Find the lengths of medians and coordinates of the centroid in each of the following triangles :
(1) A(1,0, 1), B(1,2,0), C(, 1, 2)

(2) P(1,2,3), Q(—1, 1, 0), R(0, 0, 3)

3) L(-1,-2,-3), M(1, 2, 3), N(1, 2, 1)

Let P(1, 2, =3), Q(3, 0, 1) and R(—1, 1, 4) be the mid-points of the sides of AABC.
Find the centroid of AABC.

Using vectors examine the collinearity of the points given below. If they are collinear, then
in which ratio and from which side one point divides segment joining other two ?

(1) AG, 4, 6), B(1, -1, 3), C4, 3, 2)

2) A2, 3,4),B(—4, 1, —10), C(—1, 2, —-3)
3) A, 2,3),B(,4, 1), C(—1, -1, —1)
(4) L@, 2, —4), M(5, 4, —6), N(9, 8, —10)
(5) P2, 3,4), Q@3, 4,5), R(1, 2, 3)

Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the right
so that the statement becomes correct :

(1) The magnitude of sum of vectors (1, —\/5 ), (2, \/5 ) is ... []
(a) =3 (b) 3 (©9 (d) -9

(2) Given that the points A(1, 0, 1), B(2, —1, 3) and C(3, —2, 5) are collinear, then the ratio in
which C divides AB from side of A is ... []
(a2:1 b)—1:2 (c)1:2 (d)—2:1

(3) The centroid of the triangle whose vertices are P(1, —2, 1), Q(2, 3, —1), R(1, —1, —=1)is ... [__]
@ (1,21 ®(30-3)  ©F30) @513

(4) If the position vectors of A and B are respectively (1, 1, 0) and (0, 1, 1) then A?} = e [ ]
(@) (0, 0, 0) (b) (1, 0, =1) (© (=1, 0, 1) (d) (1, 2, 1)

(5) The direction of (1, 1, 2) and (2, 1, 0) is ...... []
(a) same (b) opposite (c) different (d) not defined

(6) <2,2,2>= .. ]
(a) —<—4,—4,—4> (b)) <L, 1, —1> (c)<—L,1,-1> (d) <0, 0, 0>

(7) (%%%) = ]
(@) <1, 1, —=I> (b) <cosO cosQL, cosO sinQl, sin®>
(c) <5, 5, 5> (d) <3, 3, —3>
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(8) Unit vector in the direction of (2, 2, —1) is ...... []

1 —2 1 2 21
@ (333 oFF3) ©ez) @ (2.2.4)
(9) Unit vector in the direction of (1, 0, 0) is ...... []
(a) (0, 1, 0) (b) (0, 0, 1) (©) (=1, 0,0) (d) (1, 0, 0)
(10) If the centroid of AABC is (0, 0, 0), where A(l, 1, 1), B2, 1, 2), C(x, » z) then
x ¥y z)= .. ]
(@ 3, 2,3) (b) (0, 0, 0) (¢) (=3, =2, -3) (d) (1, -1, 1)
(11) If A(1, 1, 2), B(2, 1, 2), C(2, 2, 1) then A, B, C are ...... ]
(a) vertices of a triangle (b) collinear
(c) on axes (d) non-coplanar
— —>
(12) If A(1, 2, 1), B(2, 3, 2), C(2, 1, 3), D(3, 2, 4), then directions of AB and CD are ...... ]
(a) same (b) perpendicular to each other
(c) different (d) not defined
(13) If A(1, 2, 1), B(2, 3, 2), C(2, 1, 3), D3, 2, 4) then ...... ]
> <> > >
(a) AB || CD (b) AB = CD
(©) AHB N (% is singleton d Ce 1?3
(14) Vector (0, 0, 0) ...... ) ]
(a) has no direction (b) has no magnitude
(c) is in the direction of (1, 1, 1) (d) is in opposite direction of (—1, —1, —1)
(15) P(2, 3, 1) and Q(7, 15, 1) then |P_(>)| = . ]
(a5 (b) 12 (c) 13 (d) 17
(16) A vector which is in the directions of (3, 6, 2) and has magnitude 4 is ...... ) [ ]
2 12 24
(@ (2.£,2) (b) (12, 24, 8) © (2.2%) @ 12,-24,-8)
(17) A unit vector which is in the opposite direction of (2, =2, 1) is ....... .
—1 1 2 2 1
@(F3F) ®2-H ©FF) @F33)
(18) (cosQ., sin®) and (cos(Tt + QU), sin(Tt + O)) (00 € R) have directions ....... ) ]
(a) same (b) opposite (c) different (d) same as (1, 0)
(19) If X is a non-zero vector and k > 0, k # 1, then % is ... ) []
(a) unit vector in the direction of X
(b) in the direction of X having magnitude k&
(c) in the opposite direction of X having magnitude &
(d) unit vector in the opposite direction of X
(20) If X is a non-zero vector and k < 0, k # —1, then % is ... ) ]

(a) unit vector in the direction of ¥

(b) unit vector in the opposite direction of X

(c) in the opposite direction of X having magnitude | & |
(d) in the direction of X having magnitude | k|

*
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Summary

We studied following points in this chapter :

1.

Set of ordered pairs and ordered triplets of real numbers R? and R3 respectively form a
vector space over R.

Magnitude of a vector X = (x}, x,, x3) is | ¥ | = Jx12+x%+x32, and if X = (x;, x,), then

| %1 = xf + 43
|X|=0& x =0 and | kx| = | k|| X |

For two non-zero vectors X and Y if X = kY, then X, Y have the same direction, if k > 0.
They have opposite directions, if £ < 0.
For two points A and B (in R? or RY)

%
AB = Position vector of B — Position vector of A

Distance between two points A(x, y, z;) and B(x,, y,, z,) is given by

AB = \/(xz —x)* (- +H(z-a)

If 71 and 7, are position vectors of points A and B respectively and point P divides AB in

: . .. . 1 o =
the ratio A from the side of A, then position vector of P is A1 (A, + 7).
If A(xy, ¥y, z1), B(xy, ¥y, zp) and C(x3, y3, z3) then position vector of the centroid is

(xl+x2+x3 Vit Y+ Z1+Z2+Z3j'

3 ’ 3 ’ 3

— ‘ —
R X

Bhaskara 1I
Solutions of Diophantine equations of the second order, such as 61x%+ 1 = 2. This very equation
was posed as a problem in 1657 by the French mathematician Pierre de Fermat, but its solution
was unknown in Europe until the time of Euler in the 18th century.
Solved quadratic equations with more than one unknown and found negative and irrational
solutions.
Preliminary concept of infinitesimal calculus, along with notable contributions towards integral
calculus.
Conceived differential calculus, after discovering the derivative and differential coefficient.
Stated Rolle's theorem, a special case of one of the most important theorems in analysis, the
mean value theorem. Traces of the general mean value theorem are also found in his works.
Calculated the derivatives of trigonometric functions and formulae.
In Siddhanta Shiromani, Bhaskara developed spherical trigonometry along with a number of
other trigonometric results.

2 2
Bhaskara II gave the formula : ‘,ais/_ = ‘/“— Vg_b + "a—— Vg_b

Bhaskaracharya studied Pell's equation px2 + 1 = 32 for p = 8, 11, 32, 61 and 67. When

p = 61, he found the solutions x = 226153980, y = 1776319049. When p = 67 he found the
solutions x = 5967, y = 48842. He studied many Diophantine problems.

The topics covered in Lilavati, thirteen chapters of the book are : definitions; arithmetical

terms; interest; arithmetical and geometrical progressions; plane geometry; solid geometry;
the shadow of the gnomon; the kuttaka; combinations.
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Chapter 10

LIMITS )

If people do not believe that mathematics is simple, it is only because they do
not realise how complicated life is.
— John Louis Von Neumann

10.1Introduction and History

Now we start with the study of calculus. Whatever we have studied so far is known as pre-calculus.
Calculus is a Latin word meaning a small stone used for counting. Calculus is the study of change
in the way that geometry is the study of shape and algebra is the study of operations and their
applications to solving equations. Calculus has widespread applications in science, economics and
engineering.

The ancient period saw some of the ideas that led to integral calculus. Calculations of volumes
and areas by integral calculus can be found in the Egyptian Moscow Papyrus (1820 B.C.). But the
formulae are mere instructions and some of them are wrong. From the age of Greek mathematics
Eudoxus (408-335 B.C.) used the method of exhaustion which prefigures the concept of the
limit to calculate areas and volumes. Archimedes (287-212 B.C.) developed the idea further.
The method of exhaustion was reinvented by Lie Hui in China in the third century A.D. to find the

area of a circle.

Brahmagupta's Yuktibhasha is considered to be the first book on calculus. Bhaskar's work
on calculus precedes much before the time of Leibnitz and Newton. Bhaskara-2 used principles
of differential calculus in problems on Astrotomy. There is a strong evidence that Bhaskar was a
pioneer on some principles of differential calculus. He stated Rolle's Mean value theorem. In
his book Siddhanta Shiromani, we find elementary concept of mathematical analysis and infinitesimal

calculus.

These ideas were systematized into calculus by Gottfried Wilhelm Leibnitz. He independently

invented calculus along the same time as Newton. Leibnitz and Newton are both credited with the
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invention of calculus. Newton derived his results first but Leibnitz published them first. Both arrived at
the results independently. But Leibnitz started with integral calculus and Newton started with
differentiation. The name calculus was given by Leibnitz. In the 19th century calculus was put on a much
rigorous footing by Cauchy, Riemann and Weierstrass. The modern €-0 definition of limit is due to
Weierstrass.

The modern notion of the limit of a function dates back to Bolzano. He introduced €-0 technique
in 1817 for continuous functions. Cauchy discussed limits in his cours de’ analyse in 1821. But he gave
only a verbal definition. Weierstrass introduced modern €-0 definition which is studied today. He also
gave notations /im and lim x — x,. The modern notation lim is due to Hardy given in his book

. . X —> X0
‘A Course of Pure Mathematics’ in 1908.

10.2 Intuitive Idea of Limit

Now we turn to the main idea of calculus namely limits. Before giving definition, we will get
intuitive idea of limits. We understand that the discussion that follows only gives some intuitive idea of

limits and the examples solved only suggest ideas leading to the concept of limits.

Limit of a function is the ‘ultimate’ value of the function, if it exists, when variable changes
continuouly in the domain and goes nearer and nearer to a specific value. Let us be more specific. Limit
of f(x) = 3x + 2 when x approaches 1 is written as lim (3x + 2) and let us see how we ‘find’ it.

X —1
Let us tabulate some values of x and f(x) as follows :

X 0.9 0.99 0.999 | 0.9999 1.1 1.01 1.001 | 1.0001

fx)| 4.7 4.97 4997 | 4.9997 53 5.03 5.003 | 5.0003

We observe that as x — 1 through values less than 1, f(x) approaches 5. This we express by

saying that limit of f(x) is 5 as x approaches 1 from left and we write lim f(x) = 5 in notation.
X —>1-

Similarly the limit of f(x) as x approaches 1 from right is 5 or lim f(x) = 5. Incidentally
x =1+

f(1) =3 + 2 = 5. But this is not necessary.
fy=3x+2
If lim f(x) and lim f(x) exist and 1

X —>a- X — a+

are equal, we say lim f(x) exists and is equal
xX—a

to either of lim f(x) or lim f(x).

X —>a- X — a+

Let us understand by a graph.

See that as x — 11—, y-coordinate

approaches 5 and so is the case with x — 1+.

Note that in discussing this limit, /(1) = 5

Figure 10.1

has no bearing on the limit. e
Example 1 to 13 are for understanding of concept of limit only. They are not meant to be

asked in the examination.
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a2
Example 1 : Verify xhi)ni % = 2 by tabulation. (x # %)
2

0.49 0.499 | 0.4999 [ 0.51
1.9998 | 2.02 2.002 |2.0002

X 0.501 [ 0.5001

Fx)| 198 | 1.998

See that

4x* —1

J) = 55—t

=2x+1asx¢%.

Hence we can see that
lim1 fx) = 2.

x—>3

Figure 10.2

Explanation : As x approaches % from left or from right f(x) approaches 2. Here the graph
1 namely (%, 2). All the while ‘ultimate’ value of f(x),

does not contain the point corresponding to x = 3
as approaches 1, is 2.

Example 2 : Find lim |x].
x—=0

Solution : We know |x| =] x x20
-x x<0

—0.1 —0.01 | —0.001 0.1 0.01 0.001

Hence, X
0.001 0.1 0.01 0.001

fx| o1 0.01

We can guess that lim f(x) = 0.

x—0
Y
A
y=1Ix|
X
Ble
k4
Figure 10.3

See that /(0) = 0

Example 3 : Prove that lim [x] does not exist.
x—=2

Solution : f(x) = [x]=[1 if 1<x<2
2 if 2<x<3
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BY 1.9 1.99 1.999 |11.9999 2.1 2.01 2.001 |2.0001

f(x) 1 1 1 1 2 2 2 2
Y
A
So, lim f(x)=1and lim f(x)=2 (R,
x—2- X — 2+ 1 —0
lim f(x) does not exist. =T
x—2 < . O—it > X
Explanation : Observe that there is a ‘gap’ of 1 23
between P and Q. Left limit and right limit do not N
coincide. T S =1
Example 4 : What can you say about lim % 72 (x#0) v
- r=0 Figure 10.4
Solution : Here f(x) = -~ 1 if x>0
-1 if x<0
fis not defined for x = 0.
x —0.1 —0.01 [ —0.001 | 0.1 0.01 0.001
f) | -1 ] ] 1 1 1

Obviously, lim f(x)=1, Lm f(x)= -1
x— 0+ x—0-

lim f(x) does not exist.
x—=0

Note : In the example 1, f (%) is not defined but 1im1 f(x) exists.

x—)a

In the example 2, f(0) is defined and lim f(x) = f(0).
x—0

In the example 3, lim f(x) # lim ., f(x) but f(2) exists. But limit does not exist.
x—2— x =2+

lim lim

In the example 4, x;mf(x) # X;O_f(x) and f(0) does not exist. Limit does

not exist.

So we have enough ground to conclude that existence or value of lLim f(x) is not affected by
X —a

its value at a, namely f(a).
Example 5 : Find lim f(x) where f(x) =[x +3 x<0
e {3 —x x=20
Solution : Here for x < 0, f(x) = x + 3 and for x > 0, f(x) = 3 — x.

The table of values will be as follows :

X —0.1 —0.01 | —0.001 [ 0.1 0.01 0.001
x| 29 299 | 2.999 29 2.99 2.999
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lim f(x) = lm f(x) =3

x = 3= x — 3+

and also f(0) =3 — 0 = 3.

Explanation : (0, 3) is on the graph. As x — 0—,

point A move towards C and as x — 0+, point B moves

towards C. Hence 1lim f(x) and lim f(x) coincide.
x = 0+ x —0-

Also £(0) = 3. All the three coincide. +

v

Example 6 : Find lim f(x) where f(x) = x+3 x> 1
x—1

10 x=1

x+5 x <1

Figure 10.5

Solution :
X 09 0.99 0.999 1.1 1.01 1.001
[ (x) 5.9 5.99 5.999 4.1 4.01 4.001

x <1 x> 1
Thus, Lm f(x) seems to be 6 and Lim f(x) appears to be 4. Thus lim f(x) does not exist.
x—1- x = 1+ x—1
Also f(1) = 10. All the three are distinct. Y
® (1,10)
Explanation :

lim li
Hence, "0\ f(x)# L f(¥)

and the two are different.

Example 7 : Find lim (% — x).
=l Figure 10.6

Solution :

X 0.9 0.99 0.999 1.1 1.01 1.001
f(x)| —0.09 | —0.0099| —0.000999 | 0.11 |0.0101 {0.000101

Thus, lim f(x) = hm f(x)—Of(l)—lz 1=0

x—1-

lim f(x) =0 = f(1)
x =1
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04

Figure 10.7

Explanation : As x — 1—, A approaches C and x — 1+, B approaches C.

im f(x) =0
x—1

Example 8 : f: R = R. f(x) =5, Find Lm f(x).
x =10

Solution :

X 9.9 9.99 9.999 10.1 10.01 | 10.001
) 5 5 5 5 5 5
lim f(x) =5
x—10
Y
h
A B
—>C—
15
< > X
10
k4
Figure 10.8

Explanation : As x — 10—, A approaches C and as x — 10+, B approaches C.

C is (10, 5).

lim f(x) =5

x =10
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Example 9 : Find lim cosx.
x-Z

Solution :

T _ T _ r _ i i E
x |5 0.1 5 0.01 > 0.001 > + 0.1 > + 0.01 5 + 0.001

S (x)[0.099833 | 0.009999833 0.0009999998| —0.099833 | —0.009999833 |—0.0009999998

Obviously lim cosx =0
xoL

Explanation : Look at the graph of cosx.

Y
< —t ! . " | —Y% > X
\/ M
ARB
v
Figure 10.9

As before A approaches C and B tends to C as x — %— and x — %+ respectively.

lim cosx = 0
i

X = >
Example 10 : Verify lim Sinx _ (x #0)
x>0 X
Solution :
X —0.7 —0.2 —0.05 1.4 0.3 0.03 0.01

£ (x)| 0.92031 ]0.993347( 0.999583 | 0.97275 [ 0.98506 [ 0.99985 | 0.999983

sin(—=x) _ —sinx _ sinx
—-Xx -x x

Explanation : Note that % is an even function i.e.

Y

0.1)

; \,//m\\zy—n o n\yQ\/ § X

A 4

Figure 10.10
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So we need consider x > 0 only. It is apparent that lLim % = 1. This is reflected in the graph
x—0

given also. In fact we will prove this in this chapter later on.

Example 11 : Find lim (x + cosx).
x—=0

Solution :

X —0.1 —0.01 —0.001 0.1 0.01 0.001
S (x) [0.895004165(0.98995 [ 0.9989995 [1.095004165( 1.009995| 1.0009995

Explanation : From the graph as well the table we infer that lim (x + cosx) = 1.
x—0

YT CO.S?C (, 1)"

104

Figure 10.11

See lim x =0, lim cosx = 1.
x—0 x—0

lim (x + cosx) = lim x + lLim cosx
x—0 x—0 x—0

Example 12 : Discuss existence of lim 1

x—>0%X
Solution :
X —0.1 —0.01 [ —0.001 0.1 0.01 0.001
f(x)| —10 —100 | —1000 10 100 1000

Explanation : Here we observe that as x — 0+, i increases ‘unboundedly’ and as x — 0—, we

say L decreases ‘unboundedly’. So lim Lor lim < do not exist. We say as x — 0+, 15w
X x—=0+ X x— 0— X

and as x — 0—, L 5 —c. lim <+ does not exist.
X x—=0
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It is incorrect to say lim
x—=0+ X

or members of the extended real number system. We are dealing with limits in real number system only.

1
— =ooor

Figure 10.12

lim

x—0- X

1

= —oo. Note that co and —oo are merely symbols

Example 13 : Discuss lim —7.
x—=0X
Solution :
X —0.1 —0.01 |—0.001 0.1 0.01 0.001
f(x) | 102 104 100 102 104 100
Explanation : In this case, whether x — 0+ or x — 0—, ? increases unboundedly or ? —> oo,
Y
10
SEEENERNEE SEEE S e
15 10 5 1° 5 10 15
LRt
~10-
Figure 10.13
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. . . 1 . 1 .
Again we do not write lim —5 = oo. lim —; does not exist.
x—>0X o—0X

10.3 Formal Definition of Limit
Now we are ready to give formal definition of limit. So far we had inferred certain limits by
observing some tabulated values and graphs. But in practice it is not possible even in simple

examples and this tabulation may even mislead. Look at the graph of sini (figure 10.14).

ey even mislen o

Alfmmmmm

A
A=
3=

_________ 111 R

Figure 10.14

Can we infer anything about ]iglosini ? When x takes a sequence of values ﬁ ke 7 — {0},
X

1 2 .1 _ 2 .1 _ .
sin—- = 0, for x = (Am+nm-Sin; = 1 and for x = (4m+3)m> SN = —1. Other values of x also exist

which we have not considered. So it is difficult to guess anything about ]jinosini.
X

Definition : Limit of a function : Let f(x) be a function defined on a domain containing some
interval containing a but a may not be in the domain of f. If for every € > 0, there exists

some O > 0 such that whenever « — 0 < x <a+ O, x#a = 1— € <f(x) <[+ &, we say

lim f(x) =/ or limit of f(x) as x tends to a is /.
X —a

See that O > 0 is any positive number. Hence f(x) can be brought as near to / as we please.
—€ < f(x)—1<€or|f(x)— 1| <€ just by proper selection of O such that a — & < x < a + 0,
xZaor-0<x—a<O0,x#aie |x—a|<0,x%a

Thus £ (x) can be brought as near to / as we please if we can choose & > 0 such that x should be
brought near to a.

Left limit of a function : If f(x) is a function defined in some interval (¢ — h, a), (I > 0)
and if for every € > 0, there exists 8 > 0 such that / — € < f(x) < [ + € whenever

x € (a— O, a) and & < h, we say left limit of f(x) is / as x = a— or lim f(x) =L
X —>a—

Right limit of a function : If f(x) is a function defined in an interval (a, a + k), (kK > 0)
and for every € > 0, there exists & > 0 such that /| — € < f(x) < I +& whenever

x € (a, a + 9), & < k, then we say right limit of f(x) is /as x = at or lim f(x) =1

X —>a+
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Notes : (1) Nowhere in the definition, it is required that @ be in domain of f. f(x) must be
defined ‘around’ a. f must be defined in an interval containing a except for possibly at x = a. f may
or may not be defined at x = a.

(2) €> 0 is any given number and O > 0 is to be found out depending upon f.

Let us understand the definition more closely by some examples.

Example 14 : Prove : lim (3x + 2) = 8
x—2

Solution : Let € > 0 be any positive number.
We require § —€<3x +2<8+ ¢ (=29
§—E<C3x+2<B+ES 6—E<3<O6+E

<:>2—%<x<2+%.

Comparing with 2 — 0 < x < 2 + 0, we are motivated to let 0 = % (a =2
Now let 0 = %

2-0<x<2+8, x#2 =>2—%<x<2+%

> 6—-E<3x<6+E
= 8—-€E<3x+2<8+¢

This is what we wanted and 0 = % exists for every € > 0 such that

2-0<x<2+ 0, x#2 =8—€<3x+2<8+¢
lim Gx +2) = 8.

x—2

Example 15 : Prove : lim x = a
X —>a

Solution : Let £€=0,€>0. Then,a — 0<x<a+ O, x#*a=>a—€<x<a+§¢
im x = a

X—a

Note : It is not obvious that x — a, as x — a, we have proved it using definition.

Example 16 : Prove : lim (mx + ¢) = ma + ¢ (m # 0)
X —a

P .
Solution : Let & = s €2 0.

£ €
a—8<x<a+5,x¢a=>a—m<x<a+m

€ £
= ma — m < mx < ma+ 1,5 m (m > 0)

= ma— &< mx<ma-+ €

> ma—€+tc<mx+c<ma+é€+c
Let I = ma + ¢

a—0<x<a+ O, x#za=Il—€e<mx+c<Il+E€

If m>0, lim (mx +c¢)=ma+c
X —a
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Similarly if m < 0 we can prove.
a—0<x<a+0,xZa=ma+c+E>mx+c>ma+tc—¢ (|m|=—m)
= matc—EeE<mx+tc<ma+c+§&

If m<0, im (mx + ¢)=ma+ c.
X —a

10.4 Algebra of Limits
It is tedious and difficult to find limits using definition. So some working rules are derived. They can

be proved but we will not prove them.

Let lim f(x) exist and be equal to / and let lim g(x) exist and be equal to m.
xX—a xX—a

Then (1) lim (f(x) + g(x)) exists and
X —a

lim (f(x) + gx)) = lim f(x) + lim gx) =171+ m
X —a

X —a X —a

(2) lim (f(x) g(x)) exists and

X —a

lim (f(x) g&)) = lim f(x) lim g(x) = Im

X —a X —a X —a
lim f(x)
lim L&) lim L) _x2a g
B) Ifm#0, ey exists and e xlgnag(x) p

Example 17 : Prove if f(x) is a constant function and if f(x) ¢, then lim f(x) = ¢

X —a
or in other words lim ¢ = c.
X —a
Deduce lim c¢f(x) = ¢ im f(x), if lim f(x) exists.
X —a xX—a X —a

Solution : Let f(x) =cand x € (¢ — 0, a + 0) — {a}. Let [ = c.
a—0<x<a+0,x#a=|fx)—Il|=|c—c|=0<¢€as0<E.
im f(x) =c ie. lim c=c

xX—a xX—a
If lim f(x) exists, then lim c¢f(x) = lim ¢ lim f(x)
xX—a X —a xX—a X —a
= ¢ lim f(x)
xX—>a

Note : Using lim (f(x) + g(x)) = lim f(x) + lim g(x) and
X —a X —a

X —a

lim ¢f(x) = ¢ lim f(x), we can prove

X —a X —a
lim (f(x) — g(x)) = lim f(x) — lim g(x)
xX—a xX—a xX—a
If c = —1, Iim (f(x) — g(x)) = Lm (f(x) + (—=1)g(x))
X —a X —a
= lim f(x) + lim (=1)g(x)
X —a X —>a
- Xliina f(X) - X]igla g(X)
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Theorem 1 : Prove lim x" = d" n € N
X —a

Let P(n) : lim x"=4d" né€ N

xX—a

We have proved lim x = a

X —a
P(1) is true.
Let P(k) be true.

lim xk = ok
xX—a
Let n=Fk+ 1
lim x¥T!1 = Lim xf-x
xX—a X —>da
= lLim x* liin by (Product rule for limits)
x—a X—a
=d-a=d"! (P(k) and P(1))

P(k + 1) is true.
P(n) is true, Vn € N by PM.L

Theorem 2 : lim (f{(x) + f,(x) +...+ f,(x)) = lim fi(x) + lLim f(x) +..+ lim f(x),
X —a X —da X —a X —a

Let P(n) : lim (fj(x) + f4(x) +...+ f,(x)) = lim fi(x) + lim f(x) +..+ lim f(x)

X —>da X —>a X —>a X—a

if individual limits lim f,(x) exist i=1,2,3,.., n
X —a

For n = 1 the result is obvious.

Let P(k) be true.

lim (f;(x) + AH(x) +...+ fix) = lim f(x) + lim f(x) +..+ lim f(x)

xX—a x—=a xX—a x—a
Letn=F%k+ 1

li;n (i) + .o + fi0) + £ 4+ ()

= m (40 + ot f) + i () (xlig]a () +5() = lim f()+ lim g(x))

= lim f;(0)+ lm () + ...+ lim £x)+ lim £, () (P(K))
X —a X —a X —a X —a

P(k + 1) is true.
P(n) is true, Vn € N by PM.L
Limit of a Polynomial :
We know f(x) = ¢, x" + ¢, _ | X"~ Ty + cp» X € R (¢, #0, ¢y ¢y ¢, € R)

is called a polynomial of degree n.
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lim f{x) = lim (cnx”+cn_1x”_1+...+c0)
xX—a X —a
= lim ¢, x"+ lim cn_lx”_1+...+ lim ¢, (Lemma 2)
X —>a X —>a X —a

(lim (F@) + gx) = lim f()+ lim g(x))

lim ¢, lim x"+ lim ¢,_; lim ¥~ 1+ .+ lim T

X —a X —>a xX—a X —>a xX—a
(1im (F@)ge) = tim fx) lim g(v)
X —a X —a X —a
=cna”+cn_1a”_1+...+c0 (lim X" =qd", lim ck=ck)
X —a X —a
=f(a)

Thus, limit of a polynomial as x — « is obtained by just substituting x = & in the polynomial.

(This is called ‘continuity” of polynomials.)

Example 18 : Find lim (2x3 + 3x2 — 5x + 1).
x—2

Solution : lim (x> +3x2 —5x+ 1) =2-23+3-22-5.2+ 1
o =16+12—-10+1
=19
Limit of Rational Functions :

p()
q(x)

If p(x) and g(x) are polynomials defined over a domain in which g(x) # 0, then A(x) =

is called a rational function.

If p(x) and ¢(x) are polynomials defined in a domain containing a and g(a) # 0 then

) lim p(x) @
Jim Ao = 9@ T Tim g q@ M@
X —a

In other words rational function A(x) is also a ‘continuous’ function.

x> +1

Example 19 : Find 1 m.

Solution : Here x2 + 3x + 4 # 0 forx = 1.

lim _ x°+1

X 2.
x—=>1x2+3x+4 8

1
4

p(x)
q(x)

Hence in case of a rational function A(x) = if g(a) # 0, then lim A(x) = h(a) is obtained by

just substituting x = a in A(x). But what happens if g(a) = 0 ? e
By remainder theorem, we know that x — a is a factor of g(x). Now we consider some cases.
Case (1) : p(x) = (x — @)k f(x)
q(x) = (x — a)f g(x), f(a) # 0, gla) # 0, k € N
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: _ lim 2%
Now xhi)nah(x) x—a 4(X)

Nk
lim X )
xX—=a (x—a)kg(x)

lim S (x)

x—a 8(X)

_ fla)
-~ gla)

(while discussing limit x # a)

Thus, if (x — a) occurs to the same index in both numerator and denominator, we can cancel it

and have the limit by substituting x = a after cancellation of the factor (x — a)*.

; X —3xr+x

Example 20 : Find , _ T —sx? +ax

lim X —3x*+x _ lim x(x?=3x+1)

Solution = Here 0o 5 52 13 T x>0 x(4x2 —sx+3)

lim x2—3x+1
x>0 4x% —5x+3

1

3
lim _*'— 7% +8x% —3x +1
x =1 3x* —5x3 +6x2 —10x+6°

Example 21 : Find

Soluti xt=7x3 +8x% —3x+1 im (x=D(x*—6x*+2x—1
olution = S TS50 16’ —10x+6 | 11 (x—1) (3 — 222 + 4x —6)

lim X —6x*+2x—1
x—=13x3—2x? +4x—6

Note : Here p(1) = g(1) = 0. Hence (x — 1) is a factor of p(x) and ¢g(x). After factorisation of
p(x) and ¢g(x), we remove the factor (x — 1) and substitute x = 1.

x> —5x> +8x—4
x—=>22x3 —9x? +12x—4"

Example 22 : Find

Solution : p2) =8 —20+ 16 —4=0,92) =16 —36 +24 —4 =0
(x — 2) is a factor of p(x) and ¢(x).

lim X —5x°+8x—4 lim (x—2°(x-1)
x=22x3 —ox?+12x—4  x—22(x-2)2(02x—-1)

lim X!
x—22x—1

= l
3
Here (x — 2)? is a factor of both p(x) and g(x).

Case (2) : Let us see what happens if (x — @) and (x — a)” are factors of p(x) and g(x)

p(x) and q(x)
(x-a) x-ay"

respectively where & # m and do not have x — a as a factor.
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px  x—aff) _ - T )

™~ x—ag(n) 200 it k> m.

Now h(x) =

Here k — m € N
Also f(a) # 0, g(a) # 0.

0-fla) _

lim h(a) = g(a) =0

X—a

Thus, if (x — a) occurs to higher index in p(x), then lim A(x) = 0.

X —a
Case (3) : If p(x) = (x — @) f(x), q(x) = (x — a)" g(x) with k < m and L)k = f(x) and
(x-a)
qx )
———— = g(x) are non-zero for x — a, we proceed as follows :
x-a)"
k
. x—af fx . JAC))
lim A(x) = lim —mf = lim pa—
Y a x—=a (x—a)" g(x) x—a(x—a g(x)

Now f(a) is a real number. (a — a)" ~ *g(a) = 0

Denominator of A(x) becomes unbounded as x — a and we say lim A(x) does not exist.
xX—>a

‘ lim X° —3x>+3x—1
Example 23 : Find Y51 21
3 2.2 _ . 3
X7 =3x"+3x—1 lim (x—1
x—1 x2 -1 T x-ol (x=D(x+1D

Solution :

lim (x—1?2

- - _0_
Tx—=1 x+1 2 0
4.3, 2
o lim X XA
Example 24 : Find "/, Ot
_ im X X+’ lim X —x+1
Solution : ", - +x  xo0 (P —xt+1)
lim X —x+D .
Tao0 Py 1 0
An Important Limit :
. n__ n
lim X _—¢ =nd"~ !, ne N@x#a),x a€ R

xX—a X—da
We can see that this is a rational function.

lim X" =4" _ lim x—a) X'+ X" 2+ X" A d Y
xX—a X—da xX—a X—a

= lim " '+ x""2a4+x"" 32 +...+a"
X —a

=" '+ 204+ 32 +..+ad"" ! =pg !
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Note : This result is true even for n € R. But then x € RT, a € RT, x # a.
We will use this extended result in future.
lim X°—1

x—1 x6 -

Example 25 : Find

m X0 =1 Jim x® -1 X1

Solution : ", 061 " xo1Tx=T X 16
X181
lim
_ Xl x-1
16
lim !
x—1 X1
17
16> 1 8
. X’ +32
Example 26 : Find , __, PR
) X’ +32 lim X —2°
Solution : x>-2 Prg  xo-2x_(2)
lim =2’
xo-2 X2
fim =2
xo>-2 X7 (2)
5=t 5416 9
T 3=2)? 3473
4
_ lim X" —16
Example 27 : ', 2 —32 t3x—2°
4 _,4
4 lim - 3
Soluti ~ lim X" —16 _ x—2 4.2 32
olution : . ~3 7 T, = i (x—2)(x%2—x+1  4-2+1 3
x—=2 X-2

Rule of Substitution or Rule of Limit of a Composite Function :

Suppose lim f(x) exists and lim f(x) = b and lim g(y) exists and lim g(y) = [
y—>b

xX—a x—a y—=b

Then lim g(f(x)) = L

XxX—a

Here lim f(x) exists means f is defined in (a — 8, a + &) — {a} for some & >0 and y = f(x).
X —a

g is defined in (b — &', b + ') — {b} for some &' > 0.

lim (x+2)>°-32

Example 28 : Find '~ ~

Solution : Let y = f(x) = x + 2. Then lim f(x) =2 = b.
x—0
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) li y5_25
lim g0) = 0,53

y—2
=5.24=380
) lim (x+2)°-32
lim g(f(x)) = M K222 _ g
x—=0 X

In practice, we just take the substitution y = x + 2 and write y — 2 as x — 0 in
the example. This is valid for so called ‘continuous’ functions.
Another Method :

im (x+2°-32 _ lim X +()x 2+()x 224 ()x2-23+(2)x-24+@)25—32

x—0 X x—0 X
= xli;no (x4 + (?)2x3 + (;)4x2 + (g) 8x + (2)24)
=5.16 =80

Example 29 : Find h—>0 Vx+ ‘/_

Solution : Let y = x + A. Theny —> xas h — 0.

1

lim \/X+ ~Vx _ lim y2—x2 :l%: 1
h—=0"73 y—ox y—x 2 2‘/;
x> =38

lim
Example 30 : Find ', ,/x Txt2- il

x’—8
Solution : fim
x=2 [+ x+2- fx+2

(x =2)(x? +2x +4) (‘/x2+x+2+,/3x+2j
_ lim
T x> (‘/x2+x+2—‘/m1(‘/x2+x+2+‘/m1

(x =2)(x* +2x +4) (\/xz +x+2 +‘/3x+2)

x—>2 (X +x+2)-(Bx+2)
(x —2)(x* +2x +4) (‘/x2+x+2 +‘/3x+2)
_x—>2 x2_2x
i (x—2)(x2+2x+4)(\/x2+x+2 +‘/3x+2)
x5 x(x—2)

= lim

x—2

_ (128 +48) _ _ . > _ [lim (x2+x+2) _
= L2820 = 64d2) = 2442 (tim 2 srs2 - \/H2 - /8

by rule of limit of composite function.)

(x2+2x+4)(\/x2+x+2 +‘/3x+2]
X
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Two Important Rules :

(1) If f(x) < g(x), Vx in the same domain and both lim 7(x) and lim g(x) exist, then

X —a xX—a

lim f(x) £ lim gx).

X —a X —a

(2) If g(x) < f(x) < h(x), Vx in the same domain and if lim g(x) and lim A(x) exist and are

X—a X —>da

both equal to /, then lim f(x) exists and is equal to /.
X —>a

This is known as Sandwich Theorem or Squeeze Theorem.

(We do not prove it.)

Example 31 : Prove lim xsint = 0. x#0)
x—=0 x

Solution : —1 < sini <1

—x < xsiné <x (x>0

Iim x=0, lim —x=— 1lm x=0

x — 0+ x — 0+ x — 0+

By sandwich theorem lim xsine = 0
x — 0+

Similarly lim xsini =0

x—0-

lim xsinl =0
x—0 X

Note : It is incorrect to argue as follows :

lim xsinl = lim x lim sinl
x—0 X x—0 x—0 X

= 0 (a number between —1 and 1)

=0
Product rule for limit applies only if both the factors have limits. Here xliglo sini does not exist.
(Look at the graph 10.14)
Example 32 : Prove lim X2sint = 0. x#0)
x—0 X
Solution : —1 < siné <1
—? < xzsini < x? % >0
lim 2 =0 lim _2=_1lm 2=
x—=0 x—=0 x—=0

By sandwich theorem lim x2

sinl =0
x—0 X
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Note : Tabulating values will not offer rigorous results. Thus we can proceed by definition.
Let O = \/E

Since € > 0, O exists.

0<|x—0]<d =0<]|x|<e

=>0<|x]’<e¢
Now, xzsiné—0|=|x2sini|ﬁ|x|2<8as|sini‘ﬁland0<|x—0|<6

Iim xzsinl =0
x—0 X

10.5 Trigonometric Limits

B4
We proceed to prove some lemmas. Q
P
Lemmal:cosx<%<l; O<|x|<%.
. x .
Proof : Let x be the radian measure of ZAOP 0 M JA
such that 0 < x < % Then P(x) € AB. ©®(0, OA) is
unit circle. ;
- .
Let OP intersect tangent at A at Q. Figure 10.15
Let PM L X-axis and M € OA.
Obviously area of AOAP < area of sector OAP < area of AOAQ (i)

Now PM = sinx, AQ = é—g +OA = OA tanx = tanx

FOA -PM < 2(0A)’x < 2 OA-AQ (from (i) and area of a sector = 1r%6)

sinx < x < lanx (OA =1)
X L (sinx > 0)
Sinx ~ cosx

cosx<%<l O<x<%

Ifx<0,letx=—y, y>0

siny
c0sy<7<1 0<y<%
sin(—x) T
cos(—x) < —= < 1 0<—x< =
cosx < X O<|x|<% (Ix] ==
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Lemma 2 : |sinx| < | x| Vx € R
Proof : If | x| =2 1, then |sinx| < 1 < | x| is true.
Forx =0 |sinx|=0<0=|0]

Thus, we have to prove the result for 0 < | x| < 1.
Wehave,%<l 0<|x|<%
Let 0 <x<1

0<x<l1<Z

Sinx
X

<l
sinx < x
|Si7’lx|$|x|assinx>0,x>0for0<x<%_
Let -1 <x<0. Letx=—y

Then -1 <—y <0 or 0<y<1
|siny| < |yl
| sin(—x) | < |—x]|
| =sinx| < |—x| Hence |sinx| < | x|
|sinx| < x| Vxe€ R

Lemma 3 : lim |[x| =0
x—0

Proof : Let € =9. Then, -0 <x< 0 = |x|< O
= |x|<E€
= |Ixl[<e
=||x|-0|<e

im |[x| =20

x—0

Lemma 4 : If lim |f(x)]| =0, lim f(x) =0
x—0 x—0

Proof : —|f(x)| £ f(x) < | f(x)]

lim —[f(x)| =—1lm |f(x)]=0, lim [f(x)|=0
0 x—=0 x—0

X =

By sandwich theorem lim f(x) = 0
x—0

(x> 0)

©® =9
((J1x1p=1xD
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Lemma 5 : lim sinx = 0

x—0
Proof : 0 < |sinx| < | x| Vx € R
lim 0 =0, lim |x| =0
x—0 x—0
Lim |sinx| =0
x—0
lim sinx = 0
x—0
2
Lemma6:1—x7ScosxSl Vx e R
Proof : We know 1 — cosx = 2sin2%
| sinx| < | x|
mX | < | X
|s’”2|—‘2‘

2
sinzfﬁxT
1—cosx=2sz’n2£32><3€_2:x_2
2 4 2
1—%2Scosxﬁl

Theorem 3 : lim cosx = 1
x—0

2
Proof:l—xTScosxSI

lim 1—% =1-0=1
x—0 2

Iim 1 =1
x—0

By sandwich theorem lim cosx = 1
x—=0

Theorem 4 : lim sinx _ 1
x—>0 X

SX < 0<|x|<Z

Proof : cosx < . <
Iim cosx =1, lm 1 =1
x—0 x—0
By sandwich theorem lim SULX —
x—0 X

Theorem 5 : lim sinx = sina
X—a

Proof : Let x —a=h. Thenx=a + h
Asx —>a, h—0

(Sandwich theorem)

(Lemma 4)

(limit of a polynomial)
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lim sinh =0

h—0
lim sin(a + h) = lim (sina cosh + cosa sinh)
h—0 h—0
= sina lim cosh + cosa lim sinh (algebra of limits)
h—0 h—0
= sina+1 + cosa-0 (lim cosh = 1, lim sinh = 0)
h—0 h—0
= sina

lim sinx = sina
X —a

Theorem 6 : lim cosx = cosa
X —da

Proof : Againletx =a + h

Asx > a, h—0

lim cosh = 1 and lim sinh
h—0 h—0

Il
o

lim cosx = lim cos(a + h) lim (cosa cosh — sina sinh)
x—a h—0 h—0

= cosa lim cosh — sina lim sinh (algebra of limits)
h—0 h—0

= cosa+1 + sina-0

= cosa

lim cosx = cosa
X —a

Theorem 7 : lim MC=1
x—>0 X

Proof : lim fanx _ Jjym _sinx

x—>0 X x— 0 xcosx
lim Sinx
x—=0 X .
2z - 1 . Sinx _ . _
= limcosx*T’1 (llmT—l, llmcosx—l)
x—=0 x—0 x—0
lim tanle
x—0 X

Now we will apply these results to examples.

Example 33 : Find lim Sinax , a b#0
x—0 sinbx
lim 314X g
. ; —(0 ax
Solution : lim Sutax _ Z -
x—0 sinbx lim Sinbx p,
xX—a 29
l-a 4 . sinx
=15 ~ b (llm == = 1)
x—0 ¥
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im | —cos2x
Example 34 : Find fim

. lim 1—¢os2x  lim 2sin’x
Solution : ,_ G—— = X0 52X
2
_ hmo sinx | sinx . 2°% | 52
X —> X X . X . X
sing. sins
=1-1-2:2=4

Another Method :

im  Sinax +bx
Example 35 : Find fim

x— 0 ax + sinbx

x—=0 1—cosx -

lim 11— cos2x
x—0 1—cosx

lim (1—cos 2x)(1+ cos 2x)(1+ cosx)

x—=0 (14 cos2x)(1—cos x)(1+ cosx)

lim sin®2x(1+ cosx)

T x50 gin?x(1+ cos2x)

x=0 432 gin2x (A+cos2x)
— 142
=1-4 2) =4

sinax+b

lim sin®2x _4x>

(1+ cosx)

X

x—0 g4 Sinbx
X

a sinax + b
ax

x—0 a+b sinbx
bx

. sinax + bx lim
Solution : |~y =
_ lim
a+b
T a+b
. tan 2x
Example 36 : Find hmn - .
x—>; L _x

2

1

Solution : Let % —x = 0. Then as x = %, a—0

lim
x—>% ﬂ_x oa—0

oax—0

Example 37 : Find '~ 3

; tanx — sinx
Solution : lim T~ STE - _

x—0 3

o

o

lim fanx — sinx

o

Sinx

tan 2x lim fan 2(% - 0()

lim fan(T—20)  [jjm —fan20

axa—0

COSX

x—0

lim sinx (1 — cosx)
x—0

lim

x—0

x3

cosx - x3

— sinx

200

tanx- 2sin§ . sin%

1
2

X22

X
2

<2
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.y lim cosecx—cotx
Example 38 : Find Bt
Solution : lim cosecx—cotx _ lim 17€osx
olution : Fo 0 = x>0 Sxex

nx.sinx
2Sll’l2 Sll’l2

lim 1—cosx  fjm (1—cosx)(1+ cosx)
x—0 sinx-x ~ x—=0 (1+ cosx) xsinx

or

lim sin*x

x— 0 xsinx (1+ cosx)

Sinx
x— 0 x(1+cosx)

1

1
1+1 2
lim sinx — cosx

Example 39 : Find x—>% =

T—x

1 . 1
lim sinx — cosx lim ﬁ(ﬁsznx —ﬁcosx]

Solution : T = I
X = T_ X = T_
4 4
. T_ T
lim ﬁ(smx cos < — sin 4cosx)
== T
x—o>= T
4 7 X
/ _ I
fo Jasin(x— %)
= 7T
x— = oy =X
P o{x-g)
_ lim 2sino
oa—>0 —0L

Miscellaneous Problems

Example 40 : Find lim (ﬁ_L)

x—1 x2 -1
: lim | _L 2 lim X+1=2
Solution : "4 | 3 o1 x>1 x2-1
_ lim (=D
T x>l (x=1D(x+1)
_ lim _1_
T ox—=1l x+1
:l
2

(takeoc=x—%,00—>0)
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X+ xr+4x+12

Example 41 : Find xim_z

x> —3x+2
ol lim X +x%+4x+12 im _(x+2)(* —x+6)
olution : =, , T 3 T T x5 2 (x+2)(x* —2x+1)

lim X —Xx+6
x> =2 x2—2x+1

44246
d+4+1

=12
9

Example 42 : Find hm x° +x+1—ux+

Gh2+x+1—Jx+1XJx2+x+1+Jx+1]
. lim
Solution : x—0 x2 (‘/xz +x+1 +‘/m]

X24+x+1—-x—-1

lim
T x>0 x? (‘/x2+x+1+,/x+1]

[SSYEN

1

lim
=0 2+ x+1+ X+

1
2

Example 43 : Find lim (xtanx - %secx),
x—>Z
2
) - xsinx—%
Solution : Lim (xtanx - —secx) = lim ——————
n 2 n  COSX
X == x—>=
2 2
T T
. ——0|cosoL - =
= lim (2 ) 2 (E—x:a’aﬁo)
x—0 SinoL 2

— lim %(COS(X—I) A cost

o—0 sino. sinoL.
-5 2sm —) o
= lim
% —0 2sm— cos & ~tana
= lim (_Z,,,o _ &
o—0 2 2 tand.

Example 44 : Find lim (1 — x) tan ZX,

x—1 2

Solution : Let ] —x =0, & — 0 as x — 1.
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lim (1 —x)ran%
x—1

lim O(tan%(l - o)
oax—0

lim o tan(% —%)

a—0
Iim O(cotnTa
a—0

7T

=
lim 2

T
oa—0 2tan >

Tt

-1 _2
I
2
Example 45 : Find lir%n1 (l—njcm - l—nxn]; (m, n € N).
X
m n m(1—=x")—n(1—x")

Solution : i - = i
olution = lim, [l—x’" l—x”] T

Letx=14+hsothat » > 0asx > 1

m n
lim T
s =" 1= X"

m1—=(1+h)"] = n[1—-0+h)"]

h—0 [+ —1la+m" -1

m(l—l—nh—[’;

Jt = () == m )= 1= 1= () -

m
2

)hz -

= [ (2 v e (e =)

h(—mn —m(’gjh—m(”)hz —mmh" ! +nm+n(’;’)h+n(’?)h2 +...+nhm_1)

=i ([ (e () (g

lim h(_m(};)‘m jh—---—mh"_z +n(’§’)+n(’§’)h +...+nhm_2)

-mn(n—1 nm@m-—1)
= 2 2
mn
_ m—1-n+1
- 2
m—n
o 2

';)h e 1] ((7) +(g)h bk 1]
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Exercise 10

Using algebra of limits and the definition of limit prove the following : (1 to 3)

1. lim x*=4 2. lim |2 = 3. im 3=77
=2 x—1 x—3

Prove following limits do not exist : (4 to 6)

lx—3lI
4. lim X 5. 6. lim [x
x—=0 X x—>3 X3 xez[ :
x* =9 ;
7. Forf(x) = ——5.x #3./(3) = 6, prove I 7(x) = £(3).
x* =1
8. Forf() = . x # ~L /(=) =5 prove lim f(x) #/(-D)
X = —

9. If xlina fx) = xﬁi)na g(x) where x € (@ — 8, a + ) — {a} for some O > 0, can we say
f(x) =gx) forallx € (a— 0, a+ 0) — {a}.

10. fx2+ 1 <f(x) <2x*+ x2+ 1, prove lim f(x) = 1.

x—0
Find following limits : (11 to 32)
1
. 6 _0 . tanmx
lim 2 lim
o e Jx =3 12 o tannx
lim V3 cosx — sinx
13. - _x
x—)% X—=
lim 9sinx — 40cosx 40 B
4. T o where tan06—7,0<0c<3
i 1 1l 1
15. lLim XEM*-xt 16. lim &*+hP-x*
h—0 h h—0 h
. xt=3x*+2 .
lim lim —
17. T s 1 ax 1 18. x_)ﬂ(secx lanx)
2
x—1
19. lim (why x = 1+ ?)
x— 1+ ,/x2—1+,/x3—1
. X" —m+px+n 25inx — sin 2x
20. lim 3 ,n €N 21, lim —————
x—1 (x—=D X =0 X
: Sin 3x + cos3x 1+ n_ (14 nx)"
2p, Mim ———— 23, g QMO UHEOR e N
x—= x-—I 2
4 4 x—0 X
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24, lim

10+ cosx —3

X—ow (T —x)?

26. Lm s/_—,/lz-l-cosx

x—0 X

COS5Xx — coSTx

)C2

secx — tanx

T
> X

lim J2a+3x - Jx+4a

" xoafa+2x - Jax+a

lim sin(a + 3h) —3sin(a + 2h) + 3sin(a + h) - sina
28. h—0 3
29, lim sin3 + x) — sin(3 — x)

x—0 X

2 o 2

31 lim (a+ h)* sin (a + h) - a*sina

h—0 h

+ +h) -

32, lim (x + h) sec (x + h) — xsecx

h—0 h

33. Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the

right so that the statement becomes correct :

lim  1—sinx
(1) X — % cOSX T eeeees D
(a) 1 (b) 0 (c) —1 (d) 2
Iim Ixl
2) x50 & e . [ ]
(a) is 1 (b) is —1 (c) is zero (d) does not exist
3y lim  fanx
(€ ) R . ]
(a) is 1 (b) is —1 (c) does not exist  (d) is 0
. n_ An
4) 1f Im X2 =80, thenn= ... ]
(a) =3 (b) 2 (©5 (d) 6
lim l—cosmx
() xS0 T—cosmx — ]
3
m m_ m_
() 2 (b) 25 © % (0
lim [Ismnxl
(6) 4504 —— o ]
(a) is 1 (b) is —1 (c) does not exist  (d) is 0
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7 xlg‘})_%[]x] ...... (-1 <x<0,x€ R)
(a) is 1 (b) is zero
(c) is —1 (d) is sinl
lim sinx
(8) x—0 ’x+1_ 1—x = e
(a) 1 (b) 2 () 0
lim (X —Dex-3)
(C) I a3
(a) does not exist (b) is 1 (c) is %
(10) x]jglo sinx — 2sinx3x + sin 5x -
(a) 5 (b) 6 (©) 0
() 1 <fx)<x*+2x+2 Vxe R, lim f(x) =....
x— -1
(a) 2 (b) 0 (c) —1
lim
1z tm (iJrﬁ) =
(a) 2 (b) 1 () 0
(13) M #(x) = ... where f(x) = ( 2x+3 x<2
5 x=2
3x + 2 x> 2
(a) 5 (b) 3 (c) 2
(14) EH}H f(x) = ... where f(x) = { 3x2 — 1 x<0
3x2 + 1 x>0
(a) 1 (b) —1 (©) 0
(15) lim [x] = .....
X =5+
(@) 6 (b) 5 (c) =5
(16) lim [x] = ...
x = —4-
(@) 5 (b) =5 (c) —4
li sinx — sina B
an B, S = e
(a) cosa (b) sina () a

(d) -1

. 1
(d) is T

(d) 10

1

(d) -1

(d) does not exist

d %

(d) 4

(d) 4

(d) 0
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sinx— sina

1s) Hm T @>0=

(a) cosa (b) % (c) 2\/5 cosa (d) 2\/5
. tanx — 5x
(19) xhglo Tx — sinx e E]
(@) 5 (b) 5~ () % (d) =
1 1
lim -4
20) 5, I I1T(@>0~=... ]
x5 —as
3 L 3 2
(a) $a’ (b) $a" © 2a’ (d) 2a"®
%k
Summary

We studied following points in this chapter :

1.

2
3.
4

History of limits
Graphical and tabulation for inference of limit

Formal definition of limit and applications

Algebra of limits, if lim f(x) and lim g(x) exist, then
X —a X —a

lim (f(x) £ g(x)) = lim f(x) £ Lm g(x),
x—a x—a x—a

lim (f(x) gx)) = lim f(x) lim g(x),
x—a x—a

X—a

lim f(x)
lim L) _ 2 (where lim g(x) # 0)
x—a 8X) xlﬂna 8(x) xX—a

h'm xn_an

_ n—1 . 5
Poa o na and rule of substitution

Sandwich theorem and trigonometric limits

h.m_sinle, ﬁmw=l, lim sinx =0, lim cosx = 1

x—0 X x—0 X x—0 x—0

lim sinx = sina, lim cosx = cosa
X —>a X —>a

— ‘ —
e

Bhaskara 1

Bhaskara stated theorems about the solutions of today's so called Pell equations. For
instance, he posed the problem : "Tell me, O mathematician, what is that square which multiplied
by 8 becomes - together with unity - a square?" In modern notation, he asked for the solutions of
the Pell equation 8x2 + 1 = y2. It has the simple solution x = 1, y = 3, or shortly (x,y) = (1,3), from
which further solutions can be constructed, e.g., (x,y) = (6,17).
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Chapter 11

DERIVATIVE J

Mathematics is as much an aspect of culture as it is a collection of algorithms.
— Carl Boyer (in a Calculus Textbook)

11.1 Introduction

In calculus the derivative is a measure of how a function changes as its input changes. Loosely
speaking we can think of a derivative as how much one quantity changes in response to changes in
some other quantity. The derivative of the position of a moving object with respect to time is its
instantaneous velocity.

The derivative of a function at a chosen input value describes the best linear approximation to the
function near the input value. For a real function of a real variable, the derivative at a point is equal to
the slope of the tangent line to the graph of the function at that point.

For a ‘small’ % the line passing through (a, f(a)) and (a + A, f(a + h)) is called a secant line. Its
slope for a value of / near to zero, gives a good approximation to the slope of the tangent line to the
curve y = f(x) at (a, f(a)) and smaller the value of 4, we get a better approximation.

Slope m of the secant line at (a, f(a)) is given by

This is called Newton's difference quotient.

lim f@+h-f@

he0 7 is the derivative of f at a and is denoted by f'(a), if this limit exists.

This represents slope of the tangent to y = f(x) at (a, f(a)).

We can also say

lim fa+h-f@-h@ _ lim fa+th-f@ _

h—0 h T h—0 7 f'(a)
= fla) = fa)
=0
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This gives best linear approximation f(a + h) = f(a) + hf'(a) for f near ‘small’ A.

h

(a + h, f(a + h)) on the graph of y = f(x). If the graph of fis a unbroken curve with no gaps, then

If we write Q(h) = , Q(h) is the slope of the secant line joining points (a, f(a)) and

h]jmo Q(h), if it exists, is called the derivative of f at @ and we say f is differentiable at x = a.
ﬁ

Rocket scientists need to compute the accurate velocity with which the satellite needs to be
shot out from the rocket knowing the height of the rocket. Derivative is a word regularly used in
stock market. Financial institutes predict the change in the value of a stock knowing its present value.
All these require the knowledge of change in one quantity called dependent variable depending upon
the change in another quantity called independent variable.

11.2 Formal Definition and Examples

Definition : Let f be real valued function defined on an interval (a, b). Let ¢ € (a, b). Let h be

sufficiently small so that ¢ + 4 € (a, b).

If h]jino w exists, it is called the derivative of f at ¢ and is denoted by f'(c).

Example 1 : Find f'(1) for f: R = R, f(x) = 3x + 5, if it exists.

Sa+h-fm _ lim 31+h)+5-8

i M ]_1 =
Solution : hino 7 Jm 7 Q) =39
= lim 3& - 3
h—0 h

£'(1) exists and f'(1) = 3
Example 2 : For f: R — R, f(x) = 2x2 + 3x — 1, find £'(0), if it exists.

fo+h-fO _ 2h* +3h—1—(—1)

Solution : lim lim 0) = —1
olution Jim 7 Jm - (f (0) )
2
— L 2Mt3h
h=0 h
= lim 2h+3)=3
h—0
f'(0) exists and f'(0) = 3
Example 3 : For f: R = R, f(x) = sinx, find f'(0), if it exists.
. lim fO+h-fO _ lim sinh — 0 .
Solution : hs0 Jm 7 (sin0 = 0)
— lim Sinh _
h—0 h

/'(0) exists and f'(0) = 1
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Example 4 : For f: R =2 R, f(x) = {)(C)Slnx ’ x;té), find £'(0), if it exists.

’

hsint
. . hy - f(0) . h
Solut . lim Sh-fO _ lim ——2 0) = 0
o h h—0 h s )
= lim sin+- does not exist. (Refer chapter 10)
h—o h
inL
fx) = {)(;sznx ’ xi(()) has no derivative at x = 0.
X =

2001
Example 5 : For f: R = R, f(x) = {)(; S x¢8, find £'(0), if it exists.

’

h’sinL
. . h - 1) . h
Solut : lim Sfh-TO _ Lim 0) =0
oo h h—>0 h GO =0
= lim hsin%
h—0
Now 0 < [sinsl < 1= 0 < |hsing| < |h| and lim 0=0, lim |h|=0
h—0 h—0
lim |hsind| = 0
h—0 h
lim  hsin- = 0
h—0 h

1'(0) exists and f'(0) = 0
Definition : Let f be defined on (a, b). Let x € (a, b) and /i be sufficiently small so that

x+h € (a b). If lim f(x+h)-f(x)
h—0 h

exists, we say f is differentiable at x and call this limit
the derivative of f at x. This gives us a function di f(x) defined at all points of x € (a, b) where
x

h _
fis differentiable and we write £'(0) = = f() = lim LX)
dx h—0 h

, at all points of (a, b)

where f is differentiable. (Assuming that f is differentiable at at least one point of (a, b).)

d
If we write y = f(x), di f(x) may be written as d_y Its value at x = ¢ can be written as
x x

[i f(x)] or (d_y] or sometimes [D f(x)] _ . or f'(c).
dx X =c dx jx=c

Example 6 : For f: R — R, f(x) = ax? + bx + ¢, find f'(x) and f'(0).

lim fa+h-f _ lim [a(x+h)?*+b(x+h)+cl-(ax* +bx +¢)

Solution :
h—0 h h—0 h

lim [a(x> +2hx + h?) + bx + bh + ] - (ax*> + bx + ¢)

_h—>0 h
2
— lim 2ahx + ah” + bh
h—0 h
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lim (2ax + ah + b)
h—0

2ax + b
f'(x) exists for Vx € R and f'(x) = 2ax + b

S'0) = b (taking x = 0 in f'(x))

Note : If we obtain f'(0) as hlimo M, then also we will get b as the answer.
ﬁ

h
Example 7 : For f: R = R, f(x) = ax + b, find f'(x).

Solution : lim LEFM-F0 _ pax+h+b-(ax+tb
h—0 h h—0 h

lim 4h _
h—0 h

f'(x) exists and f'(x) = a, Vx € R.
ax+b d
Example 8 : For f: R = R, f(x) = 7 find f'(x) and f"(0). (x " _?)

Solution : lim M
h—=0 h

ax+h+b B ax+b
= lim c&x+h+d cx+d
h—0 h

(ax+ah+b)ycx +d)— (ax+b)(cx +ch+d)
h—0 (ex+ch+d)(ex+d)h

h(acx + ad — acx — bc)
ho (cx+tch+d)(cx+d)h

3 (ad — bc)
 hoo (ex+ch+d)(ex+d)
(ad—bc)
" (cx+d)?
ad—bc
f'(x) exists and f'(x) = m
. ad — bc
f'0) = 2
d
Note:%éZ;—zl (taking a =0, b=1,c =1, d = 0 in (1))

11.3 Algebra of Derivatives
Let fand g be differentiable in (a, b).

Then (1) f+ g is also differentiable in (a, b) and
da - d 4

L (f(x) + go) = L 1) + 4L o)

(2) f— g is also differentiable in (a, b) and

L (f(v) - g0) = L 1) - L g

(i)
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(3) [fX g is also differentiable in (a, b) and
< (r(x) - a + d
L (f(x)g0) = gL /() + /() <= ()
“4) % is also differentiable in (a, b), if g(x) # 0, and

d f(x) 88X (x)-fx)e'(x)
dx g(x) [g(x)]

Some Important Results :

fO-f

r—x

(1) f'(x) = Lm

t—x

We have f'(x) = lim Jarb-fx
h—0 h

Letx+AhA=1¢ Thent > x as h — 0.

C ey = e SO0
AL thinx r—x

(2) The derivative of a constant function is zero.

Let f(x) = ¢, Vx € R.

m LEEM-fO o coc

= lim 0= 0
h—0 h h—so h h—0
i =
dxc 0

@) L ke = k)

Ly =kl po + fo) Lk

L f o) + f()-0
= kL f )
 Prove + A(r(r) — o) = < 700y — 4 1) usi
Example 9 : Prove : dx(f x) — gx) = i f(x) i 2(x) using
L1 + g0) = L1 () + <L g() and L kf () = kp ()
Solution = <L(f(x) — g(0) = L(F(x) + (~1)g(w)
= L7 + <L (e
=Ly + (o)

= 4Lre) - L e

(k € R is a constant.)

(by (2)
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Example 10 : Prove : T K (x) = k e f(x), k€ R

Solution : lm KCEFXW=K® _ py p jyy SEEDZFO (Rules of limit)
h—0 h h—>0 h—0 h
e
N

Ly = b fx)

Some Standard Forms :

i n — n-—1
1) e nx , n€ N,x € R
n n
Proof:ixnz lim M
dx h—0 h
_ im {x”+('1’)xn_1h+(’;)xn_zh2+...+h")—x”
h—0 h

nx"_1h+(2’)x"_2h2 +..+ W
lim
h—0 h

h]jmo(nx”‘l+—n(n2_l) X2 h+ (’;)xn_3h2+...+hn_l) =y~ 1
%

Second Proof : Let P(n) : %x” =y~ |

We have 4= x! = fim 2HAZX _ i By Ao eyl - T =11 =1 « % 0)
dx h—0 h h—0 h
P(1) is true.

Let P(k) be true.

d ko= k=1

dx
Letn =%k + 1

d k+1 - d k.

dxx dxx *
- hd d

xkdxx+xdxx

=3l + x kb -1
= xk + koK
= (k + Ik

P(k + 1) is true.
P(n) is true, Vn € N by PM.L

By the principle of mathematical induction P(n) is true, Vn € N.
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. d o, _ lLimt"-x"
Third Proof : PR I — (formula (2))

lim =)+ T T T

t—x r—x

lim (7= 1+ /=2y + =32+ ... +x"" 1
t—>x

=l =200 4 =302 4 4 x|
= px — 1
Note : We have given the proof for n € N, x € R, but the result is valid for » € R, x € R™.
We will not prove it.
(2) Derivative of a Polynomial :
Let P(x) =anx”+an_1x”_l +an_2x”_2+...+ao,x€ R,ne N,a,#0,q, € R
i=0,1,2,..,n

be a polynomial of degree n.

n

%P(x) =%(anx”+an_]x”_l+a _2x”_2+...+a0)

_d  onyd n-14 4d n-2 d o

ux + dx - 1% + a5 In 2% +..+ % %0 (Derivative of sum)
" d n-1 d n-2 d
_a”dxxn+a”—1dxxn +an_2dxx” +...+ )

=na”x”_1+(n—l)an_lx”_2+(n—2)an_2x”_3+...+0)

()

(3) Derivative of a Rational Function :

Let h(x) = Zég be a rational function, where p(x) and g(x) are polynomial functions. g(x) # 0.
g(x) p'x) - p(x¥) ¢'(x) ‘
h(x) = GO and p'(x) and ¢'(x) can be obtained by (2).

“4) %sinx = cosx, x € R

. . +h .
lim sin(x+ h) — sinx — lim 2c0s 2x2 sm—éL
h—0 h he0 —h
cos(x + %) sin-éL
= lim 7, = cosx
h—0 >
d .
== sinx = cosx
dx
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*) x COsx = —sinx, x € R
i hy ¢l
lim cos(x +h) —cosx  _ lim 2szn(x+ 2)s1n2
h—0 h h—0 h
) sin(x + %) sinzzL
_ _ lim
h—0 h
2
= —sinx
%cosx = —sinx
(6) L yanx = sec’x, x € R — k-1 Zlkez
dx 2
d d_ sinx
= tanx = — —=
dx dx cosx
A iy — giny 4=
_ COSX = SINX — Sinx - cosx
cos*x

cosx (cosx) — sinx (—sinx)

COSZX

. 2
cos’x + sin’x

cos’x
_ 1
cos’x
= sec?x
7 %cotx = —cosec’x, x € R— {kw | k € 7}
d d cosx
== cotx = —— ===
dx dx sinx
_ Sinx - €0SX = Cosx - = sinx
sin*x

sinx (—sinx) — cosx -cosx

sin’x

—(sin’*x +cos'x)

Sin°x
—1
sin’x

= —coseczx

) isecx = secx tanx, x € R —

{(2k—1)§‘ke z}

d
b le for —
(yrue or -

b le for —
(yrue or —

7

dx é)

dx
% seex = % colsx
_ cosx%l—l%cosx
cos’x
DERIVATIVE
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cosx *0— 1(—sinx)

COSZX

Sinx
cos’x

= secx lanx

) icosecx = —cosecx cotx, x € R—{km | k€ Z}

dx
d d 1
== cosecx = — ———
dx dx sinx
_ sinx dxl 1dx Sinx
sin*x

sinx -0 —1(cosx)

sin’x
—COSX
sin’x

= —cosecx colx

Note : f'(x) = hﬁglo w is called the derivative of f(x) obtained using definition or

from first principle. Above standard forms can also be obtained from first principle.

d _d d
Also we can extended the rule TIx (fix) + () = TIr fi) + TIx SH(x) as

L (@) + HE) + ot £ = Lfi0) + Lpe) + o+ L), using principle of
mathematical induction and we have used it in obtaining derivative of a polynomial.

Also we note that this result is true only for a finite sum of » terms and for infinite sum
% (i) + H(x) +...) = % i) + % S (x) + ... may not be valid. This would require advance
discussion on convergence and uniform convergence of a series which we are not able to do
here at this stage.
Some Miscellaneous Problems :

2

Example 11 : Find the derivative of f(x) = cos“x.

Solution : icoszx S COSX COSX

dx dx

= cosxi cosx + cosxi cosx
dx dx

= 2cosx (—sinx)
= —2sinx cosx
= —sin2x
Example 12 : Find the derivative of xsin x from first principle.

Solution : 4 xsinx = lim (x +h) sin(x +h) - xsin x
dx h—0 h
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Example 13 : Find ix tanx

Solution :

Example 14 : Find

Solution :

d

i tanx

dx

d
dx

i secx

dx

(x+h) sin(x+h) - (x+h)sinx+ (x+ h)sinx — xsin x

lim
h—=0 h
. sin(x+h) — sinx . _ ;
im (x+h)[ = J+ im (x+ h - x)sinx
h—0 h—0 h
(x+h) 2c0s(x+%) sin%
lim + lim ginx
h—0 h h—0
(x+h)cos(x+%)sin%
lim 7 + sinx ( lim ¢ = C)
h—0 5 h—0

xcos x + sinx

from first principle. x € R — {(2k -1 % ’k € Z}

tan (x + h) - tanx

h—0 h

~ lim
h—0 h

— lim ltanh
hso h h

- secx

tan (x +h - x)

1-(1 + tanx)

S€C2x

(1 + tanx tan (x + h))

(tan(A + B) formula)

lim (1 + tanx tan (x + h))
—0

from first principle. x € R — {(2k -1 % ‘ k € Z}

secx (x + h) — secx

h—0 h
1 1
lim cosx +h cosx
h—0 h
. cosx —cos (x +h)
lim h
h—0o hcosx cos(x+h)
i —2sin(_7h) sin(x +%)
h—>0 hcosxcos(x+h)
. h
ik sin (x + —)
lim sing 2
h—0 L cosxcos(x+h)
2
1. sinx
COSX COSX
secx tanx
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Example 15 : Find 4 sinx.

dx
Solution : isian S 2sinx cosx
dx dx
= 2[sinxi cosx + cosxi sinx]
dx dx
= 2[sinx (—sinx) + cosx - cosx]
= 2(cos*x — sin*x)
= 2cos 2x
‘ o n RS K12
Example 16 : Find the derivative of 2— + + +..+x+1
n n—1 n—2
n—1 n—1 n—1)x""? n—2)x""3
smution:i(ﬂ+x +...+x+1):”x ;2D ;22 + 140
dx \ n n—1 n n—1 n—2

=x" "l =2 413 4 4]

x =1
= as a sum of G.P.
x—1

Example 17 : Find % (ax + b)". Deduce value of %(ax + bY" (ex + d)Y.

Solution :

L@+ by =@y + (’fjmx)n—lb + (’;)(ax)ﬂ—%z +.t (n’il) ax- =+ )

:a”n-x”_l+n(n—l)xn_za”’_lb+(n—2)(’21)x”_3a”_2b2
+...+(n’11)a-1-b"—1+0

—(n—2)2(n— D (ax)" ~ 324+ .+ b - 1]

na[(ax)” Lt = D)~ 2%b +

na((ax)” -4 (nl_l)(ax)” “2p + (nz_lj(ax)” 324 b l)
= na(ax + by" 1

Now, %(ax + b)Y (ex + d)Y' = (cx + dA)" %(ax + b)Y" + (ax + b)" %(cx + d)"

= (ex + dY ma(ax + bY" ~ 1+ (ax + bY" ne(ex +dy? — !

= (ax+b)" = (cx +dy' ~  [ma(cex + d) + ne(ax + b)]

Example 18 : Find

d (@ +bsinx .
- (—). (¢ + dsinx # 0)

dx \ ¢ +dsinx

a+ bsmxj (¢ + dsinx) % (a + bsinx) — (a + bsinx) %(C + dsinx)

Solution : ix (c+dsinx (c + dsinx)?

(c+dsinx bcosx— (a +bsinx dcosx
(¢ + dsinx?
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bccosx+bd sinxcosx—adcosx—bd sinxcosx

B (c +dsinx)?
—(ad—-bc)cosx
(c +dsinx)?
Example 19 : Find 4 _x . (sinx #0), n € N
dx gin"x
Solution : First of all we prove % sin"x = nsin ~ 1x cosx by PM.L

d . .
For n = 1, <= sinx = cosx = 1-sinx cosx

dx
S P(1) is true.

k

x = ksink =1

d .
So i sin

kx - sinx

Let P(k) be true for some k € X COSX

N.
= d k+1, - d
Forn = k + 1, % Sin X e S
= sinx 4 sinfx + sinfx 4 sinx

dx dx

k

! X COSX

sinx - ksin* — lx cosx + sin

k

x cosx + sink

k- sin X COSx

(k + 1) sinfx cosx
s Pk + 1) is true.
oo P(n) is true, Vn € N by PM.L

Now i X _ sin xdxx xdxsmx

> . .
dx gin"x sin*x

sil'x — x -nsin " x cosx

sint'x

sin’ ~ 'x (sinx— nxcosx)

sint'x
SINX— NXCOSX

sin* t1x

Example 20 : Find the derivative of v sinx from first principle. (sinx > 0)

Solution : LM — lim ¥sint - ¥sinx
" dx r—x t—x
sint— sinx

~ 1o x (Jsint +sinx)(t - x)

t+xs.nt—x
2 : 2

_ lim _
Tt x (Jsint +s/sinx)(t ijz

24/ sinx 24/ sinx

2cos
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Example 21 : Find == x“sinx by definition and verify using rules.

dx
Solution :
2 o 2
ixzsinx — lim (x+ h)” sin (x+ h) — x“sinx
dx h—0 h
_ fim W? sin(x + h) — (x + h)? sinx + (x + h)* sin x - x*sinx
h—0 h
_ lim (x4 AP (sin(x+h)—sinxj + lim [(x + h)? — x2] sin x
h—0 h h—0 h
X+ h? (2cos x+L sinﬂ]
 m ( ) ( 2) 2 + Qhx + h?) sinx
h—0 2.4 h—0 h
(x + h)? cos (x + %) sin % -
= 150 % + o @x + h)sinx
= x2cosx + 2x sinx
Now, %xzsinx = x2 % sinx + sinx %xz
= x2 cosx + 2x sinx
Example 22 : Find % %. (sinx # —1)
(1+ sinx)i cosx — cosx 4 (1+ sinx)
Solution : 4 oSy _ bt — b
dx 1+ sinx (1+ sinx)

(1+ sinx)(—sinx) — cosx-cosx
(1+ sinx)’

—sinx — sin’x — cos’x

(1+ sinx)*

—(1+ sinx

) 2. _
(1+ sinx)* (sin“x + cos“x = 1)

—1
1+ sinx

Example 23 : For f(x) = x100 + x% + x9 +  + 1, find 7'(1).
Solution : f(x) = x100 + x99 + X + 4+ 1

f'(x) = 100x7? + 99x" + ...+ 0

£1(1) =100 4+ 99 + 98 + ... + 1
_ 100(2101) — 5050 (Zn _ n(n2+ 1))
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Example 24 : Find 4 ( (sinx # cosx)

SINX — COSX

Sinx + cosx )
dx .

Solution :

. inx — d (i —(si A ciny —
4 Sinx + cosx (Sinx — cosx) e (Sinx + cosx) — (sinx + cosx) dx(smx CcOSX)

dx Sinx — cosx (sinx — cosx)?

(Sinx — cosx) (cosx — sinx) — (Sinx + cosx) (cosx + Sinx)

(Sinx — cosx)?

—[(sinx — cosx)?* + (sinx + cosx)*]

(Sinx — cosx)>

—2

= . . 2 2 —
(sinx — cosx)? (sin“x + cos“x 1)

Example 25 : For f(x) = | x|, find f'(0), if it exists.

Solution : We want lim M = lim M
h—0 h h—>0 h
Iim M: lim ﬁ:L
h—0+ h h—0+ h
im A gm R
h—s0- h  h—o0- h
lim PAG O] does not exist.
h—0 h

f(x) = |x] is not differntiable at x = 0.
Example 26 : £ R = Z, f(x) = [x]. Find (1), if it exists. Find f'(L), if it exists.

Solution : f(x) = | 0 if 0<x<1
1 if 1<x<2

mw:mﬁ:o (since 1 > 0,1+ h>1and [1+h]=1)
h— 0+ h h—s0 h
im LUFRDZSO oy 21 does not exist. h<0,1+h<1)
h— 0- h h—>0 h
b
f'(1) does not exist.
S
Rm%—h<x<%+wz@<§yﬂ@=o 1 o
s X
f'(x) = 0 since fis a constant function in —0
6—@%+@
Yy

f'(x) = 0. Look at the graph. Figure 1.1
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Exercise 11

1. Find following derivatives from first principle at given point :

(1) sinx at x=0 2) % at x=1
3x+2

(3) 2x+3 at x=2 @ T35 at x=1

(5) 3x2—2x+1 at x=-1 (6) cosx at x==1

(7) tanx at x = % (8) secx at x = %

9) cotx at x = ST (10) cosecx at x= %

2. Find following derivatives from definition : (on proper domain)

(1) 10x (2) secx + tanx (3) cosecx — cotx
(4) 2sin®x + 3cosx + 1 (5) cos2x (6) sin2x

(7) tan2x ®) 1 ;i;())csx ©) %

(10) x3 11y x* (12) x©

(13) sin*x (14) cos*x (15) sec’x

3. If f(x) — g(x) is a constant function, prove that f'(x) = g'(x).

4. Find % cos2x by definition and also verify by using cos2x = cos*x — sin?x,
5. Find L 2L s
: mex =17
6. L Xl _d et -2 w3y g
C Ur ol T I (x X X ot x )
== 24+ m—2x" "3+ =3+ + 140
. d X'—1 o _ B _ _nn-1
e atx=1lism—D+m—2)+m—3) +...+ 1 —
Comment !
Obtain following derivatives where the function is defined :
x? =1 X —ah S
7. 21 8. 4 x#a 9. x>((7+3x
6 b 3 . secx — 1
10. x7° (4x- — 8x°) 11. 2secx — 3tanx + Ssinx cosx 12, o 11
4x + 7sinx
13. s 14. TToom 15. (2 = Dysinc + (2 + Decos’
16. (ax? + bx + sinx)(p + gtanx) 17. sin(x + a)
18, Sxta) 19. tan(x + a)
cosx
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20. Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the
right so that the statement becomes correct :

(1) For f(x) = sinx, f'(%) = e ]
(a) =1 (b) 0 (© 1 d 1

(2) For f(x) = Jx + ﬁ,f’(l) = ]
(a) =% (b) £ (©) 0 (d) 1

G)IFfx) =1+ x+x2+x3+ ..+ x2 + x19 then £'(=1) = ...... []
(a) =50 (b) 50 (c) 5050 (d) —5050

4) % cos"x = ... ]
(a) ncos” ~ x (b) nsin” ~ x
(¢) ncos"~ lx sinx (d) —ncos" = 1 x sinx

&) % (sin*x + cos*x) = ...... []
(a) sin2x + cos2x  (b) sin2x — cos2x  (¢) 0 (d) sinx + cosx

(6) lfy=1+x+’§—2!+’§—?+...+”€1—’;,then%= ...... ]
@ » (b) y = x ©y -4 @y = 5

1-cos2

(7) Ify = "% x € (%n) then Zx—y = ]
(a) sec’x (b) —sec’x (c) cos*x (d) | tanx |

(8) If fis differentiable at g, 10 L@ -
(@) af'(a) (b) fl@) — af'(@) () f'(a) (d) #

Q) Iffx)=x""1+x""2+..+1, =1 <x<1,then f'(x) = ... ]

1
@ Goo? (b) 757
1 m—x" —nx" "1 +1

(c) T (d) -7

(10)If £(4) = 16, £'(4) = 2 and £ is differentiable at 4, xﬁ;ﬂ% - ]
(a) 2 (b) 1 © 7 d) 7¢
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(11) If f(x) = 2. x € [3, 5]. then f'(x) =

(a) | (b) —1

3T d [1+cos2x _
(12) If T <x < 2F, 75 1/T ......

(a) —sinx (b) sinx

d [1—cos2x _
x T T e

(13) If T < x < 2m,

(a) sinx (b) cosx

a4 L2 51 e 2 -1 = ..

(a) does not exist (b) 0
(H) (x+|x|)|x|(x<0)— ......
(a) 1 ®) o

(16) (x+|x|)|x|(x>0)— ......

(a) —4x (b) 4x
an - |x|2= ...... (at x = 0)
(@) 0 (b) does not exist

(18) %x|x|(x>0)= ......

(a) x? (b) —2x
(19) (cos X — sin®x) = ...
(a) sin2x (b) cos2x

(20) (3smx — 4sin’x) = ...
(a) 3cos3x (b) cos3x

d 180 —
21) delnlS ......

(a) cos18° (b) —sin18°
i 0 =

(22) Uy Six? =
(a) cosx® (b) —sinx®

(23) < (2x +3) =

(@) n(2x + 3"~ 1 (b) 2n(2x + 3)" !

(c) does not exist

(c) cosx

(c) —cosx

(c) 1

(c) 2

(c) 2x2

(c) 2

(c) 2x

(c) —cos2x

(c) 3sin3x

(c) —cos18°

(c) m cosx®

(c) 3n(2x + 3)" ~ !

(d) 0

(d) sin2x

(d) —sin2x

(d) —1

(d) 4

(d) x?

() 1

(d) 0

(d) —2sin2x

(d) —3cos3x

(d) 0

(d) 0

(d) 2"n(2x + 37— !
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(uy%JMm,w<x<% = ]

- COSX Sinx
(a) vcosx (b) « sinx (c) o sine (d) > Jeos
(25) % tan*x = ... ]
(a) 2tanx (b) sec?x (c) cot*x (d) 2tanx sec’x
&
Summary
We studied following points in this chapter :
1. Formal definition of derivative and examples based on it.
2. Algebra of derivatives and examples based on rules.
If f(x) and g(x) are differentiable in (a, b),
a -4 4
M) <L) + gw) = L7 + L)
d _ - d _d
@) <L 7o) - gw) = L7 - L)
d - d d
3) <L) 20 = 20 L1 + @)L ew)
d f(x) &X' (x)-fx)e'(x)
4y 4 L)
@ dx e [g(0)F 8 # 0
() L k) = kf), ke R
dx dxf ’
3. Some standard forms :
(1)%020 (2)%x”=nx”‘l,n€N,xER
A iy = d = —j
3) . Sinx = cosx 4) I COsX Sinx
(5) %tanx = sec*x (6) %cotx = —cosec’x
(7) %secx = secx tanx (8) %cosecx = —cosecx cotx

4. Derivative of a polynomial and a rational function.

— ‘ —
e

Bhaskara 1

Bhaskara wrote three astronomical contributions. In 629 he created the Aryabhatiya,
written in verses, about mathematical astronomy. The comments referred exactly to the 33 verses
dealing with mathematics. There he considered variable equations and trigonometric formulae.

His work Mahabhaskariya is divided into eight chapters about mathematical astronomy. In
chapter 7, he gives a remarkable approximation formula for sin x, that is

16x(TT— Xx) (

T <x<Z
SINX = 5p2 _ 4x(mt— x) 2
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31.

10.

11.
21.

ANSWERS )

(Answers to questions involving some calculations only are given.)

Exercise 1
(hd @d @G)b @a G)d G)b (Hhd @)d Od (10)d

Exercise 2.1
=2 @-1+8 2+i I +53i -3 ©)—=3 ()4
®2 ©Z+2L (0 —%i

_ _ _ _1l6 - 29 — - _
Dx=4y=1 @x=-L£,-2 @Gr=4y=-=2

@ {2} ¢ r=14,=-1
WE+2i O-1-Bi L-Ti - +Zi ¢

Exercise 2.2

MmV2.E 942 32 @w2E 6

z, may not be equal to z, 8.40 12. 243 +2i 13.2, =2+ iz, =2—i 15. 2

Exercise 2.3

. —1+J3i 1 £ 419 SEN Y 1 £ V7
W20 @ == 05 12827 5 —7

M 2B+ @3 —=2) G+ +7) @) +2d2 — V50
Gt (W21 -ifJ2e1) ©=20+) D2 =202 ) ®*5i ©) =10

Exercise 2

307 + 599i It I
(H2-=2i (2 —n 2.2 4. 30° 30 7.1 8. b 012+
V2. 5+ 2i 2 4 V14,
(Hh1=x S 2) 3) 4 * TR
Maximum value is 5, Minimum value is 1 12. —48 13. 4 15. 3 9

(e @b Ga Hd GSec Gc MDa @)c (9)b (10) b
(Id (12)b (13)a (14 ¢ (15)b

Exercise 3.1
D) x10 457 + 106 + 10x + > + = (2) 1 — 8x + 24x2 — 323 + 16x*
X X
(3) 729x% — 2916x5 + 4860x* — 4320x3 + 2160x2 — 576x + 64

1
4 5_§3+i_5+—_
(4) x 2x X 16x3 320

274
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2. (1) x® 4+ 4x7 + 10x° + 16x5 + 19x* + 16x° + 10x2 + 4x + 1
(2) x® = 3% + 6x* — 7x3 + 6x2 — 3x + 1
3. (1) 0.92236816 (2) 96059601 (3) 1061520150601 4. (1.01)10000 jg Jarger.
Exercise 3.2
L (672 (21365 2.(1)2 ()5 3.7=55
40 (1) By 30009 0) B s (3) (2610 (4) 720223, 1080 52
5. n=6 6.n=14o0r7
Exercise 3
1. 2:1 2.r=3o0rl5 3.n=6,x=2,y=5 4.a=2,b=3,n=5 6.n=11 7.135 8.n=10
12. (e 2)b B)a @ c Ba G)c (Db B)d (9 a (10)b
Exercise 4.1
_L L _1 2 _ _L 1
LWh-F @OF3 00— OF 6 V2 (6 NG 17.(03 @0 B3 H#I
18. (1) Negative (2) Positive (3) Negative (4) Negative 19. %
Exercise 4.2
1 —1 6 —4/2
1. (1) PV 2) I 3) '/_4’/_ 4. (1) Fourth quadrant (2) Fourth quadrant
5. % First quadrant 6. (1) [<25, 25] (2) [0, 2] 8.r =2, O = %
= =_I 1 1
9. r=2,0=-% 20.—1, 5
Exercise 4.3
1. (1) sin100 + sind® (2) sin30 — sin20  (3) sin80 — sin20 (4) sin6O + sind
(5) cos140 + cos80 (6) cos40 + cosO (7) %(00329 — c0s200) (8) cos® — cos80  (9) sin26
2. hd -1 o “2'/5 ) ’/52‘2 V2 ©1 51
Exercise 4.4
1. (1) 2sin50 cos20  (2) 2sin® cos% (3) —2cos40 sin® (4) 2cos% sin®
(5) 2¢05100 cos®  (6) 2c0s40 cos2 (7) 25in80 5in30 (8) 2sin® sind
©) —25i?8 (10 2sin(§+E) cos(§-F) (1) V2cos(Z-0) (12) V2sin(0- L)
Exercise 4
9. V19, —J19
4. Hec @a B)d @#Hd BG)c b (Hc (B)a ©a (10)a
(IHb (12)c (13)b (14 ¢ (15)d (16)c (17)d (18)d (19)d
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Exercise 5.1
20. &
Exercise 5.2

—L 5 L 64
Jio° J10° 77 71650 65
Exercise 5
23. (Da ()b B)c @b G)c (6d (MHa @ a 9d (10)a
(Db (12)b (13)a (14)c (15d (16)a (17)b (18) ¢ (19)a (20)d

Exercise 6.1

1L {3 kezl 2 {@k+DE|kezfu {un+ L | ke z}

5. nikezyo{untLlkezf 4 {un+Z|ke z|
(i + ¥ Elkez) 6 tnikezy U {kn+ 1) E|ke 7}
ffm+1fE ke zf U b+ Dk Ll ke 7}
{@k+DE | ke z} U {kn - 1} E|ke z)

9. {{E|ke z} U (& + L | e 7|
{
{4
{

10. {@k+ DE | ke z} U 2Un | ke Z)

. {&8 4+ T ke 7y o {ek+DE|ke zju {kn+ L ke z}
3. fm+Zlke zp U i+ Zlke z}

14. @k ke 7y U {2m + E| ke 7}

15. {2+ 3L | ke z} U {2hn - L2 | ke 7}

6.9 17.{{E+X)rez} 18 {lL+Z]sez|
19. {(8k + 3)ﬁ| ke z} 20. {@k+ DE| ke 7|

Exercise 6.2

21 . . S i
16. & 17.1: 43 :2 18. 2% 20. I

Exercise 6
Lo {ant I ke zfu{unt ke zf 2. {@k+DE|ke z)
5. Umlke zyU{GkEDE ke z} 4 {untI|ke z|

5. {ek+nE|kez) 6 {un+Z|kez) 7. {@ktnE|ke z|
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21.

13.

12.

12.

{ak+ DL ke z} 9 {wk+ 1)%|ke z} 10 {2k £ 5)%‘ke z}

MHa @c @Gd @c e 6Gb NDec B)a 9d (10)b
(Iha (12)a (13)b (14)d (15b

Exercise 7.1
(1)4,7,10, 13,16 (2) 1, % 2, % 3 (3)2,3,5 7,11

2,3,58 3.(1)=5 -9, —-17 (2) % % % 4.(1)0,3,519 (2)1,2,3,10
a,=a" " ,neN (2)a;=0,a,=16(=3y""2n=2
Exercise 7.2

(143 49 )L 2.510 3.23700 4.d=—4, 1= -24

27 6.—-(m+mn) 7.0 8.1:2 9.5:11 10.6000 11.1 12.-1,3,7
2,6,10, 14 14.% 7800 15.7n = 10,% 1287.50 16. 660 cm

Exercise 7.3

(1) 256 (2)10% G)—16J2 2.(1)768 ()13 (3)5 (4)%

93 4.2.3,6,12.24,... 5. (1) %[%(10}1 —D=n] @3+ o=t - D]

a@”’ =1y ab@"" -
2 2
-1 T ah—i 7. 5> %526, 18 8. Jmn 9.2

%, 1,4, 16 13.% 39,366

Exercise 7.4

19 10 7 11 23 11 L
20 T 03 2513,21 3.441,2,4 4.\/5,1,5

45, 5 6. x2 —20x + 64 =0

Exercise 7.5
(1) 800 (2) 465 (3) 1070 (4) —2704
O (6n* + 12n — 1)  (2) %(27;13 — 1822 —9n+4) (©3) 5 @n? +n—1)

(4) 107”(;12 +6n+11) (5 12n(m + 1)On® + 9n + 8) (6) % (4n? + 151 + 17)

n(ntD) 3.0 41, 410) (9) 0D

(D2 +n (8) =0 7

(1) —6479  (2) —465

Exercise 7

—140,42 2.-2,4,10,16,... 3.9hr 4.16rows, 5blocks 6.1:2:3

20n _ 20 4 20 - 1 _ L n _
3 57 T 57 X 107" 9. 740  10. 25 11. 2(1 5n)

11, 14,1720, . 13.3 +242): 3 —242) 14 2B
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15.3,5,7,9, 11,13 16.48,12,3, 3, =

17. e @d B)a @Ha G)c 6K c (Db B a (9b (10)d
(1)ya (12)d (13)c (14)a (15 ¢ (16)b (17)a (18) ¢

Exercise 8.1

I. (D +y>+4x—6p—12=0 Qx>+ +2x—2y=0
(3)x2+y2+8xcosOL—8ysinOL—9=0(4)x2+y2+2ﬁx+2s/§y+2=0
S)x*+)?=2x=0

2. X4+ —6x+4—12=0 3. P+ +4x+10p+25=0

4. x2+y2+6x+6y+9=0 5. x2+y2—2\/§x=0

Exercise 8.2

1. (1) Not a circle. (2) Circle, Centre (0, 0), radius 1
(3) Circle, Centre (1, 1), radius 1 (4) Not a circle.
(5) Not a circle. (6) Not a circle.
(7) Circle, Centre (%,—%), radius = f (8) Not a circle.

(9) Circle, Centre = (tanQ., —secQl), radius = 1
(10) Case-1 : o =0 Centre (0, —1), radius = 1
Case-2 : 00 # 0 Not a circle.
2. ¥2+)yP—6x—8y=0 3. ¥2+y2—10y—15=0

4. x>+ > +6x—6y+9=0and x>+ >+ 30x — 30y + 225 =0
Exercise 8.3

1. (1) Focus (%,0), directrix 8x + 1 = 0 (2) Focus (0, —1), directrix y = 1
(3) Focus (0,—1—16), directrix 16y — 1 = 0 (4) Focus (3, 0), directrix x + 3 = 0
2. (Hx*=-8 (2))*=l6x
3. D2+ +2x0+2x—6y+9=0 (2) 16x2 + 9y + 24xy + 180x + 160y + 600 = 0
a -2a

4. 4, y+3=0 5. 18 6. (t—z i ] 7. (3, 16)
1

Exercise 8.4

2 2 2 2 2 2 2
L WL+ =1 OL+3-1 OG+--1 @S +-=1

X2
Do+ = !

a4y F
®) 81+4_5 1(6)16+E

2. L 42

2
18 9_1
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No. e Foci Directrices Length of a
Latus-rectum

J5 _ 19 8

M| L2 | 0 y=1g5 ;

) % (+4, 0) x =19 2—30

3) f *542, 0) x=+1042 10
3 |fo +ﬂj _ 4 1633 301
2 +-6 _ 4 2L

(5) : (_ ./E’Oj x=t% 245

n
w|4

4. e=f 5.5:3, x=1% 7.7x2 + 152 =247 8. 4x2+3)2 —24x — 6y + 27 =0

9. Foci:(2,1% \/g), Directrices : y = 1 * %

Exercise 8.5
In answer 1, O € (—T, T]
1. (1) x = 4cosO, y = 35in0 (2) x = 4cos0, y = 243 5in0
(3) x = 2c0s0, y = J3sind (4) x = 4cos0, y = J7sin®  (5) x = 32 cos0, y = 3sind

2. (I)e= @, Foci : (0, i\/g) 2) e = %, Foci : (i%,oj (3)e= ’/47, Foci : (iﬁ, 0)

16 15
Exercise 8.6
1. No. Foci Directrices Length of a Length of Length of
latus-rectum transverse axis |conjugate axis

M| @E&v5,0 | x=+45 5 20 10

Q)| @E8v2,0) | x=2442 16 16 16

3) (i%,oj x =442 e Jio 2,2

@] (0.5 y =it 2 8 6

(5) (0, £8) y=%2 L 10 2439

In answer 2 and 4, 0 € (-T, ] — {—Tn’%}

2 2 [ 2 2
y —_— 9i = . = ﬂ = x_ —_ y_ = . = =
2. (D) oy V) 1; x 3 tan®, y = 7sec®  (2) 5 7 1; x = 3secO, y = 21an®
2 2
3) )26_;_;;_02 1; x = 5secO, y = ¥201an0 @ g—z—g—;=1;x=4ﬁtan9,y=4ﬁsece
) y_2 X 1; x = 3tanB, y = 4secO
16 9 ’ ’
4 x_2_y_2:1 5. x = 4tanB, y = 3secO
T 9 ’ > Y
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Exercise 8

1. ¥ +)2=3x+y—4=0 2. X2+3y2—6y—16=0

3. X2+ —4dx—6y+4=0 4. Focus : (%,0), Length of lectus-rectum = 1
ELR S o2

5. =t o5 1 6. = = 1

7. = —12(x +1) 8. (a)y*=10x (b) 24110 9. (6,0) 10.3.2 m

2

y =
11. Ellipse, &~ = +T 1

12.(Ha @)d BG)a @b G)d ©b (Dec @ c )b (10)a
(1Hb (12)a (I3)b (4)b (15 ¢ (16)a (17)a (18)b (19) ¢ (20)d

Exercise 9.1

L D)Gpx)) @@y B)G6,-22) D@44 OCL-4-7 (6 -5 -2)

2. (Dx=1,y=—=1 2)x=0,y=0 (3)x=%,y=% A x=0y=0
3. OV3 V3 )5 @ViE 5) V38
4 DT HTI<FA+P @QF+TI =7+ sk=1 6 (=40

Exercise 9.2
1. (1) OXYZ (2) OXY'Z' (3) OXYZ' (4) OX'Y'Z (5) OX'Y'Z' 2. (0, 0, 0)
Exercise 9.3

1. (1) Same directions (2) Different directions (3) Opposite directions (4) Different directions

2 032 0R2) olkEE 06l v © @Y
3. o= x23_x1,[3=

Exercise 9.4
1. (Hh0o (@ 243 B3)6 H4 B)5 ()1
(1) Non-collinear (2) Collinear (3) Non-collinear  (4) Non-collinear
3. Isosceles right triangle 4. (0, 0, 0) or (0,0, 6) 5. x%2+ 2+ 22— 2x — 6y — 12z + 52 = k?
Exercise 9.5

4 10 =5 5 11 —4
L. (3’3’3)a“d(3 3’3)

2. (1) Non-collinear (2) Non-collinear (3) Non-collinear  (4) Collinear (5) Non-collinear

Exercise 9

1. Parallelogram, not a rectangle 2. Isosceles right triangle 3. x = 2z

4. (1)%%%(1 L1 (2)3’/— 3'/_ }(012) (3)3v5. 21, V6 (%%%)
5. (11,2

6. (1) Non-collinear
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(2) Collinear, A divides in the ratio —2 : 1 from B and —1 : 2 from C
B divides in the ratio =2 : 1 from A and —1:2 from C
C divides in the ratio 1: 1 from A and 1:1 from B
(3) Non-collinear
(4) Collinear, L divides in the ratio —1 : 3 from M and —3 : 1 from N
M divides in the ratio 1 :2 from L and 2 : 1 from N
N divides in the ratio =3 : 2 from L and =2 : 3 from M
(5) Collinear, P divides in the ratio 1: 1 from Q and 1:1 from R
Q divides in the ratio —1 : 2 from P and —2 : 1 from R
R divides in the ratio —1 : 2 from P and —2 : 1 from Q
7. (Hhb 2)d @B)b @#Hc B)c (6)a (MHec Ba 9d (10)c (Il)a (12)a (13)a
(14)a (15)c (16)c (17)a (18 b (19 ¢ (20)c
Exercise 10
_73

=2
X 3

-lklr—

1. & 1222 132 14.41 15 16. 3-x° 173 18.0

12
19. V3 = 2 20.@ 211 22. =342 23.@ 24. L

25. 12 26. ﬁ 27. % 28. —cosa 29. 2cos3 30. —1

31. 2asina + a*cosa 32. secx(xtanx + 1)
33. (hb @2)d B)b @c BG)b (B)a (Hd @) a O)d (10)c
(1Hd (12)c (13)d (14)a (15 b (16)b (17)a (18 ¢ (199b (20)d

Exercise 11

LMl @-1 &2 @3 G-8 ©-1 D2 ®25 ©-2 (10-2
2. (1) 10 (2) secx tanx + sec*x (3) cosec’x — cosecx cotx

(4) 4sinx cosx — 3sinx  (5) —2sin2x  (6) 2cos2x  (7) 2sec?2x

(8) Hém 9) 1—§inx (10) 3x2  (11) 4x3  (12) 6x°  (13) 4sin’x cosx

(14) —4cos3x sinx  (15) 2sec?x tanx

1 1

+1 __4x__ m=0Dx"—a.-nx" "' +a"

m-Dx"-n.-x""
7. X2+ 1) . 3
(x—a)

(x—1?

9. —35x70 — 12x73 10. —16x75 + 24x74 11. 2secx tanx — 3sec?x + 5cos2x

4. —2sin2x 5.

2s5ecx tanx 56 + 35(xcosx — sinx) + 32(cosx + Sinx) 1+ cotx + xcosec *x

12. TGeex +12 13 (5x — 8cosx)? 14. (1+ cotx)?

15. 2(x — sin2x) 16. (p + gtanx)2ax + b + cosx) + (ax* + bx + sinx)gsecx

17. cos(x + a) 18. cosa - sec*x 19. sec’(x + a)

200 (Db e G)a @Hd G)e BG)c (Db @b (9d (10)c
(I)ya (12)b (I3)c (14)d (I5b (16)b (I7)a (18 c (19)d (20)a
ehd (22)c (23)b (4)c (25d

o o o
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Addition Formulae
Allied Numbers
Argand diagram

Argument

Arithmetic Progression (A.P.)

Binomial Theorem

Bound Vector

Branch

Calculus

Central Conic

Centroid

Chord

Circumcentre

Common Difference

Complex Numbers

Conic / Conic Section

Conjugate Axis

Conjugate Hyperbola

Conjugate of a Complex
Number

Coordinate

Coordinate Axis

Derivative

Differentiation

Direction

Directrices

Directrix

Divisible

Eccentricity

Ellipse

Factor Formulae

Focal Chord

Foci

Focus

Free Vector

TERMINOLOGYJ

(In Gujarati)

ARALUAL Aol
A6i B AvLL
2191w (A
PIIE

AHidR el
FUTARI ]
(fud Aulzal
vl

se 9l

Sedly alisa
b

L

uR%s

ALY, dsldd
A5 AV
alisa

2eiolg 28
weolg wldaay
Vel A5 AvUL

UL
JIKIE
[Asl@d
([Asa
(2ol
(Rafsiil
(a1
BISTES)
Bebvadl
Guaay
A Yoll
AllMeal
AlMH21L
ALl

Y5 Al

Geometric Progression (G.P.) Q{RO\LSELTR ALl

Graph
Hyperbola

AV,
fdadu

Imaginary Part
Incentre
Instantaneous Velocity
Latera-recta
Latus-rectum

Law of Trichotomy

Limit

Magnitude

Major Axis
Mathematical Induction
Mean

Minor Axis

Modulus of a Complex Number

Multiple

Parabola

Parameter

Polar Form

Position Vector
Projection Formula
Purely Imaginary Number
Real Part
Rectangular Hyperbola
Recurrence Relation
Rule of Substitution
Scalar

Secant

Sequence

Series

Slope

Space

Square Root
Submultiple
Symmetric

Tangent

Transverse Axis
Vector

Vertex

sieul-is euaL
ld: 3
dlcai[BLs gl
Aol
Aldeol

Bilas [seul
(Huy

A8

Hiet

PEIRIERE
OUBUefly, 2AeHiA
Heys

olleL 8

A5 AvALAL HIALS
oUfBict

UREICH]

YA

gelly 234
A Alzal
UaY Aol

s sleulrs Aval
CIENICEXCIR]
dollfdaqy
ilgTl Aoik
AL [Run
izl

B2 51

2.l

23l

Al

2519

QRN
GuayfBld

AMd

w95

Hoy e

auleal

RIS
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