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About This Textbook...

We have pleasure in presenting this textbook of physics of Standard 11 to you. This book is on
the syllabi based on the courses of National Curriculum Framework (NCF), Core-Curriculum and
National Council of Educational Research and Training (NCERT) and has been sanctioned by the
State Government keeping in view the National Education Policy.

The State Government has implemented the semester system in Standard 11. The semester
system will reduce the educational load of the students and increase the interest towards study.

In this Textbook of Physics for Standard-11, Eight chapters are included in Semester I and
Semester II each, looking into the depth of the topics, time which will be available for classroom
teaching, etc...

The real understanding of the theories of physics is obtained only through solving related
problems. Hence, for the new concept, solved problems are given. One of the positive sides of the
book is that at the end of each chapter extended summary is given. On the basis of this one can see
the whole contents of the chapter at a glance.

Keeping in view the formats of various entrance test conducted on all India basis, we have
included MCQs, Short questions, objective questions and problems in this book. At the end of the
book, Hints for solving the problems are also included so that students themselves can solve the
problems. The Appendices given at the end of the book will also be very useful.

This book is published in quite a new look in four-colour printing so that the figures included in
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thankful to that team of authors. We are also thankful to the teachers who remained present in the
Review workshop and gave their inputs to make this textbook error-free.

Proper care has been taken by authors, subject advisors and reviewers while preparing this
book to see that it becomes error-free and concepts are properly developed. We welcome suggestions
and comments for the importance of the textbook in future.
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CHAPTER 1

DYNAMICS OF A SYSTEM OF PARTICLES

1.1
1.2

1.6

Introduction

Centre of Mass of a System
of Particles in One Dimension
Centre of Mass of a System
of n-Particles in Three
Dimensions

Law of Conservation of
Linear Momentum

Centre of Mass of a Rigid
Body

Centre of Mass of a Thin
Rod of Uniform Density

° Summary

e Exercises

1.1 Introduction

In Semester-I, we have studied the linear motion of a
particle. In this chapter, we will study about how to find
out the centre of mass of a system of two particles, the
centre of mass of a system of nm-particles and the centre
of mass of a rigid body. Further, we will study the kinetic
theory of a system of particles in which the conservation

of linear momentum is explained.

1.2 Centre of Mass of a System of Particles in One
Dimension
As shown in Figure 1.1 consider two particles having

and m

mass ml 5

lying on X-axis at distances of

x, and x, respectively from the origin (O).

Centre of mass of a system of two particles of masses
Figure 1.1

The centre of mass of this system is that point whose

distance from origin O is given by

mx; + Myx,
XE Tmrm, (1.2.1)

Here, x is the mass-weighted average position of

x, and x,.

| ,- If both particles are of the same mass, then



PHYSICS

mx; + mx,
- m+m

X X
L ox o= % (1.2.2)

Thus, the centre of mass of the two
particles of equal mass lies at the centre
(on the line joining the two particles)
between the two particles.

Similarly, if n particles of mass m, m,,..
m are lying on X-axis at distances Xy Xypeos X
respectively from the origin ‘O’, then the centre
of mass of the system of n-particles is

mxy + mpXxy +....+myx,

r= m+my+....+m,
Ly N 1.2.3
x= e (123)
x = 2% (1.2.4)
M

Where M = Xm. = total mass of the

1

system of n-particles.

1.3 Centre of Mass of a System of n-Particles
in Three Dimensions

System of n-particles in three dimensions
Figure 1.2
Figure 1.2 shows a system of n-particles

in three dimensions. Let the position vectors
of the particles of mass m,, My, ..., nm, with
respect to the origin ‘O’ of the co-ordinate

- 2 N .
system are 7, L, .., respectively. The
n

position vector of centre of mass of the system
is given by following equation.

- — -
mptmymnt...+m,rp
y =11 7727 non (1.3.1)
cm mt+my+....+m,
= _m+tmyn+....tm,r,
- Vi
or
— - —> —
Mz, =mr+mb+..+m7r (132

where,

M=m1+m2+.... +m
n

= total mass of system of n-particles

1.3.1 Motion of Centre of Mass and
Newton’s Second Law of Motion :

If the mass of each particle of the system

of n-particles does not change with time, then

differentiating equation (1.3.2) with respect to
time.

— -
A dr 7 dr’
=m—+m,—=+..+m n
dr dt dt " dt
. M? — — —
My =m A my ot et m
(1.3.3)
%
- _ ’Z'm . .
Here, V., = P is the velocity of centre
of mass, and V¥ 1,72 ...... are the velocities of

respective particles.

—

"MV, =B+B +..tP (134
My, =P (1.3.5)

Where f)i , ;2 , .... are the momenta of

respective particles, and

= -

P = pl+f>; +....+§isthet0ta1

momentum of the system of n particles.

Equation (1.3.5) shows that the total
linear momentum of system of particles is
equal to the product of total mass of the
system and velocity of the centre of mass
of the system.

Differentiating equation (1.3.4) with respect
to time.
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3

- g = g
dv dP, dP. dp,
—m =Tl 2y
dt dt dt dt
d\Zm - = - -
MTZ F] + F2 +""+Fn:F (1.3.6)
=m151+m25>2+ ..... +mn6_l;
(1.3.7)
- = -
In equation (1.3.6) F, E, ..., E, are the

forces acting on the respective particles of the

%
system and F is the resultant force. In equation

(1.3.7), E;, E;, - E; are the accelerations of
the respective particles produced due to these

forces.

From equation (1.3.5)

M Lo _ dP g

“£ 1.3.
a o om (1.3.8)

The forces acting on the particles of a
system are of two kinds :

(1) Internal forces prevailing among the
particles of the system, and (2) External
forces.

(Y
=
H-\L"

(@) b)

Different types of forces acting on a system
of two particles

Figure 1.3

For a system of two particles as shown in
Figure 1.3, let the external forces acting on

N —
particles 1 and 2 are respectively F and E,

and the mutual forces of interaction acting

— -
between them are E, and E,-

While discussing the overall motion of the
system, all these forces may be considered to
be acting on the centre of mass ‘C’ [See
Figure 1.3(b)]. According to the Newton’s

- -
Third Law of Motion, F, = —F,, and hence

the resultant internal force becomes zero. Thus,

in equation (1.3.6) the resultant force I? acting
on the system of particles is only the resultant
external force. From equation (1.3.6) and
(1.3.8).

- N —
M V;_m =Mg, = F= d_ft’ (1.3.9)
t

Equation (1.3.9) shows that the resultant
external force acting on a system is equal
to the rate of change of total linear
momentum of the system. This is the
Newton’s Second Law of Motion for a system
of particles. Further, equation (1.3.9) shows
that the centre of mass of the system
moves under the influence of the resultant

external force E as if the whole mass of
the system is concentrated at its centre
of mass.

Newton’s Second Law of Motion, for a
particle, can be written without the help of the
Third Law. But for a system of particles, the
help of Newton’s Third Law is required to obtain
the Second Law. This fact is known as
interdependence of Newton’s Laws of Motion.

Hlustration 1 : The particles of mass m,,
m, and m, are placed on the vertices of an
equilateral triangle of sides ‘a’. Find the centre
of mass of this system with respect to the

position of particle of mass m,.

Solution :
Y-'P- m

1
1
I
I
I
|
I
I
I
|
|
i
L

a

Figure 1.4
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The angles of the three corners of an
equilateral triangle are equal (60°). Hence, as
shown in Figure (1.4) if we place the particle of
mass m, at the origin (0, 0), and particle of mass
m, along the X-axis at distance of ‘a’ from the
origin at (a, 0) position, then the co-ordinates of
particle of mass m, are

(a cos 60°, a sin60°) = (%’ %)

Thus, the position vectors of the particles of
mass m, m, and m, are respectively

%
gl

%
=(0.0), £ = (a,0) and

73: AN T A~

— a '\/§a
252
Hence, according to definition, the position
vector of centre of mass of the system of three
particles is
—
T

— — —
m1r1+m2r2+m3r3

cm T

m (0,0) + m,(a,0)+m, (% %}

m
+_3ja a
3 (mz > )" J§m32
g r., = | mtm -t m+m+m

Illustration 2 : In a system of three
particles, the linear momenta of the three
particles are (1, 2, 3), (4, 5, 6) and (5, 6, 7).
These components are in kg m s'. If the
velocity of centre of mass of the system
is (30, 39, 48) m s, then find the total mass
of the system.

Solution : Here 1_3; =(1,2,3) kg m s7!
132) =(4,5, 6) kgm s7!
N
P3 =(5,6,7) kg m s7!
v =(30, 39, 48) m s7!
Now, My :]_D)ZTDI +132>+}_1')3
5. M@30,39,48)=(1,2,3)+ (4, 5,6)+ (5,6,7)

So(B0M, 39 M, 48 M) = (10, 13, 16)
Comparing respective co-efficients on both

sides
30M=10:M=%kg
1
39M=13:M=§kg
48M=16:M=%kg

Thus, the total mass of the system is % kg.

Illustration 3 : At time ¢ = 0, a stone
of 0.1 kg is released freely from a high rise
building. Another stone of 0.2 kg is released
from the same position after 0.1 s.

(1) At t = 0.3 s time, what will be the
distance of centre of mass of the two stones from
original position ? (Neither stone has yet reached
the ground).

(2) How fast is the centre of mass of the
system of two stones moving at that time ?

(3) What will be the momentum of the system
of two stones at this time ?

Solution : Mass of stone 1 is m = 0.1 kg

Mass of stone 2 is m, = 0.2 kg

Initial speed of stone 1 is v, =0 m s7!

Initial speed of stone 2 is v, = 0 m 571

(1) Here both the stones are moving in one
direction so their velocity and momentum vectors
can be regarded as scalers. At ¢ = 0.3 s time,
the distance travelled by stone 1 is
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AT 7
I
e m P LA
R i i
W _L C
Y Vem "1[
é ITI| l
¥y
W
Figure 1.5

_ 1
d1 =V, I+ 5 gt

0+ % 9.8) (0.3)

a’1 = 0441 m (D)
Stone 2 is released after 0.1 s. Hence, at
time ¢ = 0.3 s, the time taken by stone 2 to fall

downist' =03s—-01s=02s.

Hence, in time ' = 0.2 s (i.e. at £ = 0.3 s),
the distance travelled by stone 2 is

_ ' 1 2
a’z—vozt +2 t

0+ % (9.8) (0.2)>
d, =019 m )

Hence, at time ¢t = 0.3 s, the distance of centre

of mass of the system of the two stones is

_ myd, +m,d,
cm m +m,

_(0.1)(0.441)+(0.2)(0.196)
B 0.1+0.2

wd, =0277m 3)

(2) At time ¢t = 0.3 s, the speed of stone
1is

Vl = VO1 + gt

0 + (9.8)(0.3)
v, =294 ms! 4)
At time t = 0.3 s, the time interval for fall
of the stone 2 is #'= 0.2 s. Hence, after
t' = 0.2 s time, the speed of stone 2 is
=V, gt' =0 + (9.8)(0.2)

v, =196 ms™ (5)

Va

Hence at t = 0.3 s, the velocity of centre of
mass of the system of two stones is
my, + m,v,

ch = m + m2

(0.1)(2.94) + (0.2)(1.96)
em 0.1+0.2

=229 ms! (6)
cm
(3) At time ¢t = 0.3 s, the total momentum
of the system of two stones
P =P +P,=my +mpy,
S P=1(0.1) (2.94) + (0.2) (1.96)
. P=0.686 kg m s
=0.69 kg m s (7)
Illustration 4 : Different forces acting
on a lamina body (two dimensional) of mass
2 kg are shown in Figure 1.6. Calculate the

linear acceleration of the centre of mass of

the body.
Y: / F,=4N
F =8N 60°
ra \X
FeAlON 0
60"
45°
Fi=6N

Figure 1.6

Solution : Writing all forces in the form of
their components,

%
E =(8 0N
F, = (4 cos 60° 4 sin 60°) = (2, 2\3)N

E; = [6 cos (—45°), 6 sin (—45)]
= (6 cos 45° — 6 sin 45°)

B & =6

E = (10 cos 60°, 10 sin 60°) = (5, 5/3 )N
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Now,

M — — - —
a. =R +E+FK+E

Where M = 2 kg

N — — - —
“ad, =5F +F +F +F)

—_— N

_ 1l 6
= l8+2+ 5 +5).

23 - % +53)]

-4, = 5[+ 5. 035 - ms?

1.4 Law of Conservation of Linear
Momentum

If the resultant force acting on a system is

zero, then from equation (1.3.9)

N —>
dP
F =4 9o 14.1
i (14.1)
—> — — —>
P=PF+P +... + P = constant
(1.4.2)

This shows that, ““if the resultant external
force acting on a system is zero, then the
total linear momentum of the system remains
constant.” This statement is known as the law
of conservation of linear momentum. In
absence of resultant external force, the momenta

. . . . ‘) 4)
of individual particles P,, P,, ... may change,

but these changes occur in such a way that the
vector sum of changes in momenta always
becomes zero. As the total change in the linear
momentum is zero, the total momentum remains
constant.

e.g. The gas molecules in a closed container
move randomly in the container. During the inter-
atomic collisions or the collision of the molecules
with the wall of the container, their momentum
changes individually. But the vector sum of the
changes in momenta of all the particles is zero.

It means that their total momentum remains
constant. (If the vector sum of the changes in
momenta of the gas molecules were in a particular
direction, then what would have happened ?
Think).

The law of conservation of linear
momentum is fundamental and universal. This
law is equally true for the systems as big as that
of planets and as small as that of tiny particles
like electrons, protons, etc.

From equation (1.3.9)

F=M7 =M% =9
cm dt

- _ - _
a = 0 and vy, = constant

Which shows that, if the resultant external
force is zero, then the acceleration of the
centre of mass is zero. It means that the
velocity of centre of mass remains constant.
Thus, in absence of external force the centre of
mass of a system remains stationary if it was
stationary or moves with constant velocity if it
was in motion.

Let us see the following illustration :

Suppose, a chemical bomb is stationary. The
initial momentum and kinetic energy of the bomb
are zero. When the bomb explodes, its fragments
are thrown in air. Though these fragments have
different momenta in different directions, but the
magnitudes and directions of these fragments
would be such that

P+P +tP =0
P1 1)2 ...... P =
- -
Here P1 , 132 , .... are the momenta of the
fragments.

Here, the centre of mass of the system of
fragments remains at the same point, where it
was located before explosion of the bomb.

The kinetic energy of the bomb before
explosion was zero, but the sum of kinetic energy
of the fragments is not zero. Thus the kinetic
energy of the system got changed. In the chapter
of work, energy and power you came to know
that the change in kinetic energy of the system
is equal to the work done by the resultant external
force. Here, resultant external force is zero. Then
how does the kinetic energy of bomb change ?
The fact is that chemical bomb possesses internal
energy due to the chemical bonds between its
complex molecules (and due to some additional
reasons). When bomb explodes, the chemical
bonds are broken and a part of the internal
energy associated with them is converted into
heat energy, and the remaining part in the form
of kinetic energy of the fragments. Thus, in this
case, the work is done at the cost of internal
energy which leads to the more general form
of the work energy theorem.
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Here, the bomb was stationary. But, if the Ilustration 6 : A sphere of mass 4 kg
bomb was moving with constant velocity and collides with a wall, at an angle of 30° with
explode during motion, then according to the law
of conservation of linear momentum, its fragments
would move in such directions, that the vector
sum of their momenta become equal to the
momentum of the bomb before explosion. The
centre of mass would move such that its original

the wall and rebounds in the direction making
an angle of 60° with its original direction of
motion. Find the force on the wall if the ball
remains in contact with the wall for 0.1 s.
The initial and final velocities are the same,

equal to 1 m s,

velocity (;)m) is maintained (See Figure 1.7). ) S i
Solution : The given situation is shown in

i\
Y the Figure 1.8.
P A
Psin 60°
. \\ljé/ (3] g N
; . ‘f: 60 i
'7f I\%-\ P,cos 607 F
1 LN S,
] LY ’f
: \\ 309 301\;»
1 | PR
X < 609"
. 0 i i ! 2 ) 609X
Motion of Centre of Mass of Fragments of = ccoommomeaaaa Ll i X
Bomb after Explision 0
Figure 1.7 P 300
Illustration 5 : A bomb of mass 50 kg
moving uniformly with a velocity of 10 m/s Pisin60°) [0 ¥
explodes spontaneously into two fragments of —_——
40 kg and 10 kg. If the velocity of the smaller I .
Figure 1.8

fragment is zero, then calculate the velocity

N
of the smaller fragment. Here P, = initial momentum of sphere

Solution : Bomb is moving with uniform
(constant) velocity. Hence, the external force
acting on it is zero.

my cos 60f + mv sin 60 ]

ﬁ .
o . : ) P, = final momentum of sphere
Initial linear momentum = Final linear

momentum = —mv cos 60; + mv sin 60 ]
LMy = m 71 + m, 72 Hence, change in momentum of the sphere
Where, M = total mass of the bomb = 50 kg o N .
m, = mass of the larger fragment = 40 kg AP =P - B
m, = mass of the smaller fragment = 10 kg = —my cos 60; + mv sin 60]’
7 = velocity of the bomb = 10 m/s —my cos 60; — mv sin 60 }
v, = velocity of larger fragment = 0 — Zomy cos 607
v, = velocity of smaller fragment = ?
— 1 R
Hence, Fo==2x4x1x 5
— — N
My = m, v, =47 kgm s
M .
72 _ E 2 = f_() « 10 = 50 m/s, Hence, momentum gained by the wall
=4; kg ms™
in the direction of

.. Force exerted on the wall
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momentum gained by the wall 5
- time of contact i
47 »
= ~—— =401 N
0.1 !
Thus 40 N force acts on the wall in positive
X-direction.
1.5 Centre of Mass of a Rigid Body Qf : + X
A system of particles in which the x;

relative positions of particles remain invariant
is called a rigid body. The location of centre
of mass of a rigid body depends on the
distribution of mass in the body and the
shape of the body. The centre of mass of a
rigid body can be anywhere inside or outside
the body. For example, the centre of mass of a
disc of uniform distribution of mass is at its
geometric centre within the matter, whereas the
centre of mass of a ring of uniform mass
distribution lies at its geometrical centre which is
outside of its matter. The centre of mass of a
rod of uniform cross-section lies at its geometrical
centre. The position of the centre of mass of
symmetric bodies with uniform mass distribution
can be easily obtained theoretically. The centre
of mass ‘C’ of certain symmetric bodies are
shown in Figure 1.9.

Centre of mass of some symmetric bodies
Figure 1.9

1.5.1 Theoretical Method for Estimation
of the Centre of Mass of a Solid Body :

Figure 1.10

We know now that a solid body is made up
of microscopic particles (molecules, ions or
atoms) distributed continuously inside the body.

As shown in Figure 1.10, consider a small
volume element dV, containing mass dm. Here
dm is called the mass element, whose position
vector is

- ~ ~ ~
r =xi +yj +zk

This way the whole solid body can be
considered to be made up of such small mass
elements. Let the solid body is made up of small

mass elements dml, dmz, ..... , dm, having
position vectors 1y, 7, ... , I, , respectively.

Hence, according to definition, the position vector
of centre of mass of the solid body is

dmy 7 + dm, dm 1.
- + + ..... +
ro =L T M T Maln (15.1)

dm; +dm, + ..... + dm

As the mass distribution is continuous, the
summation in equation (1.5.1) can be represented
as an integration.

N J._r>dm
fem = J.dm
Zm = J.i;jm (1.5.2)

Where, M = jdm

= total mass of the solid body
Representing equation (1.5.2) in terms of its
vector components,
i+ Y] *+ 2,k) (1.5.3)

= ﬁ J.(xiA + y] + zk)dm
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section and uniform linear mass density ‘A’.
) 1 J- i Put the rod along X-axis such that its one end
Kem = g ) XA lies at the origin of the co-ordinate system.
M
1 Y
Yom = M-[ ydm
(1.5.4) dx |
1 r m
Zcm = MJ‘ de 0 = @ W >X
% 2 C x=L

1.5.2 Centre of mass of a solid body of
uniform density and specific geometrical
shape :

The centre of mass of a solid body of uniform
mass density and specific geometrical shape can
be calculated using the symmetry of the body.
Using the law of symmetry we can easily prove
that the centre of mass of such bodies lies at
their geometric centre.

Let us see the following Illustration :

Suppose we have to find out the centre of
mass of given triangular plate :

Figure 1.11

As shown in Figure 1.11 imagine the
triangular plate to be divided into parallel thin
stripes parallel to side MN of the triangle.
According to the law of symmetry, the centre of
mass of each stripe will be lying at its geometric
centre. Thus the centre of mass of the triangular
plate will be lying along the bisector LP. Similarly,
considering the triangular plate to be divided into
thin stripes parallel to the sides ML and LN of
the triangle, we get bisectors NR and MQ,
respectively. Then, the centre of mass of the
triangular sheet will be lying at the intersection
point ‘C’ of the three bisectors.

1.6 Centre of Mass of a Thin Rod of Uniform
Density :

Figure 1.12 shows a thin rod of mass ‘M’
and length ‘L’ having uniform area of cross

A thin rod of length L lying along X-axis
Figure 1.12
Consider a line element ‘dx’ on the rod at a
distance ‘x’ from the origin.
The mass per unit length of the rod,
2 M

L
Hence, the mass of the line element dx is,

dm = hdx = Max
According to definition, the centre of mass
of the rod is

L1
cm M

Thus, the centre of mass of the thin rod of
uniform mass density lies at mid point of its
length, i.e. at its geometric centre.

Illustration 7 :

A
F G
E H
40 ¢m
B C >y
40 cm
A L
40 ¢cm £
X
Figure 1.13
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Figure 1.13 shows a cubical box made up of
negligible thin metal sheet of uniform mass
density. If the length of each side of the box is
40 cm, then

(a) Find out the co-ordinates (x_,, ¥,,.» Z.n)
of centre of mass of the box.

(b) If the box is open from upper side,
(EFGH sheet is absent) then find out the co-
ordinates (x' . y'_. 2 ) of the centre of
mass of the box.

Solution : Each sheet of the box is negligibly
thin and have uniform density. Hence, according
to the law of symmetry, the centre of mass of
each plate will be lying at its geometrical centre.
Hence, calculating the centre of mass of each

plate :

Name of Plate | Co-ordinates of Centre
ABCD (20, 20, 0) cm
EFGH (20, 20, 40) cm
ABFE (20, 0, 20) cm
DCGH (20, 40, 20) cm
BCGF (0, 20, 20) cm
ADHE (40, 20, 20) cm

(a) Considering that the whole mass (say
M) of each sheet (plate) is concentrated at
its centre of mass (The area and surface
density of each plate is same, so the mass
of each plate is also same, M = p x A),

the position of centre of mass of such a
system is

rcm = ('xcm’ Y cm’ Zcm)

M(20, 20, 0) + M(20, 20, 40)
+ M(20, 0, 20) + M(20, 40, 20)
|+ M(0, 20, 20) + M(40, 20, 20)

6M

~ M(120, 120, 120)
- 6M

oor,, = (20, 20, 20) cm

(b) If the box is open from upper surface,
then EFGH plate is absent, and hence the centre
of mass of the remaining system is

_ 1 ' '
Fem = (x e Y oem © cm)

M(20, 20, 0) + M(20, 0, 20)
+ M(20, 40, 20) + M(0, 20, 20)
- + M(40, 20, 20)

SM

M(100, 100, 80)
M

(20, 20, 16) cm

SUMMARY

1. Centre of mass of a system of two particles : The centre of mass of a

system of two particles of masses m, and m, lying on X-axis at x, and X,

distances respectively from origin is a point at a distance

mx; + niy Xy

x = ——_— from the origin.

cm m; + m,

2. Centre of mass of a system of n—particles :

If there are n—particles in a

system, and C is representing the centre of mass of the system, then ‘C’ is the
point where the whole mass of system of n—particles can be considered to be
concentrated. For a system of n—particles in a three dimensional space, if

- - =

(B e , m, are the masses of the particles and o s e , I, are

respective position vectors of the particles, then the position vector of centre of

mass of the system is

- = =
_ mn +myr, t....tm,r,

m+m,+....+m,
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3.

The velocity of centre of mass of system of n—particles

— — —
—  _mvi+mv, t....tmv,
ch M
where, M = m +m, + ... + m,

Acceleration of centre of mass of a system of n—particles

— — -
- — m1a1+m2a2+....+mnan
aCm M

Newton’s Second Law of Motion for a system of particles :

- g > —
F=dP =Mdvc”’ = Ma

dt dt o
Conservation of linear momentum : If the resultant external force acting on
a system is zero, then the total linear momentum of the system remains constant.
In the absence of resultant external force, the centre of mass of a system
remains stationary if it was stationary and moves with constant velocity if it was
in motion.
Rigid body : A system of particles in which the relative positions of particles
remain invariant is called a rigid body.
The centre of mass of a rigid body : The location of centre of mass of a
rigid body depends on the distribution of mass in the body and the shape of the
body. The centre of mass of symmetric bodies lies at their geometric centre.
In general form, the co-ordinates of centre of mass of a rigid body are

X, = ﬁfxdm, Vem = ﬁ_l.ydm, T = ﬁ'[zdm

EXERCISES

Choose the correct option from the given options :

1.

Suppose your mass is 50 kg. How fast should you run so that your linear
momentum becomes equal to that of a bicycle rider of 100 kg moving along a
straight road with a speed of 20 km/h ?

(A) 40 m/s (B) 11.11 m/s (C) 20 km/h (D) 10 km/h

A bus of 2400 kg is moving on a straight road with a speed of 60 km/h. A car
of 1600 kg is following the bus with a speed of 80 km/h. How fast is the

centre of mass of the system of two vehicles moving ?

(A) 70 km/h (B) 75 km/h (C) 72 km/h (D) 68 km/h

The momentum of a stone at time ‘¢ is

[(0.5 kg m/s¥) + (3.0 kg m/s)]; + [1.5 kg m/sz]tj]. How much force is
acting on it ?

(A ¢ +15])N (B) (05tf +15j)N

(C) [(05¢ + 3)] +15]]N (D) (0.5{ +15j) N
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A bird of 2 kg is flying with a constant velocity of (2i — 4}) m/s, and

another bird of 3 kg with (27 + 6f) m/s. Then the velocity of centre of mass
of the system of two birds is .......... m/s.

(A) 27 +52] B) 2f +2] (C) 2f —2] (D)107 +10]

A quill of 0.100 g is falling with a velocity of (—0.05 ] ) m/s. When blown

from lower side, its velocity changes to (0.207 + 0.15 7) mJ/s. The change in

its momentum will be .......... kg m/s.

e}

(A)2 x102] +2x 1072

i}

(B) 2 x10°7 +2x 1077

(C) 2 x 102 +1x 102] (D) 2 x 102 -2x102]
A monkey sitting on a tree drops a 10 g seed of rose-apple on a crocodile, at
rest below the tree. If the seed falls in the mouth of the crocodile in 2 s time

and becomes stationary, then the momentum gained by the crocodile

(in addition to the seed) is .......... kg m/s. (g =9.8 m s2)
(A) 0.196 (B) —0.196 (C) 19.6 (D) —19.6
As shown in Figure (1.14), %
the stones of 30, 60, 90 and - Tm'
120 g are placed at 3, 6, 9 _,;,1"’""\ 2 ?“"‘\‘:-‘\_‘
and 12 hour symbols

. Y —-9 e -
respectively of a weightless e\ )
dial of clock having radius of i /g ! \
10 cm. Find the co-ordinates X :":'ir:j]-;"" '
of centre of mass of this
system. Figure 1.14

(A) (2, =2) cm (B) (0, 0) cm ) (-2,2)cm (D) (-4, 4) cm
In cricket match, a baller throws a ball of 0.5 kg with a speed of 20 m/s.

When a batsman swings the bat, the ball strikes with the bat normal to it,
and returns in opposite direction with speed of 30 m/s. If the time of

contact of the ball with the bat is 0.1 s, then the force acting on the bat

(A) 250 B) 25 (C) 50 (D) 125

A boy standing on the terrace of 10 storeyed building, drops four stones of
different mass. At one moment, if the stone of 500 g is at 8™ floor, stone of
400 g is at 6™ floor, stone of 1 kg is at 3™ floor and a stone of 600 g is
reached at 1% floor, then at that time, the centre of mass of the system of four

stones is at .......... floor.

A 7" (B) 5" (©) 3¢ (D) 4®
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10. As shown in Figure 1.15 the centre

of mass of a thin metal sheet of
uniform density is .......... cm.

(A) (10.00, 14.28)

(B) (11.67, 16.67)

(C) (8.75, 12.50)

(D) (7.78, 11.11)

Figure 1.15

ANSWERS

1. (B) 2. (D) 3 (A 4. (B) 5 (B)
6. (A) 7.(C) 8 (A) 9. (D) 10. (B

Answer the following questions in short :

What is the meaning of inter-dependence of Newton’s Laws of Motion ?
Give definition of a rigid body.

Give two illustrations of rigid bodies in which the centre of mass lies in the
matter of the body.

Where does the centre of mass of a thin rod of uniform mass density lie ?
What do you mean by the mass element dm of a solid body ?

When a stationary bomb explodes, then from where does its fragments get
kinetic energy ?

Answer the following questions :

1.

Write down the expression for the centre of mass of a system of n-particles in
three dimensions and obtain the expression for its velocity.

State the law of conservation of linear momentum and explain.

How does the illustration of chemical bomb lead to the more general form of
work energy theorem ? Explain.

Write down the equation for the velocity of centre of mass of a system of
n-particles, and derive the Newton’s Second Law of Motion for it.

Explain the theoretical method for estimating the centre of mass of a solid
body.

Obtain the position of centre of mass of a thin rod of uniform density with
respect to the one end of the rod.

Solve the following problems :

1.

The distance between the centres of carbon and oxygen atoms in a carbon
monoxide (CO) molecule is 1.130 x 107 m. Find the position of centre of
mass of CO molecule with respect to carbon atom.

(Atomic mass of carbon = 12 g mol™!, and atomic mass of oxygen = 16 g mol™)

o
[Ans. : 0.64 A]
The velocity vectors of three “particles” of masses 1 kg, 2 kg and 3 kg
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are respectively (1, 2, 3), (3, 4, 5) and (6, 7, 8). The velocity vectors are

in m s'. Find the velocity vector of centre of mass of this system of

particles. [Ans. : %(25, 31, 37) m s7']

3. A car of 1000 kg is at rest at a traffic signal. At the instant, the light turns
green, the car starts to move with a constant acceleration of 4.0 m s on a
straight road. At the same instant, a truck of 2000 kg travelling at a constant
speed of 8.0 m s overtakes and passes the car.

(a) How far will be the centre of mass of the car-truck system from the
traffic light after 3 sec. ?
(b) What will be the speed of the centre of mass of the car-truck system then ?
[Ans. : (a) 22.0 m, (b) 933 m s7']
4. A dog having mass of 40 kg and a cat of 20 kg mass are standing on both
sides of a roti at distance of 15-15 m each (See Figure 1.16). Both start to
run at the same instant to eat the roti in such a way that the centre of mass
of the system made up of the dog and the cat remains stationary. In the table,
the position of the dog at different instants is represented, with respect to the
origin lying at the roti. Calculate the position of the cat, the velocities, momenta
and total momentum of both of them.
Which will reach to the roti first ? Dog or Cat ? Is the momentum conserved
in this case ? Why ?

J SR 4
W & s 5,
T le -15m i I5m — i

Figure 1.16

Time| Distance from| Centre of mass|Velocity ms™![Momentum kg ms™![Total momentum

t Roti of dog-cat | Dog | Cat Dog Cat P=P +P,

sec | Dog | Cat x,,,(m) v, v, P, P, kg m s!
xl(m) xz(m)

0 | —15.0 15 | ... (constant)

2 | —125 | ... »

4 | -100 | ..... »

6 =75 | ..... »

Ans. :

Time| Dog Cat |Centre of mass | Dog Cat Dog Cat Total

t | x,(m)]| x,(m) x,,,(m) 2 v, P, P, P=P+P,
sec x,,, (m) kg ms!|kg ms! | kg ms™!

0 [ -150]| 15.0 |—5.0 m (const.) 0 0 0 0 0

2 | =125 10.0 —5.0 m 125 |25 50 —50 0

4 [ -10.0 5.0 5.0 m 125 |25 50 =50 0

6 -7.5 0 —5.0 m 125 [-25 50 =50 0
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Att =6 sec, x, = -7.5 m, x, = 0 m and Roti is at origin x = 0.

Hence, cat will reach first.

Total momentum remains constant. Hence, momentum is conserved. It is due
to the fact that centre of mass remains stationary (in this example).

5. The distance between two particles of masses m, and m, is r. If the distances

of these particles from the centre of mass of the system are r, and r,,
respectively, they show that

r. =r ana r, =1 ———
! ny + n, 2 my + my

6. As shown in Figure 1.17 three ¥
indentical spheres 1, 2 and 3,
each of radius R, are arranged
on a horizontal surface so as to
touch one another. The mass of

B m

each sphere is m. Determine

the position of centre of mass ] 0 m > X
of this system, taking the centre

of sphere 1 as origin. Z-axis is m m

in the direction perpendicular to

the plane of the figure. Figure 1.17

=
(3]

[Ans. : (R, % 0) m]

7. A small sphere of radius a is cut
from a homogeneous sphere of
radius R as shown in Figure 1.18.
Find the position of centre of mass

of the remaining part with respect
to the centre of mass of the original
sphere.

3
-a’b
[Ans. : R3Ci PR 0,0 ] Figure 1.18

8. Figure shows the stationary )
.. . . =¥ Y Alm) i
positions of three “particles”. Find
out the co-ordinates of centre of a0ke | P sy il
mass for the system of particles.

As shown in Figure 1.19, if the ity L

external forces F, = 6.0 N, X 4-1

F, = 120 N and F, = 140 N are ™ 403
acting on the particle then find out
the acceleration and the direction of

acceleration of the centre of mass. Figure 1.19

— —
[Ans. : p = (175, 1.00) m, a., = (1.03,0.53) m s~

N
la!=a=1.16 m s The direction making an angle of 0 = 27° with X-axis.]
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9. Figure 1.20 shows an extremely thin
disc of radius R, having uniform mass
density of p. A small disc of radius

% is cut from it. Find the centre of

%
mass of the remaining part of the disc
with respect to the centre of mass of
the original disc.
Figure 1.20
[Ans. : (—%, 0)]

Prof. Satyendranath Bose (1894-1974)

Satyendranath Bose was born on the 1* of January 1894 in Calcutta.
He studied at the University of Calcutta, then taught there in 1916, taught at
the University of Dacca (1921-45), and then returned to Calcutta (1945-56).

He did important works in quantum theory, in particular on Planck’s black
body radiation law. Bose sent his work in Planck’s Law and the Hypothesis of Light Quanta
(1924) to Einstein. It was enthusiastically endorsed by Einstein. The paper was translated into
German by Einstein. Bose also worked on statistical mechanics leading to the Bose-Einstein
statistics.

Dirac gave the name boson to the particles obeying this statistics. Satyendranath Bose and
Albert Einstein together published a series of papers on the physics of particles with integer spins
(bosons). Satyendranath Bose passed away on February 4, 1974 at the age of 80.
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2.1 Introduction

Student Friends, you must have seen the motion of fan,
top and also the motion of merry-go-round. You also know that.
the Earth is revolving round about its own axis. In the
present chapter we shall study such type of motion. This type
of motion is called rotational motion. In the beginning we shall
discuss the rotational motion of the rigid body about a fixed
axis. At the last we shall discuss the motion of the rigid body,
rolling without slipping.

The system of particles in which the relative distance
between the particles remain invariant is called the rigid
body. Rigid body is an ideal concept. From physics point of view
a solid body and a rigid body do not mean the same. A solid
body can be deformed while a rigid body cannot. But for many
practical purposes a solid body can be treated as a rigid body.
2.2 Rotational Kinematics and Dynamics
If all the particles of a rigid
B body perform circular motion
and the centres of these circles

are steady on a definite straight

line called axis of rotation it is
a geometrical line and the

motion of the rigid body is
called the rotational motion. In

i
/

a” ol
v

figure 2.1, two particles P and Q
of a rigid body are shown. The
rigid body rotates about the axis
OY. O, and r,
the radius respectively of the circle
on which particle P moves.

B
Y
‘\

Rotational motion of

rigid body are the centre and

Figure 2.1

Similarly O, and r, are the centre and the radius respectively
of the circle on which the particle Q moves. The circular paths
of particles P and Q are in the planes normal to the axis of
rotation OY.
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First, we shall describe the rotational motion
without mentioning its causes. This branch of
Physics is called the rotational kinematics, and
the branch in which the rotational motion is
described along with the causes of the rotational
motion and the properties of the body is called
rotational dynamics.

2.3 Relation between Variables of Rotational
Motion And the Variables of Linear

Motion
(a) Angular Displacement :
.'\(.
t=t+ Mt
J
< R
ZANET,
op
>X

Reference line

Angular Displacement
Figure 2.2

Suppose a rigid body performs rotational
motion about a fixed rotational axis OZ which is
perpendicular to the plane of paper as shown in
Figure 2.2.

The positions of the cross-sections of the rigid
body with the plane of paper at time 7 and
t + At are shown by dotted line and the
continuous line respectively.

Consider a particle P of the rigid body. At
any time the angle made by the line joining it to
the centre of its circular path (O) (which is also
the radius of its circular path) with a definite
reference line (as shown in the figure) is called
the angular position of that particle at that time.
As shown in the figure, the particle P subtends
an angle O with the reference line OX, at time .
It is the angular position of that particle P at
time f. The particle performs circular motion in
the XY—plane and reaches from P to P', at time
t + At, and its angular position is 0 + AO this
time.

The change in the angular position of the
particle is called its angular displacement. Thus
the angular displacement of the particle P in time
interval At is AO.

(Any line can be taken as a reference line.
Generally, the positive X-axis is taken as the
reference line). Since the relative distances
between the particles of the rigid body remain
invariant (unchanged), all particles experience
equal angular displacement in the same time-
interval. Hence the rotational motion of the rigid
body can be described by the motion of some
one representative particle out of its innumerable
particles. Thus, in the above discussion the angular
displacement A0 is the angular displacement of
the rigid body. Its SI unit is radian.

(b) Angular speed and angular velocity :
According to the definition, the average

angular speed during the time-interval Af is

Angular displacement
<> = - -
Time-interval

Here the angular displacement AO occurs in
the time-interval At, hence

<®> = M

Ar (2.3.1)

In the limit At — 0, this ratio will become
the instantaneous angular speed of the particle P

at time 7.
_lim A
T At—>0 At
._do
.0 = dr (2.3.2)

This is also the angular speed of the entire
rigid body at time ¢ (From now onwards we will
understand angular speed as instantaneous angular
speed except specifically mentioned). The unit of
o is rad s™' or rotation s™!. When a proper
direction is linked with angular speed, it is called
angular velocity. Conventionally the direction of
angular velocity is determined from the right hand
screw rule.

A right hand screw is adjusted parallel to the
rotational axis as shown in the Figure 2.3, and is
rotated in the same sense as the rotation of the
body, the direction of shifting of the screw is

taken as the direction of angular velocity .
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. . —
Direction of ®

T !
t >

b

Right hand screw rule
Figure 2.3

(¢) Scalar relation between angular

velocity and linear velocity :
As shown in the Figure 2.2 the particle P,

travels a linear distance equal to arc PP' in time-

interval Ar. Hence, by definition average linear

arc PP’
time-interval At

speed <v> =

If the radius of the circular path of the
particle P (the perpendicular distance of the
particle P from the rotational axis) is r, then arc

PP' =r AO
) _ rA0
L <yv> = At
= r<o> (2.3.3)

In the limit At — 0 the value of the above

ratio gives the value of instantaneous linear

velocity.
_ lim rAB
V=At—0 A7
_ 4o
o dt
TV =T (2.3.4)

This shows scalar relation between linear

velocity and angular velocity of a rigid body.

(d) Vector relation between angular
velocity and linear velocity :

. . %
T Direction of oc

<P

(i}

Vector relation between the linear
velocity and angular velocity
Figure 2.4(a)
. . .o, . %
The situation of the position vector r and
%
the linear velocity y for a particle P of the rigid
body with respect to the centre of its circular
path in a plane perpendicular to the rotational
axis, are as shown in the Figure 2.4(a). And the

_)
angular velocity ( is according to right hand

screw rule along the rotational axis (as shown in
the figure).

Linear velocity is a vector. In circular
motion the direction of linear velocity at any
point is along the tangent drawn to the circle
at that point. In the equation v = r® the left
hand side is the value of the linear velocity while
on the right hand side r and ® are the values of

- -

vector quantities r and . This fact suggests
%

that we should take such a product of r and

%
o that its product is also a vector, which is

known as the vector product (cross product) of
N - -
two vector products. Here direction of @ x r

according to right hand screw rule is in the
. . - -, - -
direction of y and @w L r. Hence, ® X r =
%
or sin90 = @r = magnitude of y .
Hence, we can write the vector relation

%
between , and @ as

- -

Y=o X 7 (2.3.5)

(e) Angular acceleration :
Suppose instantaneous angular velocities of

the particle P at time # and ¢ + At are ® and

— - .
® + A respectively.
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Hence by definition,
Average angular acceleration

Ac

N

<a>: _('0
At

In the limit At — 0, the value of the above
ratio gives the instantaneous angular acceleration

(2.3.6)

o of the particle P at time .

5 lim
0= At—>0 A_(;)
ﬁ
g = do 23.7
* dt ( )

The direction of ¢ is in the direction of A(,_))

(change in angular velocity). In case of the fixed

rotational axis the direction of A(?) is along the

. . . - - .
rotational axis, hence the direction of o 1is also

along the rotational axis.See Figure 2.4(a).

The unit of ¢ is rad s or rotation s .

(f) Relation between Linear Acceleration
and Angular Acceleration :

The derivative of linear velocity with respect
to time gives linear acceleration (2 ).

Differentiating equation (2.3.5) with respect to
time, we get

- N -
dv _ = _ o dr do « 7
dt t t

N -
Since 4r = 2 and 4O — g
t dt
%
a:

Rotating right hand screw in the
z . - —
direction from () towards y

Radial component of linear acceleration
Figure 2.4(b)

The two vector components of linear

. - — — - —
acceleration g are ® X y and o X r.

According to Figure 2.4(b), using right hand

.. - .
screw rule, the direction of @ X 3 is found to

be the radial direction towards the centre. Hence,

® x 7 is called the radial component of

. . . -
linear acceleration g . It is denoted by . Its

. . LT v?
magnitude is @V siny = @V = = rm
r

2

2

L0 v = rm)
Similarly the direction of o x 7 is found

to be along the tangent to the circular path.
Hence it is called the tangential component of
the linear acceleration. (See Figure 2.4 (b)). It is

denoted as ay. Its magnitude is or sin

(S
I
Q
~N

, Rotating right hand screw in the

— — —
direction from (@ towards 7

Tangential component of linear acceleration
Figure 2.4 (c¢)

The radial component CZ and the tangential

— .
component g are mutually perpendicular. Hence

the magnitude of q is

a= \/a,2 +ar = \/cozv2 +a’r’ (239

If the rigid body is rotating with constant
angular velocity, that is, its angular acceleration
o = 0, then the tangential component of its linear
acceleration becomes zero but the radial
component remains non-zero. This condition is
found in the uniform circular motion. You know
very well that in uniform circular motion the

centripetal acceleration is L
r
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In the above discussion we have seen that

angular displacement (0), angular velocity (8)
and angular acceleration o are equal for all

particles of the rigid body. Thus 0, ® and o

are the characteristics of the rigid body and they
are called the variables of the rotational
kinematics.

Here, note that the description of motion of
a particle of the rigid body rotating about a fixed
axis can be made in respect of linear variables

(7, 7 and ¢) and rotational variables (0, ®,

o ). But when all particles of the rigid body are
to be considered, the rotational variables may be
used so that the motion of the entire body is
easily described.

Illustration 1 : The length of the
second-hand of a clock is 20 cm. Find the
values of (1) angular velocity (2) linear
velocity (3) angular acceleration (4) radial
acceleration (5) tangential acceleration
(6) linear acceleration, for the particle at the
tip of the second-hand.

Solution :

r =20 cm

(1) The second-hand makes angular
displacement of 27 radian in one minute (60

. _2n _ ®m -1

seconds.) .. ® = 60 = 30 rad s

(2) Linear velocity v = or = % x 20 =
27‘: cm s7!
3

(3) The second-hand of a clock moves with
constant angular speed. .. o = 0 rad s

2
(4) Radial acceleration = a, = -

2 2
_(2n L) _m )
= ( 3 ) (20 = s cm S
(5) Tangential acceleration = a, = ar =0

(6) Linear acceleration

2

— ,2 2 _ _ T -2
a = ar+aT—Clr— 5CII'lS

(Calculate these quantities for minute hand
of length 15 cm and hour hand of length 10 cm
by yourself.)

2.4 Equations of Rotational Motion with
Constant Angular Acceleration

Suppose at ¢ = 0 time the angular position
of a particle of a rigid body is 6 = 0 and its
angular velocity is ®,.

At t = t time its angular position is 6 = 0
and angular velocity = .

If the rigid body is rotating about a fixed axis,

. . - > .
then the directions of ®,, ® and its constant
angular acceleration ¢ are all along the fixed

. . — —
axis. Hence relations of O, ® and o can be
written in the scalar form : Since o is constant,

according to definition

AL S (2.4.1)

OR ©=0,+ o

o =
(2.4.2)

This equation is similar to the equation

v =y, +at in linear motion.

Here, the angular acceleration is constant,
hence using average angular velocity we can find
the angular displacement.

.. Angular displacement

0 = (average angular velocity) (f)

O + o
.'.e=( 2 Jt

This equation is similar to the equation

(2.4.3)

v+,
X = 5 ¢t in linear motion.

Substituting the value of ® from equation
(2.4.2) in equation (2.3.3) we get

oy + ar + o,

0= o)+ loct2

2 (2.4.4)
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This equation is similar to the equation

1 . )
X =v,t + 5af® in linear motion.

2

Substituting the value of ¢ from equation
(2.4.1) in equation (2.4.3), we get

(25252

o200 = 0 — 0)02

(2.4.5)

This equation is similar to the equation
2ax = v — VO2 in linear motion.

Illustration 2 : A mini—train in a
children’s park moving at a linear velocity of
18 km/h stops in 10 s due to constant angular
deceleration produced in it. If the radius of
the wheels of the mini-train is 30 cm, find

the angular deceleration of the wheel.
Solution :
v0=18km/h:5m/s;r=300m=0.3m

Vi 5 50
w]=7:m=?rad/s

e
Il
L
-
Il
—_
=)
w2

= %5 = —1.666 rad/s*

Illustration 3 : A truck is moving at a
speed of 54 km/h. The radius of its wheels
is 50 cm. On applying the brakes the wheels
stop after 20 rotation. What will be the linear
distance travelled by the truck during this ?
Also find the angular acceleration of the
wheels.

Solution : Here, v, = 54 km/h = 15 m/s;
r =50 cm = 0.5 m, O = 20 rotations = 20 X 27
rad =40n rad; d =2, o = ?

151 15

V=T, o) = 7 = ﬁ = 30 rad/s
-2 — 0.2 0-900
0, =0 a=2_T - —
20 2 x 40mn
= —3.58 rad/s’

Now, 1 rotation = 27r linear distance
.. 20 rotations = 20 x 2mr distance.
.. linear distance travelled by the truck
d =20x2x314 x05
= 62.8 m

2.5 Torque :
rotational motion of rigid body without bothering
the causes for it. Now we will think about the

Up till now we have discussed

cause for it.

Torque is an important physical quantity of
the rotational dynamics. Torque plays a similar
role in relational motion as the force plays in the
linear motion.

We will first discuss the torque acting on a
particle and then will discuss the torque acting
on the system of particles.

(@) Torque acting on a particle :
—

g F
s 3]
{p  Line of action
2L > of force
&) (x\ 0
Pt
- \\
(TR A
o \
y A\
- 5 Y
0

Torque acting on a particle
Figure 2.5

As shown in the Figure 2.5, suppose a force
? acts on a particle P. The position vector of P
with respect to origin O is 7 The angle
between 7 and E is 0. Here, the particle P is

not necessarily be a particle of a rigid body.

- -
The vector product of r and F is called

%
the torque ( T ) acting on the particle P, with
respect to the point O.

— - —
T =r x F (2.5.1)
. T = rFsin0

From Figure 2.5, rsin@ = OQ = the
perpendicular distance of the line of action of
force from O.

T (F) (perpendicular distance of line

of action of force from O)

Moment of force with respect
to point O (by definition)



ROTATIONAL MOTION

23

Thus, torque is the moment of force with
respect to a given reference point. Its dimensional

formula is M' L2 T2 and its unit is N m.
Remember that,
(i) According to the right hand screw rule
—

the direction of torque ( T ) is perpendicular to
- —
the plane formed by r and F.

(ii) Since the value of torque (?) depends
on the reference point, in defining the torque, the
reference point must be mentioned.

(b) Torque Acting on the System of
Particles :

The mutual internal forces between the
particles of a system are equal and opposite, the
resultant force and hence the torque produced
due to them becomes zero. Hence we will not
consider the internal forces in our discussion.

Suppose for a system of particles the position
— —

. . -
vector of different particles are Ho Ty oo ry

and the respective forces acting on them are

— —> —>
E., 5, .. E, . The resultant torque on the

system means the vector sum of the torque acting

on every particle of the system.
- - - -

T =T +T) + ... + T, (2.5.2)
.. Resultant torque
d — - — — - —>
T = xE)+(n xE)+.... +(r, XxEF))
. — —
= Y (r xE) (2.5.3)

i=1

(¢) Torque acting on the rigid body :
& Z

4

R

X
Torque acting on the rigid body
Figure 2.6

Suppose a rigid body rotates about a fixed
axis OZ, as shown in the Figure 2.6. The forces

acting on the particles with position vectors

N - - - — .
Ho by oo 1, are B, By F, respectively.

=
Considering the force F, acting on the

- -
particle with position vector r, the torque T,

acting on it is

— - —
Tn = " X n
ik
— Xn Yn in
an Fny Fnz

2l
|

n - (ynFnz_ZnFny)f +

(Z an - xn Fnz)j +

n

@, F,, = v, FOF (2.5.4)

From equation (2.5.4) the torque acting on
the entire body can be written as a vector sum
of the torques acting on all particles, as follows :

%
T, = ; (yn Fnz_ZnFny)i +

(Zn FVZX - 'xn Fnz)j +

*, F,, = ¥, FOF (2.5.5)

For the rotational motion of the rigid body
about Z-aixs, only the Z—component of the above
mentioned torque is responsible. For the rotational
motion about X—axis the X—component and about
Y—axis the Y—component of the torque is

responsible. As a general case if the unit vector
—
on the rotational axis is 71; the T -/ component

of the torque is responsible for the rotational
motion, about that axis.

To produce the rotational motion of the rigid
body external forces are required to be applied,
but not on all the particles of it. As for example,
we do not apply forces on all the particles of a
door to open it or shut.

Since the relative distances between all the
particles of a rigid body remain invariant, the
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torque produced by applying a force on any one
particle becomes the torque on the entire rigid
body. If the force acting on any one particle with
— =
position vector r is F, then the torque on the
— — -
rigid body can be taken as T = r x F.
Illustratlon 4 : The force acting on a
particle r = (4, 6, 12) m of a rigid body is F

= (6, 8, 10) N. Find the magnitude of the torque
producing the rotational motion about an axis

1
along which the unit vector is E(l, 1, 1).

- — -
Solution : T = r x F
The magnitude of the torque with respect to

the axis on which the unit vector is 7, is
- -
n (r x F) n

A

]k

— -
Now, r x F=14 6 12
6 8 10

= (30 —(32) ] + (D[

1T = (36,32, —4) Nm

Magnitude of the torque responsible for
rotational motion

— -
Now, (r x F)n

(=36, 32, —4) - % 1,1, 1

1

ﬁ(—% + 32 - 4)

I IV

=-/3 Nm. emagmtuelsﬁ m
(d) Physical interpretation of the

definition of torque :

Effective component of the torque

Figure 2.7

Suppose a force E acts on the particle P
of the rigid body as shown in the Figure 2.7.
Here the force is taken in a plane perpendicular
to the rotational axis, which is coming out from
the plane of paper, from point O.

The position vector of point P with respect
to the centre of its circular path is 7 The angle
between E and 7 is 0. To understand the
effectiveness of E‘) in producing the rotational

N
motion, consider two components of F.

%
(i) The component of ﬁ parallel to r is

- —

say F, = F cosO. Hence r X F, = 0. This
does not produce torque. Thus it does not produce
the rotational motion.

(i1) The component of E perpendicular to
7 is F,=F sinf. This component produces the
rotational motion. If the magnitude of F and/or 0
1S more, then F becomes more effective.
Moreover, our common experience tells us that
if the position vector ;) of the point of action of
ﬁ is more, then also f?) becomes more effective
in producing rotation. Thus the quantity
responsible for producing rotation is not only F

but is r F sin0. This quantity is called the torque.
Writing the above formula in the vector form

- — -

T =7r xF (2.5.6)

Remember that torque is the measure of the
effectiveness of the force in producing the
rotational motion.

(e) Couple : Two forces of equal magnitude
and opposite directions which are not collinear
form a couple. As shown in the Figure 2.8, forces

1;1) and f—?; act on two particles P and Q of the

- -
rigid body having position vectors 7 and r,

ﬁ
respectively. Here, |F, | = IIE; | and the directions
— — .
of F and F, are mutually opposite. The
— -

resultant torque of the torques T; and T,

produced due to the forces 131) and 1;; is called

%
the moment of the couple (1).



ROTATIONAL MOTION

25

z — —
'y I"]'_F?_
=
Q __/ 4F
[} -
7 E_, -0
F, : "
“ 1"3 P m\\
—
iy
0 >y
X
Figure 2.8
— - —
d — - — N
T=(F xE)+(n X B)
— — — —>
=(n X F)—(r, XF)
- —
B, =—-F)
4 - - -
T=0p —n)XH
- - )
=1r — R I(F) sin (T — 0)
_)

%
=ln — ryI(F)) sin0
Where (m — 0) is the angle between
- - -
(r, = ry) and F

- = . .
From the figure | ; —r,, | sin@ = perpendicular

distance between the two forces.

. Moment of couple = (F,) (perpendicular
distance between the two forces),

= (magnitude of any one of the two
forces) (perpendicular distance between the two
forces) (2.5.8)

Student friends, do you know that you are
also using couple in practice ? When you are
driving scooter or car, to turn the vehicle, the
forces you apply on the steering, produce couple.

(f) Equilibrium of a rigid body :

Now we shall discuss the equilibrium of the
rigid body under the influence of many forces
acting on it. If the external forces acting on the

.. - - —> .
rigid body are F | SHPIRPPIS , F, and if resultant

RN

- N —
force F = F +F +..+ E, =0 (259

then the rigid body remains in translational

equilibrium. Writing the above equation in the

form of the components of forces, 2 F,=0;

i
2 FinO; andz in=0

]

259 a)

i
If the torques produced by the above
- - -
, T, then the

mentioned forces are T;, T,, ....., T,

rigid body remains in rotational equilibrium when

- - — -
T=17+71T +..+71, =0 (2.5.10)

That is, if rigid body is stationary, it will
remain stationary and if it is performing rotational
motion, it will continue rotational motion with
constant angular velocity.

Writing this equation in the form of
components of torques.

Z ’Cxi=0; 2 ryi:O;and 2 ‘czi:O
l l 1(2.5.10 a)

Illustration 5 : As shown in the figure a
block of mass m moves with constant velocity
under the influence of a force F acting in the
direction making an angle 0 with the horizontal.
If the frictional force between the surface of

the block and the horizontal surface is fk’ find

the distance of line of action of normal reaction
N from O. Length of the block is L and height
is h.

N F
1 /(,
s ) T
® h
0 |
J{{‘ € L
n\:_z{
Figure 2.9
Solution : The block does not perform

rotational motion in spite of being under the
influence of various forces. Hence, it is in
rotational equilibrium. In this condition the vector
sum of the torques produced due to different
forces should be zero. Taking all the torques with

reference to the point O, we get, T = f,(0) —

(mg)(%) + N@) — (F cos) () + F sin(L) = 0.
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(Here the torque in the clockwise direction
is taken negative and the torque in the
anticlockwise direction is taken positive).

N() = (mg)(%) + (F cos®)(h)

— F sin6 (L) (1)

Now, for translation equilibrium,

mg = N + F sin0 and F cosO = f,

.. N =mg — F sinf

Substituting this value in equation (1),

and making x the subject of the formula

we get,

(mg)( )+ (F cos0)(h)—(F sin0)(L)

X =

(S] o

mg — Fsin®

2.6 Angular Momentum
(a) Angular Momentum of a Particle :

Suppose the position vector of a particle of mass

%
mis OQ = r in a Cartesian co-ordinate system

as shown in the Figure 2.10. The linear velocity

of this particle is 3’ and its linear momentum is
—
P = mv . Here, the particle Q is not necessarily

a particle of a rigid body. Suppose the angle
- —
between P and r is 0. We have taken the

particle and its motion in the (X — Y) plane only
5

%
for simplicity. The vector product of r and P

-
is called the angular momentum | of the particle

with reference to the point O.
N7

[7

-
0= ~JB P =m
X = - Q \“""'\-._

Angular momentum
Figure 2.10
- d
r

N
[ = 2 (2.6.1)

7 1
The SI unit of [ is kg m?s™' or Js.

(i) The magnitude of 7 depends on the
selection of the reference point, hence the
reference point must be mentioned in its definition.

(i1) The direction of 7 is given by the right
hand screw rule for the vector product. In the
present case the direction of 7 is in OZ
direction.

— - -

(iii) Now | [ I =1r x pl=rp sin0

But from Figure 2.10,

r sin® = OR

[ = (p) (distance OR)

Thus the angular momentum of the particle

= (linear momentum) (perpendicular distance
of the vector of linear momentum from
reference point)

= moment of linear momentum with
reference to point O.

Note : Cartesian components of angular
momentum of a particle :

By definition, the angular momentum is
— - -

[ =r xp
ik
= |* Yy z
Px Py D

= Op, — )i + @, —xp)]

+ (p, = Ik
- ~ e ‘o
I =17 +1Lj+ Lk

X

Here, lx, l Y and lZ are the components of
angular momentum with reference to X, Y and
Z axes respectively.

(b) The relation between angular
momentum of a particle and torque acting
on it :

Differentiating equation (2.6.1) with respect
to time, we get

- — -
dl _ s dp 4 dr o 3
dt dt dt

N
But 4P - rae of change of linear
dt
momentum = F (force) and g = Vv (velocity)
t



ROTATIONAL MOTION

27

% ﬁ . . . .
But v and p being in the same direction

— —
the vector product v x p =0

dl . N — _ —
r X F T
dt

(2.6.2)

Thus the time rate of change of angular
momentum is equal to torque. This result is
similar to Newton’s second law of motion “the
time rate of change of linear momentum is
equal to force.”

(¢) Angular momentum of system of
particles

Suppose the angular momentum of particles
of a system made up of n particles are

- - —
s Lyl -

N
Hence the total angular momentum [, is,

- - —

L =14 +1 +..+] (2.6.3)
— - — —

sdr _dh o dh o dl, (2.6.4)
dt dt dt dt

Using equation (2.6.2)

dL

— — —

I =17 + 7, +.... + 7,
dL

SEE = 2 2.6.5
o P (2.6.5)

Thus the rate of change of angular
momentum of a system of particles is equal to
the resultant external torque.

(d) Angular momentum of a rigid
body :

The relative distance between the particles
of a rigid body remain invariant, hence it is a
special case of the system of particles. We
know that every particle of the rigid body
performs circular motion in a plane perpendicular

to the rotational axis. If we take the centre of
the circular path of every particle as reference
point, the angular momentum of respective

particle is found to be along the rotational axis.
. - Py
Moreover, for every particle 7 and P are

mutually perpendicular.
We know that,
N

— — -
L=11+12+...+ln

Using equation (2.6.1)

N0
X
SaAj

N - — —
= I

L rlxpl+2><p2+...+
— - .

Here vector 7 and p being mutually

_)
perpendicular, the magnitude of L is,

%
LI = " p+rp, + ..+ rp
N

— N -
(- r L p,hence | r x Pl=1p sin 90° = 1p)

N

AL = rmy, + rmy, + ..+rmpyv
(s P =my)

Here, angular speed of each particle is
same.

= 2 2 2

L1l = mrro + myr,o + .+ mr o
v =ro

_ 2 2 2

= (mlr1 +myr + o+ mr )®

— -
ST =1 Tl (2.6.6)
Here I = mr} + myr? + ... + mr?
nn

S 2
=Y myr,
= i

i=1

I is called the moment of inertia of the
rigid body about the given axis of rotation.
More details about it are given in the article

2.9. In the present case :3 and f both being

parallel to the rotational axis, I can be taken as
a scalar. In this condition the equation (2.6.6)
can be written in the vector form as under.

- -

L =1 (2.6.7)
— —

AL _ 1d® (2.6.8)
dr dt
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Combining equations (2.6.5) and (2.6.8),

- -
dL _do _1q = 1

aL  — = (2.6.9)
dt dt
Law of conservation of angular
momentum :
=
From equation (2.6.9), if 1 = 0,

N
I, = constant.

Thus, “if the resultant torque acting on
the rigid body is zero, the angular
momentum of the rigid body remains
constant.” This statement is called law of
conservation of angular momentum.

2.7 Geometrical Representation of the Law
of Conservation of Angular Momentum

Geometrical representation of the law of
conservation of angular momentum
Figure 2.11
As shown in the Figure 2.11, a planet P

revolves around the sun in an elliptical orbit
(which is shown as dotted line). Suppose the

I
linear velocity of the planet at P is vy .

. The angular momentum of the planet
with respect to sun is

L = mvd (2.7.1)
Now, the area of triangle SQP, is
A = 2(5Q (PQ)

= 2@ (v PQ = )

In time Az, the planet moves from P to P,
During this, if the increase in the area of the
triangle SQP is AA, then

AA = L)As)

Now in the lim Ar — 0, the areas of the
triangles SPP, and SPP, become equal.

. The time rate of change of area swept
by the line joining the planet with the sun is

dA 1 ds\ 1
i = 2@ (dt) = 3@

Multiplying both the sides of the equation

by m, we get m@ = %mvd

di (2.7.2)

Substituting the value of mvd from equation
(2.7.1),
dA 1

_:_L

m- o 3 (2.7.3)

Now the line of action of the gravitational
force on planet due to the sun, passes through
S, the torque due to this force with respect to
sun becomes zero.

Hence the angular momentum of the planet
remains constant.

dA

i (2.7.4)

= constant

Equation (2.7.4), represents Kepler’s second
law of planetary motion. “The area swept by
the line joining the sun and the planet in
unit time (which is called the areal velocity)
is constant.”

Thus, the areal velocity being constant
is the geometrical representation of the
law of conservation of angular momentum.
2.8 Moment of Inertia

Suppose the masses of different particles
of the rigid body are m, m,, ..., m, and their
perpendicular distances from the given axis are
respectively Fio Ty oo T then mlrl2 + m2r22 +

.+ mnrn2 is called the moment of inertia (I)
of the rigid body about that axis.

. _ 2 2
That is, I = mr- + myry+ ...
X}
= 2™l
l

The magnitude of the moment of inertia

+ mr?
n

depends on the selection of axis and the
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distribution of mass about it. The SI unit of
moment of inertia is kg m?. Its dimensional

formula is M'L2T°

— —
The equation [, = I resembles with the

- -

equation P = my of the linear motion, and
. % ﬁ .

the equation T = Io resembles with the
—

equation F = mz of the linear motion. In

reference to this resemblance we can say that
the moment of inertia plays the same role in
rotational motion as the mass plays in the linear
motion.

Illustration 6 : If we accept the earth
as a solid sphere of uniform density and
imagine that it contracts so that the radius
becomes half without change in mass, then
what will be the length of day which at
present is of 24 hours ?

Solution : If we accept that no external
torque acts on the Earth we can take its
angular momentum as constant. Using equation
(2.6.6) and comparing the angular moments of

the Earth, in the two cases,

Lo, = Lo, (2.6.10)

Now for the solid sphere I = %MR2 about

its diameter, where M = mass of the sphere

and R = radius of the sphere. (See Table-2.1).

I = 2MR2 - 2\R2
- I, = $MR} and I, = $MR]

But R, = 2R, Substituting these values in
question (2.6.10), 0, = 4(1)1
Thus the new rate of rotation o, becomes

four times the present rate ®,, and hence the
present day of 24 hours becomes day of 6
hours.

2.9 Radius of Gyration

Suppose a rigid body has mass M. It is
made up of n particles each having mass m.

m,=m, = ... M = nm

1 ) =mn=m..

As shown in the Figure 2.12, the moment

of inertia of inertia of the body about the given

axis is I = mr? + mr22 + ...

+ mr?
1 n

Radius of Gyration
Figure 2.12

Here, A
distances of the respective particles of the

body from the axis.

r are the perpendicular

mn(rl2 + r22 +....+ r2)

.. I n
n
- M (r12+r22+....+rnz)
n
= MK? (2.9.1)
2, .2 2
Where K2 = ottt
n
= <> (2.9.2)
2, .2 2
DK = \/”1 tr .t (2.9.3)
n

Thus, K? shows the mean (average) value
of the squares of the perpendicular distances of
the particles of the body from the axis. K is
called the radius of gyration of the body
about the given axis. Its SI unit is m.

2.10 Two Theorems Regarding Moment of
Inertia

(i) Theorem of Parallel axis : The

statement of this theorem is “The moment of

I 1

=T |

d
-

Theorem of parallel axis
Figure 2.13
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inertia (I) of the body about any axis is equal
to the sum of the moment of inertia about a
parallel axis passing through its centre of mass
and the product of its mass with the square of
the perpendicular distance between the two
axes.” See Figure 2.13.

I =1 + Md (2.10.1)

(ii) Theorem of perpendicular axis :

This theorem is applicable only to the planar
bodies. If we take X and Y axes in the plane
of a planar body (See Figure 2.14), then the
moment of inertia of the body about the Z axis
which is perpendicular to the plane of the body
is equal to the sum of the moments of inertia

of the body about X and Y axes.
z

Jl =

>y

X
Theorem of perpendicular axis
Figure 2.14
L =1 +1 (2.10.2)
Where I, and I, are the moments of
inertia of the body about X and Y axes
respectively. When planar body is in YZ plane,

I =1, + I, and if it is in XZ plane then

[, =1L +1

Mass is the inertia for linear motion, the
moment of inertia is the inertia for rotational
motion.
2.11 Calculation of Moment of Inertia And

Radius of Gyration

(a) Moment of inertia of a thin rod about
an axis passing through its centre and
perpendicular to its length :

N~
A

Moment of inertia of thin rod

Figure 2.15

Consider a thin rod of mass M and length
[, with uniform cross section and uniform mass
distribution as shown in Figure 2.15. Consider
the axis YY' passing through its centre O and
perpendicular to its length. The origin of the
co-ordinate system is coinsiding with centre of
the rod and the x—axis is along the length of
the rod. Consider a small element of rod with
length dx at distance x from the origin.

Mass per unit length of rod A = %

mass of element of length dx is

Adx = %dx.

The moment of inertia of this element

about YY' axis is dI = de - ¥ (2111

[

To find the moment of inertia of the entire

rod about YY' axis, we integrate equation
(2.11.1) from x = =I/2 to x = 12

"o S 7HI2
. M M| X
I = _[ ldxx2=_|:3:|

-1/2 ! -2
M| L,
= g{ gt s}
2
1= 1\1/[21 2.11.2)

For uniform thin rod its centre of a mass
is at its geometrical centre. Thus, this moment
of inertia is the moment of inertia I about an
axis passing through the centre of mass.

Radius of gyration : When equation 2.11.2
is compared with I = MK?

2
2 _ 17
K_12

l

K= T3
Ilustration 7 :
inertia I about an axis passing through the
end and perpendicular to the length of a rod
of uniform cross section having mass M and

Find the moment of

length [ and also find radius of gyration.

Solution : Suppose the mass of the rod is

M. The distance of the end from the centre of
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the rod is d = [/2. According to equation

(2.11.2) the moment of inertia of this rod about
an axis passing through its centre and

M2
12

perpendicular to its length is I =
MA AY

I

I

I

I

!

®0

i

I —
= |

Figure 2.16
Using theorem of parallel axis, moment of
inertia of the rod about an axis passing through
its end and perpendicular to the length is

=1 + Md
M2, MI? _
1t a4 d=1/2)
L. MP
LI = 3
Now comparing with I = MK?
. L

K> =

3 ..KZ\/g

Ilustration 8 : Find the moment of
inertia of a uniform circular disc about an
axis passing through its geometrical centre
and perpendicular to its plane and radius of
gyration :

Solution :

Consider a uniform circular disc with mass
M and radius R as shown in the Figure 2.17.
We will find moment of inertia of this disc

about the axis zz' passing through its
geometrical centre and perpendicular to its plane.
z

>

dx

f

7
Figure 2.17

Here, area of the disc A = mR? and mass
per unit area of the disc

_ Mass of the disc = _M_
Area of the disc ~ mR?

Let us imagine this disc consisting of several
concentric rings with different radii and their
centre is O as shown in the Figure 2.17.

Let us consider one of such rings with

radius x and width dx as shown in the figure.
Area of this ring a = 2mx-dx and
M
mass m = OC-a = W 2mx-dx) =
2Mx
R2
If dI is the moment of inertia of this ring

dx.

about the axis zz' then

dl = (mass of the ring)(radius of the ring)?

- 211:[2)“ dx 2 1)

The total of the moment of inertia of such
concentric rings with different radii gives the
moment of inertia of the disc as a whole about

the zz' axis.
For this integrating equation (1) in the
interval x = 0 to x = R

R
) m[ﬁ}
2 4 0
2M | R*
(5
1= MR 2
' 2
Now comparing the equation (2) with
I = MK?
2 _ 1o
K* = 2R

R
Radius of gyration K = E
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Illustration 9 : Find the moment of
inertia of a disc of uniform density about an
axis coinciding with its diameter.

Solution :

Suppose the mass of disc is M and radius
is r. Z axis is perpendicular to the plane of the
disc and passing through its centre. From table
1, the moment of inertia about this axis is

[ - MR’
4 2

Figure 2.18
If the moment of inertia of the disc about
X and Y axis are I and Iy respectively,

according to the theorem of perpendicular axis
(See Figure 2.18).

L =1 +1
P4 X y
The disc is symmetric about x and y axes
I =1 L =21
X y 4 X
2
Moreover I = MR
2 2
MR® _
) = 21
[ - MR’
- L 1

Illustration 10 : The mass of a hollow
cylinder is 4 kg and its radius is 0.1 m. It
is capable of rotating about its geometrical
axis. By winding a thin string around the
cylinder a force of 50 N is applied at the
free end of the string, tangentially to the
cylinder surface. So it starts rotating. Find
the answers to the following questions :

(1) torque acting on the cylinder (2) angular
acceleration of the cylinder (3) angular velocity
at the end of 4 s. (4) angular momentum at
the end of 4 s. (5) rotational kinetic energy at
the end of 4 s. (6) angular displacement during
4s. (7) work done on the cylinder during 4 s.
(8) power at the end of 4s.

Solution :

(1) The torque on the cylinder :

- -
T =7

xff:rFsinGﬁ

1T = F o 0=7)

=(0.1) (50) =5 Nm

(2) Angular acceleration of the cylinder

(o) -
Here © = I = mr’a
5 =@ 01)? () = 004 o
.o = 125 rad s
(3) Angular velocity (®) :
© =0, +o =0+ (125 4
= 5000 rad s
(4) Angular momentum (L) :
L = Io = mPo
L =@ (0-1)* (500) = (0-04) (500)
=20 kg m* 57!

(5) Rotational kinetic energy (E) :

E= Lig? = 1mp 2

= %(4) (0-1)* (500)*> = 5000 J

(6) Angular displacement in 4 s :

_[@+@], _ [0+500
6_{ 2 }‘[ 2 J4

= 1000 rad

(7) Work done in 4 s W = the kinetic

energy gained by the cylinder in this time =
5000 J

or work W = 10 = 5 x 1000 = 5000 J
(8) Power at the end of 4 s is

P=1to =5 x 500 = 2500 watt
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Table 2.1: Moment of inertia and radius of gyration for some symmetric bodies

Body Axis Figure I K
Thin rod of Passing through K-I)
|
Length L it t d ' Lz | ==
eng its centre and per- i 12 23
pendicular to its length I
)
Ring of radius R Any diameter lMRz ..
2 V2
|
Ring of radius R Passing through its W
centre and perpen- @ MR2 R
dicular to its plane !
[
Circular disc of Passing through its |
(T)
radius R centre and perpen- | 1 , R
c; D 1k i\
2 2
dicular to its plane T V2
|
Circular disc of
1 R
radius R Any diameter Sf—G : }——— ZMR2 2
Hollow cylinder of Geometrical axis
radius R of the cylinder -}m- MR? R
Solid cylinder of Geometrical axis
e | 1ge | R
radius R of the cylinder EMR 2
Solid sphere of
Any diamet 2\ r2 2
radius R ny diameter 5 MR 5 R
Hollow sphere of
Any diameter Py 2
radius R 3 MR 3 R

33
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Table 2.2 : Comparison between physical quantities of linear motion and

rotational motion

Translational motion Rotational motion
Linear displacement, 2 Angular displacement, 0
Linear velocity, 7 Angular velocity, ¢
. . = d_> . - daw
Linear acceleration, a = 4Y Angular acceleration, o = &%
dt dt
Mass, m Moment of inertia, I
. — i —> -
Linear Momentum, p = my Angular momentum, [, = [®
- = —
Force, F = ma Torque, T = la
Newton’s Second Law of Motion, A result similar to Newton’s Second Law,
— -
E _ dp - _ dL
T

dt dt

2

Translational kinetic energy K = %mv Rotational kinetic energy K = %Ico

- —
Work, W = F.{ Work, W = 10
Power, P = Fv Power, P = 1t
Equations of linear motion taking place Equations of rotational motion taking place
with constant linear acceleration with constant angular acceleration :
v=vo+at 0)2(1)0+0Lt
d=vi+ Lap 0=ar+ 1ol
-0 2 -0 2
2ad = V' — v/} 200 = o - o
Dlustration 11 : A circular turn-tabale .. initial angular momentum of (turn-table

rotates in the horizontal plane with an angular
speed of 20 rpm about a vertical axis passing
through its centre. A man of 60 kg mass is (

+ man) = their final angular momentum

standing on the edge of this table. If the
man goes from the edge to the centre, what
would be the angular speed of the turn-table

2 2
MR R | - MRZ,

now ? Consider the mass as a point particle (M+m)g) — M(D
and the turn-table as a uniform disc. The 2 ! 2
mass of the turn-table is 200 kg. . (100 + 60) (20) = 100
S 5

Solution : mass of man m = 60 kg, mass of 5o, =32 pm

2
Note : In this illustration the final kinetic
energy will be found to be more than the initial

turntable m=200 kg, W= 20rpm Here, the external
torque on the system is zero. hence its angular
momentum remains constant.
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kinetic energy. The increase in the kinetic energy
is the work done by the man in going from the
edge to the centre. To calculate this take the
radius of the turn-table R = 15 m.

Illustration 12 : A child of mass m is
sitting on the board of the merry-go-round
rotating about an axis passing through its
centre and perpendicular to its plane, at 1 m
away from the axis. With what angular
velocity the merry-go-round be rotated so
that the child is on the verge of sliding on
the board of it ? The coefficient of friction
between the child and the surface of the

board is 0.25. Take g = 10 m s>

Solution : Different forces acting on the

child at point P are shown in the Figure 2.19.

A R

je—1 m—a
(Ehild BN N mvz
Frictional r
force Pseudo
4 Centrifugal
¥ mg Force
Figure 2.19
2
_ . my _
Here, R = normal reaction and =

centrifugal (fictitious) force. When the frictional

3]

V. the child is on the

force PR becomes

verge of sliding on the board of the merry-go-

round.

\S]

X = R = pmg

L re’ = g (.

Hg
-

_ [025x%10
- 1

158 rad s°!

L=

lustration 13
around a disc of rdius r and mass M and at
the free end of the string a body of mass m
is suspended. The body is then allowed to

A string is wound

descend. Show that the angular acceleration

of the disc is o = —)

Solution :

The suspended body and the forces acting
on the disc are shown in Figure 2.20.

S

sl

4T

Tension
mg

Figure 2.20
The equation of the linear motion of the

suspended body is ma = mg — T (Where
T = tension in the string)

T =m (g — a)

Now the torque on the disc T = RT

v 7T =7 xF)
la=RT . o= RT _Rmg-a)
I I

Rm(g —a) o

MR?/2 %= Rm @ 9
But a = Ra

Lo 2MmE _ 2mRa __ mg
RM ~ RM R(m+%)

212 Rigid Bodies Rolling without Slipping

When a rigid body is rolling without slipping
its motion is combination of linear (translational)
motion and the rotational motion. The centre of
mass of the rigid body performs translational
motion and the body itself rotates about its own
axis.

In the description of such combined motion,
both of the above mentioned motions can be
described independently.



36

PHYSICS

h

mgcost

v

Rigid body rolling without slipping
Figure 2.21

As shown in Figure (2.21) suppose a rigid
body rolls down without slipping along an inclined
plane of height h and angle 6. Here, the mass
of the body is m, moment of inertia is I,
geometrical radius is R and the radius of gyration
is K. When the body reaches the bottom of
the inclined plane, its potential energy decreases
by mgh. According to the law of conservation
of energy mechanical energy, this decrease in
potential energy is converted as increase in the
kinetic energy. Here, the kinetic energy of the

Translation ) (

. Rotational
body is = |kinetic energy

kinetic energy

= %va + %Ico2

According to the law of conservation of
mechanical energy,

1

mgh = %mvz + 51(02 (2.12.1)

Now using @ = y/R and I = MK? in
equation (2.12.1)
(Note : ® = y/R equation is applicable

only when the body is rolling without slipping.
For the body rolling with slipping this equation

cannot be applied.)

2gh

Vo= [1+K_2}
R2

If the length of the slope is d, and the
body starting from rest, moves with linear

(2.12.2)

acceleration a to reach the bottom.
v = 2ad
From the geometry of the figure,

h

sin @

2 _ 2ah
sinf
Combining equations (2.11.2) and (2.12.3)

we get,

d =

(2.12.3)

gsin6

a = [1+K—2}
R2

Here, the linear acceleration a is along the
inclined plane, its value should be equal to the

(2.12.4)

component of g along the inclined plane g sin®.
But according to the equation (2.12.4) its value

gsinf

2
is found as {1+K_}
R2

. decrease in linear acceleration,

gsinf

2
gsin® — {1+K_}
R2

gsinO |: 2K2 2:|
K”“+R

This decrease in the linear acceleration is
due to the frictional force F acting on the
rolling body.

The work done against the frictional
force, results in the rotational Kinetic
energy and hence only even in the presence
of frictional force we have been able to
use the law of conservation of mechanical
energy.

Thus, the frictional force

el
F = ind | =5 2.12.5
mgsinG | T2 o2 ( )

Now, as shown in the Figure 2.21, the
normal reaction N and mgcos® balance each
(2.22.6)

Dividing equation (2.11.5) by equation
(2.11.6)

F _K*
N ~ [K2+R2}ane

other, hence N = mgcosO
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But % = W, (coefficient of static friction)
{ < }
B = tan®
Ky K2 4+R2 |9

1
= R2 tan® (2.12.7)
ke

Here, the line on the surface of the rolling
body, which touches the inclined plane at a
given instant, is stationary instantaneously and
hence in the above equation (2.11.7), the static
coefficient of friction is used.

Hence, from equation (2.12.7) we can say
that if

b > ﬁmne (2.12.8)

condition is satisfied, then only the body can
roll down the slope without slipping. Special
cases

(1) Thin ring :
From Table 2.1, for thin ring K = R
Substituting this value in equation (2.12.8)

B> ltan@ (2.12.9)

\S]

R
(2) Circular disc : K = E(from Table2.1)

Substituting this value in equation (2.12.8)

[V %tan@ (2.12.10)
: 2

(3) Solid sphere : K = 5 R (from Table2.1)

Substituting this value in equation (2.12.8)

[T %tane (2.12.11)

SUMMARY
Rigid Body : The system of particles in which the relative distance between
the paricles remain invariant, is called rigid body.

Rotational kinematics : A branch of physics in which the rotational motion
is described without mentioning its causes, is called the rotational kinematics.
Rotational Dynamics : A branch of physics in which the rotational motion is
described along with its causes and properties of the body, is called rotational
dynamics.

1 scalar

Angular Speed : ® = fl_? Its SI unit is rad s' or rotational s~
relation between angular velocity and linear velocity.

vV = rm

Vector relation between angular velocity and linear velocity

- — N

vV = o X r
Right Hand Screw Rule :

A right hand screw is adjusted (kept) parallel to the rotational axis and is
rotated in the same sense as the rotation of the body, the direction in which

e . .o
the screw shifts is taken as direction of angular velocity ® .

Angular acceleration

—

N
a:@
dt

. Its SI unit is rad s or rotation s.

. . L= .
Vector relation between linear acceleration a and angular acceleration.

— — - = — — —
a =0 X vy +a Xr =a, *t ar
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is called radial component a, of the linear acceleration.

2

a =ov =2 =ro?
r

is called tangential component a, of the linear acceleration

= or

Magnitude of linear acceleration

a = /azr T a2 = o+ d¥r?

3. Resemblance between the equations of motions of rotational motion with
constant angular acceleration and linear motion with constant linear acceleration.

Linear motion Rotational motion
v =1y, + at 0 =00, + o
x—vt+lat2 6-03t+l0~t2
-0 2 U 2
v+ v, O + ®
T = ( 2 )t 0 = ( ) t
V2 —v20 o> —co%
X = 2a 0 = 20,

4. Torque plays a similar role in rotational motion as the force plays in the linear
motion.
- - -
Torque T = r x F = Moment of force.

Its direction can be obtained by right hand screw rule.

% A . . . .
Component of the torque T *71 is responsible for the rotational motion. Where
71 is the unit vector along the stationary axis of rotation.

Torque is the measure of the effectiveness of the force in producing rotational
motion.

Moment of couple =  (magnitude of any one of the forces) (perpendicular
distance between the two forces)
If the forces acting on the rigid body are

- - — T — —
8o 18 o E, and 1f1-“<l L R p— +Fn=0,
then rigid body remains in translational equilibrium.
) - = N
If the torques produced by the above mentioned force are T;, T,, ... T,
= - - .. . .
and T) + T, + ... + 1, = 0, then the rigid body remains in rotational
equilibrium.
5. Moment of linear momentum is called angular momentum.
- - =
angular momentum [ = ¥ x P
—
] g dl _7 = -
Time rate of change of angular momentum gives torque d—: r x F =1
t
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10.

-
Torque acting on the system of particles ‘ii—l = ?
t
. = -

For rigid body L = 1o
Where I is the moment of inertia. I = m*, + m;r°, + ... + mr

7 -

i

dl - Ia = 1

dt

Law of Conservation of Angular Momentum.

“If the resultant torque acting on the rigid body is zero, the angular momentum
of the rigid body remains constant.”
%

%
dl — 0 > I, = constant
dt

Kepler’s Second Law for planetary motion can be obtained from the physical
representation of the law of conservation of angular momentum which is as
under.

“The area swept by the line joining the sun and the planet in unit time (which
is called areal velocity) is constant.”

ie. ‘2—‘;“ = constant, here dA is called areal velocity.

dt

In general for rigid body I = MK?

r2 +r 2 + + 7 2
where K = L R . Here, K is called radius of gyration.
n

Theorem of parallel axis for moment of inertia

I =1, + Md* where I. is the moment of inertia about the axis passing
through the centre of mass and M is the mass of body and I is moment of
inertia about the axis parallel to the axis passing through the centre of mass
and located at a perpendicular distance (d) between the two axis.

Theorem of perpendicular axis for moment of inertia
If 1L Iy and IZ are the moment of inertia about X, Y and Z axis respectively,
then IZ =L + Iy

Condition for the body to roll without slipping.

[T I: 12] tan®
s

Expressions for the linear velocity and linear acceleration for the body rolling
on the slope without slipping are

2gh

V= I: > :I and a = [—2] respectively.
eI ey
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EXERCISES

Choose the correct option from the given options :

1.

If the angular speed of a particle 10 cm away from the axis of rotation of

a rigid body is 12 rad s™!, what will be the angular speed of a particle 20

cm away from the axis of rotation ?

(A) 2 rad s (B) 15 rad s' (C) 12 rad s!' (D) 10 rad s
The angular speed of a particle 10 cm away from the axis of rotation is 20
rad s™!. What will be its linear speed ?

(A) 1 cm s7! (B) 20 cm s (C) 200 cm s™' (D) 400 cm s~

What is the angular speed of the minute hand of a clock ?

T -1 14 -1
(A) 23200 rad s (B) 1300 rad s
(©) % rad 5! (D) %rad 5!

A wheel initially at rest acquires an angular velocity of 64 rad s™! in 4 s.
Hence its constant angular acceleration is .......... .

(A) 64 rad s (B) 128 rad s (C) 16 rad s (D)4 rad s

An artificial satellite orbiting round the Earth has mass of 500 kg. What will
be its areal velocity if its angular momentum is 4 x 10" J s ?

(A) 2 x 10* m?s7! (B) 0
(C) 2 x 10" m?s™! (D) 4 x 10* m? 57!

Suppose the Earth suddenly contracts and its radius becomes %

(R = present radius of the Earth) keeping its mass same. Then what will
be the length of the day ?

(A) 15 h B) 6 h (C) 48 h (D) 36 h

There are two identical eggs. One is raw and other is boiled and both are
rotated with same angular speed. Which one will come to rest earlier ?

(A) Can’t say anything.

(B) both will come to rest simultaneously
(C) boiled

(D) raw

A hollow cylinder and a solid sphere have same mass and the same radius.
Both are rotated by applying equal torques for the same time interval. The
cylinder rotates about its diameter. Which one of them will have greater
angular speed ?

(A) nothing can be said

(B) both will have same angular speed
(C) Cylinder

(D) Sphere
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9. A plane is inclined at an angle 30°. A solid cylinder is kept at the top of
the plane. If the co-efficient of static friction between surfaces of inclined
plane and cylinder is 0.35, can cylinder roll without slipping on the inclined
plan ?

(A) Cylinder will remain stationary on the inclined plane
(B) nothing can be said

(C) Yes

(D) No

10. A cylinder is rolling down the inclined plane without slipping. On which
factor does the velocity of a cylinder at the bottom of an inclined plane

depend ?
(A) mass of the cylinder (B) length of the cylinder
(C) height of the inclined plane (D) radius of the cylinder

11. The mass and radius of a circular disc are 4 kg and 2 m respectively. The
moment of inertia of the disc about axis passing through its centre and
perpendicular to its plane is....

(A) 24 kg m? (B) 8 kg m? (C) 16 kg m*> (D) 11 kg m?

12. What will be the effect on the length (24 hours) of a day, if snow on the
poles of the Earth melts and water comes at the equator ?

(A) day becomes shorter
(B) day becomes longer
(C) no change in the length of the day
(D) length of the day and night will become same.
13. If torque acting on rigid body is zero, then which of the following will

remain constant.
(A) Linear momentum (B) Angular momentum
(C) Force (D) Impulse of force

14. A fly wheel starts rotating from rest and acquires rotational speed of 240

1

revolution s~ in 4 minutes. The average angular acceleration is .......... .

2 2

(A) 1 revolution s~ (B) 3 revolution s~

2 2

(C) 4 revolution s~ (D) 2 revolution s~

15. Two identical spheres are rolling down the slope. One is solid and other is
hollow, the ratio of moment of inertia of solid (axis of rotation is diameter)
to that of the hollow is .......... .

1 3 2 2

A) 3 B) 3 © 3 (D) 5
16. If axis of rotation of two identical cylinders, one solid and other hollow, is
taken as their geometrical axis. Then the ratio of radius of gyration of solid

one to that of hollow is .......... .

<€ 2 D) V2

=

A % ()
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17.

18.

19.

20.

A thin ring of mass M and radius R is rotating about axis passing through
its centre and perpendicular to its plane with angular velocity ®. Two point
objects of mass m are attached gently to the opposite ends of its any
diameter, then angular velocity of the ring will be

M M
(A) (M+2m)(’) (B) (M+m)m
M + 2m M - 2m
© (T)‘” (D) (M+2m)°)

A ring of radius r and mass m rotates about the axis passing through the
centre and perpendicular to its plane. The kinetic energy is .......... .
(A) %mrzoaz (B) %mrmz (C) mrw? (D) mre?

The ratio of magnitude of the orbital angular velocity of geostationary
satellite to that of earth’s rotation about its own axis is

(A) 3:1 B) 4:3 @O 1:1 D)1 :2

Areal velocity of a planet rotating round the sun

(A) keeps on increasing (B) remains constant

(C) keeps on decreasing (D) nothing can be said
ANSWERS

1. (O 2.(C) 3B 4.(C) 5 (D) 6 (A
7. (C) 8. (D) 9. (C) 10. (C) 11. (B) 12. (B)
13. B) 14. (A) 15. (B) 16. (B) 17. (A) 18. (A)
19. (C)  20. (B)

Answer the following questions in short :

10.
11.
12.

13.
14.
15.

Give SI units of angular velocity and angular acceleration.

What is the value of the tangential component of linear acceleration of the
representative particle of the rigid body rotating with constant angular
velocity ?

In the rotational motion of the rigid body the angular variables of all particles
are equal ?

Which physical quantity does play the same role in rotational motion as the
force plays in the linear motion ?

How is the direction of torque is determined ?

Which component of the torque is responsible for rotational motion about Z
axis ?

What is the effectiveness of force producing the rotational motion known
as ?

Give the formula for the moment of couple.

What is the moment of linear momentum known as ?

What does the time-rate of change of angular momentum indicate ?
State the law of conservation of angular momentum.

What is the time rate of the area swept out by the line joining the planet
with the sun known as ?

State theorem of parallel axes for the moment of inertia.

State the theorem of perpendicular axes for the moment of inertia.

Write the condition in the form of the formula for a body to roll down along
slope without slipping.
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Answer the following questions :

1.

11.

12.

13.

Define angular displacement of rigid body and obtain formula for instantaneous
angular speed.

Obtain the relation between the linear speed and the angular speed for a
representative particle of a rigid body.

Explain the right hand screw rule for the direction of angular velocity and
establish the vector relation between the linear velocity and the angular
velocity.

Obtain the relation between the linear acceleration and the angular acceleration
for a representative particle of a rigid body.

Derive the equations for the rotational motion with constant angular
acceleration.

State the conditions for the equilibrium of a rigid body.

Give the physical explanation of the definition of torque.

What is couple ? Obtain the formula for the moment of couple.
Obtain the relation between angular momentum and torque.

Obtain formula f = I for the angular momentum of the rigid body.

2gh

2
Obtain the formula v = I: 1+ K_2 :I for the rigid body rolling without
R

slipping on an inclined plane of angle 6.
Assuming the velocity of the body (rolling without slipping) reaching the

2gh

2
bottom of the slope of length d is v = 4|1 + K~ | obtain formula for its
R2
linear acceleration and frictional force.
Assuming the linear acceleration of the body rolling on the slope without

sinf

slipping is a = g—z’ obtain the formula for static coefficient of
I+ K—2
friction. R

Solve the following problems :

1.

A rigid body acquires angular speed of 100 rad s~ after undergoing angular
displacement of 600 rad in 12 s. Find its constant angular acceleration and
initial angular speed.

[Ans. : 8.33 rad s_l; 0 rad s_l]

Initial angular speed of a wheel is 20 rad s Its angular displacement in
10 s is 100 rad. How many rotations will it make from the beginning to the
time till it stops ? Find its angular acceleration also.

[Ans. : 0 = % rotations; o = —2 rad s
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3.

10.

11.

12.

A ring of mass 20 kg and radius 1 m, is rotating about the axis passing
throught its centre and perpendicular to its plane. The angular speed of the

ring changes from 5 rad s™' to 25 rad s™' in 4 s. Find (1) the magnitude
of the torque acting on it (2) work done by the torque during 4 s.

[Ans. : T = 100 N m; W = 6000 J]

The velocity vector of a particle is (2, 3, 6) unit when its position vector is
(4, 6, 12) unit. Find the angular momentum of the particle. Mass of the
particle is 50 unit.

[Ans. : zero]

A hollow cylinder rolls (about its geometrical axis) without slipping on an
inclined plane of angle 0. Find its linear acceleration in the direction parallel
to the surface of the inclined plane.

[Ans. : 0.5 gsin0)]

The position vector of two point-like objects of masses 100 kg and 200 kg
are (2, 4, 6) m and (3, 5, 7) m respectively. Find the moment of inertia of

this system about z—axis.

[Ans. : 8800 kg m’]
Mass of a solid sphere is 8 kg. Find its linear velocity at the bottom of an
inclined plane of height 70 m (after rolling down without slipping from the
top of the inclined plane). Also find its rotational kinetic energy at the bottom

of the plane. (Take g = 10 m s72)

[Ans. : v = 104/10 m s_l; rotational KE. = 16 x 10? J]
Find the angular momentum of earth due to earth’s rotational motion about
its own axis. Mass of the Earth = 6 x 10%* kg and radius of the Earth =

6400 km [Ans. : 7.15 x 10% kg m? s7!]
Moment of inertia of a body about an axis 3 m from its centre of mass is
8200 kg m?% Find the moment of inertia of this body about the axis 5 m
away from its centre of mass and parallel to the above mentioned axis.
Mass of the body is 200 kg.
[Ans. : 11400 kg m?]
Four point objects of equal mass m are placed at the corners of a square
with side ‘a’. Find the moment of inertia of the system about the axis
passing through the centre of the square and perpendicular to its plane.
[Ans. : 2 ma?]
Four spheres each of mass of M and radius R are placed at the corners
of a square having side ‘a’. Find the moment of inertia of the system about

an axis along one of the sides of square. [Ans. :2(%MR2+Ma2)]

Four point like masses of 1 kg, 2 kg,
3 kg and 4 kg are attached to a rod
of negligible mass as shown in the
figure. Calculate the moment of
inertia of the system about axis AB.
[Ans. : 200 kg m?]

Figure 2.22
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13.

14.

15.

A disc rolls without slipping with constant velocity. What fraction of total
kinetic energy of the disc is in the form of rotational kinetic energy ?

[Ans. : %]
Prove that the moment of inertia of a uniform circular ring of mass M and

radius R about its geometrical axis, is MRZ

. F

Figure 2.25 shows the forces F, :

acting on a light rod. Write the f*

formula for the resultant force. e £ — %

At what distance from A, will A B
this resultant force act ? l

F,

Figure 2.23
N R . n n A

extremely short waves and did considerable improvement upon Hertz’s detector of electric waves.
He produced a compact apparatus for generating electromagnetic waves of wavelengths 25 to
5 mm. Bose turned his attention on response of electromagnetic waves on plants by the end of
the 19th century. He was appointed Professor Emeritus after he retired from the Presidency
College in 1915. He was also elected Fellow of the Royal Society in 1920. On November 23,
1937 Jagdish Chandra Bose passed away at Giridih in Bihar.

Sir Jagdish Chandra Bose (1858-1937)

Jagdish Chandra Bose was born in Bengal in November 30, 1858. He got
his B.A degree from Cambridge University and a B.Sc. from the London
University. He did experiments involving refraction, diffraction and polarization.

. He did his original scientific work in the area of Microwaves. He produced
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3.1 Introduction

The stars in the sky and the planets revolving around the
sun have been attracting the attention of the scientists since
ancient time.

First scientific study of the solar system was carried out
by the Greeks. The principle of Greek astronomy proposed by
Ptolemy, nearly 2000 years ago, is known as geo-centric
theory.

According to this theory the Earth is stationary at the centre
of the universe and all celestial bodies — stars, sun, planets all
of them-are revolving around the Earth. Ptolemy proposed their
motions to be circular. According to him the planets move on
circular paths and the centres of those circles move on larger
circles. But Aryabhatt in the fifth century, proposed a theory
that all planets revolve on the circles with the sun at the centre.

Then, almost one thousand years later Nicolaus Copernicus
(1473—1543) of Poland proposed a definitive model about the
planets revolving on perfect circles with the sun at the centre.
This is known as helio-centric theory. Thus it was a support
to the theory of Arybhatt. Copernicus model was not accepted
by the recognised institutions of that time. But Galileo supported
his theory.

Tyco Brahe (1546—1601) of Denmark had accumulated
many observations, about planetary motion by direct eye, during
his life-time. These observations were studied by Johannes
Kepler (1571-1640) who gave three laws of planetary motion.
They are known as Kepler’s laws. In this chapter we will study
these laws, Newton’s Law of Gravitation and the satellites.

3.2 Kelpler’s Laws
From the study of the observations recorded by Tycho

Brahe, Johannes Kelper gave three laws of planetary motion.
They are called Kepler’s laws. They are as follows.

First Law (Law of Orbits) : “All the planets move in
the elliptical orbits with the sun situated at one of the foci.”
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Elliptic orbit of the planet

Figure 3.1
PA = 2a, MN = 2b
OP = OA = g = semi-major axis
In the Figure 3.1 the ellipse PNAM showing
the path of a planet has two foci S and S'.
This law of orbit suggests different shapes

from the circular orbits suggested by Copernicus.

[Only for information : An ellipse can be
drawn as under :

Keep the ends of a string of length [ fixed
at points F and F,, where F/F, < [. Now keep
the tip of a pencil with the string and move it
such that the string remains tight. The curve
PNAM obtained in this way is an ellipse as in
Figure 3.2.

M

| By o

P \‘jl 0 ISZ/A
e

Ellipse can thus be drawn

Figure 3.2
OP = a = OA
OM = b = ON
Here, F X + F X = constant. It shows the
characteristic of an ellipse.
Moreover, if a = b, the ellipse becomes a
circle.]

Second Law (Law of Areas) : “The line
joining the Sun and the planet sweeps equal
areas in equal intervals of time.” (See
Figure 3.3).

Areal velocity is constant

Figure 3.3
When the planet is away from the sun, it
goes from P, to P, in certain time-interval At
and when it is near the sun it goes from P, to

P4 in the same time-interval.

Hence, according to this law, area of SP1P2
= area of SP,P,.

This law has been obtained from the
obervation that a planet moves slower in the orbit
when it is far away from the sun and it moves
faster when it is near to the sun.

We can call the area swept in unit time as
the areal velocity (= area / time) and this law
indicates that the areal velocity is constant. You
have already seen this aspect in Chapter 2.

Third Law (Law of Periods) : “The
square of the time-period (T) of the
revolution of a planet is proportional to the
cube of the semi-major axis (a) of its
elliptical orbit.” That is, T> < a?.

The time-period (T) means the time
required to complete one revolution. It is also
called the period or the periodic time.

From the examples of a few planets given
in the following table you can see that
T%a’ = constant and hence T? o a’.

Table 3.1 : (Values of T*a® for a few
planets) (This table is only for information.)

a T %a
Planet )
m year year-/m
Mercury |{5.79 x 10| 024 | 2.95 x 107
Earth | 15 x 10 1.0 | 296 x 10>
Mars 228 x 10| 1.88 | 2.98 x 107>
Saturn | 143 x 10| 295 | 2.98 x 107
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[Discovery of Gravitation-Only for
Information :

Newton saw an apple falling down

Figure 3.4

According to a legend, Newton sitting under
a tree, saw an apple falling down. He (instead
of eating it !) got involved in deep thinking as
to “Why it fell downward only.” As a result of
such thinking Newton discoverd the law of
gravitation. His line of thinking was somewhat
like the following : (i) The gravitational
acceleration near the Earth’s surface was

already known to be 9.8 m/s’. So the
acceleration of apple is Ayote = 9.8 m/s’.
(ii)) The acceleration of the moon revolving

circularly around the Earth is a_ = Vv/r,

moon

towards the centre of the Earth, where r, =
radius of moon’s orbit = 3.84 x 10° km. The
time period of revolution of moon around the
Earth is T, = 27.3 day. From this v = 2n r, /T,
can be found and by putting it in the above

equation it is found that @_ = 0.0027 m/s’.
Gapple 9.8
@~ 0.0027 ~ 2000 M

Moreover the ratio of their distances from
the centre of the Earth is,

rapple 6400 km 1

= - = = — 2
Fnoon 3.84 x 105 km 60 ( )

Where T apple

radius. From results (1) and (2) Newton found
that the acceleration of a body is inversely

proportional to the square of the distance from

= distance equal to Earth’s

1
the centre of the Earth, (a oc r_2 ). Hence the

force by the Earth on the body of mass m
; m
1S oC rz o

But according to Newton’s third law of
motion this body also exerts the same force on
the Earth in opposite direction. Hence the value

of force would also be proportional to the mass
of the Earth (M).

Mm GM
Thus we get F oc 2 or F = oA

where G = constant.

This great scientific discovery is based on
Newton’s revolutionary idea. Newton believed
that the laws of nature are the same for the
terrestrial bodies and for the celestial
bodies.

Hence, the force between the Earth and
the apple and the force between the Earth and
the moon must be governed by the same law.
Today we may feel this statement to be quite
obvious but in those days it was believed that
the laws for terrestrial bodies are different from
the laws for celestial bodies. Hence Newton’s

idea was indeed revolutionary. |

3.3 Newton’s Universal Law of Gravitation
Newton’s universal law of gravitation is as
follows : “Every particle in the universe
attracts every other particle with a force
which is directly proportional to the product
of their masses and inversely proportional
to the square of the distance between them.”
The direction of this force is along the line joining
them. This force is called the gravitational force.
According to this law, the magnitude of the
force on the particle 1 of mass m , by the other
particle 2 of mass m,, lying at distance r from it
Gm m,

. - ke Wi}
is IF12 | = 2 (3.3.1)

The direction of this force is from particle 1

to the particle 2 (in the direction of i?z ), (See

Figure 3.5).

Here, G is a constant and it is called the
universal constant of gravitation, because its value
is the same at all places at all times in the whole
of the universe. The value of G was first
determined by Cavendish experimentally.
Thereafter many other scientists also have
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determined its value more precisely. At present the
accepted value of G is 6.67 x 107! N m?/kg%
The dimensional formula for G is M™' L* T2 In

order to write the equation (3.3.1) in the vector
form consider Figure 3.5.

Z
2
]
m,
%
Uv)
%
r <
el
r
1 1
S/ >Y

X

To obtain formula for gravitational force
in the vector form

Figure 3.5
From the figure,
— — -

o =1 — R

— - -
A v n—n
175 1751
- -
=h=h (3.3.2)
r
N
Here, r = |1, |
It is clear from the figure, that
o
2 Gmym,
Forceon | = — i, (3.3.3)
1 by 2 r

Since the gravitational forces are mutually

interactive forces, the force exerted on particle

_)
1 by particle 2, (Flz) is the same in

magnitude and in opposite direction to the force

_)
exerted on particle 2 by particle 1, (le )

N
B -Gm; m,
Force on = — fl2

2byl r
Gmy m,

= r—z 7y (3.3.4)

- —
Both these forces F, and F,, are shown

in the Figure 3.6.

Z )
o —
m2 .\F2l
— \\\ —>
r I\Flz
- ® |
n m,
O > Y

Mutual forces on two particles
Figure 3.6

Force due to an extended object : An
extended object can be considered as a collection
of point masses. (i.e. particles)

The force due to such an extended object
on a point mass is equal to the vector sum of
the forces exerted on it by all the point masses
in the extended object. Thus the force on particle

1 by an extended object is,

—

- — —
FE=F, + 3 + F, +.. (3.3.5)

_Gmym, 2 +Gml my o Gmymy
- r2 12 rz 13 2
12 13 }’14

iy +.(3.3.6)

In the same way we can find the total force
on an extended object by another extended
object by the vector sum of the forces on every
point mass of one object by every point mass of
the other object. This can be done easily with
the help of calculus. We take note of two
aspects : (1) The gravitational force by a hollow
spherical shell of uniform density on a particle
outside the shell is equal to the force which can
be obtained by considering the entire mass of the
shell as concentrated on its centre.

[Qualitative explanation — only for

information :



[For r > R, the force due to the shell is

towards the centre of the shell
Figure 3.7
The forces on the particle 1 by the particles

— —
2 and 3 on the shell are F, and F;.

Consider their components (i) parallel to OP
and (ii) perpendicular to OP. The components
perpendicular to OP are cancelled and the
components parallel to OP are added. Such a
process can be thought for the particles on
symmetric positions with respect to line OP on
the shell. Thus, it can be seen that the resultant
force is towards the centre. We shall accept
without giving proof that its magnitude is obtained

as mentioned above.]

(2) The force on a particle at any point inside
a hollow spherical shell of uniform density is zero.

[Qualitative explanation — only for
information : Different particles of the shell attract
the given particle in different directions and the
resultant of those forces becomes zero. This also
we will accept without giving proof.]

3.4 Universal Constant of Gravitation

The value of the constant G appearing in the
formula (3.3.1) showing Newton’s universal law
of gravitation, was first dertermined by Cavendish
an English Scientist experimentally in 1798. The
experimental arrangement is schematically shown

in Figure 3.8. R

Arrangement of Cavendish’s experiment
Figure 3.8

PHYSICS

From a rigid support a long rod is suspended
using a thin metallic wire. Two small equal lead
spheres A and B are attached at the ends of the
rod. Two other equal large lead spheres are
brought near the small spheres on opposite sides
at equal distances. The forces on the small
spheres due to the large spheres are equal in
magnitude and opposite in directions. These forces
produce torque. Hence the rod rotates about wire
OM. Thus wire OM is twisted and the restoring
torque (due to elasticity) is produced in the wire.

When the torque due to the gravitational
forces equals the restoring torque, this system
becomes steady (i.e. it comes in equilibrium). In
this condition the positions of large spheres P and
Q (or P' and Q') are on lines perpendicular to
AB.

Suppose, mass of each large sphere = M

mass of each small sphere = m

Distance between their centres in equilibrium
condition = AP =BQ =r.

Angle of twist in the wire in equilibrium
condition = 0

The restoring torque per unit twist = k

Length of rod, AB = [

.. The gravitational force on the small sphere

GMm
due to the large sphere = — 5 — (3.4.1)
r
The total torque due to both such forces
GMm
= 2 ) (3.4.2)
and the restoring torque T = kO (34.3)
GMm
In equilibrium condition, 2 () = k0
(3.4.4)
k0r’

°. = 4

G Nl (3.4.5)

[Here the value of O is obtained with the
help of a small mirror attached to the wire, using
lamp and scale method. These are not shown in
the figure. Moreover the value of k is obtained
from some separate experiment of other kind in
which known torque T is applied and the twist in

the wire O is measured which gives k = %.]

Thus by measuring 0, G can be evaluated.
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Illustration 1 : The position vector of the
objects of masses 25 kg and 10 kg are (4, 7, 5) m
and (1, 3, 5)m respectively. Obtain the vector
representing the gravitational force on 25 kg

object by 10 kg object. (Take G = 6.67 x 107!
Nm?/kg?).

Solution : Here, m = 25 kg, m, = 10 kg,

- - =
n=@&7.5mrn=~10235mF, =?

N
Fl2 Gml m2 AN
Forceon | = — 5 s (1)
1by2
— il e
fp=r, = =0,35-475=(3-40m

STl 1= (=3 + (<4 + () =5 m

%
N 4p (-3,-4,0)
and rj, = = — 35
| n» |
= (-0.6, 0.8, 0) m
Substituting these values in equation (N
— (25 x%10)
F, = (6.67 x 10‘“)5—2 (0.6, —0.8, 0)

= (6.67 x 107'%) (-0.6{ — 0.8 J)N

Illustration 2 : At each vertex of an
equilateral triangle a particle of mass m kg is
kept. What is the gravitational force acting on
a mass M kg placed at the centroid of the
triangle ? The distance of centroid from the

vertex is 1 m.

Solution : If we choose the axes (as shown

in Figure 3.9) whose origin is at the centroid of

the triangle, then /XGC = /X'GB = 30°.
The force on the particle at G, due to particle

. > Gm (M) n
at Ais, B, = e ey

Figure 3.9

Similarly, forces due to particles at B and C

are respectively

- G@m) M)
GB — 12

~

[—7 cos30°— Jsin30°] (2)

~

= L()[i cos30° — 7sin30°] (3)

And Foe = (12)
.. The resultant force on the particle at point

4 — —> —

Gm (M) ,
GmM) .
+— [ c0s30° — jsin30°]
1
+ Gm—z(M) [/ cos 30° — Jsin 30°]
1
=0

Note : Using the law of triangle of vectors
also you can obtain the above result. Moreover,
here it can be seen that the vectors showing the
forces form a closed loop and hence also we
can say that the resultant force is zero.

3.5 Gravitational Acceleration And Variations

In It

(@) Acceleration due to gravity :

The acceleration produced in the body
due to the gravitational force is called the
gravitational acceleration or the acceleration
due to gravity (g).

Considering Earth as a perfect sphere of
uniform density we shall consider the acceleration
due to Earth’s gravity at different points. We can
imagine Earth to be made up of innumerable
concentric hollow spherical shells. Now a particle
outside the Earth is also outside all these
shells. Hence, to find the gravitational force on
that particle, we can consider the mass of every
shell as concentrated at the centre of Earth (as
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explained in the article 3.3). Thus to find the force
on that particle due to entire Earth, we can
consider the entire mass of Earth to be
concentrated at its centre.

Let the mass of Earth be M, and radius be
R,. The gravitational force of Earth on the
particle of mass m, at distance r from the centre
GM,m
(here r > R)); is F = r—z

Hence, from Newton’s second law of motion
we can write, the acceleration due to gravity
GM,

= — (3.5.1)
.

oQ
I
3 I

Now, for the particle on the surface of Earth,
r=R.
e
.. Acceleration due to gravity for the particle
GM,
on the Earth’s surface is g, = R 2 (3.5.2)

e
As we have considered the Earth as a

perfect sphere the value of g, at all points on
the Earth’s surface would be the same. In fact,
Earth is not completely spherical but is slightly
bulged out at the equator and flattened at the
poles. The radius of Earth at equator is nearly
21 km more than the radius at the poles.
Hence the value of g, at the poles is slightly
more than that at the equator. But the variation
in the value of g, at different places on Earth’s
surface is extremely small and hence for
practical purposes the value of g, at every
point on the Earth’s surface is taken the same.
The empirical value of g, is found to be equal
to 9.8 m/s>. You may calculate the value of 8,
by taking M, = 6 x 10**kg and R, = 6400 km
in the above equation.

Ilustration 3 : If the radius of Earth
suddenly decreases to 60% of the present value
(with mass of the Earth remaining the same) what
would be the percentage change in the magnitude
of the gravitational acceleration g,, on the surface
of the Earth ?

Solution : Original value of gravitational
GM,
acceleration g, = R2

e

PHYSICS
New radius of Earth R' = @R
100 ¢
=06 R,
New value of gravitational acceleration
. GM, GM, g,

&7 R? T (0.6R,)? 036

_ 25

= 9 ge

Increase in the gravitational acceleration is

o, _25 _ 16
=8 -8 =538 8= &

.. Percentage increase in the magnitude of

increase

original value * 100

gravitational acceleration =

16 X L x 100
9 &
177.8 %

Illustration 4 : If the mass and the radius
of the Earth both decrease by 1 %, what will be
the percentage change in the gravitational

acceleration at the surface ?

Solution : The original value of gravitational
GM

e

acceleration g = F
e

If Me' = 0.99 Me and Re' = 0.99 R,, then
new value of gravitational acceleration

GM' G x0.99M,

e

§ = R/ (0.99 R,)?
GM,
= 1.01 Rez
=101g

". Change in the gravitational acceleration

=g' —g=101g—-g=001¢g

". Percentage change in the gravitational
change

~ original value

0.01g 100

acceleration x 100

=1%
Thus the magnitude of g increases by 1 %
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Variation in

3.5(b)

acceleration g with altitude :

gravitational

The acceleration due to gravity at the Earth’s

GM

surface is given by g, = R 26
e

"

Gravitational acceleration at height z from
the Earth’s surface

Figure 3.10
The point P at height h from the Earth’s
surface is at distance r = R, + & from the centre
of the Earth.

.. The gravitational force of the Earth on a

body of mass m at this point is

GM _ m
F(h) = m (3.5.3)
*. at P gravitational acceleration is
GM,
gh) = R, + 1) (3.5.4)
g (R, t+h)’
R,’
= 5 (3.5.9)
Rez[l + A
coghy = Ee (3.5.6)

It is clear from this that g(h) < g,

-2

From equation (3.5.6), g(h) = ge[l + RL}

e

(3.5.7)

terms with powers greater
=g _R_e+ thanlofRL

(3.5.8)
..... (using binomial theorem).

If h << R,, we can neglect the terms having

powers greater than 1 of R . In such a
e

condition g(h) = g, {1 - % } (3.5.9)

e

Equation (3.5.6) can be used for any height
(h) but equation (3.5.9) can be used only when
h << R,

We can take the value of g almost equal to
g, for small heights from the Earth’s surface. Let
us understand this by an example : To find g for
h = 10 km height from Earth’s surface, we put
R, = 6400 km and g, = 9.8 m/s? in equation

(3.5.9).

@ O)}

6400
= 9.8 — 0.028
=9.772
~ 9.8 m/s’

o gth =10 km) = 9.8[1

Thus on the Earth’s entire surface and for
small heights from surface we can take

g§=g8, =938 m/s> for practical purposes.
Hlustration 5 : Prove that the ratio of
the rate of change of g at a height equal to
the Earth’s radius from the surface of the Earth

to the value of g at the surface of the Earth

-1
is equal to 4R -
e

Solution : The gravitational acceleration at
distance r 2 R, from the centre of the Earth is
g(r) = GM/F>.

Differentiating with respect to r,
dg(r) -2GM,
dr |~ 3

r

and r =R, + h =R, + R, = 2R,
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{dg(r)} —2GM,  -2GM,
| Tdr = -3 = 3
2R, (2R,) 5R.

GM,

But at the surface of the Earth g, = R 2
e

{dg(r)}
ar be, _-2GM, RS -1
2. - 8Re3 GM, 4R,

3.5(¢) Variation in the gravitational

acceleration g with depth from the surface
of the Earth :

Variation in g with depth from Earth’s surface
Figure 3.11

Consider a particle of mass m at point P at
a depth d from the surface of the Earth. It is at

distance r = Re — d from the centre of the Earth.

To find the Earth’s gravitational force on this
particle, we can imagine the Earth as made up
of a small solid sphere of radius r = R, — d
and a spherical shell of thickness d over it. This
particle at point P is situated inside this hollow
spherical shell. Hence, the gravitational force
on this particle due to the shell is zero (as
explained in the article 3.3). Moreover, this
particle is also on the outer surface of the small
sphere (shaded) of radius r. Hence the
gravitational force on this particle can be obtained

by considering the entire mass (M ') of the small
sphere at its centre O.
If the density of the Earth is p, then,

__total mass M,

P~ Yotal volume inReS

(3.5.10)

.. The mass of the small sphere of radius

ris,

M'= (volume) (density)

4 3)
= |=nr
(3 ()
*. Gravitational acceleration at P,
GM'

gr) = 2

(3.5.11)

(377

4

= gnGpr (3.5.12)

From this equation, the gravitational
acceleration at the surface of the Earth (putting

r=R) is

g, = %TCGpRe (3.5.13)

From equations (3.5.12) and (3.5.13)

% =R (3.5.14)
ooglr) = ge(RLj (3.5.15)

From equation (3.5.12) and (3.5.15) it is clear
that g(r) is proportional to distance r from the
centre of Earth upto the surface. Thus, the
gravitational acceleration at a point inside the
Earth is directly proportional to the distance of
that point from the centre of the Earth. Moreover,

for region outside the Earth, g(r) = GMe/r2,

1
shows that g(r) oc r_2 Hence starting from the

centre of the Earth, g(r) increases in direct
proportion as r increases and then outside the
surface g(r) decreases as inverse square of

distance. Such variations in g are shown in Figure
3.12.

g(r)’

o=
AY O!
@

e
3 ¢

0
Re r
Variation in g with distance r from
centre of Earth

Figure 3.12

By substituting r = R, — d in equation
(3.5.15) the gravitational acceleration is obtained
in terms of depth d from the Earth’s surface.
We denote it as g(d).
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8 2
_ =¢ _ we have to consider a fictitious acceleration —
gd) = R R, - d -
‘ mv>
and the fictitious force . in the opposite

_d (3.5.16)
ge|: Re }

This shows that the gravitational acceleration
at depth d has a smaller value than that at the

Earth’s surface.

Thus the acceleration due to Earth’s gravity
is maximum on its surface and from there on
going above or below it decreases. It becomes
zero at the Earth’s centre. This is a notable fact.

3.5(d) Variation in effective gravitational

acceleration g' with latitude due to earth’s
rotation :

The angle made by the line joining a given
place on the Earth’s surface to the centre of the
Earth with the equatorial line is called the latitude
(M) of that place. Hence, for the equator lattitude
A = 0° and for the poles latitude A = 90°.

As shown in the figure the latitude of the
place P on the Earth’s surface is A = ZPOE.
At this position consider a particle of mass m.
We have to think of two forces acting on it.

Variation in effective g' with latitude due to
Earth’s rotation

Figure 3.13
N
(1) Earth’s gravitational force = mg (in PO
(3.5.17)

(2) To understand the other force consider
the rotation of the Earth. The Earth has an
acceleration due to its rotational motion. So this

direction)

particle is in the accelerated frame of reference.

At this point the acceleration of the frame of
v2 N

reference is = - in PM direction (that is,

towards the centre of the circular path). Hence

direction, that is in MPQ direction. The

%
component of this force in PR direction =

2
my

r

COSA.. (3.5.18)

This is the second force to be considered.

Thus cosidering two forces given by
equations (3.5.17) and (3.5.18), the effective
force on the particle at P, towards the centre of

2
cosh. (3.5.19)

the Earth is mg' = mg — 2V

Where g' = effective gravitational
acceleration at this place obtained by considering
rotation of Earth.

g = gravitational acceleration at this place

without considering rotation of Earth.

2
g =g - V7cosx (3.5.20)

But v = r® where ® = angular speed of
the Earth.

2
gl =g - &cosk (3.5.21)
r

= g — ro*cosh (3.5.22)

From the figure, r = MP = R cosA (3.5.23)

. g' =g — Ro’os’L (3.5.24)
Reoa2 cos® A
org' =gl 1~ e (3.5.25)

From this equation (3.5.24) or (3.5.25), we
get information about the variation in g with
latitude, due to the Earth’s rotation. We note two

special cases :
(i) At equator, A = 0° .. cosh = 1,

. g' =g — R,0% which shows the minimum

value of the effective gravitational acceleration.
(ii) At poles, A = 90° cosh = 0,

. g' = g, which shows the maximum value of

the effective gravitational acceleration.
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Illustration 6 : Find the period of rotation
of the Earth about its own axis in terms of

R, and g for which the effective acceleration
due to gravity becomes zero at the equator ?

Solution : At the equator the latitude
A = 0°. The effective acceleration due to gravity

at a place having latitude A on the Earth’s
surface is given by g' = g — Remzcoszl... (from
equation 3.5.24). R, = radius of the Earth.

g = gravitational acceleration at the Earth’s
surface without considering rotation.

o = angular speed of Earth’s rotation = ZTR

We want to find the time-period T for
g' = 0 at the equator.

5. 0 =g — R,m’os’(0°)

. g= R ..(cos0° = 1)

4nzj
= R - A
[ T?

" T2=4Tc2?e LT =21 —

3.6 Gravitational Intensity

The gravitational force on a body by the other
one is given by Newton’s law of gravitation
(equation 3.3.1). This process of action at a
distance in which force is exerted mutually on
two bodies separated by some distance is
explained to occur through the field as under :

(1) Every object produces a gravitational field
around it, due to its mass. (2) This field exerts a
force on another body brought (or lying) in this
field. Hence it is important to know about the
strength of such a gravitational field.

“The gravitational force exerted by the
given body on a body of unit mass at a given
point is called the intensity of gravitational
field (T) at that point.” It is also known as
the gravitational field or gravitational
intensity.

Using Newton’s law of gravitation we can
write the formula for the gravitational intensity.
Consider a body of mass M at the origin of
co-ordinate system O. The gravitational intensity

%
(I) due to it at some point P is,

> =GM() . -GM
I=—7 Ff="32
r r

Fo.. (3.6.1)

_)
where 7 = QP and 7 = unit vector in the

direction of 7 (i.e. O_)P ).

. . GM
In magnitude we can write [ = r_z ... (3.6.2)
Its unit is N/kg and the dimensional formula is
MOL!T2

Now if a body of mass m is put (or lying)
at this point P, the gravitational force exerted by

the field on it is

(3.6.3)

Equation (3.6.2) shows that the gravitational
intensity due to Earth at a point has the same
value as the gravitational acceleration at that
point. But these two quantities are different and
their units are different but equivalent. [*.© N/kg
= m/s?]. It is obvious that I — r graph for the
Earth’s gravitational field would be the same as
g — r graph (like Figure 3.12).

[In future you will learn the formula, electric
force = (electric intensity E) x (charge ¢g) in

case of electricity.]
Illustration 7 : The gravitational intensity
_> ”n
at a point is I =107 (i + J) Nkg. If a

body of 10 kg mass is placed at this point,
find the magnitude of force on it and the
magnitude of its acceleration.

Solution :

F = (1)m)

(1077 + 7)(10)

10 + 108 N

IFL = J108H2 + (107%)?
=108+
=1414 x 10 N
- -8
_IFl _ 1.414x10
g m 10

1.414 x 107° m/s?
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3.7 Gravitational Potential and Gravitational
Potential Energy in the Earth’s
Gravitational Field
(@) Gravitational potential :

Every object produces a gravitational field
around it. A characteristic of such a field is
defined as a quantity called the gravitational
potential as under :

“The negative of the work done by the
gravitational force in bringing a body of unit
mass, from infinite distance to the given
point in the gravitational field is called the
gravitational potential () at that point.” The
unit of gravitational potential is J kg~' and

dimensional formula is M°L2T2.

Work done by gravitational force in small
displacement

Figure 3.14

Consider Figure 3.14 to obtain the formula
for the gravitational potential in the Earth’s
gravitational field.

We put the origin of the co-ordinate system
at the centre of the Earth. Mass of the Earth is
M, and radius is R,. The position vector of point
P at distance r from the centre of the Earth is

= —
OP = r . Here,r > R,. At this point the Earth’s
gravitational force on a body of unit mass is

L -GM,(),
F - T

2
r

—GM, |
= —5°F (3.7.1)
P

This force is not constant but changes with
distance. But during an infinitely small

%
displacement 4 the force can be taken as

constant. Hence, during such a small
displacement, the work done by the
gravitational force is

- - _GMe ~ n
dW =F - dr = 2 r.-(drv)
(3.7.2)
~GM,
= r2 dr (3.7.3)

The entire path from point P to infinite
distance can be divided in large number of
infinitely small intervals. Taking the force as
constant during every such interval, we can
calculate the work done during that interval, and
by adding all such works we get the total work
W. As this process is a continuous one, the
summation can be written as integration.

Hence, in this case, work done by the
gravitational force in moving this body from point
P at distance r to infinite distance is

T GM
W, o= [aw= J-(_r—zejdr (3.7.4)

- —om, [Lar (3.7.5)
’ r

_ [_lr

- _GM (3.7.6)
e r r

~GM
- e 3.7.7)
.

Now if we bring this body from infinite
distance to the point P at distance r; the work

done (W, _, ,) by the gravitational force will
be the same as that given by equation (3.7.7)
but with opposite sign, [W_, _, . =-W,__ ],

because gravitational force is a conservative
force.

GM,

W, = p (3.7.8)

The negative of this work (W_, _, ) is by
definition, called the gravitational potential ¢ at
point P.

.. Gravitational potential at P is,

-GM
o= € (3.7.9)
B

From this the gravitational potential at the

Earth’s surface (putting r = R) is,
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-GM,
(I)e = R,
We note a few points about the gravitational
potential :
(1) The gravitational potential at infinite

(3.7.10)

distance from the centre of the Earth = 0.

(2) The gravitational potential at all
points inside a uniform spherical shell is the
same, and is equal to the value at the surface

%M , where M = mass of the
shell and R = radius of the shell. The reason for
this is that the gravitational force at all points
inside the shell is zero, hence no work is done
in the motion of the body inside the shell.
The work during the motion from infinite distance
to surface only comes in the calculation.

(3) The variation in the gravitational potential

that is, equal to —

with distance r from the centre of the shell, having
mass M and radius R is shown in the Figure

3.15(b)

¢
0 R o
; Hyperbola
-GM -GM

R ‘According to

Variation in ¢ with distance r

Figure 3.15

(b) Gravitational Potential Energy : “The
negative of the work done by the
gravitational force in bringing a given body
(of mass m) in the gravitational field of the
Earth from infinite distance at the given point
is called the gravitational potential energy
U of that body at that point.” It is actually the
gravitational potential energy of the system of the
Earth + that body.

Considering definitions of gravitational
potential, gravitational potential energy and using
equation (3.7.9), the gravitational potential energy
of a body of mass m at a distance r from the

Earth’s centre (r 2 R) is,

-GM m
Us=gm=——= (3.7.10)

Hence the gravitational potential energy of
the body of mass m, lying on the surface of the

Earth (r =R)) is,

-GM _ m

e
We can also say that the gravitational

potential is the gravitational potential energy of

(3.7.11)

unit mass.

At infinite distance from the centre of the
Earth the gravitational force of the Earth on that
body is zero and according to the above definition
we can say that its gravitational potential energy
is also zero.

The absolute value of the potential energy
(or potential) has no importance at all, only the
change in its value is important. Hence the
reference point for zero potential energy (or zero
potential) can be taken anywhere. (You may recall
that in the chapter of “Work Energy and Power’
we had taken zero potential energy at the
surface of the Earth, while here we have taken
zero potential energy at infinite distance. But in
both the cases only the changes are important,
hence no contradiction is produced.)

Here the potential energy U is of the system
consisting of the Earth and the body. But in this
process the position of Earth or its velocity is
not appreciably changed, hence it is also
conventionally mentioned as the potential energy
of the body. Whenever such a mention is made
we have to understand that this potential energy
is actually of that system but the entire change
in that potential energy appears to be experienced
by the body alone.

In future, we are also going to consider a
satellite. In that case the potential energy is of
the system consisting of the Earth and the satellite.
But we shall mention it as potential energy of
the satellite.

Illustration 8 : A particle of mass m is
placed on each vertex of a square of side [ as
shown in Figure 3.16. Calculate the gravitational
potential energy of this system of four particles.
Also calculate the gravitational potential at the
centre of the square.

Solution : Here we can write the potential
energy due to every pair of particles as
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—Gm,mj
U, = ————, where m; and m, are the
ij i i J
masses of particles i and j respectively, and Ty
is the distance between them m, = m; = m.

.. Total potential energy

U =-cm| X1

1,1 1,1, .1 .1
= G|+t —+7+ T+ —+-
S R TR I R 7 l}
[4+2
:—Gm2 l
| g 2
~, rd
N,
. //
e,
; NOA
rd',, \(\
I’ \\
I,, \\\
4 / 3
Figure 3.16
Py == W21
"Ton = T = T3 =Toa = T

The gravitational potential at the centre, due
to each particle is same.

. The total gravitational potential at the
centre of the square is

¢ = 4 (potential due to every particle)

(—Gm) V21

= ; where r = —

r 2
—-42Gm

3.8 Escape Energy and Escape Speed

If we throw a stone upwards with our hand,
it goes to a certain height and then falls back
towards the Earth. If we throw it with larger
and larger initial speed we can send it to greater
and greater heights. From this a natural question

may arise : can we throw the stone with such

an initial speed that it does not return back to
Earth ? It means, it goes to infinite distance from
Earth forever and then there is no attraction on
it by the Earth. To get the answer let us consider
its energy.

The gravitational potential energy of a body
of mass m lying on the Earth’s surface is

-GM,m
= "R and its kinetic energy is zero. So
e
-GM,_ m
its total energy is = “ R
e
+GM,m

If we supply energy —R__ this body

e
in the form of kinetic energy, then it can go upto

a point where its total energy becomes

+GM, m -GM, m
R + R =0.

e e

It means, it will go to infinite distance from
the Earth and there its potential energy is zero
and kinetic energy is also zero. In this condition
the body escapes from the binding with the Earth
forever and does not return back. (If we give
kinetic energy more than GM m/R, to the body
then at infinite distance its potential energy
becomes zero but it has still certain kinetic energy
remaining with it.)

“The minimum energy to be supplied to
the body to make it free from Earth’s
gravitational field (in other words from
binding with the Earth) is called the escape
energy of that body.” It is often called the
binding energy of the body.

Thus, the escape energy of the body of mass

GM,_ m
m lying on the surface of the Earth = R

e

(3.8.1)

The speed to be given to the body to give
the kinetic energy equal to its escape energy is

called the escape speed (v,) which is often called
the escape velocity also.

1 5 GMem
. 2 mv, = T (3.8.2)
2GM,
". Escape speed v, = R (3.8.3)
= JZgR(Z (3.8.3a)
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where g = gravitational acceleration at

GM,
R,

escape speed of the body does not depend on its
own mass (but depends on the mass and radius

of the other body from the binding of which it
has to escape).

Earth’s surface = . This shows that the

By putting the values of G, M, and R, in
equation (3.8.3), we get v, = 11.2 km/s. If the
initial speed of the body is equal to or greater
than its escape speed (v,), it will escape from
the gravitational field of Earth forever.

If the speed required for the body lying on
the surface of moon, to make it free from the

2GM,,,
R

m

. . . ] 1
moon’s gravitation is v, , then v, =

where Mm = mass of the moon and Rm = radius

of the moon. In that case ve' = 2.3 km/s which

is nearly (%) times the escape speed at the

Earth’s surface. Moon has no atmosphere
because of this reason. If the gas molecules are
formed on its surface then at the temperature
prevailing there, those molecules have speeds
greater than the above mentioned value. Hence,
they escape the gravitational field of the moon
forever.

If the density of a body is so high that the
escape speed (v,) at its surface is > velocity of
light C, then nothing will be able to escape from
its surface forever (not even light !). Such a body
is called black hole. We have to remember that
no meterial particle can have velocity greater than
or equal to the velocity of light C.

(C=3x10"ms™)

Illustration 9 : For an object lying on the
surface of the Earth the escape speed is 11.2
km/s. If an object on the Earth is thrown away
with a speed three times this value, find its
speed after it has escaped from the
gravitational field of the Earth.

Solution : The initial speed of the object
= v = 3v,, where v, = escape speed = 11.2
km/s.

Suppose the speed of this object after it
escaped from the Earth’s gravitational field (that

is at infinite distance) = v'.

According to the law of conservation of
mechanical energy,

Kinetic energy +
potential energy
at infinite
distance

Kinetic energy +
potential energy
at the Earth
surface

o1, [ZGMm _[;mv.zw}
. 2mv+ R = 2

e

(1)
(. at infinite distance potential en. = 0)

2GM, GM, 2
But Ve = R . R = 7

e e

Putting this value in equation (1) and writing

v =3y, (given), we get,

2
—-v,“m
%m(9ve2) + { 62 J = %mv'2

. 2,2 12
..9ve Vo=

v' = By, =(B)a12

e

= 31.63 km/s

Illustration 10 : An object is allowed to
fall freely towards the Earth from a distance
r (>R)) from the centre of the Earth. Find the

speed of the object when it strikes the surface
of the Earth.

Solution : Allowing the body to fall freely
from distance r, from the centre of Earth, its initial
its kinetic energy = 0. Its
-GM _m

velocity is zero. ..

e

potential energy = , where m = mass

of body.
When it strikes the surface of the Earth, if

its velocity is v and the kinetic energy = l111\/2,

2
-GM,m
its potential energy here = “ R
e

Neglecting the air resistance, the conservation
of mechanical energy gives,

Kinetic energy + Kinetic energy +
potential energy potential energy

at distance r from | = at
Earth's surface Earth's surface
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o () = )

v = 2om) & - 1] 0

e

This gives the required speed v.

To obtain the answer in terms of g, we write

GM, 5
g = R 2 - GM, = gR,
e
.. From equation (1)
v = 2g RQZ[RL - ﬂ @
e

1
2
Ly = [ZgRez (RL - %ﬂ 3)

Note : If it falls freely from a very large
distance (r — o) from the Earth’s surface then

2GM,
equations (1) and (2) will give v = R =

e

\/2Re8 . This is the same as the formula for
the escape speed.
3.9 Satellites

A body revolving around a planet is called
its satellite. The orbital motion of the satellite
depends on the gravitational force by the planet
and the initial conditions. Satellites can be
classified into two categories : (1) natural satellite
(2) artificial satellite.

Moon is the natural satellite of the Earth.
Moreover, Jupiter and other planets also have
their moons (means satellites). The periodic time
of our moon’s revolution around the Earth is 27.3
day and the periodic time of rotation of moon

about its own axis is also nearly the same.

The first artificial satellite made by the
mankind was ““Sputnic’ put into orbit around the
Earth by Russian scientists in 1957. Our Indian
scientists have also successfully launched
‘Aryabhatta’ and INSAT series of satellites.
Presently hundreds of satellites launched by many

countries of the world orbit around the Earth.

They are used for scientific, engineering,
communication, whether forecast, spying and
military purposes. In the present article we shall
study the dynamics of the satellite and geo-

stationary (or geo-synchronous) as well as polar

satellites.
v m. Satellite
ol & I e -~
< I . c
% ¥ | \
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!

/ Ty k
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] |
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Orbital motion of a satellite

Figure 3.17

Suppose a satellite of mass m is launched at
distance r from the centre of the Earth and its
speed in the circular orbit is v. It is also called
the orbital speed or the orbital velocity. Here
r =R, + h where R, = radius of the Earth, 1 =
height of the satellite from the Earth’s surface.
The necessary centripetal force (mv02/r) for this

circular motion of the satellite is provided by the
Earth’s gravitational force on it.

2 GM m
TP _ —— (3.9.1)
r r

. The orbital speed of the satellite is

GM,
v, = ,/ (39.2)
r

From equation (3.9.1), the kinetic energy of

M,m

2r

the satellite is, K = %mvoz = (3.9.3)

The potential energy of this satellite (actually
of the system of Earth + satellite) is (from
equation 3.7.10)

3 -GM,_m

U = (3.9.4)

r

.. Total energy of the satellite, is
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E = kinetic energy K + potential energy U

GM,m  GM,m
_ _ (3.9.5)
2r r
-GM,_m
= — (3.9.6)
2r

This total energy is negative, which indicates
that this satellite is in the bound state. You will
be able to see from equations (3.9.3), (3.9.4) and
(3.9.6) that if the kinetic energy of the satellite
is x, its potential energy is —2x and the total
energy is —x. Hence its binding energy also equal

to its escape energy is X.

Time period (T) of the satellite : The time
taken by the satellite to complete one revolution
around Earth is called its time-period or the
periodic time or the period (T) of revolution. During
this time the distance travelled by it is equal to
the circumference (= 2mr) of the circular path.

2nr

. The orbital speed v, = T (3.9.7)

.. From equation (3.9.1),

m 4n2r2) ~ GM,m

. ( T2 =2 (3.9.8)
4r®

Lo

LT = (GMe )ﬁ (3.9.9)

Since all quantities in the bracket are constant

we can say that T2 o (3.9.10)

Thus, “the square of the orbital time-period
of the satellite is directly proportional to the cube
of the orbital radius.” This is Kepler’s third law
with reference to the circular orbit of the satellite.

From equation (3.9.9),

1
_ 4’3 |2
v ()

Geo-stationary satellite :

(3.9.11)

The Earth’s
satellite having orbital periodic time of 24 hours
(equal to the periodic time of rotation of the Earth

about its own axis), is called the geo-stationary
satellite (or geo-synchronous satellite), because it
appears always stationary as viewed from the
Earth. Such a geo-stationary satellite revolve
around the Earth in the equatorial plane in east-
west direction. See Figure 3.18(a)

Equatorial \\s__//

Orbit —>ic

Geo-stationary satellite
Figure 3.18(a)

For geo—stationary satellite by putting
G = 6.67 x 107" Nm? kg2, M, = 598 x 10*
kg and T = 24 x 3600 s, in equation (3.9.11),
we get r = 42260 km. Hence the height of this

geo-stationary satellite from the Earth’s surface
is h = r — R, = 42260 — 6400 = 35860 km.
A satellite cannot remain geo-stationary for any

other height except this one.

These satellites are wused in tele-
communication. Moreover they are also used in
Global Positioning System (GPS) in which a
person gets information about various ways and
the shortest route to go from his present position
to his destination, alongwith the map displayed

on the screen of the monitor.

Polar satellite : These satellites revolve
around the Earth in north-south direction. Their
heights from the surface of the Earth is nearly
800 km. Since the Earth rotates in the east-west
direction, these satellites (Their time-period is
almost 100 min.) can view every section of the
Earth many times in a day. With the help of a
camera kept inside this satellite it can see a thin
strip of the Earth in every rotation. In the next
rotation it will see the region of the next strip
and thus can see the entire Earth many times in
a day. They are useful in remote sensing,

meteorology, environmental study, spying etc.
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Polar orbit
Figure 3.18(b)

Illustration 11 :
pendulum suspended from a support which is
at infinite height from the surface of the Earth.
The bob of the pendulum is close to the
surface of the Earth. Show that the period of
such a pendulum (of infinite length) is

Imagine a simple

Re
T =2m4— .
8
Solution : Since the point of suspension is

at infinite height, the small path of the motion of
the bob can be considered almost a linear one.
Mass of the bob = m.

When the bob is released from A the
mgcosO component of the gravitational force F G
(= mg), provides the necessary restoring force
towards B.

i.e. restoring force on the bob, F = —mgcos0
(since the force is restoring negative sign is put).

Figure 3.19

Figure 3.19 shows cosO = Ri (Since the
e

bob is close to the surface of the Earth, we can
take AO = BO = R,.

el

. F = —kx )]

mg

where k = force constant =
Re

.. Equation (1) indicates that the pendulum
performs simple harmonic motion.

LT = 275\/% gives,
m
T =2r /

mg 'R,

Re
= 24—
Vg

lustration 12 : Show that the binding
energy of a satellite revolving around the Earth
and remaining close to the surface of the Earth

is %ng 7

Solution : Here the necessary centripetal
force for the circular motion of the satellite (mass
= m), is provided by Earth’s gravitational force
on it,

my? B GM,_m —gm (g = GMe)
Re l{e2 g : g Rez
This gives Kinetic energy of
i _1 - 1
satellite = om’ = 5 mgR,
-GM
The potential energy = M
Re
—-GM,_ m
= Re2 .
= —gmR,

.. Total energy = Kinetic energy + Potential
energy = %nge — gmR,
1

= _Enge

". The binding energy = %nge

Illustration 13 : Two objects of masses
1 kg and 2 kg respectively are released from
rest when their separation is 10m. Assuming
that only mutual gravitational forces act on
them, find the velocity of each of them when
separation becomes Smi.

(Take G = 6.66 x 107" Nm?/kg?)
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Solution : Initially velocities of both the
particles are zero and hence their kinetic energies

are zero (i.e. V=V, = 0; K, =K, = 0)
When the separation is Sm, their velocities
are v' and v,' and kinetic energies are
' ' .
K, and K, respectively.
For this system initial potential energy

U=

—(6.67 x107'"H(1 x 2)
10

=—-1332 x 10712 ]

Final potential energy

-Gmym,
U=

_ —(6.66 x107'H(1x2)
5

=-2664 x 10712 ]

. Change in potential energy AU = U, — U,
= —26.64 x 1071 — (=13.32 x 107
=-1332 x 1072

According to the law of conservation of
mechanical energy

K + U = constant ... AK + AU =0
.. AK = —AU

LK +K))-0=-(U,-U)

1 ' 1 ' _
S GGmy "+ Smp,'?) = (0) = 1332 x 107 ]
v 2
L )P =1332x 1077 (1)

2
According to the law of conservation of

momentum, final total momentum = initial total

momentum.
- -
Lmvt +myv,' =0
— —
movt = —my v,
d m d

Tyl = ——
1 m, 2

oy =0y )

From equations (1) and (2)

4v,
2 +y,'2=1332x 107"
2

L3y, =1332 x 1077

L, =444 x 1072 = 444 x 107M

Ly, =21.07 x 107 m/s

Loy, =42.14 x 107 m/s

Illustration 14 : Two satellites S, and S,
revolve around a planet in two different but
coplanar circular orbits in the same direction. If
their periods are 31.4 h and 62.8 h and the radius
of orbit of S, is 4000 km, find (i) the radius of

the orbit of S, (ii) the magnitudes of the velocities

of the two satellites.

Solution :
(i) T2 oc P
2 3
L on
. 2 = 3
T, n
T,?
62.8>
= (4000 3( )
(400077 537 42

1
. r. = (4000)(4)3 = (4000)(1.588)

= 6352 km
. 2mr (2)(3.14)(4000)
(ii) v =T = W
= 800 km/h

_2mn, (2)(3.14)(6352)
2 T, 62.8

= 635.2 km/h
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Tides in the Ocean

(Only for Information)

Friends, you may have the idea that the reason for the tides in the ocean is the gravitation. In
this phenomenon sun and moon both play a part. Actually the gravitational force by the sun on the
Earth is nearly 175 times that exerted by the moon on the Earth. However, in the phenomenon of
tides the contribution by the moon is more than that by the sun which is nearly 2.17 times that by the
sun. This is a fact. What could be the reason for this ?

The reason for this is that the calculations reveal that the tide-generating force (tidal force) depends
on the rate of change of the gravitational force with distance and not on the magnitude of the

d d

gravitational force itself. Hence, in spite of F > F_ . since ar (Fby roon) > I

(Fby sun

),

the contribution by the moon is more in the phenomenon of tides.

GMm . d(F) —2GMm
F = 2 glves = 3
r dr r

. You will be able to verify for yourself the above, by

taking m = unit mass of water in these formulae. ( Take M_ = 2 X 10% kg, r.=15x 10" m,

M =736 x 10 kg, r_ = 3.84 x 10°m).

(This is only a simple explanation. The phenomenon of tide is a complex one. To some extent
local parameters-like distance of sea-bottom from the sea-shore, structure of Earth below and close
to the sea bottom, rotation of Earth etc. do also play part in it.)

1
We shall only take note that the tidal force depends on r_3 and hence contribution by the moon

is found to be more than that by the sun according to the above formulae.
SUMMARY

1. Out of Ptolemy’s geo-centric theory and Copernicus’ helio centric theory at present
helio-centric theory is accepted.

2. Kepler’s Laws : (1) “All planets move in elliptical orbits with the sun at one of
the foci.” (2) “The line joining the sun and the planet sweeps equal areas in
equal intervals of time.” (3) “The square of the time period (T) of the revolution
of a planet is proportional to the cube of the semi-major axis (a) of its elliptical
orbit” (T? ¢ a’)

3. Newton’s universal law of gravitation : “Every particle in the universe attracts
every other particle with a force which is directly proportional to the product of
their masses and inversely proportional to the square of the distance between

i Gmym,
them.” ie. F = ——
.

5
F12

In vector form [f orce on

i 2 2 N2

~ Gmym,
-

- -
h—n _

n — —> N
where 7, = |7 | ; r12:(r2 —rl),lrlzlzr
12
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— —
Moreoever F, = —F

Notable points : (i) The gravitational force due to a hollow spherical shell on a
particle at a point outside the shell is equal to that obtained by considering the
entire mass of the shell as concentrated on the centre of the shell. (ii) The
gravitational force on a particle at any point inside the hollow spherical shell is
Zero.

The value of G was first determined by Cavendish experimentally. At present
the accepted value of G is 6.67 x 107" N m?/kg?>.

The acceleration produced in the body due to the gravitational force is called the
acceleration due to gravity (or gravitational acceleration) g. For a point on the

GM
surface of the Earth the formula for g is g, = R ze , and its value is 9.8 m/s?.
@

The value of g at poles is slightly more than that at the equator, but the difference

is very small.

The gravitational acceleration at a height h from the surface of the Earth is

given by g(h) = Lz For very small heights from the Earth’s surface

)

we can take g(h) = g .
e

The gravitational acceleration at a depth d inside the Earth from its surface is

given by g(d) = ge{l - RL} The gravitational acceleration at the Earth’s
@

centre is Zzero.
Because of the rotation of the Earth the effective gravitational acceleration on

the surface of the Earth at a place with latitude A, is given by

' - R,0°cos” A
g' =g =

“At a given point the gravitational force on a body of unit mass is known as the

intensity of the gravitational field (I) at that point.” I = 2

From this the gravitational force on the body of mass m at that point is
F = (I)(m). The gravitational intensity at the Earth’s centre is zero. The values
of I and g are equal.

“The negative of the work done by the gravitational force in bringing a body of
unit mass from infinite distance to the given point in the gravitational field is

called the gravitational potential (¢) at that point.” The gravitational potential at
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e

distance r (>R ) from the centre of the Earth is o=

, and the gravitational

-GM

potential at the surface of the Earth is ¢, = R <. The unit of gravitational

e

potential is J kg™! and its dimentional formula is M°L>T 2.
“The negative of the work done by the gravitational force in bringing a body of
given mass (m) from infinite distance to the given point in the gravitational field
is called the gravitational potential energy (U) of the system of the Earth and
that body, which is usually mentioned as the gravitational potential energy of that
body at that point. The gravitational potential energy of the body of mass m at
-GM,_ m

distance r from the centre of the Earth is U = = ¢m and the
r
gravitational potential energy at the surface of the Earth is
-GM,_ m
U =" = o, m

e
The value of gravitational potential is not important but only the difference in the

values is important.
For gravitational potential energy also only the difference in values is important.
8. For a body lying (stationary) on the surface of the Earth the total energy = its

-GM,m
potential energy = R
€
GM, m
Its escape energy = binding energy = R and escape speed

@

2GM,
ve=qy R, =112 kms

For the body on the surface of the moon the escape speed is 2.3 km/s.

GM
9. For a satellite revolving around the Earth the orbital velocity v, = p £ and
) -GM, m
the total energy of the satellite = B —
-
GM, m

.. Its escape energy = binding energy = . For a geostationary satellite

2r
the time-period is 24 hours = 24 x 3600 s. It’s height from the surface of the

Earth is 2 = 35800 km (approx). They revolve in east-west direction in the
equatorial plane.
Polar satellites revolve in north-south direction.

EXERCISES

Choose the correct option from the given options :

1.  Which of the following has the unit N m?*/kg? ?
(A) linear momentum (B) gravitational force
(C) universal constant of gravitation (D) gravitational acceleration.

2. Using orbital radius r and the corresponding periodic time T of different satellites
revolving around a planet, what would be the slope of the graph of
log r —log T ?

) 3 ®) 3 © 3 (D) 2
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10.

11.

12.

If the gravitational acceleration at the Earth’s surface is 9.81 m/s%, what is its
value at a height equal to the diameter of the Earth from its surface ?
(A) 4.905 m/s* (B) 2452 m/s*>  (C) 327 m/s* (D) 1.09 m/s?

If the gravitational potential at the Earth’s surface is ¢ ,, what is the gravitational
potential at a height from Earth’s surface equal to its radius ?

A(De B(De C D(De
()7 ()T © o, ()T

If we take the gravitational acceleration at the Earth’s surface as 10 m/s> and
radius of the Earth as 6400 km, the decrease in the value of the gravitational

acceleration g at a depth of 64 km from its surface would be ....... m/s>.
(A) 0.1 B) 02 (C) 0.05 (D) 0.3

What would be the fictitious (pseudo) acceleration of the body lying on the
equator of Earth in the radial direction away from the Earth’s centre due to its
rotation ?

(A) oR, (B) R, (C) @R} (D) ®°R,’
Where @ = angular speed of the Earth,

R, = radius of the Earth.
For different satellites revolving around a planet in different circular orbits,
which of the following shows the relation between the angular momentum L
and the orbital radius r ?

1
(A)Locﬁ (B) Lo i? (C) Lo fr (D)Locr%

At all points inside a uniform spherical shell......

(A) gravitational intensity and gravitational potential both are zero.

(B) gravitational intensity and gravitational potential both are non-zero.

(C) gravitational intensity is non-zero and gravitational potential is zero.

(D) gravitational intensity is zero and gravitational potential is non-zero but
equal.

Which of the following alternatives represents the dimensional formulae of the

gravitational potential and gravitational potential energy respectively ?

(A) M'L'T!, M'L?T2 (B) ML°T2 M'L*T>

(C) M'L’T?, M'L*T? (D) M'LT, ML'T

For a planet revolving around the sun

(A) linear speed and angular speed are constant

(B) areal velocity and angular momentum are constant

(C) linear speed and areal velocity are constant

(D) areal velocity is constant but angular momentum changes.

Two satellites revolving around a planet in the same orbit have the ratio of

v
their masses —— = l. The ratio of their orbital velocities L
m o2 V2
1
(A) 1 (B) 3 <O 2 (D) 4

If the time period of a satellite in the orbit of radius r around a planet is T,

then the time period of a satellite in the orbit of radius 4r is T' = .........
(A) 4T B) 2T (C) 8T (D) 16T
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13.

14.

15.

Radii of two planets are r, and r, respectively and their densities are

p, and p, respectively. The gravitational accelerations on their surfaces are g,
and g, respectively. .. = e

7Py P2 n P2 o P
A B C . D .
@ 2P ®) 1Py © o Pi ®) no P2

What kind of relation exists between the kinetic energy (E,) and the orbital

radius (r) of the satellites revolving around the Earth ?

1 2 1
(A) E, oc 1 (B) By ot (C) E, (D) E, o 3

If the Earth shrinks (but not cut !) in such a way that its radius becomes —<

2

from R, what can we say about the values of gravitational acceleration g and

the gravitational potential ¢, at a point at distance R, from its centre in the two
cases ?

(A) the values of g and ¢ both become half.

(B) the value of g becomes half and the value of ¢ remains the same as
before.

(C) the value of g remains the same as before and the value of ¢ becomes
half.

(D) the values of g and ¢ both remain the same as before.

1. (©) 2. (©) 3. (D) 4. (A) 5. (A) 6. (B)
7. (C) 8. (D) 9. B) 10. B) 11. (A) 12. (O
13. (A) 14. B) 15. (D)

Answer the following questions in short :

1.

Out of the equator and the pole of the Earth where does the gravitational
acceleration g have a larger value ? Why ?

Give the values of gravitational acceleration and the gravitational intensity at
the centre of the Earth.

The magnitude of gravitational intensity at a point is 0.7 N/kg. What would be
the magnitude of the gravitational force on a body of 5 kg mass at this
point ? [Ans. : 3.5 N]
“The value of the escape velocity v, for a stationary body on the surface of a
planet is directly proportional to the mass and the radius of the planet”. Is this
statement true ? If not, correct it and write.

Give two uses of a polar statellite.

If the kinetic energy of a statellite is 6 x 10° J, what is its potential energy ?
What is its total energy ?

The potential energy of a statellite is —8 x 10° J. What is its binding energy
(or escape energy) ?



8.  For different planets the masses are M, M, M3’ the radii are R, R, R3 and

the gravitational accelerations at their surfaces are g, g,, g, respectively. From
the following graphs for them, arrange their masses in the descending order.

& . g BN
\\C

8

I
I
I
I
I
}

> Distance from centre r

;U ____
[38)

I
I
I
I
R, R

3
Figure 3.20

G
(Hint : Think from g = r_2 for some definite distance r > R,]

[Ans. : M; > M, > M,]

Answer the following questions :

1. State Newton’s universal law of gravitation. Write and explain its formula in
the vector form.

2. Obtain the formula for the orbital velocity of a statellite of the Earth.

Obtain the formula for the time-period of a statellite of the Earth.

4. For an object lying on the surface of the Earth, obtain the formula for its
escape speed.

5. Obtain the formula for the gravitational acceleration at a depth d from the
Earth’s surface.

w

6. Obtain the formula for the total energy of a satellite.

7.  Define gravitational intensity. Write its formula. Give its unit and the dimensional
formula.

8.  Define gravitational potential. Give its unit and dimensional formula.

9. Define gravitational potential energy. Give its unit and dimentional formula.

10. Obtain the formula for the Earth’s gravitational potential at distance r (> R))
from its centre.

11. Obtain the formula for the variation in effective gravitational acceleration with
latitude due to Earth’s rotation.

12. The semi-major axis of a planet revolving around sun is a and at this distance

the mechanical energy of the planet is =GMm where M = mass of sun and

2a

m = mass of the planet. Find its velocity when its distance from the sun is r.

[Ans. : v = GM(z_l)]

roa
[Hint : Use the law of conservation of mechanical energy].

13. Give the distinguishing points between g and G.
Solve the following problems :

1. A space craft goes from the Earth directly to the sun. How far from the
centre of the Earth the gravitational forces exerted on it by the Earth and by
the sun would be of equal magnitude ? The distance between the Earth and
the sun is 1.49 x 10® km. The masses of the sun and the Earth are 2 x 10*

kg and 6 x 10** kg respectively. [Ans. : 25.7 x 10* km]

PHYSICS
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2. If the Earth were a sphere made completely of gold (!), what would have
been the magnitude of gravitational acceleration on its surface ? The radius of

the Earth = 6400 km., density of gold = 19.3 x 10° kg/m’, G = 6.67 x 107!
Nm?/kg?.
[Ans. : 3449 m s7]
3. The radius of the circular orbit of the Earth revolving around the sun is
1.5 x 10® km. The orbital speed of the Earth is 30 km/s. Calculate the mass
of the sun from this data. G = 6.67 x 107!! Nm%kg?.
[Ans. : 2.02 X 1030kg]

4. A satellite revolves around the Earth at a height from surface equal to the
radius of the Earth. Calculate its (i) orbital speed (ii) time period. Take

G = 6.67 x 107" Nm?%kg?, radius of the Earth = 6400 km and mass of the
Earth = 6 x 10** kg.
[Ans. : v, = 559 x 10° m/s, T = 14370 s]

5. A satellite of 200 kg revolves around the Earth at a height of 1000 km from
the surface of the Earth. Calculate (i) escape energy (ii) escape speed of this

satellite. Take G = 6.67 x 107! Nm%kg? The radius of the Earth = 6400 km
and the mass of the Earth = 6 x 10** kg.
[Ans. : 5.4 x 10° J; v, = 7.35 x 10’ m/s.]

6. An artificial satellite revolves around the Earth, remaining close to the surface

’R
of the Earth. Show that its time-period is T = 27 j

7. Show that the ratio of the linear (orbital) speed of a satellite revolving round the
Earth and remaining close to the surface of the Earth to the escape speed of an

1
object lying on the Earth is equal to E

8. The mass and radius of the Earth are Ml, R1 and those for the moon are M2,
R, respectively. The distance between their centres is d. With what velocity

should an object of mass m be thrown away from the mid-point of the line
joining them so that it escapes to infinity ?

[Ans. : v, = %(Nh +M,) ]

9. Consider different planets revolving in different circular orbits around a star of
very large mass. If the gravitational force between the planet and the star

-5
varies as r /2, r = distance between them how does the square of the

7
orbital period T depend on the distance r ? [Ans. : T2 oc ré ]
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4.1 Introduction

In this chapter, we shall study the structure of solid
substances and their mechanical properties. We shall study
elasticity, which is one of the important mechanical properties
of solids. In the last two decades of the twentieth century
many advances have taken place in solid state physics and
liquid state physics. It has become possible to determine many
physical quantities related to elasticity with the help of computers
along with experimental techniques. In this chapter our discussion
shall be confined to primary information about elasticity and
practical applications of elasticity of solids.

4.2 Solids

One of the characteristics of solids is that in certain
physical condition the average distance between constituents
remains constant. They may oscillate about their mean positions
with the amplitude depending on their temperature. But average
distance between any two constituent particles remains constant.
If the distance between particles in equilibrium position is
changed, internal forces acting between them also change in
such a way that the average distance between them remains
the same. Thus, when the particles are displaced from their
mean positions, a force comes into existence, trying to bring
the particles back to their equilibrium position. Such a force is
called restoring force.

Solids can be broadly classified in three categories,
according to arrangement of constituent particles. (Such
classification can be done on the basis of some other criteria
also.) They are (i) Crystalline Solids (ii) Non-crystalline Solids
(iii) Semi Crystalline Solids.

(i) Crystalline Solids
particles in this type of solids, is a regular geometrical array

Arrangement of constituent

in three dimensions. To understand this arrangement of points
in two dimensions is shown in figure.
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This is a very small part of an infinite
arrangement of points. Here, if you observe
from keeping yourself at any point 1, 2, or 3,
the arrangement of points appears identical. This
type of arrangement of points in three dimensions
is called a lattice. Lattice is a mathematical
concept. If groups of atoms, molecules or ions
identical in all respects (which are known as
basis) are placed on the lattice points, crystal is
formed. Depending on the type of interaction
among the constituent particles various types of
crystals are formed. But under given condition a
solid assumes the constitution for which its
internal energy is the minimum.

e © 6 o e e e o

1 3
® e e & o e o é

0@86(29866
@ e e e e o e o

e 6 8 © 6 ® o o
Lattice

Figure 4.1

A crystal can also be thought of as made
up of many identical blocks. One such building
block of constituent particles (ions) of copper
ions is shown in Figure 4.2. Here, in this
arrangement one ion is on every vertex of a
cube and one ion is on the centre of each face
of the cube. Putting such units side by side in
three dimensions, we get the crystal of copper.

Unit cell of crystal of copper

Figure 4.2
A branch of physics in which crystal
structures are studied, is called crystallography.
Study of crystal structure can be carried out
using x—rays, electron beams or neutron beams.
Crystalline solids have definite melting point
due to long range order existing in them.
Crystalline solids are classified into four groups,

depending on the type of constituent particles
and the bonding existing between them. They
are as follows :

Molecular Solids : Constituent particles of
such solids are molecules. Molecules are formed
due to covalent bonds (sharing of electrons).
Molecule may be a polar molecule or a non-
polar molecule. If in a molecule, centre of
positive charges and centre of negative charges
coincide, the molecule is said to be non-polar
molecule, else it is a polar molecule. Molecules
of iodine (I,), phosphorus (P,) and sulphur (S)
are non-polar and molecules of H,0, CO, are
polar molecules. If a solid consists of polar
molecules, dipole-dipole attraction force is
responsible for formation of such a solid. Vander-
Walls force is responsible for the other types of
molecular solid. Since these intermolecular forces
are weak, melting point and boiling point of
such solids are low compared to other solids.
They are poor conductors of heat and electricity.
Examples of such solids are Ss’ P, and L,

Ionic Solids : In such solids the constituent
particles are ions. Under the resultant effect of
electrostatic attraction and quantum mechanical
repulsion among these ions, bonds are formed.
These attractive forces are quite strong, so this
solid material is usually hard and has fairly high
melting point. Ionic solids are poor conductors
of electricity e.g. NaCl.

Covalent Solids : The constituent particles
in such solids are atoms. Atoms in such solids
are connected to the nearest neighbours by
covalent bonds. If any atom is imagined at the
centre of a tetrahedron, its four nearest
neighbours are at the vertices of this tetrahedron.
Due to extension of such an arrangement in
three dimensions, covalent solid is formed.
Diamond, silicon, germenium etc. are such solids.
Such solids are quite hard and have high melting
points. Such solids behave as semiconductors.
They are also known as network solids.

Metallic Solids : If on lattice points of
solids, positive ions of metals are placed, metallic
solids are formed. During formation of metallic
solid, atoms lose their valence electrons and
they become positive ions. Such free electrons
perform random motion in space between ions.
Hence, such solids are good conductors of heat
and electricity.
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(ii) Non-crystalline substances : In some
solids the constituent particles are not arranged
in a regular array. Such solids are called non-

crystalline solids. e.g. wood, glass.

There are certain substances which are
capable of forming a crystal structure. But in
the molten state of such a substance, at a
temperature higher than its solidification
temperature, is cooled rapidly, its constituent
particles do not get enough time to adjust
themselves in a regular array. Hence, they form
a solid substance having short range order.
Such called glassy or
amorphous solids. Here, meaning of short
range is that few constituent particles (say four
to five) are bonded together to form a structure

substances are

and exhibit a local ordering. Such independent
units are randomly arranged to form the extended
solid.

It should be clearly noted that given an
opportunity (i.e. allowing sufficient time) such
glassy substances could have formed a crystalline
structure. But there are certain substances which
always remain non-crystalline, no matter whatever
opportunity is given to them.

Here, question arises as to if glassy
substances do not have long range order just
like liquids, why they can’t flow like liquid ?
The intermolecular forces in glassy solids are
much stronger than those in liquids. Due to this
reason glassy substance cannot flow like a
liquid. Now it would have been clear that the
intermolecular (or interatomic) forces play an
important role in deciding the phase of matter.

The amorphous solids do not have a definite
melting point. Different bonds have different
strengths and as the material is heated the
weaker bonds break earlier starting the melting
process and it becomes soft. The stronger bonds
break at higher temperatures to complete the
melting process.

(ifi) Semi-crystalline substances : The
molecule of polyethylene used extensively in our
daily life, is represented by (—CH,—), where n
is the number of repeated units. These molecules
are long chain molecules and are called
macromolecules. Protein molecules fall under
this category. When a substance, made from

such molecules, is cooled from the liquid phase
or the molten phase, the molecules acquire a
configuration such that in some regions the
molecular chain is arranged in a regular manner
and in other regions in an irregular manner.
Such substances are called semi-crystalline or
polymers and they are very important in modern
material science.

4.3 Elasticity

In mechanics, we have seen that force can
change the state of motion of a body and is
also capable of changing its shape. But the
second effect of force is not studied so far. In
fact an ideal rigid body is an imagination only.
In reality, all the solids can be deformed under
the effect of an external force. The extent of
their deformation depends on their ability to
resist the change. All the bodies cannot resist
such a change equally. Some of the bodies
which are deformed on application of an external
force are able to restore their original shape
when the deforming force is removed. The
extent to which the shape of a body is restored,
when the deforming force is removed depends
on the type of material. The inherent property
of a body due to which body tries to restore
the normal (natural) shape or to oppose the
change in shape is known as elasticity.

If a body can completely regain its original
shape after removal of the deforming force, it is
called a perfect elastic body. If a body remains
in the defromed state and does not even partially
regain its original shape after the removal of
deforming force, it is called a perfect non-
elastic body or a plastic body. If a body
partially regains its original shape it is called
partially elastic. Most of the bodies are found
to be partially-elastic.

In order to study elasticity, we have to
define two useful quantities viz. stress and strain.
Let us begin with strain.

4.3.1 Strain :

When an external force is applied on a
body its length, volume or shape changes and
corresponding to each of these we define strain
(¢). Strains are of three types. Longitudinal
strain, Volume strain and shearing Strain.
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(i) Longitudinal Strain : The ratio of change
in length of a body (Al), when deforming force
is applied to the original length (/) (i.e. fractional

change in length), is defined as longitudinal strain.
A

) Original road

y
>

r
~

Al
—
— T
Longitudinal strain

Figure 4.3
[

Thus longitudinal strain g, = 7 “4.3.1)

If the length of a rod increases, the
corresponding longitudinal strain is called tensile
strain and if due to application of external
force, length of the rod reduces the strain is
called compressive strain.

(i) Volume Strain : When a body is acted
upon by the forces everywhere on its surface in
the direction perpendicular to the surface, the
volume of the body changes. The fractional
change in the volume of a body is defined as
volume strain. If V is the volume of undeformed
body and AV is the change in volume, then

. AV
volume strain & = ~

\'%
(iii) Shearing Strain : A force tangential to

a cross-section of a body produces the change
in its shape. Now, the change in shape can’t be
measured quantitatively unlike length or volume.
Hence, in order to understand shearing strain

(4.3.2)

consider Figure 4.4(a). In this figure, a body
with square cross-section is shown. Suppose the
forces of the same magnitude parallel to (i.e.
tangentially) the surfaces AHGB, BGFC, DEFC
and DAHE are applied on it. Note that the
resultant of these forces is zero as well as the
resultant torque produced by these forces is
also zero. Hence the object is in translational
and rotational equilibrium. Because of the couples
of forces acting in mutually opposite directions,
these forces are displaced and deformation in
its shape takes place. Figure 4.4(b) shows the
shape that plane ABCD assumes due to such
deformation. For the sake of clarity the
deformation has been magnified.
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Shearing strain

Figure 4.4
Due to such deformation, the angle between

AB and BC is no more % but it becomes

% — 0. To measure this deformation, we

rotate A'B'C'D' (about an axis which is
perpendicular to its plane) such that its edge
D'C' coincides with its undeformed position
DC. The drawing is shown in Figure 4.4(c).
Here, tan® is called shearing strain. If the value
of 0 (in radian) is small, tan® ~ 0 and then O
is called the shearing strain (g).

X

Shearing strain g, = 0 = n (4.3.3)

All types of stain are dimensionless physical quantities.
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4.3.2 Stress : Elastic bodies regain their
original shape after removal of deforming force.
This is possible only if a restoring force, opposing
the strain, arises in it. The restoring force
arising per unit cross sectional area of a
deformed body is defined as stress. If the body
is in static equilibrium, external force is equal to
restoring force. If the restoring force is F and
cross sectional area is A, stress (o) is given by,

(4.3.4)

SI unit of stress is Nm™ or pascal (Pa) .

Its dimensional formula is M'L7'T2.
(i) Longitudinal stress

Consider a bar and its section (shown by a
dotted line) as shown in the Figure 4.5.

@
QD D -
®)

Tensile stress
Figure 4.5

The rod is in equilibrium under the effect of
two external forces which are equal and in
mutually opposite directions. In this condition,
the portion of the rad situated on the left and
right sides of the above mentioned section, pull
this section in mutually opposite directions with
forces having the same magnitude.

If the section is not near the ends of the
rod, these pulls are uniformly distributed over
the entire cross-section. Such forces are shown
in Figure 4.5(b). Here, for better understanding,
the portion separated by this section are shown
separately.

When external force is applied on the rod
the inter-molecular distance in it changes. So,
the forces are so produced that they try to
bring the molecules back to their equilibrium
position. These forces are restoring forces. In

Figure 4.5(b) restoring forces are shown every-
where on the cross section by small arrows.
Since the restoring force arises between each
pair of molecules, it is distributed uniformly over
the entire section.

The restoring forces, produced due to
deformation of a body under the effect of an
external force, at different cross-sections are
the same but as they are distributed over
different cross sectional area it becomes
necessary to mention the area of cross-section
also.

Here, in the discussion so far, we have
considered external force which causes increase
in the length of the rod. Resulting stress due to
such a force is called tensile stress.

If, due to application of external forces
length of the rod decreases, the resulting stress
is called compressive stress.

Compressive stress
Figure 4.6

(ii) Volume or Hydraulic Stress : Suppose
a body is subjected to forces acting over the
entire surface of it.

The forces are perpendicular to the surface
locally and also the magnitude of force acting
on an element of the surface is proportional to
magnitude of the area element. Application of
such forces cause change in the volume of the
body, and as a result volume strain is produced
in the body. When a solid body is immersed in
a fluid such a situation arises.

If the pressure at the location of immersed
solid is P, the force on any area A is PA,
directly perpendicular to area. In equilibrium
condition the force per unit area is volume
stress.

Volume stress c, = = % =P

> |

(4.3.5)
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Thus volume stress is same as the pressure.
Hence, we can say that pressure is a specific
type of stress due to which only the volume of
a body changes.

(iii) Shearing Stress (Tangential Stress) :
If the force acting on a body is tangential to a
surface of the body as shown in Figure 4.4, it
causes shearing strain in the body and the
corresponding stress is called shearing stress.
Thus,

Tangential force (F,)
Area (A)

Shearing Stress =

(4.3.6)

It may also happen that the force acting on
a body is neither perpendicular nor tangential to
the surface. In this case, components of force
perpendicular to the surface and tangential to
the surface can be considered as shown in
Figure 4.7.

Fsin®

I

FcosO

Figure 4.7

Here, force acting on a body is shown.
This force makes an angle O with the area
vector (a vector having magnitude equal to area
of the surface outward perpendicular to the
surface). As shown in the diagram Fcos0 is the
component perpendicular to the surface and
Fsin0 is the component tangential to the surface.
So, FcosO has tensile effect whereas Fsin0O
has shearing effect. In this case both tensile
stress and shearing stress (also tensile strain
and shearing strain) are produced in the body.

Difference between pressure and stress :
Pressure is the force per unit area. Though the
dimensions of pressure and stress are same,
they aren’t two names of the same quantity.

When the whole body is acted upon by
forces, acting perpendicularly everywhere on it,
the force per unit area is called the pressure,
(Figure 4.8).

Figure 4.8 Figure 4.9

Stress is also a force per unit area but it
can be different on different surfaces. Also it is
not necessary that the force should be
perpendicular to the surface. It is also possible
that there is stress on one surface and there is
no stress on the other surface (Figure 4.9)

Illustration 1 : As shown in the Figure 4.9,
10 N force is applied at two ends of a
rod. Calculate tensile stress and shearing
stress for section PR Area of cross-section

PQ is 10 cm?.
P
Q R
Figure 4.10

(Tensile force)
Fcos30°

Solution :

(Tangential force)
Fsin30°

Figure 4.11

Here the angle between cross-section PQ
and section PR is 30° So,

Magnitude of area of cross-section PQ
Magnitude of area of section PR

= cos30
V3
2

Magnitude of Area of Section PR

Magnitude of area of cross-section PQ

- V3
2
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2x10x107*

5

2

= -3 2

ﬁ x 107 m

Also angle between force F and area vector

of section PR is 30°. (How ? Think over.)

So, for section PR tensile force is

F, = Fcos30 = 10 x g = 53N

and tangential force

Il
)
Z

F, = Fsin30 = 10 x

=

. For section PR,

Tensile force
Area of section PR

Tensile =
stress(o)

53

2 -3
- %10
V3

=75 x 10° N/m?

Tangential force
Area of section PR

Shearing stress ©,=

5

2 -3
- %10
V3

% x10°= 4.33 N/m?

4.4 Relation Between Longitudinal Stress

and Longitudinal Strain

To study the relation between longitudinal
stress and longitudinal strain, a wire is stretched
using external force. Corresponding to various
values of stress, fractional values of strain (or
percentage values) are found out. The relation
between the stress and strain can be studied by
plotting stress-strain (%) graph. Such a graph is

shown in Figure 4.12.

Limit of
3 proportionality Fracture
3 oint
Elastic limij p

b 1€ \ !
Plastic deformation

Stress

I
I
|
1
1
I
!
!

I
l
I

_{_\’ Permanent set
0<I %

W

strain (%)
Figure 4.12
During the initial portion of the curve strain
is less than 1% (i.e. from O to a) stress and
strain are proportional to each other. Here point

a is called limit of proportionality.

From points a to b on the graph, stress and
strain are not directly proportional, but if the
load is removed at any point between 0 and b
the curve will be retraced and the material
would return to its original length. In this sense
the material is said to be elastic or to exhibit
elastic behaviour upto point b. The point b is
called the elastic limit or the yield point.

The strain increases rapidly between points
b and ¢ when the load is removed at some
point between b and c, the material traces the
path shown by dotted line and acquires the
state in which a permanent deformation (defect)
is produced. The material is said to have
permanent set in this state.

Further increase of deforming force beyond
point C results in larger increase in strain. In
this condition the planes of the material having
maximum shearing strain slide over each other.
This phenomenon is called plastic deformation.

At point d, the body gets fractured and
hence it is called the fracture point. The stress
corresponding to d is called the breaking stress.
If in a metal large plastic deformation takes
place between elastic limit b and fracture point
d the metal is said to be ductile. If fracture
occurs soon after the elastic limit is passed, the
metal is said to be brittle.
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However, some materials (like rubber) behave
differently from what have been described above.
We know that some types of rubber can be
pulled to several times its length and still returns
to its original shape. Figure 4.13 shows a graph
of stress versus strain for a typical sample of
vulcanized rubber. It is amusing to see that up
to 700% strain can be produced in it. Substances
in which very large strain can be produced are
called elastomers. In our body tissues of aorta
(artery carying blood from heart to various parts
of body) is an example of elastomer.

i

Stress
\

Strain

Hysteresis for a vulcanized rubber

Figure 4.13

The noteworthy points of this graph are
(i) During no portion of the curve, stress is
directly proportional to strain. (ii) When
deforming force is removed the object returns
to the original shape, but not along the original
path. The work done by the material in returning
to its original shape is less than the work
required to deform it. This means that certain
amount of energy is absorbed by the material.
This energy gets dissipated in the form of heat.
This phenomenon is called elastic hysteresis.

Elastic hysteresis has an important application
in shockobsorbers. If a padding of vulcanized
rubber is placed between a vibrating system and
the support on which it is placed, the rubber is
compressed and released in every cycle of
vibration. As energy is absorbed in the rubber in
each cycle, only a part of the energy of vibration
is transmitted to the support. Hence, effect of
vibration on the support is reduced.
4.5 Hooke’s Law and Elastic Modulii

In 1678 Robert Hooke showed,
experimentally that “For small deformations the
stress and strain are directly proportional to
each other”. This statement is known as
Hooke’s Law so,

stress oc strain.

stress = constant X strain

o = ke 4.5.1)

Here constant k appearing in the equation
4.5.1 is known as modulus of elasticity. Its unit
is Nm™ or Pa.

Hooke’s Law is an empirical law, also found
to be valid for very small strain (about 1%) as
shown in Figure 4.12 for most of the materials.
However, for substances like rubber this linear
relationship is not exhibited.

4.5.1 Young’s Modulus :

We have seen that for small strain, stress
and strain are directly proportional to each other
tensile stress and tensile strain are considered,
equation 4.5.1 can be written as,

o, = Yg (4.5.2)

Here the elastic modulus is known as
Young’s Modulus (Y)

Experimental arrangement to determine

Y-Young’s modulus is shown in the Figure 4.14.
Ay

Reference wire A ~ —B Test wire

L%
3

Figure 4.14

Wire A is called the reference wire and
wire B is the test wire. In the hook, attached
to wire A some fixed mass is suspended at the
end of wire A.

Different masses(m) are suspended at the
end of test wire Band corresponding to the
resulting tensile force (mg), increase in length
(Al) is measured using the vernier’s scale,
attached to reference wire.

tensile force(F) mg

Here, o, = Arca (A) = _nr2

(4.5.3)
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where r is radius of test wire.

Al
l

where [ is the original length of test wire.
From equations (4.5.2), (4.5.3) and (4.5.4)
we get

And tensile strain g, = 4.5.4)

mg Al
nr? =Y
mgl 455
T onrlAl (4.5.5)

Young’s Modulus is the characteristic of
material of the substance.

In most of the substance the Young modulus
is found to be of the same value for tensile
stress and for the compressive stress but for
bones and concrete it is not so.

Illustration 2 : An object of mass 5 kg
is suspended by a copper wire of length 2 m
and diameter 5 mm. Calculate the increase in
the length of the wire. In order not to exceed
the elastic limit, what should be the minimum
diameter of the wire ? For copper, elastic
limit = 1.5 x 10° dyne/cm?. Young’s modulus.
(Y) = 1.1 x 10" dyne/cm?

Solution :

Y = 1.1 x 10" dyne/cm

L =2m= 200 cm

d =5 mm = 0.5 cm

. r =025 cm

F=mg =35 x 10° x 980 dyne

[ = increase in length
FL
nrll
= FL
T oty

5.0 x 10° x 980 x 200
T 3.14x(0.25)2 x 1.1x 102

=499 x 107 cm
For copper, elastic limit = 1.5 x 10° dyne/cm’
(given)
If the minimum diameter required is d',

then
The maximum stress produced in the wire

_4F

F 9
— = =15 x 10
n(d’)2 nd

2

4%x5x%10° x 980
3.14 x1.5%x10°

L d"? =

=416 x 10

~d =645 x 1072 ¢cm
4.5.2 Bulk Modulus :

In equation 4.5.1, if the stress and strain
considered are volume stress and volume strain,
the elastic modulus is known as bulk modulus

(B).

Thus for small deformation, ratio of volume
stress to volume strain is called bulk modulus.

Volume stress

So, Bulk modulus = ———.
Volume strain

P

(¥

v
Here, the negative sign makes B positive as

volume of the body decreases on application of

. Bulk modulus B = (4.5.6)

pressure.

The reciprocal of bulk modulus is called
compressibility (K).

4.5.3 Modulus
modulus) :

of Rigidity (Shear

Ratio of shearing stress to shearing strain for
small deformation of a body is called modulus of
rigidity (m). Thus, from equation 4.3.3.

Modulus of rigidity (1)

_ shearing (Tangential) stress
B shearing strain
A
A X
= +—— But, 0=—F
g P97,

Eh (4.5.7)
Ax

4.6 Poisson’s Ratio

When a tensile force is applied on an
object, its length increases but the dimensions
perpendicular to direction of tensile force reduce.
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Similarly, if the body is subjected to compressive
force, the length decreases and its dimensions
perpendicular to compressive force increase. Such
a change in lateral dimensions perpendicular to
the applied force) per unit original dimension is
called lateral strain.

The ratio of lateral strain to longitudinal
strain is known as Poisson’s ratio. It is denoted
by p. Since it is ratio of strains, it is dimension-

less. I
F F
[ + Al
(@)
F F
(b)

| - N\|———
F <F

-———— [
()
Changes in dimension due to stress

Figure 4.15

— >

As shown in the Figure 4.15 in case of a
cylindrical rod under tensile force

longitudinal strain = %
and lateral strain = ATd

where d is the diameter of the rod.

Lateral strain (Ad—d)

“ =
Longitudinal strain (Tl)
LA AL Ar AL
- wes o S5 = nTs @

Here, negative sign appears due to opposite
nature of changes in lateral and tensile
dimensions. If a bar having rectangular cross
section is subjected to tensile force, there will
be increase in its length and decrease in breadth

and thickness. So, lateral strains would be Ab

b
Ah ) .
and T where b is the breadth and & is

thickness of the bar and Ab and Ah are
corresponding changes in them.

5o, Ab _ _ Al
b M7
Ah Al
and hoC “l (4.6.2)

Change in volume due to longitudinal
forces

Due to application of tensile force, lateral
dimension decreases and length increases. As a
result there is a change in its volume (usually
volume increase). Let us consider the case of a
cylindrical rod of length [/ and radius r.

Since V = mr?l

AV _ SAr | Al
v = 2 p + ] (for very small
change)
From equation 4.6.1
AV _ AL AL
v = 2u ] + ] (4.6.3)
AV AL,
AV
vV - g (I —2p) (4.6.4)

Equation 4.6.4 suggests that since AV > 0,
value of p cannot exceed 0.5.

Here, we have discussed the case of a
cylindrical rod. However, the results obtained
here are also valid for body having other types
of cross-sections.

Illustration 3 : A bar is subjected to
tensile force. Show that the rate of change in

volume of the bar with respect to length is

AA\II A(1 — 2p) where A is cross sectional

area of the bar. Here changes are small.
Solution :

A
VV—SI(I— 2W)

Since volume = cross sectional Area (A) X
length (])

From equation 4.6.4 we have,

AV _ AL, _
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AV
AL

Elastic constants for some materials are

= A (1 - 2w

given in the Table 4.1.
Table 4.1

Elastic Constants (For Information Only)

Material Young | Shear Bulk | Poisson’s
modulus| modulus | modulus | Ratio
x10""Pa| x10'"'Pa | x10''Pa

Aluminium| 0.7 03 0.7 0.16

Brass 091 0.36 0.61 0.26

Copper 1.1 042 14 0.32

Tron 19 0.70 1.0 027

Steel 20 0.84 1.6 0.19

Tungston 36 1.5 20 0.20

4.7 Elastic Potential Energy

When external force is applied to an object,
it gets deformed. Also restoring force is
developed in it. So deformation takes place
against this restoring force. Thus, work is done
against this restoring force. This work is stored
in the object in the form of elastic potential
energy. Remember, this potential energy acquired
by the body is due to the new configuration of
the body.

Let us obtain the expression for the potential
energy gained by the object due to a tensile
force.

Consider a bar of length L and cross
sectional area A. Suppose due to tensile forces
length of the bar increases by x. If young’s
modulus of the material is Y.

Va
A

So, the restoring force is given by

YA
L

Now the work done against the restoring

F =

force for further small increase in length dx is
dw = Fdx
.. Total work done in increasing the length
of the bar or wire by AL is,

3
[
o

SR

AL
_ A_fodx
L 9%

2AL
_ AY | x©
- L | 2],

This work done is the elastic potential
energy, stored in the bar or wire.

U = %(AL)2 4.7.1)

Let us think little more.
Equation 4.7.1 can also be written as

U _ U
Volume of the object = T A

X (Strain)?
". Elastic potential energy per unit volume

stress X strain 4.7.2)

1
-2

Energy per unit volume is also called energy
density.

4.8 Applications of Elastic Behaviour of
Materials

(i) When a material is used for practical
purposes, it will be in the condition of certain
stress. For example, cranes are used for lifting
and moving heavy loads from one place to
another. Cranes have a thick metal rope (cable)
to which the load is attached and so the cable
is under stress. The maximum load that a cable
can carry or the maximum acceleration that can
be produced in the attached load should be such
that the material of the cable does not exceed
its elastic limit. For example, suppose the
magnitude of stress at elastic limit (for the
material of the cable) is 30 x 10’7 N m™. If the
cross-sectional area of the cable is A and the
load to be carried by it is M, then
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Figure 4.16

o E, Mg
Longitudinal stress ¢, = A - A
Mg
A =g (4.8.1)

n
Here, the cross-section (A) of the cable
should be such that its value is much greater

Mg
than .IfM = 10* kg, taking g = 3.Im m s72,
n
we get
10%)(3.1x)
A=m?= " .

(30 x107)

.. Radius of the cable, 7 * 102 m = 1 ¢cm

Hence, the radius of the cable should be
quite more than 1 cm. But a cable of this
radius becomes practically a rigid rod. So the
cables are always made of a number of thin
wires braided together.

(i) A bridge has to be designed such that it
can withstand the load of the flowing traffic,
the force of winds and its own weight. Similarly,
in the design of buildings use of beams and
columns is very common. In both these problems,
the bending of beams under a load is of prime
importance. The beam should not bend too
much or break.

Let us, therefore, consider the case of a
beam, having rectangular cross-sections, loaded
at the centre and supported near its ends as
shown in Figure 4.16. A bar of length L,
breadth b, and thickness d when loaded at the
centre by a load (W) sags by an amount O,
given by

wWIL?
4bd>Y

Here, O is called the bending of a beam.

(4.8.2)

We accept this formula without proof.

83

Figure 4.17

From this equation, we see that to reduce
the bending of a beam for a given load, one
should use a material with a large Young’s
modulus Y. Moreover, for a given material,
increasing the thickness d rather than the breadth
b is more effective in reducing the bending.

This is so because & is proportional to d~> and

only to b~'. However, a deep bar may have a
tendency to buckle as shown in Figure 4.17. To
avoid this, a common compromise is the cross-
sectional shape (I) as shown in Figure 4.18.
Such a section provides a large load bearing
surface and enough depth to prevent bending.

Figure 4.18

(i1) In the end of the chapter let us consider

an interesting example of nature.

Consider a mountain of height h and density
p (assumed uniform). Then the force per unit
area at the bottom because of its weight is hpg
and it acts in a vertically downward direction.
Since the sides of the mountain are free, it
suffers a shearing stress approximately of the
order of hpg. If the elastic limit for the rocks

of mountain is taken to be 3 x 10® N m™2 and

density p equal to 3 x 10° kg m™ then

h,.pg =3 x 10° N m™
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3x10°8
max ~ 3%x10° x9.8
= 10 km

Thus elastic limit for the rocks imposes a
limit on the maximum height of mountains. Height
of Mount Everest is 8848 m i.e. 8.848 km.
which is within this limit.

~ 10* m

Illustration 4 : Length of a wire under
the effect of tensile force F, is [, and its
length under the effect of tensile force F, is

L. Prove that i al length [ = 2= T2
. t 1t =" - .
,- Prove that its normal length F, - |
Solution :
: _ FL
Since Al = AY
El
I =1+ L 1
| t Ay ()
El
and lz =1+ ﬁ 2)

Multiplying equation 1 by F, and equation 2
by F, and then subtracting equation 2 from 1
we get,

EF,! , _ BBl
AY U AY

" Fl - Fl =, - F)l

)l - Fl, =Fl +

FZII — FllZ
- E-R

Illustration 5 : The pressure at certain
depth in a sea is 80 atm. If the density of

water at the surface of the sea is 1.03 x 10°
kg/m® and the compressibility of water is
458 x 107! Pa!, calculate the density of
water at the mentioned depth.

1 atm = 1.013 x 10’ Pa

Solution : Suppose the density of water at

the mentioned depth is p' and the density on
the surface is p. For a given mass M of water,
let the volumes of water at the surface and at

the mentioned depth are V and V' respectively.

. M M
.V—pandV =

. Decrease in volume = AV

I
<
|
<

. volume strain = AV = M[

- _AV _11,_P
But, compressibility K = PV " P[ p'}

1
. —11 _
- A8 X107 = 90 %1.013x 10

{1_1.03x103}
X pv

~p' = 1034 x 10° kg/m’

Ilustration 6 : A steel wire of length
5 m and diameter 10> m is hanged vertically
from a ceiling of 5.22 m height. A sphere of
radius 0.1 m and mass 8 m kg is tied to the
free end of the wire. When this sphere is
oscillated like a simple pendulum, it touches
the floor of the room in its lower most
position. Calculate the velocity of the sphere
in its lower most position. Young’s modulus for

steel = 1.994 x 10" Nm~2

Solution :

Radius of sphere r = 0.1 m

Initial length L = 5 m

Increase in the length of the wire
AL= 522 — (L + 2r)

522 — (5 +2 x 0.1

0.02 m

Radius of the wire r =5 x 10* m

If the tension produced in the wire at the
lowest point is T, then

Y = T/A ives
AL/L &
p - YAAL _ Y(ur’p)AL
L L

— 1.994x10" x 1 x (5x107? x0.02
5

= 19941 N
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I

My?

But, net force T — Mg = R where - Stress 6 = % — _ 162

6x107°

R = radius of the path of oscillations of the

sphere = 522 — 0.1 = 5.12 m 27 x 10° N m™

2
X
. 19941 — 8n x 98 = SmX VT c
5.12 Now, since Y = g
8v?
1994 - 784 = ——=
5.12
' 5.12
~ v =88 ms!
. al= 9L
Illustration 7 : A mass of 15 kg is tied . Y
at the end of a steel wire of length Im. It is .
whirled in a vertical plane with angular 27 x10" x1 . 105
velocity 1 rad/s. Cross sectional area of the - o2x10M = B35 > 107m
wire is 0.06 cm?® Calculate the elongation of
the wire when the mass is at its lowest = 0135 x 107 m
position.
= 0.135 mm
Ysteel =2x 1011 N 1’1’1_2
. Illustration 8 : Length and cross
Solution :

sectional area of a wire are 5 m and 2.5 mm?.
m=15kg, [ = 1lm, ® = 1 rad/s A = 0.06

Calculate work required to be done to increase
cm? = 6 x 107%m?

its length by 1 mm. Young’s modulus of
Y =2 x 101/ N m™ material of wire = 2 x 10'' N m™2

At the lowest position total force acting on
the body is, the sum of gravitational force and Solution : [ = 5m, Al = Imm = 107m

centrifugal force, (mv*/r)
A = 25 mm? = 25 x 10° m?

y =2 x 10" N m™

Here, work done W is given by

1 .
W = =stress X strain X volume

2

:%(yxsl)xalxv

mg + mlw?

2
_ 1 Al
¥ = 2'Y X ( l ) X V
Figure 4.19

F = mg + mv%/r putting v = o and r = |, 1 1073 2
= = x 2 x 10" x X 2.5 x

F = mg + mlw? 2 5

= 150.8 + 1 x (1)} 10° x 5 (V = Al

15 (10.8) = 162 N 5 % 102 J
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10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

SUMMARY

Solids can be classified into three groups : (i) Crystalline solids (ii) Amorphous
solids (iii) Semi-crystalline solids.

In Crystalline solids atoms, molecules or ions are arranged in geometrical array
in space. Such a geometrical array of points in space is called lattice.
Crystalline solids are made of identical blocks (units).

Crystalline solids have long range order and so they have definite melting
points.

In amorphous solids there is no order in arrangement of constituent particles.
During formation of such solids constituent particles do not get enough time
for regular arrangement of particles.

In semi-crystalline solids in some regions there is regular arrangement of
particles whereas in some regions arrangement of particles is not regular.
When an external force acts on a body, the body is deformed. Property of
an object to resist such a deformation is called elasticity.

If a deformed body regians its original shape after removal of deforming
force, the body is said to be perfect elastic body.

If a deformed body cannot regain its original shape partially, even after
removal of deforming force, the body is said to be perfect plastic body.
When an external force acts on a body its dimensions change. Ratio of
change in dimension to original dimension is called strain. Strain can be
classified into three types. Strain is dimensionless.

Tensile (compressive) strain (g) is ratio of change in the length to original
length of a body.

Ratio of change in volume of a body to its original volume is called volume
strain.

Shearing strain is produced due to tangential force acting on any surface.
When deforming force is acting on a body, restoring force produced per unit
area is called stress. Its unit is N m™.

Stress produced corresponding to longitudinal strain, volume strain and shearing
stain, are longitudinal stress, volume stress and shearing stress respectively.
When an external force acts on a body for the restoring force, inter-molecular
forces are responsible.

If a force acting on a body is not perpendicular to any surface, component
of a force perpendicular to suface produced tensile (compressive) strain and
a component of the force parallel to surface causes shearing strain.

Stress and pressure both are forces per unit area and yet they are in different
physical quantities.

If tensile strain is less than 1 % tensile stress is directly proportional to tensile
strain. The maximum stress for which after removal of the external force the
body regains original dimension on the original path is called proportionality
limit. The maximum stress for which body can regain its original shape is
called limit of elasticity.

If in a body large plastic deformation can be produced which is said to be
ductile. If a body breacks when limit of elasticity is crossed, it is called brittle.
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21.

22.

23.
24.

25.

26.

In a substance like rubber, 700 % strain can be produced. Such bodies are
called elastomers.

When external force is applied to rubber, large deformation is produced in it.
When deforming force is removed, it regains original state but not on original
path. Here, energy spent in deforming the body is more than energy released
by the body while regaining the shape. This phenomenon is known as elastic
hysteresis. It is used in shockabsorbers.

Hooke’s Law : For small deformations stress is directly proportional to strain.
For small deformations ratio of stress to strain is called modulus of elasticity.
Young modulus (Y), Bulk modulus (B) and modulus of rigidity (m) are the
moduli corresponding to longitudinal strain, volume strain and shearing strain

respectively. Unit of modulus of elasticity is N m™.

When an axial force (tensile force or compressive force) is applied on a body, its
length and lateral dimensions change. Ratio of fractional change in lateral
dimension to fractional change in axial dimension is called Poisson’s ratio. Its

symbol is p. It is dimensionless. Value of p is less than 0.5.

When external force is applied, body achieves a new configuration due to
deformation. And hence it gains potential energy. This potential energy is
called elastic potential energy. It is given by

U = % stress X strain X volume

EXERCISES

Choose the correct option from the given options :

1.

A wire is stretched to double the length. Which of the following statements
is false in this context ?

(A) Its volume increases. (B) Its longitudinal strain is L

(C) Stress = Young’s modulus (D) Stress = 2 Young’s modulus.
Which is the dimensional formula for modulus of rigidity ?

(A) M'L'T? (B) M'L'T? (C) M'L?T! (D) M'L?T?
When more then 20 kg mass is tied to the end of wire it breaks. What is

maximum mass that can be tied to the end of a wire of same material with
half the radius ?

(A) 20 kg (B) 5 kg (C) 80 kg (D) 160 kg

Length of a metallic rod of mass m, and cross-sectional area A is L. If

mass M is suspended at the lower end of this rod suspended vertically

stress at the cross-section situated at % distance from its lower end is

(A) Mg/A B) M + m/4) g/A

< M + %m)g/A D) M + m) g/A
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11.

12.

13.

14.

15.

16.

Here, values of lengths and diameters of wires of same material are given.
If same mass is suspended at the end which wire will have the maximum
extension ?

(A) I =05 m, d = 0.05 mm B) I = 1m, d = Imm

(C) [ =2m, d = 2mm (D) [ = 3m, d = 3mm

When 100 N tensile force is applied to a rod of 107® m? cross sectional
area, its length increases by 1 %. So, Young’s modulus of material is ..........
(A) 10" Pa (B) 10" Pa (C) 10'° Pa (D) 10*> Pa

A composite wire is made by joining ends of two wires of equal dimensions,
one of copper and the other of steel. When a weight is attached to its end

the ratio of increase in their lengths is .......... e Yol = % copper
(A) 20:7 (B) 107 (C) 720 (D) 1.7

A rubber ball when taken to the bottom of a 100 m deep lake suffer
decrease in volume by 1 %. Hence, the bulk modulus of rubber is ..........
(g =10 m s

(A) 10° Pa (B) 10® Pa (C) 107 Pa (D) 10° Pa
Young’s modulus of a rigid body is .......... .
(A) 0 (B) 1 (© o« (D) 0.5

Pressure on an object increases from 1.01 x 10° Pa to 1.165 x 10° Pa. Its
volume decreases by 10% at constant temperature. Bulk modulus of material
ST .

(A) 1.55 x 10° Pa (B) 51.2 x 10° Pa

(C) 102.4 x 10° Pa (D) 204.8 x 10° Pa

When 200 N force is applied on an object, its length increases by 1 mm.
So potential energy stored in it due to this change is .......... .

(A) 021 B) 101 (C) 201 (D) 0.1

A wire is tied to a rigid support. Its length increases by / when force F acts
at its free end. So work done is .......... .

(A) é— (B) Fl (C) 2FH (D) %Fl

For perfect plastic body Young’s modulus is .......... .

A) (B) zero (C) oo (D) 2
Dimensionally modulus of elasticity is equivalent to .......... .

(A) Force (B) Stress (C) Strain (D) none of these

Cross-sactional area of a wire of length L is A. Young’s modulus of material
is Y. If this wire acts as a spring what is the value of force constant ?
YA YA 2YA YL
L ®) L L )~
In a metal wire when 10 N tensile force is applied, its length becomes 5.001

(A) (&)

m and when 20 N tensile force is applied, its length became 5.002 m so its
original length is ...........

(A) 5.001 m (B) 4.009 m (C) 50 m (D) 4.008 m
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1. (D) 2. (B) 3. (B) 4. (B) 5. (A 6. (O)
7. (A) 8. (B) 9. (C) 10. (A) 11. (D) 12. (D)
13. (B) 14. (B) 15. (A) 16. (C)
Answer the following questions in short :
1. Which forces are responsible for the formation of molecular crystals ?

Define perfect elastic body.
Give dimensional formula of strain.

P

Give the reason of restoring force produced in a body when an external
force acts on it.

Define compressibility. Also give its dimensional formula.
Which is more elastic, rubber or steel ? Why ?

Give reason : Springs are made from steel and not from copper.

R N W

What happens to the energy spent in changing the dimensions of an elastic
body ?
9. When a rod is stretched to increase its length by Al, increase in its potential

energy is U. What will be the change in its potential energy if it is
compressed to decrease its length by Al ?

10. For a wire breaking force is F. If the thickness of wire is doubled what will
be the value of breaking force ?

Answer the following questions :

1. Write a short note on ionic crystals.

2.  What is meant by strain ? Explain shearing strain with the help of an
example.

3. Discuss the effect of force acting on a body making angle 0 with a normal
drawn to its surface.

Explain experimental method to determine Young’s modulus.
Explain the difference between stress and pressure.

Define Poisson’s ratio and show that its value is less then 0.5.

N N o A

Derive an expression for elastic potential energy.

Solve the following problems :

1. A steel wire is hanged vertically. What should be its maximum length so that
it does not break by its own weight. Density of steel = 7.8 x 10° kg m~,
for steel breaking stress = 7.8 x 10° dyn/cm®. (Ans : 1.02 x 10* m)

2. Figure shows a composite rod of cross-sectional area 107
m’ made by joining three rods AB, BC and CD of different =
materials end to end. The composite rod is suspended vertically
and an object of 10 kg is hung by it. L,, = 0.1 m, ]

Lge =02 m Ly = 0.15 m. Calculate displacement of B, C

_ 10 _ 10 5}
and D. Y,, = 25 x 100 Pa, Y, = 4 x 10° Pa f

_ 10
YCD =1 x 10" Pa.

Figure 4.20

[Ans. : Displacement of B = 3.9 x 10°° m, Displacement of
C = 8.8 x 10°% m, Displacement of D = 2.3 x 10~ m]
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3.

A wire of length L and cross section area A is
kept on a horizontal surface and one of its end is
fixed at point 0. A ball of mass m is tied to its
other end and the system is rotated with angular

(@)

velocity ®. Show that increase in its length

212
Al = % Y is Young’s modulus.

Figure 4.21

As shown in figure, masses of 2 kg and 4 kg are tied to
two ends of a wire passed over a pulley. Cross-sectional
area of wire is 2 cm?. Calculate longitudinal strain produced

in wire. g =10 m s2Y =2 x 10" Pa.
2 kg
[Ans : 6.6 x 107]

4 kg
Figure 4.22

A wire of length 5 m and diameter 2 mm is hanging from a ceiling. A mass
of 5 kg is suspended at its lower end. Calculate increase in its volume.
Poisson’s ratio of material = 0.2, Y = 2 x 10" Pa. g=10m s2. Also
calculate change in potential energy of wire.

[Ans. : AV = 7.5 x 107 m3, 1072 J]

A steel wire of cross section 1 mm? is heated at 60°C and tied between
two ends firmly. Calculate change in tension when temperature becomes
30°C co-efficient of linear expansion for steel is o = 1.1 x 107 °C,
Y =2 x 10" P, (change in length of wire due to change in temperature
(A1) is Al = < [Af) [Ans. : 66 N]
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5.1 Introduction

A substance which can flow is known as fluid. As liquids
and gases can flow, they are called fluids. Molten glass and
tar can flow although slowly, they are also included in fluids.

Fluid mechanics comprises of fluid statics and fluid
dynamics. In fluid statics the forces and pressures acting on a
stationary fluid are studied while fluid dynamics includes motion of
fluid and properties of its motion. Fluid dynamics is studied in two
sections : Hydrodynamics and Aerodynamics.

We will discuss pressure of fluids and Pascal’s Law in
fluid statics. In fluid dynamics, characteristics of fluid flow,
Bernoullie’s theorem and its applications and viscosity will be
studied. Finally, we will also discuss the surface tension of
stationary liquids. Let us begin with fluid statics.

5.2 Pressure and Density

‘Magnitude of force acting on a surface per unit area in a
direction perpendicular to it, is called the pressure on the surface.’

If F is the magnitude of force acting perpendicular to area
A, then the pressure acting on this surface is given by,

Force(F)

Arca(A) (5.2.1)

Pressure (P) =

If force is not perpendicular to the surface, then the
component of the force perpendicular to the surface is taken
into account for the pressure on the surface (See Figure 5.1).

\

Tl

Fcos0

%

T
\A

- A
F \
Pressure
Figure 5.1
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If the force (f:)) makes an angle O with the

normal drawn to the surface, FcosO is the force
perpendicular to the surface. So, as per the
definition, pressure is given by,

Force(F)
= Area(A)

(5.2.2)

Unit of pressure is Newton/(metre)?, (N/m?)
which is also known as Pascal (Pa), in memory
of French scientist Blaise Pascal (1623—1662).
Pressure is a scalar quantity.

Apart from pascal, other units of pressure
are bar, atmosphere (atm) and torr.

1 P =1Nm?>

1 bar = 10° P,

and 1 atm = 1.013 x 10° P,

1 torr = 133.28 P,

One atm pressure is the pressure equal to
the pressure exterted by the atmosphere at sea
level. It is also expressed in terms of height of
mercury column, as cm—Hg or mm—Hg

1 atm = 76 cm Hg = 760 mm—Hg

Density : The ratio of mass to the volume
of an object is known as density of the object. If
the volume of a body of mass m is V, its density
(p) is given by

p= % (5.2.3)

It is clear that unit of density is kg m™.

Normally liquids are incompressible. (Percentage
change in the volume of most of the liquids is of
the order of 0.005 %) So, their densities are
constant at a given temperature. Density of a
gas depends on its pressure. In Table 5.1 densities
of some fluids are given.

Table 5.1 : Densities of fluids at NTP
(Only For Information)

Density Density
Liquid Gas

(kg m™) (kg m™)
Water 1 x 10° Air 1.29

Sea water | 1.03 x 10*| Oxygen 1.43

Mercury | 13.6 x 10° | Hydrogen | 9.0 x 1072

Ethyl |0.806 x 10| Inter |[107¥-107
Alcohol stellar
space

Blood 1.06 x 103

Water is taken as a standard substance. By
comparing the density of a given body to that of
water we get specific density. ‘Specific density
of an object is the ratio of density of an
object to density of pure water at 277 K.
Thus,

Specific density

B Density of an object
~ Density of pure water at 277 K

Specific density is dimensionless. It is also
known as relative density or specific gravity.
Reciprocal of density is called specific volume.

If we take water having the same volume
as that of the given object, the specific density
can be obtained as,

Mass of the object

Mass of water of the
same volume at 277 K

specific density =

This equation is very useful in determining
the specific density of a substance because, it is
not necessary to know the density of given object
to detemine the specific density.

5.3 Pascal’s Law and its Applications

Pascal’s Law ‘Pressure in an
incompressible fluid in equilibrium is the
same everywhere, if the effect of gravity is
neglected.’

This statement can easily be verified as
follows :

Consider a small element in the interior of a
liquid at rest. The liquid element is in the shape
of a prism consisting of two right angled triangle
surfaces.

Let the areas of surfaces ADEB, CFEB and
ADFC be A1’ A2 and A3.

-
% D
A
A, ! .
A B c B
R ol 1

Verification of Pascal’s Law

Figure 5.2

It is clear from Figure 5.2 that
A, = A cosO and A, = A sinb

Also, since liquid element is in equilibrium,
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F, = Flcose and F, = Flsine

F
Now pressure on the surface ADEB is P1 = A—l
1

Pressure on the surface CFEB is

E, Fcosb K

Py = A, ~ Ajcos® T A

and pressure on the surface ADFC is

F  FKcosb R

Py = Ay T Acos® T A

So, P1 = P2 = P3

Since O is arbitrary this result holds for any
surface. Thus Pascal’s law is varified.

An obvious consequence of Pascal’s law is
that “A change in pressure applied to an enclosed
is transmitted undiminished to every portion of
the fluid and the walls of the container”. It is
perpendicular to the walls of the container. This
statement is known as Pascal’s law of

transmission of fluid pressure.

Piston

Jets of water
reaching the

same height

Transmission of pressure in the fluid
Figure 5.3

This can be demonstrated using a flask of
glass, having small tubes jetting out from every
part. (Figure 5.3) Fill some coloured water in it.
Push the piston attached to it downwards. Water
will rise in all tubes to the same height. This
shows that change in pressure at any part of the
enclosed liquid is transmitted equally in all
directions.

Hydraulic Lift : Hydraulic lift works on
Pascal’s law. It is a device which consists of

two cylinders of cross section A and A,,

(A, << A,) connected by a horizontal pipe.
(Figure 5.4) These two cylinders are fitted with

smooth, air tight pistons.

“Cﬁf Lever
= =

Platform Fulcrum F

QR
7 Liquid

Hydraulic Jack

Figure 5.4
It contains liquid in it, as shown in the figure.
Suppose a force F, is applied on the pistion
with cross sectional area A .
So, pressure produced due to it is,

P

This pressure exerted on liquid in a closed vessel
is transmitted unchanged on to the piston with
larger cross sectional area through liquid. Hence
pressure on the second piston is

E
P= A

2

5E K
AZ_AI

Here, A1 << Az, - F, << F,. Thus with
less effort (F,), heavy load can be lifted at the
other end.

Hydraulic Brakes : Brake system used in
automobiles are hydraulic brakes, which are based
on Pascal’s law. When driver applies a small
force on the brake-pedal, the master piston moves
in the master cylinder and the pressure caused
by this is transmitted undiminished through the
brake-oil, gets applied on the piston of larger area.
Thus a greater force is applied on this piston,
which pushes the brake-shoes to come in contact
with the brake-liner. Thus, with a small force
applied on the pedal, a greater retarding force is

applied on the wheel.
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Brake pedal . pgAdy = Adp
To other . .. - . d_p _
] Plpelllne R Olll “dy pg (5.4.1)
Pistlo This equation shows that the rate of change

—Piston B, Master Piston

Master cylinder
Brake shoe

Hydraulic Brake
Figure 5.5

Door closers and shockabsorbers of
automobiles work on Pascal’s Law.
5.4 Pressure Due to Fluid Column

Suppose a liquid of density p is in static
equilibrium in a container. Consider an imaginary
cylindrical fluid element of height dy and cross-
sectional area A at the depth y from the surface
of liquid. As shown in Figure 5.6 the volume of
this cylindrical element is Ady, its mass is

p-A.dy and its weight is dw = p-g-A.dy.

Atmospheric
3 p
ol | a ypressure
N
y PA
= A
gl
dW
(P + dP)A

Pressure due to liquid column
Figure 5.6

Suppose the pressure on upper and lower
faces of the cylindrical element are P and
P + dP respectively, as shown in Figure 5.6.
Hence the force on upper surface in downward
direction will be PA, while the force on lower
face, in upward direction is (P + dp)A.

PA + dW = (P + dp)A
.. PA + pgAdy = PA + Adp

in pressure with depth (or height) depends on
physical quantity pg, known as weight density
(weight of a body per unit volume). Since most
of the liquids are fairly incompressible, pg is
constant for small heights of liquid column. For
fluids like air value of density p, depends on height
from earth’s suface, temperature etc. and hence
value of weight density cannot be treated to be
taken as constant for it.

As shown in Figure 5.6 container being open
the pressure on upper free surface is equal to the
atmospheric pressure. Thus for y = 0 P = P

Pressure P at depth y = h can be determined by
integrating equation 5.4.1,

P h

fdp = fpgdy

Pa 0

s P =P, =pgh

.. P=P + pgh (5.4.2)

Here, P = P, + pgh is known as absolute

pressure, while the difference P — P is known
as the gauge pressure or hydrostatic pressure at
that point.

The pressure at any point in a liquid neither
depends on the shape of container in which it is
filled nor on its area. This fact is known as
hydrostatic paradox. (See Figure 5.7). When
liquid is filled in containers of different shapes
and sizes but interconnected, height of liquid
column is found to be same everywhere.

v

Hydrostatic paradox

Figure 5.7
If two points are in the same horizontal level
in the liquid equation 5.4.2 shows that pressure
at these two points will be the same in stationary
liquid.
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5.5 Archimedes Principle :“When a body
is partially or fully immersed in a liquid the
buoyant force acting on it is equal to the weight
of the liquid desplaced by it and it acts in the
upward direction at the centre of mass of the
displaced liquid.”

Thus if density of fluid is p i and volume of
the body immersed is V,

buoyant force is F, = p Vg

This is equal to decrease in weight of the
body immersed.

Law of Floatation : When the weight W
of a body is equal to the weight of the liquid
displaced by the part of body immersed in it, the
body floats on the surface of the liquid.

(i) If W > F,, the body sinks in the liquid

@) If W = F, the body can remain in
equilibrium at any depth in liquid.

(i) If W < F,, the body floats on the liquid
surface, and remain partially immersed.

Illustration 1 : As shown in the figure
5.8 two cylindrical vessels A and B are
interconnected. Vessel A contains water up to
2 m height and vessel B contains kerosene.
Liquids are separated by movable, airtight disc
C. If height of kerosene is to be maintained at
2 m, calculate the mass to be placed on the
piston kept in vessel B. Also calculate the force
acting on disc C due to this mass. Area of
piston = 100 cm? Area of disc C = 10 cm?.
Density of water = 10° kg m~, specific density
of kerosene = 0.8.

A B
=
C
g ) J
Figure 5.8
Solution : Area of piston A = 100 cm?

= 10"% m?

Area of disc A2 =10 cm? = 107 m?

Density of water = 10° kg m™ = P,

Density of kerosene
Density of water

Now, =0.8

-. Density of kerosene p, = 0.8 x density
of water = 0.8 x 10° = 800 kg m™

If height of kerosene is maintained
at 2 m,

Pressure of water column = A +
1

Pressure of kerosene column

. - mg
. hp & = hp,g + A,

L2 x 10° =2 x 800 + —25
10

. 2000 — 1600 =

400 x 1072 =m
m=4kg

m
1072

Now pressure due to mass m is transmitted
undiminished to disc C. So, pressure due to
4 kg mass

_ Force on disc C
Area of disc C

mg T
A1 - A2
. Ay
. F. =mg A,
~ 4x9.8x%x107°
B 1072
=392 N

Illustration 2 : As shown in Figure 5.9.
lower portion of the manometer tube contains

fluid of density p, and the upper part contains
fluid of density p, ( p, > p, ). If pressures on
the top of these two arms are P, and P,
calculate pressure difference (P, — P,).

P

)

b

|

Lop
l 1

Py
T
h

C

p
Figure 5.9
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Solution : Consider points A and B, as
shown in the diagram, at equal height from
bottom.

For these points

P, =P

P+ (h+pg =xpg + hp,g + P,

P =P, =xpg+hpg—hpg—xpg

L P —P,=(p, - p)sh
5.6 Fluid Dynamics

While studying the motion of a particle, we
had to concentrate on the motion of the particle
only and hence we didn’t find it much difficult.
But in the motion of a fluid when a very large
number of particles are in motion, it becomes a
formidable task to follow the motion of each of
these particles. J. L. Lagrange developed a
procedure in which he generalised the concepts
of particle mechanics; but we shall not discuss it
here. There is a treatment, developed by Euler
which is more convenient for most purposes. In
it we give up the attempt to specify the history
of each fluid particle and instead specify the
density, pressure and velocity of the fluid at each
point in space at each instant of time. Of course,
we can’t afford to forget the particles of the fluid
completely because, finally the motion of the fluid
is attributed to the motion of its particles.

In the study of the motion of a fluid, we will
consider ideal and simple situations. Let us first

be familiar with some of the characteristics of
the fluid flow.

Characteristics of Fluid Flow :

(1) Steady flow : If in a fluid flow, velocity
of the fluid at each point remains constant with
time, the flow is known as steady flow. This
means that the velocity of any particle of the
fluid remains the same while passing through a
given point. To understand this, consider three
representative points P, Q and R shown in the
Figure 5.10. Let the velocities of each particle

. . — i -
passing through these points be vp , 128 and vy

respectively. These velocities remain constant with
time. It is not necessary that the velocities of a
particle at different points be the same, but

velocity of the particles passing through the same
point does not change with time, i.e. it is not

- - — - o

necessary that vp = yp = v, but vp, v,
% . . .

and VR should remain constant with time. These

conditions can be achieved at low flow speeds
e.g. a gently flowing stream.

p
R
14 —
%
P Q VR
et
YQ

Characteristics of steady flow
Figure 5.10

(2) Unsteady flow : If in a fluid flow,
velocity of the fluid at a given point keeps on
changing with time, the flow is known as unsteady
flow. For example, the motion of water during
ebb and tide.

(3) Turbulent flow In a fluid flow, if
the velocity of the fluid changes erratically from
point to point as well as from time to time, the
flow is known as a turbulent flow. Waterfalls,
breaking of the sea waves are the examples of
turbulent flow.

(4) Irrotational flow : If the element of a
fluid at each point has no net angular velocity
about that point, the fluid flow is called
irrotational.

If the flow is irrotational, a small paddle
wheel placed in the flow (as shown in Figure
5.11) will move without rotating.

d

\—_///

Motion of a small paddle-wheel
Figure 5.11

(5) Rotational flow : If the element of a
fluid at each point has net angular velocity about
that point, the fluid flow is called rotational. A
paddle wheel placed in such a flow rotates while
moving. The rotational motion is turbulent.
Rotational flow includes vortex motion such as
whirlpools, the air thrown out by exhaust fans
etc.

(6) Incompressible flow : If the density of
a fluid remains constant with time everywhere
(in a given flow), the flow is said to be
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incompressible. Generally, liquids can usually be
considered as flowing incompressibly. But even
a highly compressible gas may sometimes undergo
insignificant changes in density, its flow is then
practically incompressible. For example, the flow
of air relative to the wings of an aeroplane flying
with velocity quite less than that of sound waves
can be considered almost incompressible.

(7) Compressible flow : If in a fluid flow,
the density changes with position and time, the
flow is known as compressible flow.

(8) Non-viscous flow : The flow of a fluid
having small co-efficient of viscosity is known
as non-viscous flow. In other words, a flow of a
readily flowing fluid is called non-viscous flow.
The flow of water in normal conditions is an
example of non-viscous flow.

(9) Viscous flow : The flow of a fluid which
has large co-efficient of viscosity is called a
viscous flow. Thus, a flow of a fluid which cannot
flow readily is called a viscous flow. The flow
of castor oil is an example of a viscous flow.

In the beginning, we shall consider steady,
irrotational, incompressible and non-viscous flow
only. But our assumptions are too ideal for the
real situations. It is not possible to have such an
ideal fluid.

5.6.1 Streamlines, Tube of flow :

The path of motion of a fluid particle is called
a line of flow. Normally, the direction and the
magnitude of the velocity of a fluid particle keeps
on changing on its path of motion and hence all
the particles passing through a point in a flow
may not move on the same path. But the
situation in a steady flow is interesting.

In a steady flow, velocity of each particle
arriving at a point remains constant with time. In
Figure 5.10 let the velocity of a particle arriving

%
at point P be vp . It does not change with time.

N
Thus, each particle arriving at P has velocity vp

and at that point each particle proceeds in the

same direction. When each particle passing
ﬁ

through P goes to Q, its velocity v, (at point

Q) also remains constant with time and it
—
proceeds further to R, where its velocity vy also

remains constant. Thus, the path of motion of a
particle passing through P is PQR. This path of
motion does not change with time. Such a steady
path of motion is called a streamline. The flow
for which such streamlines can be defined is
called streamline flow. In unsteady flow, flow lines
can be defined but not the streamlines.

In asteady flow, streamlines can never
intersect each other. If they do, at the point of
intersection a particle may move in any direction
out of two tangents drawn at that point, which is
not possible.

Tube of flow : In principle, we can draw a
streamline through every point in the fluid flow.
As shown in Figure 5.12, if we imagine a bundle
of streamlines passing through the boundary of
any surface, this tubular region is called a tube
of flow.

Flow tube
Figure 5.12

The wall of the tube of flow is made of
streamlines. As streamlines can never intersect
each other, a particle of a fluid cannot pass
through the wall of a tube of flow. Hence, the
tube behaves somewhat like a pipe of the same
shape.

5.7 Equation of Continuity

Consider a tube of flow as shown in Figure
5.13. Let the velocity of fluid at cross section P,

of area A, be v, and at cross section Q, of

2
area A,, be v,

Figure 5.13

So, through the cross section P in unit time

fluid can travel distance equal to v,. Thus the
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volume of the fluid entering at P in unit time is
A,v,. If the density of incompressible fluid is p,

mass of fluid entering at P in unit time is pA,v,.

Since, mass of fluid passing through cross
section per unit time is called mass flux,

mass flux at P = pAlv1 (5.7.1)
Similarly mass flux at Q = pAy, (5.7.2)

Since the liquid cannot pass through the wall
and the fluid can neither be destroyed nor be
created, mass flux at P and Q should be equal.
So, from 5.7.1 and 5.7.2.

PAYV = PAY,
LAY, =AY, (5.7.3)
or for any cross-section of tube of flow

Av = constant (5.7.4)

Equation 5.7.3 or 5.7.4 is known as the
equation of continuity. The product of area of a
cross-section and velocity of fluid at this cross
section is called volume-flux. Equation 5.7.4
shows that speed of fluid is larger in narrower
section of tube and vice versa. In a narrow part
of the tube the density of streamlines is larger,
fluid speed is more. So it can be concluded that
closely packed stremlines indicate larger speed
of fluid and vice versa.

5.8 Bernoulli’s Equations and its Applications
Bernoulli’s equation is a fundamental relation
in fluid dynamics. This equation does not

represent a new principle of fluid mechanics. It

can be obtained using work-energy theorm.

Figure 5.14

Let us consider a streamline flow which is
steady, irrotational, incompressible and non-
viscous, through flow-tube as shown in figure.
Consider a small fluid-element, having area A and
length dl. Central streamline passing through this
fluid element passes through heights y, and y,
from reference level. At height y , pressure and
speed of fluid are P, and v, and at height y,
they are P, and v, respectively. This fluid element
of mass m, is acted upon by two forces (1) force
due to pressure difference (Adp) and
(2) gravitational force mg. Suppose this fluid
element is displaced by distance dl.

So, here work done due to the first force is
Adl dp and work done against gravitational force
is — mgdy (change in potential energy) where

dy is change in height. If initially its kinetic energy
is %mvz, change in kinetic energy during
displacement dy, is d(%mvz) = mvdy

As per work-energy theorem

mvdv = Adldp — mg dy (5.8.1)

Since Adl is the volume of fluid element,
equation 5.8.1 becomes

ﬁvdv = —dp - ﬁgdy (5.8.2)

Here m/Adl is the density (p) of the fluid
and since fluid is incompressible it is constant.
So, equation 5.8.2 can be written as

pvdv = —dp — pgdy

Pz Y,
" p_[vdv = —Idp—pg J.dy
P

vl 2 yl
. " P .
: p{%} =[Pl —pe[y]}
%p(vzz— v ==, - P)~ pg 0, =y

. 1
. P+ pgy, + Epvlzz P, + pgy, +

1
5PV, (5.8.3)

P+ pgy+ %pv2 = constant (5.8.4)
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Equation 5.8.3 or 5.8.4 is known as
Bernoulli’s equation. It should be noted that all
the terms of their equation are to be calculated
on the same streamline. If the flow is irrotational
it can be proved that the constant appearing in
equation 5.8.4 is same for all streamlines.

If equation 5.8.4 is divided by pg we get

Py
g + E + y = constant (5.8.5)

This is another form of Bernoulli’s equation.
The first term in this equation is known as
pressure head, second term is known as velocity
head and third terms as elevation head.
Applications of Bernoullis Equation

(1) Venturie meter : This apparatus is used
to measure speed of fluid. The construction of
venturie meter is shown in Figure 5.15. A
manometer is connected with a venturie tube
having specific design. The narrow part of the
tube is called throat. Broader end of the
apparatus has cross-sectional area ‘A’ and the
cross-sectional area of throat is ‘a’. Speeds near
the broader end and near throat are v, and v,.
While, pressures are P, and P, respectively.
Density of manometer — fluid is p, and that of

fluid, where velocity is to be measured is p,.

A p Throat

— a

KTTTT

2

Venturie tube

Manometer

Venturie Meter

Figure 5.15

Using Bernoulli’s equation at points ‘1’
and 2.

1 1
P+ §p1v12+ P&y =P, + Eplgv22+ P8Y,

Points ‘1" and ‘2* are horizontal. .. y, =,

. 1 _ 1
P+ Eplvl2 =P+ 5 PV,

1

P = P= 5p (07— v ) (5.8.6)

Here, for manometer P, — P, = (p, — p,)gh

(see illustration 2)

Inserting value of P, — P, in equation 5.8.6

we get

(b, ~ p) gh = 2pv2=v)  (587)

From equation of continuity Av, = av,
2 a
Substituting this value of v, in equation 5.8.7
we get

1 A2
(pz - pl)gh = Epl( a2 V12_ V12)

, 20, —p)gh 2

2(P, — Py)gh

LV, =a PI(AZ _ az) (5.8.8)

To find the volume flux or the rate of

flow, R = v,Aorva should be found.

Air flows through a venturie channel of a
carburator in automobiles. At throat, pressure
being low, the fluid is sucked in and proper
mixture of air and fuel is made available for
combustion.

Spray pump
Figure 5.16

The same principle is used in a spray pump,
as shown in Figure 5.16. On pushing the piston
in air comes out of the hole with high velocity.
As a result of this, pressure near the hole is
reduced and liquid is raised up in a capillary and

it is sprayed along with air.
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(2) The change in pressure with depth :

Earlier we have seen that P — P_ = hpg. This
equation can be arrived at as a special case of

Bernoulli’s equation. If the fluid is stationary

v, =v, =0, and P, = P, (Pressure on free

surface of liquid, see Figure 5.6). If the difference
in height is taken to be y, — y, = h, from
Bernoulli’s equation we get P, =P + pgh.

(3) Dynamic Lift and Swing Bowling :

Figure 5.17(a) shows a ball moving in air.
The streamlines are symmetric (w.r.t. the ball)
around the ball (because the ball is symmetric).
The velocity of air at points 1 and 2 is the same.
According to the Bernoulli’s equation the
pressures at 1 and 2 would also be the same.

Hence, the dynamic lift on the ball is zero.

Now, as shown in Figure 5.17(b) suppose
the ball is having spin motion about an axis passing
through its centre and perpendicular to the plane
of the figure. As the surface of the ball is not
quite smooth, it drags some air along with it. The
streamlines produced due to such motion is

shown in the figure.

Figure 5.17(c) shows the streamline pattern
of air when the ball performs linear as well as
spin motions. The crowding of streamlines at point
1 indicates high velocity and low pressure, while
the sparse streamlines at point 2 indicates low
velocity and high pressure. So a ball thrown with
such a spin will move up w.r.t. its trajectory.
(Now, you might have understood why the
bowlers play the michief with a ball to make its

surface rough).

4

TYYYVYY
YYYYYY

O

YYYy !L
YYYVYY

[\
y

(@)
] — V

-y €2
®)

©
Swing Bowling

Figure 5.17

Now, if the ball is thrown making it spin
about an axis lying in the plane of the figure and
perpendicular to the direction of its motion, it may
deviate towards the off stump or leg stump. This
is the main reason of the swing of a ball in fast

bowling.
F
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m
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Aerofoil
Figure 5.18
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(4) Aerofoils : Figure 5.18 shows an aerofoil
which is a solid piece shaped to provide an
upward lift when it moves horizontally through
air and hence it can float in air.

The shape of the wings of an aeroplane
(shape of the cross-section perpendicular to the
length of the wings) is like an aerofoil. As shown
in the figure, the air has streamline flow about
the wings. (Only when the angle between the
wing and the direction of motion — called an
angle of attack — is small, the streamline flow
is possible). In Fig. 5.18, the streamlines are
shown arround the wing. The crowded
streamlines over the wings indicate high velocity
and low pressure, while the sparse streamlines
below the wings indicate low velocity and high
pressure.

Due to this pressure difference an aeroplane
experiences the upward thrust. Thus, the
aeroplane in motion may float in air due to the
dynamic lift.

Illustration 3 : The diameter of one end
of a tube is 2 cm and that of another end is 3
cm. Velocity and pressure of water at narrow
end are 2 ms™' and 1.5 x 10° Nm™
respectively. If the height difference between
narrow and broad ends is 2.5 m, find the
velocity and pressure of water at the broad

end. (Density of water is 1 x 10° kg m™).
The narrow end is higher.

Solution :
The narrow end of the flow tube
dl =2cm .

L= lem= 1x102%2m

v, =2 ms’!

P =15 x 10° Nm™>
The broad end of the flow tube
d2 =3 cm

r,=15cm=15x107m

-~

V. =

2 2

3

~
—_

<

1

— 2.v :T-v
nro, 1 re,

1

(1x107%)?
= 1.5%x102)? *?
=0.89 ms™!

According to Bernoulli’s equation
1 1
P+ Py + pgy, = Py + Spv+ pgy,

1
Py =P+ Sp = v+ pgly, - 3y

=(1.5><105)+%x1><103x

[(2)?> — (089)7] + 1 x 10° x 9.8 x 2.5
P, = 1.76 x 10° Nm™

Illustration 4 : Figure 5.19 shows a
cylindrical vessel having cross-sectional area
A, in which liquid of density p is filled. At the
bottom of the container there is a small hole
of cross-section A,. Find the velocity of liquid
coming out of the hole when the height of the
liquid column is A from the hole.
(Here, A, >> A,)

Figure 5.19

Solution : Suppose, the velocity of the liquid

at cross-section A, and A, are v, and v,
respectively. Both the cross-sections being open
in the atmosphere, the pressure at the cross-

sections is same as the atmospheric pressure P .

P+ %pvl2 +pgh =P + %pvz2 (1)
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According to the equation of continuity,

A=Ay,
Ayvy
v, = A, ()

Substituting the value of v, from eqn. (2) in

eqn. (1),

2
1Az 1
E(Aljv + gh = 222

=~ 20h "A<A
A gh (. )
A_

J_

Note : The velocity of the liquid coming out
of a hole at the depth /& from the free surface
of the liquid is the same as the final velocity of
a particle falling freely from the same height.

This statement is called Torricelli’s law.

Illustration 5 : Water is filled in a
container upto height H as shown in the Figure
5.20. A small hole is bored on the surface of
a container at the depth A from the surface of
water. What will be the distance of a point
along the horizontal where the jet of the water
strikes the ground ? For which value of & will
this distance be maximum ? Also find this

maximum distance.

wn T_
h
4
=
M
H .}
A
A
\
\
B 1

k— —
Figure 5.20
Solution : The velocity of water coming out

of the hole in horizontal direction is

v = J2gh (D

As the acceleration of water coming out of
the hole is downward, it moves with constant
velocity in horizontal direction while it moves with
constant acceleration downward. (It is like
projectile motion).

From the equations of motion, displacement
in downward direction,

—h—-# 2)
where ¢ = time taken by the water to fall on
the ground.
The distance travelled along horizontal,
x =t 3)

Substituting the values of v and ¢ from
equations (1) and (2) in equation (3),

1
x = +2gh (M)z

8

1
(4hH — 4h*)2

1
[H? - (H - 2h)*]? (4)
Equation (4) shows that x is maximum if

H=2h ie. h= =

2
., H
. h = >

H . .
Also, for h = 5 equation (4) gives
~x=H

5.9 Viscosity

We know that the liquids like water and
kerosene flow easily. While the liquids like honey,
castor oil cannot flow easily. If we consider
Bernoulli’s equation for horizontal flow, i.e.
Y, = Y,, we have

P + %pvl =P, + %pvzz

This equation suggests that to maintain
horizontal fluid flow with constant speed

(v, = v,), no pressure difference is required
Le. P, = P,. But this is not found in reality. We

need some pressure difference to maintain fluid
flow with constant speed. This means that there
must be some force opposing the motion of fluid.
This force is due to viscosity. To understand this
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let us consider the steady flow of liquid on some
horizontal stationary surface.

v+ Ay
Ax v

Laminar flow
Figure 5.21

The layer of liquid which is in contact with
the surface, remains stuck to it due to adhesive
force acting between the molecules of the liquid
and molecules of the surface. The velocity of
the layer at the top is the maximum.

In Figure 5.21, some of the layers are shown
along with their velocity vectors. Thus in a steady
flow different layers slide over each other without
getting mixed up. This kind of flow is called
laminar flow.

In a laminar flow any two consecutive layers
of fluid have relative velocity between them. As
a result, resistive force is produced tangentially
at the surface of layers in contact. This internal
force of friction is called viscous force. The
property of fluid due to which relative motion
between two consecutive layers in opposed
is known as viscosity of the fluid. In order to
maintain the relative velocity of the layers the
minimum external force to be applied must
balance the viscous force. In absence of such
external force the relative motion between the
layers decreases with time due to viscous force
and fluid comes to rest. This is the reason why
milk in cup comes to rest after sometimes after
it has been stirred.

Velocity gradient : In a laminar flow the
difference in velocity between two layers of
liquid per unit perpendicular distance, in the
direction perpendicular to the direction of
flow is called velocity gradient.

As shown in the Figure 5.21 difference in

velocity of two layers having separation Ax is

Av. So, is velocity gradient. If Ax is very

Av
Ax
small velocity gradient becomes

lim Ay dv

M—0 Ax — dx
In case of laminar flow velocity gradient is

constant for all layers.

Its SI unit is s\

Now let us come back to viscosity. Here
viscosity is the force opposing the motion.
According to Newton’s experimental work at
constant temperature viscous force is given by

dv
dx

where F is the viscous force, A is contact-area

F=nA (5.9.1)

between two layers and mn is the constant of
proportion known as co-efficient of viscosity.
Value of n depends on type of fluid and its
temperature.

If the value of m is larger, the viscous force
is larger, and hence fluid can flow slowly and
vice versa. Thus co-efficient of viscosity is the
measure of viscosity of fluid. Also, value of m
decreases with temperature of liquid but increase
with increase in temperature of gases. From
equation 5.9.1,

_ _F
n Aﬂ
dx

If we take A = 1 unit and dv =] unit

dx

n=F

Thus “the viscous force acting per unit
surface area of contact and per unit velocity
gradient between two adjacent layers in a
laminar flow, is known as the co-efficient of
viscosity.”

CGS Unit of co-efficient of viscosity is dyne
s cm™2, and is called ‘poise’ in honour of Jean
Lois Poiseuille, a French physician and physicist.

Its SI unit is N s m™2 or Pa s. Its dimensional
formula is M'L7'T.

Value of co-efficient of viscosity for some
fluids are given in Table 5.2.
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Co-efficient of viscosity of some fluids

(For Information Only)

Table 5.2
Co-efficient of

Fluid Temperature Viscosity
(N s m2)

Water 20°C 1 x 1073
100°C 2.8 x 107
Air 0°C 1.71 x 107
340°C 19 x 107

Blood 38°C 1.5 x 1073
Seasem oil 4.0 x 1072
Engine oil 16°C 1.13 x 107!
38°C 3.4 x 1072

Honey 2.0 x 107!
Water vapour 100°C 1.25 x 107
Glycerine 20°C 8.30 x 107!
Aceton 25°C 3.6 x 107

Illustration 6 : A disc of area 1072 m? is
placed over a layer of oil having thickness
2 x 107 m. If the co-efficient of viscosity of
the oil is 1.55 N s m™ find the horizontal
(tangential) force required to move the disc
with the velocity of 3 x 1072 ms ™.
Solution :

A=107m?

Av =3 x 1072 ms™
Ax =2 x 107 m
n=155Nsm?

Since,
_ A Av
F =nA Ax .
. 3x10
=1.55 x 107“ x —2><10_3

L F=232x10'N

Illustration 7 The velocities of
cylindrical layers of liquid flowing through a
tube, situated at distances 0.8 cm and 0.82 cm

from the axis of the tube are 3 cm s~! and 2.5

cm s~ respectively. Find the viscous force

acting between these layers if the length of
the tube is 10 cm and the co-efficient of
viscosity of the liquid is 8 poise.

Solution :
ro= 0.8 cm
r, = 0.82 cm

2
Av=3-25=05cm s

AXx = distance between the layers
= 0.02 cm

10 cm

A = Area of contact of two layers

nt+tn
— L
- 157

n = 8 poise
_ np v
F, —nAAx

n+r
_ an—sz&
o 254

3 [2 x3.14(w)10}£
2 0.02
0.5

=16 x 3.14 x 0.81 x 10 x 0.02

= 10173.6 dyne
5.10 Stokes’ Law

When a body moves through a viscous
medium, the layer of the medium in contact with
the body drifts along with it. Hence, this layer
moves with the velocity same as that of the body.
But the distant layer remains stationary. Thus,
laminar flow is produced between the body and
distant stationary layer. Hence, viscous force acts
between two adjacent layers of the medium and
as a result a resistive force acts on the body
moving through the medium.

The resistive force (viscous force) on a small,
smooth, spherical, solid body of radius » moving
with velocity v through a viscous medium, of large
dimension, having co-efficient of viscosity 1 is

given by,

F(v) = 6mnrv (5.10.1)
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This equation is called Stokes’ Law

Stokes’ Law is an interesting example of a
velocity dependent force in which the force acting
on a body opposing its motion, is proportional to
its velocity.

Motion of a sphere in a fluid and its
terminal velocity :

Suppose, a small, smooth, solid sphere of
radius r of material having density p starts motion with
initial velocity zero in a fluid as shown in Figure
5.22. Let the density of the fluid be p_ and its
co-efficient of viscosity be M. Here, p > p_.

In Figure 5.22 forces acting on the sphere
at three different instants are shown. These
forces are : (1) weight of the sphere F,
(downward) (2) buoyant force of the fluid F,

(upward) (3) viscous force F(v) (upward).

F
4D

H

i’
=Y

F

H|

FZ
F v

Free fall of a small, smooth, spherical body in a
viscous medium

Figure 5.22

(1) Volume of the sphere, V = %TUS

.. Mass of the sphere, m = Vp = %mﬁp

.. Weight of the sphere, F, = mg = %Tcﬁpg

(2) The buoyant force exerted by the fluid
is equal to the weight of the fluid displaced by
the sphere. Volume of the fluid displaced by the
sphere of volume

_4
V=3 nr
.. Mass of the fluid displaced by the sphere,

m = Vp = %nﬁpe

. Weight of the fluid displaced by the

sphere, m g = %m"’pog

.. The buoyant force, F, = %m:’pog

(5.10.3)
(3) Viscous force opposing the motion,
according to Stokes’ Law F(v) = 6mnrv
(5.10.4)
. The resultant force acting on fluid
sphere is,
F=F - F, - FQu

o F= %nﬁpg - %mspog — 6mmry

(5.10.5)
Equation 5.10.5 represents the equation of
motion of the sphere in the fluid.
At t = 0, when the motion of the sphere
starts in the fluid, its velocity v = 0.
Hence, the viscous force on the sphere
F(v) = 0.

S F= %nﬁpg - %nﬂpog = %nﬁg(p -p,)
(5.10.6)

If the acceleration of sphere is a_ at t =0,

F=ma, = %m‘”pa0 (5.10.7)

Comparing equations (5.10.6) and (5.10.7)

%nﬁpao = %mﬁg(p - p)

a = (5.10.8)

The sphere is accelerated in the fluid. As
the velocity of the sphere increases gradually
with time, the viscous force acting on the sphere
in upward direction also increases. Thus the
velocity of the sphere increases while its
acceleration decreases.

When F , =F, + F(v), the resultant force on
the sphere becomes zero. Hence, the acceleration
also becomes zero. Now onwards, the sphere
travels with constant velocity. This velocity is

known as the terminal velocity v, of the sphere.
When the sphere acquires terminal velocity,

F =0 and v = v, and from equation (5.10.8)
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0= %nﬁpg - %nﬁpog — 6mnrv

4
So6mnry, = gnr”g(p -p)

) r’g

v, = 9 T P-p) (5.10.9)

With the help of terminal velocity coefficient
of viscosity of the fluid can be determined using
equation. (5.10.9)

A bubble formed in a liquid may be
considered to be a sphere of air. In this case
p, > p- Hence, from the beginning F, being less
than F, the bubble is accelerated upward.
Therefore, the bubble rises up and acquires
terminal velocity after some time. This terminal
velocity can be obtained using eqn. (5.10.9). Here,
v, is negative which shows that the bubble has
terminal velocity in upward direction. You might
have observed the bubble rising up in a bottle of
soda water.

Illustration 8 : Two rain drops of equal
volume, falling with terminal velocity
10 cm s7!, merge while falling and forms a
larger drop. Find the terminal velocity of the
larger drop.

Solution :
Let the radius and volume of each drop be
r and V respectively. When they merge and form

a larger drop, its volume V' will be double the
volume of each one of them. (As the mass and
density remain constant).

Let the radius of the bigger drop so formed,
be R.

Now, V' =2V

too o)

R = 27

1
S~ R=(2%r
Let the terminal velocity of the smaller drop

be v and that of the larger drop be v',

2
_2rs -
v—9 n P po)and
2
v _2R%
1% _9 _rl (p po)

v _R2

. V —_ r2
R’ 1

v =vT3 =1012%)* =1587 cm 57!
r

5.11 Reynold’s Number and Critical Velocity

The flow of a fluid through a given tube
may be streamline, turbulent or of mixed type.
In almost all experiments designed for the
measurement of the co-efficient of viscocity the
flow must be streamline. Therefore, it becomes
necessary to know the conditions in which the
flow becomes streamline.

Osborne Reynolds (1842—1912), a British
mathematician and physicist, has shown that the
type of flow through a tube depends on (1) the
co-efficient of viscosity (1) of fluid, (2) the
density (p) of the fluid, (3) average velocity (v)
of the fluid and (4) the diameter (D) of the tube.

The number (N) formed by the combination
of these four physical quantities is called Reynold’s
number.

pvD
Reynolds number, N, = ——

x="n (5.11.1)

The magnitude of N, depends on the type
of the flow.

N
if N, <2000 the flow is streamline and if N >
3000 the flow is turbulent. For 2000 < N; < 3000,
the flow is unstable and its type keeps changing.

Critical Velocity : It is clear from equation

5.11.1 that with increase in velocity Reynolds
number also increases. The maximum velocity

is dimensionless. Experiment shows that,

for which the flow remains streamline is
called critical velocity. The corresponding
Reynolds Number is called critical Reynolds
number.

It should be noted that if 1 = 0 (i. e. if fluid

is non-viscous) N becomes infinite So, non-
viscous flow can never be streamline.

Illustration 9 : As shown in Figure 5.23
laminar flow is obtained in a tube of internal
radius r and length /. To maintain such flow,
the force balancing the viscous force is
obtained by producing the pressure difference
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(p) across the ends of the tube. Derive the

equation of velocity v = 4%6'1 (P — x?) of a

layer situated at distance ‘x’ from the axis of
the tube.

2
wp, nx2p2

Figure 5.23

Solution : Consider a cylindrical layer of

liquid of radius x as shown in Figure 5.23. The
forces acting on it are as follows :

(1) The force due to the difference in

pressure p is, F, = mp

i dv
(2) Viscous force, F, =1 AE
_dv
= n(ZTcxl)( _dx)

where, A = area of the curved surface of

the cylinder = 2mxl

Here, v decreases with increase in x. Hence
the velocity-gradient is taken negative. For the
motion of the cylindrical layer with a constant
velocity,

F, =F,

C o2 . v
. xp = -1 - 2nxl A

o=y = P X dx
2n!/
Atx=r,v=0and atx =x, v =v and so
integrating the above equation in these limits we
get,

Illustration 10 : Find the volume of the
liquid passing through the tube in one second
in the above example. [Hint : Take the
average of the velocities at the wall and the
axis of the tube as the velocity of the flow.]

Solution :

p
V= 4—nl(r2—x2)

2
r

. . _ . _p
oo At the axis (x = 0), velocity v = anl
At the wall (x = r), velocity v =0

2
r

.. Average velocity = W
Now, the volume of the liquid passing through

the tube per second is,

V = (velocity) (area of cross-section)

pr
= | gl @)

npr4
8n!
[Note : This equation is called Poiseiulle’s
Law]

Ilustration 11 : The radius of a pipe

decreases according to r = rje"*'; where

o = 0.50 m™! and x is the distance of a cross-
section from the first end (x = 0). Find the
ratio of Reynolds number for two cross-
sections lying at the distance of 2 m from each
other. (take e = 2.718)

pvD

Solution : Reynolds number N, = M

.. For a given liquid N, oc vD
(Ng)y V1 D,
N =3 X Do (1)
(Ng), Vo D,

According to the equation of continuity,



108

PHYSICS

From eqns. (1) and (2),

2 —ocx.
(NR)I =(&j X&—&—r—z ne 2

(Ng), \ D D, D, 5 e
(NR)) _ —=nx) _ =052 -
(Ng)a

=0.368

5.12 Surface Energy and Surface Tension

You must have noted that glass becomes wet
due to water but lotus or lotus-leaves do not get
wet by water. In lamp oil rises up against
gravitational force. Some insects can walk on the
water surface. If a needle is carefully placed
horizontally, on the water surface, it floats. For
such phenomena the property called surface
tension of liquid is responsible. Due to surface
tension liquid surface behaves like a stretched
membrane. It is an exclusive property of liquids.

5.12.1 Surface energy :

The inter-molecular attractive force between
the molecules of the same substance is called
cohesive force. The attractive force between
the molecules of different substances is known
as adhesive force.

The maximum distance upto which two
molecules can exert attractive force on each other
is called the ‘range of inter-molecular force
(r,)- An imaginary sphere of radius r;, drawn by
taking any molecule as the centre, is called the
sphere of the molecular action of the
molecule at the centre. Only the molecules
inside this sphere can exert attractive forces on
the molecule at the centre. The molecules outside
this sphere will not exert forces of attraction on
the molecule at the centre.

Spheres of molecular action
Figure 5.24

To understand the surface effect produced
due to the inter-molecular forces, consider three
molecules P, Q and R of a liquid along with their
spheres of molecular action as shown in Figure 5.24.

Suppose the range of inter-molecular force
is 7. AB shows the free surface of the liquid.
The sphere of action of molecule P is completely
immersed in the liquid. Therefore, it is fully
occupied uniformly with the molecules of the
liquid. As a result P is acted upon by equal forces
of attraction from all sides. The resultant force
on P will thus be zero and it remains in
equilibrium. All molecules at depths more than 7,
from the free surface of the liquid will be in similar
situation.

The depth of molecule Q is less than r,. Part
FOEF of its sphere of action is outside the liquid
and this part contains the molecules of both air
and liquid vapour. The densities of air and vapour
are much less than that of the liquid. Moreover,
the adhesive forces acting between the molecules
of air and liquid are comparatively feeble. Hence
the resultant force due to the molecules in the
GNHG part is more than the resultant upward
force due to the molecules of air and vapour in
the similar region FOEF. The number of molecules
of the liquid in the regions CDHG and CDEF is
equal. Hence the resultant force on Q due to
molecules in these regions is zero. Thus, molecule
Q is under the influence of resultant downward
force. A layer of thickness r, below the free
surface of a liquid is called the surface of
the liquid. Thus, the resultant force on the
molecules of the liquid in its surface is in vertically
downward direction. As we move upwards in the
surface, the magnitude of the downward resultant
force keeps on increasing. The resultant force
on the molecules on the free surface AB is
maximum. Hence the molecules of liquid lying in
the surface have a tendency to go inside the body
of the liquid.

In these circumstances, some of the
molecules do go down and as a result of this the
density below he surface of the liquid increases.
Hence, more than a certain number of molecules
will not be able to go down. As a result the
density of the liquid below the surface is more
and it decreases gradually as we move upwards
in the surface. In other words, the inter-molecular
distances between the molecules are less below



FLUID MECHANICS

109

the surface while within the surface these
distances are more. Taking the inter-molecular
forces as a function of inter-molecular distances
it can be proved that inter-molecular distance
being more in the surface, the molecules lying in
it experience force of tension parallel to the
surfce.

Thus, the surface of a liquid has a tendency
to contract like stretched elastic membrane and
as a result tension prevails in the surface (parallel
to the surface). The magnitude of this tension is
given by a physical quantity known as surface
tension.

“The force exerted by the moleculs lying
on one side of an imaginary line of unit
length, on the molecules lying on the other
side of the line, which is perpendicular to
the line and parallel to the surface is defined
as the surface tension (T) of the liquid.”

.. Surface tension T = (5.12.1)

F = TL (5.12.2)
The SI unit of surface tension is N m™.

It should be noted that the force of sur-
face tension is not the resultant cohesive force

E
L

between the molecules on the surface of a
liquid. In fact, the resultant cohesive force on
the molecules acts in a direction perpendicular
to the surface and towards the inside of the
liquid, while the force of surface tension is
parallel to the surface.

For a line (imaginary) of unit length in the
middle of the surface of a liquid, the molecules
on both the sides of it exert forces which are
equal in magnitude and opposite in direction.
Hence, the effect of force of surface tension is
not felt in the middle of the surface. At the
edge of the surface there are no molecules on
the other side of the edge. Hence, surface
tension manifests there, parallel to the surface
and perpendicular to the edge in the inward
direction.

Surface tension in context of potential
energy

We have seen that the molecules in the
surface of a liquid have a tendency to go down
inside the liquid. This behaviour can be
explained on the basis of potential energy of
the molecules. If a molecule like P, in Fig 5.24
is to be brought up in the surface, work has to
be done on it against the downward force

acting on it during this. Hence, when such a
molecule reaches the surface it acquires poten-
tial energy. This fact shows that the potential
energy of the molecules in the surface is more
than that of the molecules beneath the surface.
Now a system always tries to remain in
such a state where its potential energy is
minimum. Therefore, molecules in the surface
of a liquid have a tendency to reduce their
potential energy and so the surface of a liquid
has a tendency to contract in such a way that
its area becomes minimum.

The magnitude of the surface tension can
also be given in the context of the potential
energy of the molecules. We have noted that
work has to be done in bringing the molecules
from within the liquid to the surface, which is
stored in the form of its potential energy. An
important point to be noted is that the molecule
thus coming to the surface does not occupy a
place between two molecules already present
in the surface. The molecules reaching to the
surface generate new surface, which means
that the surface gets expanded. The whole
surface of a liquid can be considered to have
been generated in this way. Thus, the molecules
in the surface of a liquid possesses potential
energy equal to the work done on them in
bringing them to the surface.

“The potential energy, stored in the
surface of a liquid, per unit area, is known
as surface tension (T) of the liquid.”

According to this definition the unit of

> |

surface tension T =

According to this definition the unit of
surface tension is J m™.

joule newton meter newton

Now, T = 3 =
m meter meter

Thus, the unit obtained from both the
definitions are the same. Surface tension of a
liquid depends on the type of the liquid and its
temperature. The surface tension decreases with
increace in temperature and at critical temperature
surface tension becomes zero. Also, the surface
tension of a liquid depends on the type of the
medium it is in contact with.

Surface-energy : Suppose, surface tension
of a given liquid at a given temperature is T. If
the surface of liquid is to be increased by unit at
constant temperature, the work required to be
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done on it is T. But we know that when a surface
expands, its temperature decreases. Hence, if
surface is to be expanded at constant
temperature, heat should be supplied from out-
side during its expansion. Thus, by increasing the
surface of liquid by unit, the new surface so
formed gets thermal energy over and above the
potential energy (=T).

. Total surface-energy per unit area =
Potential energy (surface tension) + Heat energy.

Thus, at any temperature the value of surface
energy is more than surface tension. The surface
tension and surface energy both decrease with
increase in temperature and at critical temperature
they become zero.

Our discussion so far have been
phenomenological. Now, we experimentally verify
the conclusions of this discussion. For this,
concentrate on a rectangular frame ABCD made
from a wire as shown in Fig. 5.25. The wire PQ
is able to slide without friction over the sides AD
and BC of the frame. A light string is tied to PQ.

A P D

- 2\ External force
‘_.
211 [T

< l 54

B Q C

(@)
A thin film of liquid formed on a
rectangular frame

Pl

i

\D External force
% o
11

;-1’/ —» F

w
@)
o=l

a

®)
Expansion of the film
Figure 5.25
If the frame is dipped and taken out of the
soap solution then, pulling the wire PQ properly

with the help of the string, a thin film ABQP is
formed on the frame. If the string is released,
PQ is found to slide towards AB, and the film
contracts.

This experiment shows that the surface
tension manifests itself on the edge of the surface
of the liquid, perpendicular to the edge and parallel
to the surface.

Again prepare the film ABQP. Pull the wire
(with the help of the string) by a force, which is
slightly more than the force of surface tension
acting on it and displace it by x. The work done
for these can be calculated as under.

Suppose the surface tension of the solution
is T and the length of wire PQ is [

Hence, the force acting on the wire due to
surface tension is = 2TL.

As the film has two free surfaces, ‘2’

appears in the equation of force.

Applied external force F = 2T! (5.12.4)

Now, work W = external force X
displacement.

. W =2Tlx

But, increase in the area of the surface of
the film = AA = 2[x. (5.12.5)

oo W = TAA

If AA =1 unit, W=T

. Work done to increase the area of the
surface by 1 unit is equal to the measure of
surface tension.

5.13 Drops and Bubbles

Small drops of liquid or bubbles are always
spherical. Obvious question coming to mind is that
why they should be of spherical in shape only ?
Due to surface tension free surface of liquids
have a tendency to make its surface area as small
as possible. Since spherical surface has minimum
area for a given volume, small drops of liquid
are always spherical.

The surface of a drop or a bubble are
curved. The pressure on a concave surface is
always more than that on the convex surface.
Hence, the pressure inside a drop or a bubble is
always more than the pressure outside.
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®)
Bubble

Figure 5.26

Consider a bubble of radius R, in air as
shown in Figure 5.26. The pressures inside and

outside are P, and P, respectively. Here,

P, > P_. Let the surface tension of the liquid
(solution) forming the wall of the bubble be T.

Suppose, by blowing the bubble its radius
increases from R to (R + dR). (Figure 5.26).
Hence, the area of its free surface increases
from S to S + dS. The work done in this process
can be calculated in two different ways :

(1) While blowing a bubble, the force exerted
on its surface of area 47R>, due to the pressure
difference (P, — Py), is (P, — P;) 41tR> And the
surface displaces by an amount dR under the
influence of this force.

.. Work done on the surface is

W = force x displacement

= (P, — Py 4nR*dR  (5.13.1)

(2) The surface area of the bubble of radius
R is, S = 4nR?

Now, when the radius becomes (R + dR),
the increase in the surface area is,

dS = 8mRdR

But the bubble in air has two free surfaces.

.. Total increase in its area = 2 X 8mMRdR

= 16nRdR

Hence, the work required to be done on the
surface is,

W = surface tension X total increase in area.

.. W = 16nTRdR (5.13.2)

Comparing equation (5.13.1) with equation
(5.13.2),

4n(P, — P)R* dR = 16nTRdR

. 4T
P —Py= % (5.13.3)

If a bubble is formed in a liquid, it has only
one free surface.

PP, = 2R_T

Note : A drop of liquid has one free surface

and so the pressure difference for the drop can
be obtained from equation (5.13.4).

Illustration 12 : Find the pressure in a

bubble of radius 0.2 cm formed at the depth

of 5 cm from the free surface of water. The
1

(5.13.4)

surface tension of water is 70 dyn cm™ and
its density is 1 g cm™. Atmospheric pressure is
10° dyn cm™. The gravitational acceleration is

980 cm s>

Solution :

h =5cm

R =02 cm

T =70 dyne cm™

p =1gecm?

P = atmospheric pressure

= 10° dyne cm™
g =980 cm s
If the pressures inside and outside of the air

bubble formed in water are P, and P,

respectively,
P, — P, = %TT (A bubble in water has
one free surface only)
2T
P, =P, + R (D)
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But P, = atmospheric pressure + pressure
due to water column of height h.

o Py =P+ hpg 2)

from equations (1) and (2),

_ 2T
P, =P+ hpg + R

2x70

10° 1
0° 4+ (5 x 1 x 980) + 02

= 10% + 4900 + 700
P. =1.0056 x 10° dyn cm™

Illustration 13 : When a hollow sphere
having a hole in it is taken to the depth of 40
cm from the surface of water, water starts
entering into the sphere. If the surface tension
of water is 70 dyn cm™, find the radius of the

hole. Take g = 10 ms™.

Solution : Let the radius of the hole be r
Here, the depth of the sphere is & = 40 cm. At
this depth pressure of water is = hpg = 40 x
1 x 1000 = 40000 dyn cm™.

When water enters into the sphere, bubble

having the radius same as the radius of the hole
comes out of it. The excess pressure inside the

2x70
bubble = 2T _
r r
: b _ 2T
.. In the state of equilibrium, hpg = p

2x70
40000 =

~r=35x%x107 cm

Illustration 14 : n droplets, each of
radius 7, merge to form a bigger drop of radius
R. If the surface tension of the liquid is T,
find the energy released.

Solution : Total volume of n droplets of

radius » = Volume of a drop of radius R.

3 (n%nﬁ) = inR3

. nr =R? (1)
Total surface area of n drops, A1 = n4nr’)

and the area of one large drop A, = 47R?

.. The decrease in the area = AA
=A - A, =n-4nr — 4R’

= 4n(nr’ — R%)
. Energy released, W = TAA = 4nT
(nr* — R?) 2

(To obtain result (2) it is not necessary to
obtain result (1), but to represent the result (2)
in a following specific form result (1) is
necessary.)

nr? — R?
W = TAA = 4aTR? | — 35—

R3
2 2
= 4nTR3(% - R—J
nr R

1_1
= 4nTR3(; - ﬁ) 3)
Illustration 15 : Two soap bubbles of
radii R, and R, merge to form a bubble of
radius R. If the pressure of atmosphere is P
and surface tension of the soap solution is T,
prove that,

PR’ + R’ - R’ = 4TR* - R*> - R))
Assume that the temperature remains
constant during this process.

Solution :

Pressure inside the first bubble = P1

_ 4T
=P+ R,
Pressure inside the second bubble = P,
_ 4T
=P+ R,
And the pressure inside the compound bubble
AT
=P, =P+ R

Here, P = pressure outside each bubble =
atmospheric pressure (which is the same for all)

If the volumes of these bubbles are Vl, V2

and V, respectively,
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_4 oy 24 nsy 4 o3
V1—3nR1,V2—3nR2,V3—3nR

As temperature is constant, according to
Boyle’s Law,
PV + PV, =PV,

SRS S
- (P4

%nP(Rﬁ + R} - R) = %n x 4T

R*-R?-R)

P R’+ R’—-R’) =4TR* - R’ - R))
5.14 Angle of contact

You must have observed a dew-drop. It is
spherical. Any liquid when comes in contact with
another medium its surface is curved. Consider
a liquid drop as shown in Figure 5.27(a) and
5.27(b) to understand it better.

0 is obtuse

(@)

A 4

0 is acute

®
Angle of contact

Figure 5.27

The angle between tangent to the liquid
surface at the point of contact and solid surface
inside the liquid is called the angle of contact.
Angle of contact depends on types of liquid and
solid which are in contact.

If the angle of contact is less than 90°, the
liquids wet the solid, sticks to the solid and rises

up in the capillary of that solid.

If the angle of contact is more than 90°, the
liquid does not wet the solid, does not stick to

the solid and falls in the capillary of that solid.

If a water droplet is in contact with lotus-
leaf (Figure 5.27(a)) angle of contact is obtuse.
If water is in contact with glass (Figure 5.27(b))

angle of contact is acute.
5.15 Capillarity

The phenomenon of rise or fall of a liquid in
a capillary (held vertical in a liquid) is called
capillarity. In this phenomenon, the surface

tension of the liquid plays an important role.

Water (a) Mercury (b)

Phenomenon of capillarity

Figure 5.28

As shown in Figure 5.28(a) when a glass
capillary (having a small bore) is held vertical in
water, water rises in the capillary. Whereas (as
shown in Figure 5.28(b) when a capillary is held
vertical in mercury, mercury falls in the capillary.
Also, note that water wets the glass while
mercury does not. If you observe attentively you
will find that the free surface (meniscus) of the
water rising in the capillary is concave, while the
free surface of mercury falling in the capillary is

convex.
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Column of liquid in a capillary
Figure 5.29

As shown in Figure 5.29 suppose a capillary
of radius r is held vertical in liquid and liquid rises
to height & in the capillary. The radius of the
concave meniscus of the liquid in capillary is R.

The relation between the radius of curvature
of meniscus (R) and the radius of capillary (r)
may be obtained as follows :

From the geometry of Figure 5.29
Z0PQ = 0 in AOPQ,
OoP
PQ
Radius of the capillary (r)
~ Radius of the meniscus (R)

. cosO

r
— 5 (5.15.1)

Now, the liquid shown in the figure is in

equilibrium. Let the pressure on the concave
surface of the meniscus be P0 and that on its

convex surface be P.. Here, P0 > P, and

2T

R (' The liquid has one free

(5.15.2)

Note that P_ is atmospheric pressure. The

P - P =
o 1

surface.)

same pressure acts on plain surface of the liquid
at point A and also at point B in the same
horizontal level, with A.
Pressure at point B is, P, = P, + hpg
Here, p is the density of the liquid and g is
gravitational acceleration.
P — P, =hpg (5.15.3)
Comparing eqns. (5.15.2) and (5.15.3)

2T _
R /w8

B Rhpg
2

Substituting the value of R from eqn.
(5.15.1),

T

_ rhpg
" 2cosH

Using this equation T can be found.

(5.15.4)

2T cosH

From this equation h = pg

(1) If © < 90°, cosH is positive and this

equation gives h as positive. .. The liquid rises
up in the capillary (e.g. glass-water)

(ii) If 6 < 90°, cosO is negative and this

equation gives h as negative. .. The liquid falls
in the capillary. (e.g. glass-mercury)

In this case meniscus is convex. Also, P, >

. 2T
P . Thus in eqn. (5.152) P, — P = R should

be taken. As P, — P_ = hpg, the final result in
eqn. (5.15.4) will not change.

When a detergent or soap dissolves in water,
surface tension of the solution becomes lesser

than that of water. Due to this washing ability
increases.

Illustration 16 : Radius of a glass
capillary is 0.5 mm. Find the height of the
column of water when it is held vertical in

water. The density of water is 10* kg m™ and

the angle of contact between glass and water

is 0° ¢ = 9.8 ms and the surface tension

of water is T = 0.0727 Nm™.
Solution :
r=05mm=5x 10* m
p =103 kg m™
0 =0°.. cos0° =1
g =9.8 ms?

T = 0.0727 Nm™!
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_ rhpg
"~ 2cos9

2Tcos0
rpg

2%x0.0727 x 1
51074 x10°x9.8

h =0.0296 m = 2.96 cm

Ilustration 17 : Two rectangular slides
of glass are kept 1 mm apart. They are
partially immersed in water in such a way that
air column (as well as that of water) may
remain vertical between them as shown in
Figure 5.30. What is the height of the water
which rises between the plates ?

T = 70 dyn cm ..

Solution : Suppose that the breadth of the
glass slides is /. In this state total length at which
water and glass are in contact is 2/. The angle
of contact between water and glass is zero.

Suppose water rises to height 4 cm.

Figure 5.30

.. Volume of the column of water rising up
= ldh.

where d = distance between two plates.

If the density of water is p and gravitational
acceleration is g, the weight of water in
downward direction = (Idh) pg. This force should
be equal to the force of surface tension acting
on length 2/.

. 2T1 = (ldg)hp

h—Z_T—143
—dgp—. cm

SUMMARY

p—

A substance that can flow is known as a fluid.

2. Magnitude of force acting perpendicularly to a surface of unit area is called

pressure. It is a scalar quantity. Its unit is Nm= or (P ok

3. If force acting on surface makes angle O with the normal drawn to a

surface, the component FcosO is taken into account for the pressure. Thus

Fcos0

pressure P = A

4. Ratio of mass of the body to its volume is called density. Its unit is

kg m™.

5. Ratio of density of a substance and density of water at 277K is called

specific density. It is dimensionless.

6. Pascal’s Law : If the effect of gravity is neglected, pressure in fluid is same

everywhere.

7. Pascal’s Law of transmission of pressure

In an enclosed liquid, if

pressure is changed in any part of the liquid, the change is transmitted equally

to all the parts of the liquid.

8. Hydraulic lift, hydraulic brake, door closer and shockabsorbers of automobiles

work on the Pascal’s Law.

9. In a fluid rate of change in pressure with depth is pg.
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10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

Pressure at the bottom of incompressible fluid column is hpg.

Pressure due to fluid column does not depend on shape and area of the
container.

Archimedes’ Principle : When a body is partially or completely immersed in
a liquid, the buoyant force acting on it is equal to the weight of liquid
displaced by it and it acts in the upward direction at the centre of mass of
the displaced liquid.

Law of Floatation : When the weight of a body is equal to the weight of

the liquid displaced by the part of the body immersed in it the body floats on
the surface of the liquid.

Steady Flow : If in a fluid flow velocity of fluid particle remains constant
with time, fluid flow is called steady flow.

Turbulent flow : If in a flow of fluid velocity of fluid particle changes in an
irregular manner from time to time and from point to point, the flow is known
as turbulent flow.

Irrotational flow : If an element of a fluid at each point has no net angular
velocity about that point, the fluid flow is called irrotational.

Incompressible flow : If density of fluid remains constant with time
everywhere, the flow is said to be incompressible.

Non-viscous flow : The flow of a fluid having small co-efficient of viscosity
is known as non-viscous flow.

Flow of an ideal fluid is steady, irrotational, incompressible and non-viscous.

Line of flow : Path along which particle moves in a fluid is called a line of
flow.

Streamline : The curve for which tangent drawn at any point shows the
direction of velocity of fluid particle is known as streamline.

Tube of flow : An imaginary tube formed by a bundle of streamlines is called
tube of flow.

Volume flux : Volume of fluid flowing through any cross section in unit time
is called volume flux. It is equal to the product of area of cross section and
velocity.

Dynamic lift : When an object undergoes relative motion with respect to fluid,
a force arises which diverts the object from its original path. This phenomenon
is known as dynamic lift.

Aerofoil : An object when travels horizontally experiences force in upward
direction due to its shape is called an aerofoil.

Force of viscosity : In a laminar flow, any two consecutive layers of fluid
have relative velocity between them. As a result, a resistive force is produced
tangentially at the surfaces of the layers in contact. This force is known as
viscous force.

Velocity gradient : In a laminar flow, the difference in velocity between two
layers of liquid per unit perpendicular distance, in the direction perpendicular
to the direction of flow, is called velocity gradient. Its unit is s
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28.

29.

30.

31.

32.

33.

34.

3s.

36.

38.

39.

40.

Co-efficient of viscosity : The viscous force acting per unit surface area of
contact and per unit velocity gradient between two adjacent layers in a
laminar flow is known as the co-efficient of viscosity.

Stokes’ Law : The viscous force on a small spherical solid body of radius
r and moving with velocity v through a viscous medium of large dimensions

having co-efficient of viscocity M is 6nmry.

When a fluid flows through a tube, type of flow depends on density of fluid
(p), velocity of fluid (v), diameter of tube (D) and viscosity (1) of fluid. Type
of flow can be decided by Reynolds number

L

Reynolds number, N, = ——— ... .

If N, < 2000 flow is streamline, if N, > 3000 is turbulent and if
2000 < N, < 3000 type of flow is uncertain.

The maximum velocity for which flow can be streamline flow is known as

critical velocity.

Adhesive force : Attractive force between the molecules of different matter

is known as adhesive force.

Cohesive force : The inter-molecular attractive force between molecules of

the same matter is called cohesive force.
The maximum distance up to which a molecule can exert attractive force on
the other is called range of inter-moleculer force (7). An imaginary sphere of

radius 7, with a molecule at its centre is called sphere of action.

Work required to be done to increase the surface area by one unit at constant
temperature is called surface tension. Also, the force exerted by the molecules
lying on one side of an imaginary line of unit length on the molecules lying
on the other side of the line which is perpendicular to the line and parallel to
the surface, is defined as the surface tension (T) of the liquid.

Shape of the free surface of liquid depends on pressures acting on two sides.
If the pressure is larger on the outer side of the surface, then the surface is

concave and vice versa.

. If for a bubble in air, inner pressure is P, and outer pressure is P .

Pl. — P0 = 4% Where T is surface tension and R is the radius of bubble.
For a drop of liquid or the bubble formed inside the liquid P, — P = %

When liquid comes in contact with a solid, its surface becomes curved. Angle
between the tangent to liquid surface at point of contact and the solid surface

inside the liquid is called angle of contact.
The phenomenon of rise or fall of a liquid in a capillary held vertical in liquid
is called capillarity.

When a soap or detergent dissolves in water, surface tension of the solution
is less than that of water. Due to this, washing ability of water increases.

117
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| EXERCISES |

Choose the correct option from the given options :

1.

The speed of air above the wings of an aeroplane is 120 ms™' and below

the wings it is 90ms™'. If density of air is 1.3 kgm™ the pressure difference
1T . (Neglect the thickness of wings.)

(A) 156 P, (B) 39 P, (C) 4095 P, (D) 6300 P,

A small sphere of mass m and radius r falls through a viscous medium. Its
terminal velocity is proportional to .......... .

m

(A) only % (B) only m © .

m
(D) “

A plate of area 10 cm? is placed over a plate. A layer of glycerine of 1 mm
thickness is lying between two plates. To move the upper plate with velocity

10ms™! the required external force is .......... .(nglycerme = 20 poise)
(A) 80 dyne (B) 200 x 10° dyne
(C) 800 dyne (D) 2000 x 10° dyne
As small sphere falls through a " A
viscous medium. Curve .......... of
the graph in Figure 5.31 represents B
its motion. s
S
< C
A) A (B) B
D
© C (D) D Distance i
Figure 5.31

Reynolds number is small for a liquid with ......... .
(A) low velocity (B) low density (C) high viscosity (D) all of these

With reference to Reynolds number in which of the following cases flow is
more likely to be streamline ?

(A) low p (B) high p, high n

(C) high p, low n (D) low p, high n

Surface tension of soap solution is 1.9 x 1072 Nm™'. The work done to blow
a bubble of diameter 2.0 cm is .......... .

(A) 17.6 x 105 J (B) 152 x 10°7t J

(€) 19 x 16 J (D) 107 J

Excess pressure inside two bubbles are 1.01 atm and 1.02 atm respectively.
The ratio of their surface areas is .......... .

(A) 4 :1 B) 1:26 (C) 8:1 MD)1:8
Liquid rises in a capillary to height 4. In which of the following case will
water rise more than h ?

(A) In an elevator accelerated downwards

(B) In an elevator accelerated upwards

(C) On poles

(D) Height will remain constant
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10.

11.

12.

13.

14.

15.

16.

17.

18.

The type of a flow of water having velocity 10 cms™' through a tube of
radius 0.5 cm is .......... - Mygrer = 0.1 poise, p .= 1g cm™)

(A) streamline (B) unstable (C) turbulent (D) none of these
A ring of radius 4 cm is dipped into glycerine. (T = 63 dyne cm™') and
pulled out of the liquid keeping it horizontal at the surface of liquid. The

force required to detach the ring from the surface over and above its weight
T dyne.

(A) 63 1 (B) 504 (C) 1008 = (D) 1512 =

A film of soap solution is made in rectangular frame of length 10 cm and
breadth 4 cm. The force of surface tension on the smaller edge of the
frame is .......... dyne. (Surface tension of soap solution = 30 dyne cm™)
(A) 60 (B) 120 (C) 300 (D) 240

To form the film described in the above question, amount of mechanical
work done against the force of surface tension is .......... erg.

(A) 1200 (B) 2400 (C) 2600 (D) 4800

When an air bubble rises from the bottom of a lake to the surface its radius
doubles. If 10 m of water column produces pressure equal to 1 atm, depth
of tube is ......... m. (Take g = 10 m s72)

(A) 10 (B) 20 (C) 70 (D) 80

An incompressible fluid flows through a cylindrical horizontal pipe of radius

X at point A and % at another point B. Ratio of velocities at point A and
point B is .......... .
(A 2:1 B) 1:2 ) 1:4 (D) 4 :1

The rate of flowing water from an orifice in a wall of tank will be more
if the orifice is ........... .

(A) closer to top (B) closer to bottom
(C) in the middle (D) none of these
Particles of liquid P, Q and R are on free surfaces within the surface and

bellow the surface respectively. If their potential energies are U, UQ and

UR then.
(A) UP< UQ<UR (B) UP< UR<UQ
© UR< UP< UQ (D) UR < UQ < UP

A small ball is released in a viscous liquid, velocity of ball in liquid ..........
(A) keeps increasing (B) keeps decreasing
(C) remains constant

(D) first increases and then remains constant

| ANSWERS |

1. (O 2.D) 3. D 4.(C) 5 D) 6. (D)
7. (B) 8. (A) 9. (A) 10. (A) 1. (C) 12. (D)
13. B) 14. (C) 15. (C) 16. (B) 17. (D) 18. (D)
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Answer the following questions in short :

1.
2.

10.
11.

12.
13.

State the Pascal’s Law for pressure transmission.

Which has more pressure ? 75 cm of mercury or column 10 m of water
column ? (Specific gravity of mercury is 13.6)

What is the principle behind the working of a water sprinkler ?
Bernoulli’s equation for fluid flow is an alternative statement of law of
conservation of energy. True or false ?

What are the units of pressure head, velocity head and elevation head ?
Standing on a railway platform close to the tracks, why do we feel being
dragged toward the train, passing by very fast ?

What is an aerofoil ?

How does viscosity of fluids vary with temperature ?

Water flowing in a broad pipe enters into a narrow pipe. How does its
Reynolds’ number change ? (Pipe is horizontal)

Why are some insects able to walk on water ?

Will the angle of contact for water and material of raincoat be acute or
obtuse ?

Define surface tension. Write its unit and dimensions.

A larger bubble and smaller bubble are formed in air at two ends of a thin
tube. What will happen to bubbles ?

Answer the following questions :

1.
2.

10.

State and prove Pascal’s law.

Deduce the formula of pressure due to a liquid column of height A and
density p.

What is a steramline flow. Derive the equation of continuity for steady
incompressible flow.

Derive Bernoulli’s equation for steady, incompressible, irrotational, non-viscous
flow of fluid.

Explain the working of a venturie meter with neat diagram and necessary
formula.

What is a laminar flow ? Explain viscous force in such a flow.

State Stokes’ Law and deduce the expression for initial acceleration for a
small, smooth sphere falling in a viscous liquid.

Write a short note on Reynolds’ number.

Derive the formula for excess pressure inside the bubble in case of bubble
in air.

What is capillary action ? Derive the formula for rise of liquid in a capillary

tube immersed vertically in liquid.

Solve the following problems :

1.

The piston and nozzle of a syringe kept horizontal have diameters Smm and
Imm. The piston is pushed with constant velocity of 0.2 m s Find the
horizontal distance travelled by water jet before touching water

(¢ = 10 m s?). Height of syringe from ground is 1 m.  [Ams. : +/5m]
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2.

Water is partially filled in a U shaped tube held vertical. When another
immiscible liquid is poured in one of the arms of the tube, water rises by
‘d’ unit in the other arm. If the free surface of the liquid is heigher by ‘&’
unit compared to water, find density of the liquid. Take density of water to

. . 2d
be p unit. [Ans. : (Zd n h)p]

Water is flowing through a horizontal pipe of irregular cross section. If the
pressure at a point where the velocity is 0.2ms™' is 30mm Hg, what will be
the pressure at a point where the velocity is 1.2 ms™' ? (Density of mercury
= 13.6 g cm™, g = 1000 cm s, Density of water = 1 g cm™)

[Ans. : 24.85 mm Hg]

Find the work required to be done to increase the volume of a bubble of
soap solution having a radius 1 mm to 8 times. (Surface tension of soap

solution is 30 dyne cm™). [Ans. : 2261 erg.]
Diameters of the arms of a U tube are 10 mm and 1 mm. It is partially
filled with water and it is held in a vertical plane. Find the difference in
heights of water in both the arms. (Surface tension of water = 70 dyne
cm™!. Angle of contact = 0°. ¢ = 980 cm s2) [Ans. : 2.8571 cm]
A bubble of air of diameter 0.2 cm rises up uniformly in water with a
velosity of 200 cm/s. If the density of water is 1 g cm™, find co-efficient
of viscocity of water. Neglect density of air w.r.t. that of water.

(g = 48 m s [Ans. : 0.0109 poise)

The velocity of a cylindrical layer of liquid at a distance 0.4 cm from the
axis of a tube of radius 0.5 cm is 3.6 cm/s. Find the velocity of a layer

P
lying at a distance of 0.3 cm from axis. [Hint : v = 4_11l(r2 — xz)]

[Ans. : 6.4 cm/s]

What should be the difference in pressure across the ends of a 4km long
horizontal pipe line of diameter 8 cm to make water flow at the rate

20 litre/s. My pper = 102 MKS. Neglect all forces other than viscous force.

4
npr

&l

(Hint : V = ) [Ans. : 7.96 x 10° Pa]

A bubble of soap solution of radius 2.4 x 10™m is lying in a cylinder
containing air. Keeping temperature constant when air is compressed radius

of bubble reduces to half. Find the new pressure of air in the cylinder.

(Surface tension of soap solution : 0.03 Nm™) [Ans. : 8.03 x 10° P
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6.1 Introduction

Whether it is frozen night of winter or a sweltering noon of
summer, our body needs to maintain its normal temperature to
be nearly constant at 98.60 °F or 37.00 °C. Our body has certain
inbuilt temperature control mechanisms (biological) that help to
maintain its temperature, upto a certain extent. But in extreme
cold or hot weather situations, we have to provide external
protection to our body.

You would have observed that when a cup of cold coffee
and a cup of hot tea are kept open for some time, the coffee
becomes warmer and the tea becomes cool until they attain the
room temperature. This type of phenomena leads to the Zeroth
law of thermodynamics.

The existence of different phases of matter at certain
temperature and pressure conditions are discussed in terms of
phase diagram in this chapter.

The terms temperature and heat are often used with same
meaning in every day life. But in physics, these two terms have
very different meanings. In this chapter, the definition of
temperature as a function of some physical (thermal) properties
of matter is given along with the different scales of measurement
and their inter-relationships. The heat which is the transfer of
heat energy related with the temperature difference between
two bodies, is also discussed.

The first law of thermodynamics is the extension of the
principle of conservation of energy. It broadens this principle by
including the energy exchange in terms of heat transfer,
mechanical energy in terms of work and the internal energy of
the system.

The specific heat as well as heat capacity of water and oil
are also discussed in this chapter.

Now a days we see the star ratings on home appliances,
like refrigerator and air-conditioner, the fuel efficiency of vehicles
in km/litre of petrol or diesel is provided by the manufacturers.
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These instruments represent their efficiency of
conversion of one type of energy into the other.
The second law of thermodynamics defines the
limitations of these processes.

The working of heat engine and Carnot
engine is also explained in this chapter.

6.2 Concept of Thermodynamic System and

Environment

In thermodynamics, normally, we use the
word ‘system’ in lieu of ‘a body’. Thermodynamic
system is a part of the universe under
thermodynamic study. A system can be one
dimensional, two dimensional or three dimensional.
It may consist of only one object or many objects.
The objects comprising the system are called
components of the system. A system may be
made up of radiation or radiation may be a
component of the system.

The remaining part of the wuniverse
surrounding the system and having a direct impact
on the behaviour of the system is known as its
environment. The boundary separating the
system and its environment is called the wall of
the system. The type of interaction taking place
between the system and its environment depends
on the nature of its wall.

In all branches of physics, the macroscopic
description of any system is done in terms of
certain measurable properties. For instance, while
studying the kinematics of rotational motion of a
rigid body, the macroscopic properties like position
and velocity of its centre of mass with respect
to a system of co-ordinate axes are studied at
different moments, without worrying about its
internal aspects. Such quantities are called
mechanical co-ordinates. Values of potential and
kinetic energy and hence mechanical energy of
a rigid body are determined using such
mechanical co-ordinates with respect to some
system of co-ordinates.

In thermodynamics, the macroscopic
quantities having direct effect on the internal state
of the system are taken into consideration. Such
called

co-ordinates. The system represented by

quantities  are thermodynamic

thermodynamic co-ordinates is called a
thermodynamic system.

The thermodynamic state of a system is
determined from the values of mechanical and
thermal properties of the system. For example,
the mechanical properties like pressure of a
gaseous system and its volume, and thermal
properties like temperature and quantity of heat energy,
determine the thermodynamic state of the system.
The interaction between a system and its
environment is called a thermodynamic process.

If a system does not interact with its
surrounding then it is called an isolated system.
Thermal and mechanical properties of such a
system remain constant and this system is said
to be in a definite thermodynamic equilibrium
state.

Due to interactions with the surrounding, a
system exchanges heat energy and / or
mechanical energy, and hence the thermal and
mechanical properties of the system change
continuously. After passing through many
thermodynamic states like this, finaly the system
attains another definite thermodynamic equilibrium
state. The amount of heat energy exchanged
during the interaction of system with environment
is called heat (Q), and the mechanical energy
exchanged is called work. (W).

The state of equilibrium of a thermodynamic
system is determined in terms of some variable
quantities known as thermodynamic variables
or state variables. The mathematical relation
between state variables is called the equation
of state. e.g. in the chapter “Kinetic Theory of
Gases” you have learnt that the equation relating
the pressure, volume, temperature and the quantity
of an ideal gas is PV = pRT, which is the
equation of state for the ideal gas.

Thermodynamic state variables are of two
types :

(i) Extensive Variables : The variables
depending on the dimensions of the system are
called extensive variables. For example, mass,

volume, internal energy etc.

(ii) Intensive Variables : The variables

independent of the dimensions of the system are
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called intensive variables. For exmaple, pressure,

temperature etc.

6.3 Thermal Equilibrium and Definition of
Temperature (Zeroth Law of
Thermodynamics)

When two systems having different
temperatures are brought in thermal contact with
each other, the heat flows from the system at
higher temperature to that at lower temperature.
When both the systems attain equal temperature,
the net heat exchange between them becomes
zero. In this state they are said to be in thermal
equilibrium with each other.

When the wall, separating the system and
its surroundings, both having different
temperatures, is thermal insulator (adiabatic wall)
then there does not occur any heat exchange
between them. But when the wall separating the
system and its surroundings is a good conductor
of heat (diathermic wall), then the exchange of
heat takes place between them. After the
temperatures of the system and its surroundings
become equal, the exchange of heat between
them becomes zero.

When there is no imbalanced force acting
between a system and its environment, the
system is said to be in mechanical equilibrium.
When there is no chemical reaction taking place
in a system or there is no motion of any chemical
component from one part of the system to the
other, the system is said to be in chemical
equilibrium. If a system is simultaneously in
thermal, mechanical and chemical equilibria, it is
said to be in thermodynamic equilibrium.

6.3.1 Zeroth Law of Thermodynamics :

To know, whether a system and its
surrounding or two systems are in thermal
equilibrium with each other, a third body
(e.g. thermometer) can be used. [Ideally, the third
body, should not exchange (absorb or emit) heat
with these systems.]

As shown in figure (6.1—a), suppose two
systems A and B are separated from each other
by a thermally insulated wall, and both of them
are in contact with a third system C through a
conducting wall. As shown in Figure 6.1(b), after
sometime the two systems A and B attain thermal

equilibrium with system C.

System
C

Conducting wall

System System
A B

Insulated wall

(a) Before thermal equilibrium

System
C
Conducting wall

System ystem
A B

Insulated wall

(b) State of thermal equilibrium

System

Condu'cting wall

(c) State of thermal equilibrium

The establishment of thermal equilibrium among
systems A, B and C
Figure 6.1

Now, the insulated wall separating A and B
is replaced by a conducting wall, and system C
is isolated from A and B by insulating wall as
shown in Figure 6.1(c), then also there will be
no change observed in them. Now instead of
allowing the systems A and B to attain thermal
equilibrium with C simultaneously, if they are
allowed to attain thermal equilibrium with C one
after another and then A, B and C are brought
in contact through conducting wall, then also the
thermal equilibrium is not affected. Thus,

“If the systems A and B are in thermal
equilibrium with a third system C, then A
and B are also in thermal equilibrium with
each other.”

This statement is known as zeroth law of
thermodynamics.
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In practice, we use the concept of
temperature to express the degree of hotness or
coldness of a body. In reference to this, the zeroth
law of thermodynamics indicates that the
temperature is a property of the system. When
bodies in thermal contact with each other attain
thermal equilibrium, their temperatures become
equal. Thinking in broad sense it can be written
from the zeroth law, that “There exists an
important physical quantity called temperature.”
6.4 Phase Diagram

The phase (solid, liquid or gaseous state) in
which matter will exist depends on the factors
like pressure and temperature. In some situations,
two or three states of matter may co-exist in
equilibrium. The graph of pressure against
temperature indicating the phase of matter at
given temperature (T) and pressure (P) is called
phase diagram of that matter. Figure 6.2
represents the phase diagram of some substance.

For the values of pressure and temperature
corresponding to points on the curve AB, the solid
and liquid phases of the matter co-exist in
equilibrium state. Hence the curve AB is called

fusion curve.

Pn B
Solid o/ Liquid C
S
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O
[ég Q‘DQ C\)é
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]
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Phase Diagram
Figure 6.2

Similarly, for the values of temperature and
pressure corresponding to points on the curve
OA, the solid and gas phases of matter co-exist
in equilibrium. Hence the curve OA is called
sublimation curve.

For all values of pressure and temperature
corresponding to all points on the curve AC the
liquid and gaseous states of matter co-exist in
equilibrium. Hence the curve AC is known as
vaporization curve.

The point A at which the vaporization curve,
the fusion curve and sublimation curve meet, i.e.,
the values of pressure and temperature at which
all the three states of matter co-exist in equilibrium
is called triple point of the matter. In the
figure, point A is the triple point of the given
matter (substance).

For different substances, the co-existence of
two or three states in equilibrium can be obtained
at definite specific values of pressure and
temperature. The triple point of water is
obtained at the pressure of 4.58 mm Hg and
273.16 K temperature. The triple point of water
is used to fix the scale of thermometer.

6.4.1 Measurement of Temperature
Thermometry :

Whether a substance is cold or hot that can-
not be judged by mere sense of touch only. For
example, if one keeps his left hand in hot water
and right hand in cold water for some time, and
then both hands are immersed in lukewarm water,
it appears cold to the left hand and hot to the
right hand. Moreover, the results obtained by the
sense of touch are also subjective.

For a body in some definite thermal
equilibrium, if we assign an appropriate real
number to its temperature, and this way assign
appropriate real numbers to the temperature of
the body during its different thermal equilibrium
states, then the function defined on such thermal
equilibrium states is called temperature function.

Zeroth law of thermodynamics ensures that
such a function is one-one function.

A device used to measure a unique real
number (i.e. temperature) related with given
thermal equilibrium state is called

thermometer.

To prepare a thermometer the commonly
used property is variation of the volume of a liquid
with temperature. Mercury and alcohol are the
liquids used in most liquid-in-glass thermometers.

Thermometers are calibrated so that a
numerical value may be assigned to a given
temperature. For calibration of any standard scale,
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two fixed (known) reference temperatures are
required. The freezing point of water (32°F or
0°C) and boiling point of water (212°F or

100°C) at 1 atmospheric pressure are two

convenient fixed points.

The liquid—in—glass thermometers show
different readings for temperatures other than the
fixed points because of differing expansion
properties of liquids. But a thermometer using gas,
at low enough pressure and constant volume for
the measurement of temperature gives the same
readings regardless of, which gas is used.

A given quantity of gas having low enough
pressure satisfies the ideal gas state equation.

PV = uRT
where L = number of moles of the gas,
and R = 8.31 J mol™' K

Thus keeping the volume of the gas to be
constant, it gives P oc T. Thus, with a constant—
volume gas thermometer, the temperature is read
in terms of its pressure. A plot of P — T gives a
straight line in this case (See Figure 6.3).

Pressure

-273.15°C
e LB )
—-200°C -100°C 0°C 100°C

Temperature

Graph of Pressure versus temperature of a low
density gas kept at constant volume

Figure 6.3

At low temperature, the measurements of
temperature on real gases deviate from the values
predicted by the ideal gas law. But the
relationship is linear over a temperature range. It
looks like that the pressure approaches zero with
decreasing temperature if the gas continues to
be a gas. The absolute minimum temperature for
an ideal gas inferred by extrapolating the straight
line to the temperature axis approaches
—273.15°C and is designated as absolute zero
(See Figure 6.4).

Pressure

gas A
as C

._r”_"_fg

L

—273.15°C o€

A plot of P — T and extrapolation of lines of
low density gases indicates the same
absolute zero temperature

Temperature

Figure 6.4

It can be seen from Figure 6.4 that for
different gases of low density, and having
different thermal expansion, the same absolute
zero temperature is obtained. Absolute zero is the
foundation of the kelvin temperature scale or
absolute scale temperature and is taken as 0 K.

In practice, for the measurement of
temperature the celsius scale and Fahrenheit scale
are used.

Celsius scale : If the temperature on the

Celsius scale is represented by T. and on the
kelvin scale by T, then

T.=T — 273.15°

Measuring the temperature of triple point of
water on Celsius Scale

T, = 273.16° — 273.15° = 0.01°C

When equilibrium is established between pure
water and its vapour at atmospheric pressure, the
value of temperature is taken as 100°C. In Kelvin

scale its value is

T= 100 + 273.15 = 373.15 K

Fahrenheit Scale : The relation between the
temperature T, on Fahrenheit scale and the

temperature T, on Celsius scale is

T, = 2T, + 32°

F~ §5°cC
If the boiling point and freezing point of water
are known on one temperature scale, then the
measured value of temperature can be easily
represented in terms of the other scale. Figure
6.5 shows the comparison among kelvin, Celsius

and Fahrenheit scales.
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Steam 1 373.15K---4{ 100°C --4]212.00°F
point [ ] =
Tee  [573.15K -==10.00°C ----T{32.00°F
point
Absolute
zero ===1| 0.00K ===1+Q27315C) ~~(-459.67°F)

Comparison among Kelvin, Celsius and
Fahrenheit scale for water
Figure 6.5

To represent the temperature in Celsius and
Fahrenheit scales, the letters C and F are used,
respectively, such as

0°C = 32°F

means that 0° on the Celsius scale measures
the same temperature as 32° on the Fahrenheit
scale, whereas

5C°=9F

means that a temperature difference of 5
Celsius degrees (note the degree symbol
appears after C) is equivalent to a temperature
difference of 9 Fahrenheit degrees.

Only For Information :
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Some values of temperature on kelvin scale
Figure 6.6

6.5 Thermal Expansion

We know that the dimensions of most of the
substances increase with increase in their
temperature (by absorbing heat) and decrease
with decrease in temperature (by releasing heat).
The increase in dimensions of a substance
due to absorption of heat is called thermal
expansion and decrease in dimensions of the
substance by releasing the heat is called
thermal contraction.

The constituent particles (atoms, molecules,
or ions) of solids are arranged in a definite
manner in the internal structure of solids. They
exert attractive and repulsive forces on each
other and execute oscillations about their mean
positions. Thus, we can think of constituent
particles to be connected by imaginary springs
(See Figure 6.7). With rise in temperature, the
amplitude of oscillations increases, as a result of
which the average intermolecular distances
become larger. Hence the size of the body
increases as temperature increases.
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Constituent particles shown to be
connected by imaginary springs
Figure 6.7
Figure 6.8 shows the graph of intermolecular

potential energy versus distance, and it is found

that the curve is not symmetric about interatomic
equilibrium distance (r ) For distance more than
1o, the attractive potential energy does not
increase at the same rate as the increase in
repulsive potential energy for distance less

than T

Ua

L 3

U(T)

Graph of Potential energy versus
Intermolecular distance
Figure 6.8

At a given temperature (for a given value
of potential energy U(T)) the constituent particles
are vibrating between r . and r_  (See Figure
6.8). If r is the average distance between two
consecutive constituent particles at that
temperature, then

n + rmax

2

It is clear from the asymmetry of the curve

r =

that these average distances increase with rise
in temperature. This asymmetry is responsible for
thermal expansion.

Linear Expansion :

The increase in the length of a body with
increase in temperature is called linear expansion.

For small changes in temperature, the increase
in length (Al) is directly proportional to original
length ‘I’ and increase in temperature ‘AT’, i.e.

Al o [, and

Al oc AT

. Al oc [AT

. Al = alAT (6.5.1)

Here ‘o’ is a constant of proportionality
called coefficient of linear expansion of
material of the body. The value of ‘a’ depends
on the type of material of the body and its
temperature. If the temperature interval is not
very large, then ‘0’ does not depend on the
temperature.

The unit of a is (°C)™" or K™'. The
coefficients of linear expansion of some
substances are given in Table 6.1 (for information
only).

Table 6.1

Some Coefficients of Linear Expansion
(For Information Only)

—S0-1

Substance o (1076 CY 1 (107C

or K
Aluminium 29 8.7
Brass 23 6.9
Concrete 12 3.6
Steel 11 33
Glass (ordinary) 9 2.7
Glass (Pyrex) 32 0.96
Ice (at 0°C) 51 15.3

Some substances exhibit uniform thermal
expansion in all directions. Such substances are
called isotropic substances. In such substances,
the proportionate changes in length, breadth and
thickness are the same with the change in
temperature. Hence the expansion of isotropic
substances looks like a photographic
magnification. (See Figure 6.9)

hole

(T2 > Tl)
Isotropic expansion (exaggerated) of a

steel ruler after increase in its

temperature

Figure 6.9
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Thus, increase in area AA = 2 o AAT,

and

Increase in volume AV = 3aVAT

The coefficients of volume expansion (Y=30)
of some substances are given in Table 6.1 (for
information only)

Thermal expansion is more in liquids than in
solids, and it is maximum in gases.
Anomalous Thermal Expansion of Water

The thermal expansion with temperature
appears to be anomalous in case of water. When
temperature of water is reduced upto 4 °C, it
contracts, but when the temperature is decreased
further from 4 °C to 0 °C, water expands (See
Figure 6.10 a). Thus, for given quntity of water,
the volume of water is minimum at 4 °C and

hence, the density of water is maximum at 4 °C.
(See Figure 6.10 b)

Due to this type of behaviour of water, lakes
freeze from top to down rather than bottom to top.

\Y%
1.04343

1.00013
1.00000

(Volume of 1 kg of water x 10%)m?

P/
1.00000 |
0.99995
0.99990
0.99985
0.99980

0.99975

0.99970 | | 4
0

Density x 10° (kg/m?)

—

L T ey

®)

Variation of (a) volume, and (b) density,
of 1 kg of water in the temperature
range from 0°C to 10°C.

Figure 6.10

As the temperature of upper layer of water
decreases (say from 10°C) towards freezing
point, it becomes denser than water in the lower
region and moves towards the lower region. This
process continues till the entire water of the lake

reaches 4°C. Now, when the temperature of
upper surface of water decreases below 4°C, its

density decreases (See Figure 6.5 b), and hence
it remains there on the upper surface and
continues to cool down further. This way the
upper surface freezes while the lower surface
water is still liquid.

Due to this anomalous behaviour of water,
the aquatic life in water is survived even at very
low temperature of the atmosphere.

Illustration 1 : A blacksmith fixes iron
ring on the rim of the wooden wheel of a
bullock cart. The diameter of the rim and the
iron ring are 1.5 m and 1.495 m respectively,
at 27°C. To what temperature should the ring
be heated so as to fit the rim of the wheel ?

For steel o0 = 12 x 107% K~!. (Neglect thermal
expansion of wooden wheel).

Solution :

Given T = 27°C = 273 + 27 = 300 K
T' =72

a=12x10° K"

Diameter of rim d;, = 1.5 m

Diameter of iron ring d, = 1.495 m
Hence total length of rim [/, = nd,
Total length of ring [, = nd,
SAl=1 -1, =nd — nd,
Now Al = alAT

wnd, - d,) = and(T' —T)

dl_dZ
ST - T = ——
ad,
, dy —d,
1.5-1.495

= 12x10°° x 1.495 +300

= 278.7 + 300
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L T' ' =5787 K
o T' =578.7 — 273 = 305.7°C

Thus the ring should be heated up to 305.7°C
(in practice slightly more than this).

Illustration 2 : What should be the
lengths of a brass and an aluminium rod at
0°C, if the difference between their lengths is

to be maintained equal to 5 cm at any
temperature ?

(For brass oo = 18 x 107° C°! and for
aluminium o = 24 x 107% C°™)

Solution : Suppose / and [, are the lengths

of aluminium and brass rods at 0°C respectively.
At any temperature, difference of their lengths
remains the same. Hence, increase in their
lengths with increase in temperature must also
be the same.
s AL = AL
L l1 AT = a, 12 AT
L o 24x10°
Lo ygx107°
Now, according to the given condition

4
;O

[, =1,=5cm 2)
From equations (1) and (2),
b4
L -5 "3
3l1 = 4l1 - 20

l1 = 20 cm, and 12 =15 cm
Thus, at 0°C lengths of brass and aluminium
rods should be 20 cm and 15 cm respectively.

Illustration 3 : Density of the material
of a body of volume V is p at temperature T.
Show that density of the material decreases
by ypdT for a very small rise (dT) in

n
temperature. (Hint : a;i =nx""1
X

Solution :

Density p = %, (D

where M = mass, and V = volume of the
body.

Volume of the body depends on temperature.
If volume of the body increases by dV on
increasing the temperature by dT then,

s dV = yVdT 2)
It is clear that density decreases as volume
increases. Suppose decrease in density is dp.

.. From equation (1),

dp=-M av 3)
v
= —MZ - yVdT
v
__M .
v VAT
. dp = —pydT (4)

Here, —ve sign shows that p decreases as
temperature increases.

Illustration 4 : Prove that the co-efficient
of volume expansion of an ideal gas at constant
pressure decreases with increase in
temperature. What is the co-efficient of

volume expansion of an ideal gas at 0°C ?

Solution : For an ideal gas, PV = pRT (1)

Suppose increase in volume is AV
corresponding to increase in temperature AT at
constant pressure.

.. PAV = pRAT 2)
Dividing equation (2) by equation (1),
AV _ AT
vV T
AV 1
VAT T
= % (" AV = yVAT) 3)

Equation (3) shows that the co-efficient of
volume expansion decreases as temperature

increases. At T = 0°C = 273.15 K.

=3.66 x 107 K

1
Y= 27315
Illustration 5 : Co-efficient of volume
expansion of glycerine is 49 x 107 C°'. Find
percentage decrease in its density on increasing

its temperature by 30 C°.

Solution : V. =V (1 + YAT)

Now,v=d _M
YT p Yo T pg

M

M M
o =, HYAD)
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‘.pFO:l+yAT
.p 1
" P, 1+ yAT
P~ Py —yAT
P~ 1+ 7yAT

(49)(107°)(30)

1+ (49)(107)(30)
= —0.0145
.. Percentage decrease in density = 1.45 %

Note : Since value of y is very small, this
problem can also be solved by using formula
obtained in Illustration 3.

Illustration 6 : Average temperature of
the Earth was 300 K when the Earth came
into existence. At present its average
temperature is 3000 K. (This is due to the heat
evolving from the disintegration of radioactive
substances at the core of the Earth.) What
would be the radius of the Earth at the time
of its birth ? For the material of the Earth
y =3 x 10° K. At present, radius of the
Earth = 6400 km.

Solution :
V=V, 0+ YAT)
4 3_ 4 .3
gnR = §TCR0 (1 + yAT)
1

. R =R, (1+7AT)?

R

*“ R = ]
(1+yAT)3

0

6400
1
[1+ (3%x107°)(2700)]3

= 6236 km
6.6 Heat of Transformation (Latent Heat)

When heat is given to a solid or liquid
substance, it is not necessary that its temperature
will increase. Sometimes by absorbing heat, the
substance may change its state or phase to another.

To melt a solid substance to a liquid state,
i.e. to make the molecules free from the rigid
structure of the solid, more heat energy is required
(e.g. conversion of ice into water). In the same

manner, when a liquid freezes to form a solid,
the energy is released from the liquid.

To vaporize a liquid, the heat energy is given
to it (e.g. transformation of water to vapour).
Similarly when gas molecules condense to form
a liquid, the heat energy is released (reduced)
from the gas.

“The amount of energy per unit mass
that must be transferred as heat when a
substance completely undergoes a phase
change (from one state to other) is called
the heat of transformation (Latent heat) L.”

The total energy Q provided as a heat to a
substance of mass m to transform it from one
state (phase) to completely in other is Q = Lm.

The necessary amount of heat required for
transformation of a liquid into gas (vapour), or a
gas (vapour) into liquid, is called heat of
vaporization L. For water L,, = 2256 kl/kg.

When a solid substance of unit mass is
transformed into liquid (then the substance gains
heat), or when the liquid is transformed into solid
(then it loses heat) the heat of transformation is
called heat of fusion L.

For water L, = 333 kl/kg

A plot of temperature versus heat for a
quantity of water is shown in Figure 6.11.

) 2256 kl/kg
N . (540)kcal/kg
L BOl'hng Phase
2100 P _O_lfl_t ___________________ change Gas phase
g 333kJ/kg (Steam)
& Melti |
= Point - DD iquid phase
= 0 [y (water)
olid phase
(ice) ; .
Heat

Temperature versus heat for water at 1 atm
pressure (not to scale)
Figure 6.11

Figure 6.11 shows that when heat is added
(or removed) during a change of state, the
temperature remains constant. The slopes of
phase lines are not all the same, which indicates
that specific heats of various states are not equal.
For water L = 333 kJ/kg represents that 333 kJ
of heat is needed to melt 1 kg of ice at O°C,
and L,, = 2256 kJ/kg represents that 2256 kJ heat
is needed to convert 1 kg of water to steam at
100°C. So, steam at 100°C carries 2256 kl/kg
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more heat than water at 100°C. This is why
burns from steam are usually more serious than
those from boiling water.
6.7 Heat, Internal Energy and Work

For a vessel containing a gas, due to the
random motion of gas molecules about their
centre of mass in the vessel, they possess
momentum and kinetic energy. As the probability
of random motion of gas molecules is same in
all directions, the total momentum associated with
the random motion of molecules is zero

N
(Pint = 0). But the kinetic energy associated
with the random motion of these molecules is not

zero. (K;,, #0)

The total kinetic energy associated with the
random motion of molecules of the gas (such that
the total momentum of motion is zero) is called
heat (or thermal) energy possessed by the gas.

If the gas molecules are interacting with
each other, then the molecules possess the
potential energy (U, ) associated with these
interactions. Further, if an external agency (e.g.
gravitation) is interacting with the gas, then the
gas as a whole can possess additional potential

energy U, .

rﬂ’a ’L 5’ \ dr-‘oj P Ko
Fom R W
iy B
g™ P
@ ®

Motion of vessel containing gas
Figure 6.12

it

As shown in Figure 6.12, suppose the vessel
containing gas is in motion. In this case, the gas
also moves with the vessel. Hence along with
random motion, the gas molecules possess average

%
momentum P, and kinetic energy K__.

Thus, a gas can possess following four types
of energy :

(1) I<int ’ (4) Uext

The sum of first two energies (K. + U. )

nt nt

is called the internal energy (E, ) of the gas,

2) U

int ’

3) K

ext ’

whereas the sum of last two energies (K +
U,,) is called mechanical energy of the gas.

This discussion of energy of gases is also
valid for other phases of matter.

We know that when two bodies at different
temperature are brought in thermal contact with
each other, the temperature of the hotter body
decreases and that of the colder body increases.
This means that exchange of heat energy takes
place between the two bodies. The exchange of
heat energy is called heat. Thus, we can conclude
that the energy exchanged between a system
and its environment, only due to the
difference of temperature between them, is
called heat.

It is clear that a system can possess heat
energy but cannot possess the heat, because heat
is a process.

The heat absorbed by a system is
considered positive and heat lost by the
system is considered negative.

6.7.1 Work in Thermodynamics

The amount of mechanical energy
exchanged between two bodies during
mechanical interaction is called work. Thus
work is a quantity related to mechanical
interaction. A system can possess mechanical
energy, but cannot possess work.

Previously you studied about work, according
to which the work done by a system against a
force is considered negative, and work done on
the system is considered positive. But in
thermodynamics the work done by the system is
considered positive and the work done on the
system is considered negative. The reason behind
such a sign convention is due to the mode of
working of a heat engine in which the engine
absorbs heat from the environment and converts
it into work W means the energy of the system
reduces by W.

6.7.2 Formula for the work done during
the compression of gas at constant
temperature

Piston

p mole of
ideal gas (adiabatic

wall)

1 mole of ideal gas confined in a
cylindrical container
Figure 6.13
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As shown in Figure 6.13, 1L mole of an ideal
gas having enough low density is filled in a
cylindrical container, and an air—tight piston of
cross-sectional area A, capable to move without
friction is provided. The conducting bottom of the
cylinder is placed on an arrangement whose
temperature can be controlled. At constant
temperature, measuring the volume of the gas for
different values of pressure, the graph of P — V
can be plotted as shown in Figure 6.14. These
types of processes are called isothermal processes
and the curve of P — V is called isotherm.

PJ\

Isotherm

P :
Pi ________ %"""“'” ______ 1 T
0 TR >V

P — V curve for given gas
(at constant temperature)
Figure 6.14

Suppose that in initial state i, the pressure
and volume of the gas are P, and V, respectively.
Keeping the temperature T of the gas to be

constant, the volume of the gas is decreased
slowly and slowly by increasing a force on the

piston. Let final pressure of the gas is Pf and
final volume is Vf

During this process, at one moment when
the pressure of the gas is P and volume is V, at
that time, let the piston moves inward by Ax.
Then the volume of the gas decreases by AV.
This displacement is so small that there is no
apparent change in pressure. Hence, the work
done on the gas by the external force is

AW = FAx
= PAAx (v F = PA)
AW = PAV (v AAx = AV)

If the volume of the gas is decreasing from

(6.7.1)

V. to Vf through such small changes, then the

total work done on the gas.

A%
i

W = SAW = ),PAV (6.7.2)
Vi

lim
In this summation, taking AV —s 0 the

summation results in integration.

v

zW:_ﬂmv
V.

1

(6.7.3)

But the ideal gas state equation for [ mole
of gas at constant temperature is

PV = URT

. p_ MRT
SoP = v

Substituting the value of pressure in equation
(6.7.3)

Y
[ URT

w= | v 4V (6.7.4)

av.
\Y

=
I
=
3
<e—=
QU

V1’
= uRTLIn V1]

= URT [ [V, — IV, ]

Vs
*~ W = pRT lnv

1

(6.7.5)

In equation (6.7.5) we have Vf <V, hence

\'%
f .
In V. < 0. Thus we get negative value of work,
i
which represents that during the compression
of gas at constant temperature, the work is

done on the gas.

If the gas is expanded at constant

temperature (volume is increasing), then Vf >V,

v
Hence in equation (6.7.5), we get [n 7f > 0.

L
Thus we get positive value of W. This shows

that during isothermal expansion of gas, the
work is done by the gas.
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6.7.3 Work done at constant volume and
at constant pressure :

Equation (6.7.5) does not give the work W
done by an ideal gas during every thermodynamic
process, but it gives the work done only for a
process in which the temperature is held constant.
If the temperature varies, then the symbol T in
equation (6.7.4) cannot be taken outside the
integral, and hence we could not get equation
(6.7.5).

In equation (6.7.3), if the volume V of the
gas is kept constant, then (dV = AV = 0)
(6.7.6)

Similarly, if the volume is changing while the

. W = 0 (for constant volume)

pressure P is held constant, then from equation
(6.7.3)
v
! v
W=P[dV =P[V]/

Vi

=PIV, = V)
.. W = PAV (for constant pressure) (6.7.7)

Illustration 7 : (a) During the expansion
of one mole of oxygen (considering it as an
ideal gas) at constant temperature of 310 K,

its volume increases from Vl. =12 L to

Vf = 19 L. What will be the work done by

the gas ? (b) Keeping this temperature to be
constant, if the volume of 1 mole of oxygen is
decreased from 19 L to 15 L, then how much
work is required to be done on oxygen by an
external force ?

(R =831 J mol! K™)

Solution :
w =1 mol T =310 K
V.=12L V,=19L
Here, the expansion of oxygen is isothermal.
Vf
*~ W =uRT In &~
R,
_ Q)
=1 x 831 x 310 x In (12
W =1183.6J

Hence, during isothermal expansion, the work
done by oxygen will be 1183.6 joule.
(b) In second case,

w =1 mol T =310 K

V.= 19L V,=15L

Here, the compression of oxygen is isothermal.
Vf

.. W = uRT lnv

l

E
oW =1 x 831 x310 x In 19

S W =-—608.71]

Hence, the work done by oxygen during
isothermal compression is —608.7 J. This means
that the work done by the external force on
oxygen for its compression (from 19 L to 15 L)
will be 608.7 Joule.

6.7.4 More Understanding of Heat and
Work :

Suppose a system is slowly and slowly
carried from initial state 1 to final state 2 (in such
a way that at every stage the thermal equilibrium
between the system and its environment is
maintained). Different paths for this process are
shown in Figure 6.15.

P h

»
>

\Y
Different ways for carrying the system from initial
state to the final state
Figure 6.15

During these processes, the work done is
calculated from equation (6.7.3) as

W:JZ.PdV
|

The value of this integral is equal to the area
covered by the path joining states 1 and 2 with
the V axis. Thus the work done in carrying the
system from initial state 1 to final state 2 along
la2, 1¢c2 and 1b2 paths is shown in Figure 6.16
by the area covered by the process paths.
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(@) 1 a 2 path

—_

(b) 1 ¢ 2 path

(¢) 1 b 2 path
Work done on different paths

Figure 6.16

Figure 6.16 shows that while carrying the
system from state 1 to state 2, the maximum
work done by the system is along 1a2 path
(maximum area covered) whereas minimum work

is done along 1562 path (minimum area covered).

If the system is carried from state 2 to state
1 along 2al, 2c1 or 2b1 path then the work done
will be negative (since there is a decrease in
volume, AV will be negative), which shows that

work is done on the system by external force.
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I

|

I

: > V

Total work done along 1a2b1 path of cyclic
process of the system

Figure 6.17

As shown in Figure 6.17 when a system is
carried from state 1 to state 2 by la2 path and
then back to state 1 by 2b1 path, then during
this cyclic process 1a2bl, the total work done
by the system is equal to the area covered by
closed loop. (The work done along la2 path is
positive, whereas the work done along 2b1 path
is negative, hence the total work done along
la2b1 path is equal to the area covered by closed
loop).

6.8 First Law of Thermodynamics

Suppose a system absorbs heat and as a
result work is done by it (by the system). We
can think of different paths (processes) through
which the system can be taken from the initial
state i to the final state f.

P.l\
P. ____i > a
l
C b
P (e ’ {
f b i
I I
I I
1 1 >
Vl. Vf Vv

Different paths for carrying a system from
initial state i to final state f

Figure 6.18

For the processes iaf, ibf, icf shown in
Figure 6.18. Suppose the heat absorbed by the

system are Q , Q,, Q. respectively and the values
of the work done are respectively W , W,, W .
Here, Q, # Q, # Q. and W # W, # W, but
the difference of heat and work done turns out
to be the same, i.e.
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Qa_wa=Qb_Wb=Qc_wc

Thus, when a system is taken from the initial
state i to the final state f, the values of heat Q
and work done W depend on the type of process
(path), but the value of Q — W does not depend
on the path. The value of Q — W depends only
on the initial and final states of the system.

It can be concluded from this discussion that
for different thermodynamic states of a system,
a thermodynamic state function can be defined
such that the difference between any two states
is equal to Q — W. Such a function is called

internal energy E, ~of the system.

The system gains energy Q in the form of
heat energy and spends energy W to do work.
Hence the internal energy of the system changes
by Q — W.

If the internal energies of the system in initial

state i and final state f are respectively E, and
l

Ef, then

Ef -E=AE =Q-W (6.8.1)
which is the first law of thermodynamics.
When a system gains heat Q, its internal

energy E,  increases, but when the work W is

done by system then its internal energy
decreases.
The first law of thermodynamics is obeyed

in all the changes occurring in nature.

Illustration 8 : As shown in Figure 6.19,
1.00 kg of liquid water at 100 °C is converted to
steam at 100°C by boiling at standard atmospheric
pressure of 1.00 atm. During this process the
volume of water increases from an initial value
of 1.00 x 10~ m?® as a liquid to 1.671 m?® as
steam.

(@) How much work is done by the system
during this process ? (b) How much energy is
transferred as heat during the process ? (¢) What
is the change in the internal energy of the system
during the process ?

kJ

For water LV = 2256 E

PHYSICS

Piston
(Insulator)

Adiabatic - -
Wall B--memmmmmmmmmmm

Temperature
Control

Heat Source

Boiling water at constant pressure

Figure 6.19

Solution :
@V, =100 x 10°m’, V,= 1671 m’
P = 1.00 atm = 1.01 x 10° Pa

Here, the volume increases at constant
pressure. Hence the work done by the system
will be positive, having value

Vf Vf
W = deVz PJ. dV (P is constant, so
\ \
can be taken outside integral)
= P[V]Y =P[V,-V
- [ ]Vi - [ o i]
W =101 x 10° x [1.671 — 1.00 x 107]
=1.69 x 10°
* W =169 kJ (1)

(b) Since the liquid water at 100°C is

converted to steam at 100°C by boiling, the heat
energy gained by the system

Q =Lym
= (2256 x 1.00)
Lo Q=12256 kJ (2)

(c) According to the first law of
thermodynamics the change in internal energy of
the system

AE_ =Q-W =2256 — 169

= 2087 kJ 3)
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AE, is positive, which shows that the
internal energy of the system increases. This
energy goes into liberating water molecules from

the surface of liquid water for vaporization.
6.9 Heat Capacity and Specific Heat

As we add more and more heat to a body,
its temperature goes on increasing. The amount
of heat required for the same change in
temperature, is different for different bodies.
Scientists have defined the amount of heat
required to increase the temperature of one

kilogram of pure water from 14.5°C to

15.5°C as one Kkilocalorie. One thousandth
part of one Kilocalorie is called one calorie.

The ratio of the heat Q supplied to a
body to a change in its temperature AT is

called heat capacity H. of the body.

-
¢ T AT

The SI unit of H, is J K" or cal/K.

H (6.9.1)

Heat capacity of a body depends on the
material of the body as well as on its mass.
Different bodies of the same material but different

mass have different values of heat capacity.

Heat capacity does not mean like the
capacity of a bucket which can hold (contain)
certain quantity of water. It also does not mean
about how much heat a substance can hold or
absorb. The gain or loss of heat continues until
the required temperature difference is maintained.
During this process the substance (body) may melt

or vaporize.

The quantity of heat required per unit mass
for unit change in temperature of a body is called
the specific heat of the material of the body. The
unit of specific heat is cal g' K™ or J kg! K71,
Thus,

Heat capacity

Specific heat =

Mass
) _ Q/AT  Q
. C= T T AT (6.9.2)

Remember that in case of coin of copper,
we can talk about heat capacity of the coin, but
specific heat is that of copper only. None of the
two quantities, heat capacity or specific heat, are
constant, as their values depend on the
temperature at which the temperature interval AT
is considered. Equations (6.9.1) and (6.9.2) give
their average values over that interval of

temperature. From equation (6.9.2)

Q = mCAT (6.9.3)

Table 6.2 shows the specific heats of some
substances at room temperature for information
only.

Table 6.2

Specific heats of some substances at room
temperature (For Information Only)

Specific Heat bl i
Substance Specific Heat
Cal g'K'|J kg'K!| J mol'K!
Silver 0.0564 236 25.5
Copper 0.0923 386 24.5
Aluminium | 0.215 900 244

Ice (—10°C)| 0.530 2220 —
Water 1.00 4190 —

Sea Water 0.93 3900 —

6.9.1 Specific Heats of Gases

In the chapter of Kinetic Theory of Gases
in semester I, you have studied the specific heat
and molar specific heat of gases. Recalling these
definitions we will establish the relation among
the specific heats of gases.

Molar Specific Heat : The amount of heat
required to change the temperature of one mole
of a gas by 1 K (or 1°C) is called molar specific
heat of the gas.

Molar specific heats of some substances are
given in Table 6.2 for knowledge.

Specific Heat at Constant Volume (CV)
The amount of heat required to change the

temperature of 1 mole of gas by 1 K, keeping
its volume constant, is called the specific heat

C, of the gas at constant volume.
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Specific Heat at Constant Pressure (CP)

The amount of heat required to change the
temperature of 1 mole of gas by 1 K, keeping
its pressure constant, is called the specific heat

C, of the gas at constant pressure.
Relation between C, and C,, :

According to the first law of
thermodynamics, for infinitesimal changes

dE_ = dQ — dW
5dQ =dE_ + dW
5. dQ =dE_ + PdV (6.9.4)

But at constant volume, dV = 0

.. dQ = dE_

(39, -(%)
\ar ), =T ),

In Kinetic Theory of Gases (Semester—I)
you have learnt that, if the degrees of freedom
of 1 mole of a gas are f, then the internal energy
of the gas is

fRT

Eint = T (M = 1) (695)

Hence,

dQ) _ . (dEw | _ /R
(dT jV —Cv—( - )V_ 5 (696)

Similarly, when heat is supplied to one mole
of gas at constant pressure

(dQ), = dE,_ + PdV

But for 1 mole of (ideal) gas
PV =RT (u=1)

.. PdV = RdT

Hence,

(dQ), = dE_ + RAT

d_Q dEint
“\ar ), =4t ), R

Here using equation (6.9.5)

aQ /R
(a’T)P =G =75 +R

From equations (6.9.6) and (6.9.7)
G —-C, =R

(6.9.7)

(6.9.8)

The ratio of specific heat C, at constant
pressure to the specific heat C,, at constant

volume, is represented by y. Hence,

o R Omam
Y_Cv_ JR B /R
2
f+2 2
B (6.9.9)

The degrees of freedom of monoatomic
molecules of gas are f = 3. Hence for
monoatomic gas,

_3R ~ _3R

3R _3
C=26G=7%7=3
For the diatomic molecules (rigid rotator) of
the gas f = 5. Hence,
5R 7R
S G

and for diatomic molecules (with vibrations)

f=1
=G ==y

For diatomic and polyatomic gases the values
of specific heat are relatively high. The specific
heat of gas increases with increase in number of
atoms in a gas molecule. This means that, to
increase the temperature of polyatomic molecules,
more heat is required, which is due to the

following reason :

_ 1
5

_ IR 9R 9

Monoatomic molecules have only the
translational kinetic energy. Hence their kinetic
energy increases as heat energy is given to them.
But polyatomic molecules possess rotational
kinetic energy and energy of vibrations
(oscillations) in addition to their translational
kinetic energy. Therefore, when heat energy is
given to such gases, it is utilized in increasing
the translational kinetic energy, rotational kinetic
energy and vibrational kinetic energy of the gas
molecules, and hence more heat is required. This
way polyatomic molecules possess more specific
heat.

Illustration 9 :

(@) How much heat should be provided to
ice of 720 g mass, lying at —10°C to melt it to
water at 0°C ?
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(b) How much heat should be provided to
water at 0°C to increase its temperature to
100°C ?

(¢) How much heat should be given to water

at 100°C to transform it completely into water ?

(d) Totally, how much heat should be given

to ice of 720 g at —10°C to convert it completely
into vapour ?

— -1 -1
(C,, =2220J kg K7,

Cuer = 4190 T kg™ K™, L = 333 kl/kg,

water

L, = 2256 ki/kg)

Solution : (a) The temperature of ice will

not increase until it melts completely. Thus the
heat to be given to ice, to carry its temperature

from T, = —10°C to Tf = 0°C (thereafter it will
start to melt), is

Q=C.mT-T)
where,

C... = Specific heat of ice at —10°C

1
= 2220 kg K

L Q, = 2220 x 0.720 x [0—(=10)]
= 15,984 ]

. Q, = 1598 K (1)

Until the ice melts completely, its temperature
does not increase above 0°C. Hence, the heat to

be given to ice to melt it completely is
Q, = Lym = (333 kJ/kg)(0.720 kg)
S Q, =2398 kKJ (2)

(b) Now to increase the temperature of 0.720

kg water from T, = 0°C to T, = 100°C, the

f
required amount of heat is

Q3 = Cwater m(Tf - Tl)
o Qy =4190 x 0.720 x [100-0]
. Q, = 301680 J

. Q, = 301.68 kJ 3)

(c) The heat to be given to water at 100°C
to transform it completely into vapour is
Q,=Lym
= 2220 x 1 x [0—(—10)]
S0 Q, = 162432 kJ 4)
(d) The total amount of heat to be given to

720 g of ice at —10°C, to transform it completely
into vapour is

Q=Q +Q +Q, +Q,
5 Q=2181.78 KJ ©)

Illustration 10 : What will be the mass
and temperature of water obtained by giving

210 kJ heat to ice of 1 kg, lying at —10°C ?
(C,, =2220J kg' K
Solution : Mass of ice m = 1 kg
To raise the temperature of ice from
Ti =—10°C to
Tf = 0°C, the required amount of heat is
Q =C_ m(Tf— Ti)
= 2220 x 1 x [0—(—10)]
= 22200 J
SoQ =222k (1
Until the ice melts completely, its temperature
will not increase above 0°C. The heat given to
ice is 210 kJ, out of which Q, = 22.2 kJ of heat
is utilized to increase the temperature of ice from
—10°C to 0°C. Hence the net amount of heat

gained by ice after attaining 0°C temperature is,
Q'=Q-Q, =210kl —222KkJ

Q' = 1878 KkJ )

The quantity (mass) of ice melts by this
much amount of heat is

m Q 1878
~ Lg 333
oo m = 0.564 kg 3)

This shows that out of 1 kg ice, 0.564 kg of
ice is melted (means 0.564 kg is converted into
water), and remaining ice which is not melted is

1 —0.564 = 0.436 kg

Therefore, after melting of ice, the mass of
the water obtained will be

m = 0.564 kg 4)
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and its temperature will be
T =0°C 5)
Some thermodynamic processes :

In thermodynamics we can achieve the same
result through different methods. For example,
temperature of a gas filled in a cylindrical
container with an air tight smooth piston can be
increased by suddenly increasing pressure on it
or temperature can also be increased by heating
the gas externally by means of a flame. Thus in
thermodynamics the conditions on interaction
taking place between a system and its
environment are very important and accordingly
the process is identified with a specific name.
Let us study such a few processes.

Isobaric process : “The process during
which pressure of the system remains constant

is called an isobaric process.”

Thermodynamic equilibrium state of a system
goes on changing during such a process. The
thermodynamic functions of the system possess
definite values in intermediate states. The graph
of P — V for such a process is a straight line
parallel to the V-axis.

v

f
From equation (6.7.3), W = .[ Pav
V.

1

v,
f
As P is constant, W = PJ. dV
Vl'
=PV, - V) (6.10.1)

Isochoric process : Volume of a system
remains constant during this process. Since no
work is done during this process, Q = AE, = from
the first law of thermodynamics. Thus, during an
isochoric process the change in internal energy
of the system is equal to the amount of heat
exchanged between the system and its
environment.

Adiabatic process : No exchange of heat
takes place between a system and its environment
in this process. This is possible when (1) walls
of a system are thermal insulator or (2) process

is very rapid.

During propagation of sound waves the
process of formation of condensation and
rarefaction is very rapid and hence it can be
considered as an adiabatic process. Now you can
understand why the air pump (used to fill air in
bicycles) gets heated on pumping rapidly. Since
AQ = 0 for an adiabatic process, it follows from
the first law of thermodynamics that

AE. = —W. If work is done by the system

int -

(W > 0), internal energy of system decreases
and if work is done on the system, its internal
energy increases. The relation between pressure
and volume for an ideal gas (do not worry about
its derivations, leave it for the future) is,

Cp

PV' = constant, where y = a

Isothermal process : “A thermodynamic
process during which temperature of a system
remains constant is called an isothermal process.”

Work done during an isothermal process
(expansion)

Suppose, volume of i mole ideal gas changes
from V| to V, through a series of small changes
in volume. Then the total work done is (according
to equation (6.7.3) )

V2
W = j PdV
Vl
From the equation of state for an ideal gas,

PV = pRT

=
‘ =
H

SoP= (6.10.2)

2
uRT
—dV
v

s
Il
< < <

V2
1
= URT J. \Y av
Vl

(Since temp. remains constant during
isothermal process, T has been taken out of
integration sign)

= URT[In V]2
1
=URT [In V, = In V]

oW =uRT In | 7 6.10.3
u v, ( )

Internal energy of an ideal gas depends only

on its temperature, hence the change in internal
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energy of an ideal gas during an isothermal
process, is zero. Therefore, taking AE, = 0 in
the first law of thermodynamics (Q =W + AE. ),

we get Q = W. Hence equation (6.10.3) can be
expressed as,

o %)
W = Q = uRT In| (6.10.4)

Cyclic process : “A thermodynamic process
in which system undergoes a series of processes,
starting from some thermodynamic equilibrium
state, and finally the system is brought back to
its original (initial) state is called a cyclic process.”

In a cyclic process initial and final states of
a system are the same and hence there is no
change in its internal energy (i.e. AE, = 0) and
so from the first law of thermodynamics
Q = W. Thus, the net amount of heat exchanged
between a system and its environment is equal
to the net amount of work done by the system
at the end of a cyclic process.

6.11 Reversible and irreversible processes

Suppose a gaseous system filled in a cylinder
is in some initial equilibrium state i in which its
pressure, temperature and volume are P, T and
V respectively. Now, suppose we wish to reduce
its volume to half at constant temperature and
carry the system to some final equilibirium state
/- This can be achieved in many different ways.

In one such process, the piston may be
rapidly pushed down and then we can wait till
the gas attains its initial temperature T by attaining
equilibrium with the surrounding. When a gas is
rapidly compressed in this way, many effects are
produced creating inequilibrium in the gaseous
system. Hence the system passes quickly through
many inequilibrium states while going from state
i to the state f. Though, as mentioned ealier it
may return to the equilibrium state f after a long
wait.

Now, if the process is reversed by moving
piston rapidly upward to restore its initial volume
V, the intermediate states of inequilibrium through
which the system will pass, may not be the same
as those through which it had passed during its
transition from state i to state f (during
compression). Such process is called an
irreversible process.

Now, we think of another process in which
the gas is compressed to half of its original
volume through infinitesimally small (and slow)
changes. On reducing the volume slowly in this
manner, the system does experience a little,
momentary inequilibrium and temperature also
rises slightly. But as the process is very slow,
the system releases additional heat in its
surroundings and regains equilibrium. Temperature
of the system remains constant during all
intermediate states. Thus, the system can be
considered to be passing through equilibrium states
during every stage of compression. Such a
process is called quasi-static process. In this
manner volume of the system can be reduced to
half of its original volume at constant
temperature. If the process is reversed in the
same manner by reducing pressure on the gas,
very slowly, so that its volume increases
extremely slow, the system returns to original
state i following the same path (i.e. passing
through the same intermediate states of the earlier
process of compression). Such a process is
called a reversible process. Here, we must
remember that in the present example we have
considered a reversible isothermal process and a
piston moving without friction so that there is no
dissipation of energy. When the process is
reversed, not only the system but its environment
also return to its original state. From the above
discussion, it is clear that the absence of the
factors responsible for the dissipation of energy
is an ideal situation and hence a completely
reversible process cannot be realized in practice.
All the processes taking place in nature (i.e.,
processes occurring on their own) are irreversible
e.g. rusting of iron, erosion of rocks, ageing of
all animals etc.

Ilustration 11 : Prove that the work
done by an ideal gas during an adiabatic
process, when it goes from initial state

(P, V|, T)) to the final state (P, V,, T,) is

PIVI — P2V2

_ HR(T, - T,)
y-1 y—1

[For aidabatic process PVY = A (constant)]
Solution : For an adiabatic process

VZ
W = deV

Vi
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v, A
1
= AJ. _dV (' ‘P = _)
Y ’ v
\ M v
VZ
. _ -y
LW = A VY Q,
Vl
_ A Piston
-y
=A Y } Heat Cylinder
Ly Ty sink with
_ . Adiabatic
Vz_y 1 - Vl_y 1 Gas wall
=A (-7 (working Conducting
L substance) botton
AVQ_Y L AVI_Y 1 Burner
= (1_ ,Y) (Heat source)
P.V.IV. Y +1 PVIV Y 1 A simple heat engine
_ 2% "2 171 71 Figure 6.20
(I-7y) A simple heat engine is shown in Figure 6.20.
P,V, - PV, The gas enclosed in a cylinder with a piston
= _ (1) receives heat from the flame of a burner. On
(1=7)
absorbing heat energy the gas expands and
W = M ) pushes the piston upwards. So the wheel starts

y-1
For ideal gas PV = uRT

URT, — uRT, _ uR(T, - T,)

v-1 -l
6.12 Calorimetry

Calorimetry means measurement of
heat. When a body at highter temperature is
brought in contact with another body at lower
temperature, the heat lost by the hot body is equal
to the heat gained by the colder body (provided
no heat is allowed to escape to the surroundings).
This is possible only if the system is isolated i.e.,
no exchange or transfer of heat occurs between
the system and its surroundings.

A device which measures the heat is
called calorimeter. It consists of a metallic
vessel and stirrer of the same material like copper
or aluminium. The vessel is kept inside a wooden
jacket which contains heat insulating materials
like glass, wool etc. The outer jacket acts as a
heat shield and reduces the heat loss from the

3)

inner vessel. There is an opening in the outer
jacket through which a mercury thermometer can
be inserted into the calorimeter.

6.13 Heat Engine and its Efficiency

A device converting heat energy into
mechanical work is called heat engine.

rotating. To continue the rotations of the wheel,
an arrangement is done in the heat engine so
that the piston can move up and down
periodically. For this, when the piston moves more
in upward direction, then the hot gas is released
from the hole provided on upper side.

Here, the gas is called a working substance.
The flame of the burner is called heat source,
and the arrangement in which the gas is released
after expansion is called heat sink.

Figure 6.21 shows the working of the heat
engine by line diagram. In the heat engine, the
working substance undergoes a cyclic process.

(Sink) T,

Working
Substance
(Engine)

(Source) T,

Working of heat engine
Figure 6.21
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For this the working substance absorbs heat
Q, from the heat source at higher temperature
T,
converted to mechanical energy (work, W) and

out of which a part of heat energy is

the remaining heat Q, is released into the heat
sink.

Hence, the net amount of heat absorbed by
the working substance is

Q=0Q, -Q, (6.13.1)

But for a cyclic process, the net heat
absorbed by the system is equal to the net work
done.

L Q=W

L Q -Q, =W (6.13.2)

In the cyclic process, the ratio of the
network (W) obtained during one cycle to the
heat (Q,) absorbed during the cycle is called the
efficiency (1) of the heat engine. That is,

Net work obtained per cycle
Heat absorbed per cycle

Efficiency, n =

W Ql _Qz

.'n:Q_l_Q—l

Q,
Q

From equation (6.13.3) it can be said that if

(6.13.3)

Q, = 0, then the efficiency of heat engine is
1 = 1. This means that the efficiency of heat
engine becomes 100% and total heat supplied to
the working substance gets completely converted
into work. In practice, for any engine Q, # 0,
means that some heat Q, is always wasted.
Hence n < L.

Usually heat engines are of two types :

(1) External combustion engine such as steam
engine.

(2) Internal combustion engine such as diesel
and petrol engines.
6.14 Refrigerator / Heat Pump and

Coefficient of Performance

If the cyclic process performed on the
working substance in heat engine is reversed,
then the system works as a refrigerator or heat

pump. Figure 6.22 shows the block diagram of
refrigerator / heat pump.

(Hot Reservoir
or Surroundings)

(Reservoir at low
temperature) T,

Working of refrigerator
Figure 6.22

In the refrigerator, the working substance
absorbs heat Q, from the cold reservoir at lower
temperature T,, external work W, is performed
on the working substance and the working
substance releases heat Q1 into the hot reservoir

at higher temperature T .

The ratio of the heat Q, absorbed by the
working substance to the work W performed on
it, is called the coefficient of performance (o) of

the refrigerator. That is,

_Q
Y

Here the heat released in surrounding

o (6.14.1)

(reservoir) is

Q=W+Q

L W=Q -Q, (6.14.2)
S * S

=g -q (6.14.3)

Here, the value of o can be more than 1
(v Q,>Q, —Q,), but it cannot be infinite.
6.15 Second Law of Thermodynamics

The statements made by different scientists
regarding the heat engine and refrigerator are
called
thermodynamics, which are as follows :

statements of second law of
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(Heat Sink)

orking
Substance
(Engine)

—> W

(Hot Reservoir)

An ideal engine which is impossible (Q,=W)
Figure 6.23
Statement of Kelvin—Planck

It is impossible to construct an engine which
converts the heat absorbed from the reservoir
completely into equal amount of work during each
cycle of the cyclic process. (See Figure 6.23)

Statement of Rudolf Clausius

It is impossible to construct a cyclic machine
in which continuous transfer of heat occurs from
the reservoir at lower temperature to the reservoir
at higher temperature without the input of energy
by work. (See Figure 6.24)

(Reservoir at
Higher

Temperature) T,

(Reservoir at lower

temperature) : T2

An ideal refrigerator (Q1 = Q2 and W = 0)
Figure 6.24

Illustration 12 : A heat engine absorbs
360 J of energy and performs 25 J of work in
each cycle. Find (a) the efficiency of the
engine, and (b) the energy expelled to the cold
reservoir in each cycle.

Solution : Here Q, = 360 J, W =25 J

(a) Efficiency of heat engine

W 257
1= Q, ~360J

(b) The heat energy expelled to the cold

=007 =7%

reservoir in each cycle
Q,=Q —W=360—-25=335]J

Illustration 13 : The energy absorbed by
an engine is three times greater than the work
it performs.

(@) What is its thermal efficiency ?

(b) What fraction of energy absorbed is

expelled to the cold reservoir ?

Solution : Here Q, = 3W

Hence, thermal efficiency n = 33.3%

(b) The heat expelled by the engine to the

cold reservoir.

Q,=Q, - W=3W-W=2W

Hence, 2rd part of the energy absorbed by

the engine will be expelled to the cold reservoir.

Illustration 14 : A refrigerator has a
coefficient of performance equal to 5.
Assuming that the refrigerator absorbs 120 J
of energy from a cold reservoir in each cycle,
find (a) the work required in each cycle,

(b) the energy expelled to the hot reservoir.

Solution : Here a0 = 5, Q,=1201J

(a) o =

=S

Q, 120]

Hence, W = — = —/—— =24]
o 5

(b) The energy expelled to the hot reservoir

Q=W+Q,=24J+120J =144
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6.16 Carnot Cycle and Carnot Engine

In Semester-I, we have studied the behaviour
of real gases by anlayzing an ideal gas which
obeys simple law PV = pRT. Although an ideal
gas does not exist but the real gas approaches
an ideal gas behaviour when its density is low
enough.

In an ideal engine, all processes are reversible
and no wasteful energy transfers occur (due to
friction, terbulence, etc).

In this topic we will study Carnot engine
after the French scientist and engineer Sadi
Carnot (pronounced “car—no’’), who first proposed
the engine’s concept in 1824.

The Carnot engine converts heat energy into
mechanical energy using a reversible cyclic
process consisting of two isothermal and two
adiabatic processes. Thus, a reversible heat engine
operating between two temperatures is called
carnot engine.

Carnot engine consists of a cylinder whose
sides are perfect insulators of heat except the
bottom and a piston sliding without friction. The
working substance in this engine is [ mole of a
gas at low enough pressure (behaving as an ideal
gas). During each cycle of the engine, the
working substance absorbs energy as heat from
a heat source at constant temperature T, and
releases energy as heat to a heat sink at a constant

lower temperature T, < T,.

The cyclic process, shown by P — V graph
in Figure 6.25, is completed in four stages. The
Carnot engine and its different stages are shown
in Figure 6.26.

i
P

P — V graph of carnot cycle
Figure 6.25

(i) First stage : Isothermal expansion of

the gas (@ > b)

Initially the working substance is in
equilibrium state a (P1’ Vl, Tl), as shown in
Figure 6.26(a).

Now, the conducting bottom of the cylinder
is brought in contact with the heat source at
temperature T, and the gas is slowly allowed to
expand isothermally and is brought to equilibrium
state b (P,, V,, T,) [See Figure 6.26(b)]. Suppose
the gas absorbs heat Q, during the process

a — b. Hence according to equation (6.10.4),
the work done by the gas is

W, = = uRT 6.16.1
1 Q] u 1 n Vl ( )

Further, for the isothermal process

PV, =PV, (6.16.2)

(ii) Second stage : Adiabatic expansion

of the gas b — ¢)

Now, the cylinder is placed on a thermally
insulated stand and the gas is adiabatically
expanded to attain the state ¢ (P, V,, T,). See
Figure 6.26(c).

During this (adiabatic) process the gas does

not absorb any heat but does work while

expanding, so its temperature decreases. For this

process.
P2V2Y = P3V3V (6.16.3)
(iii) Third Stage Isothermal

compression of the gas (¢ — d)

Now, the cylinder is brought in contact with
the heat sink at temperature T, and isothermally
compressed slowly to attain an equilibrium state
d (P, V,, T, (See Figure 6.26(d)). Work done
on the gas during this process of isothermal

compression from state ¢ — d is
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Isothermal . .
. expansion Adiabatic Isothermal Adiabatic
Initial state Woﬂi) done expansion contraction contraction
by  the \% Work done
system ¥'3 ol (e
b system
7 a
Stand Heat Source Stand Heat Sink Stand
(@) ) () ) (e=a)
Different stages of carnot engine
Figure 6.26
| 2 \
W, = =— uRT, In| 7
2 Q2 HRL, V3 T2 In ( V—3 j
. . . . 4
(Here, negative sign is used as the work is n=1- —V (6.16.7)
done on the system). T, ln(_Zj
1

Vv

. W, = Q, = uRT, ln(V4 j (6.16.4)

Here, Q, = heat released by the gas into
heat sink.

Further, for this isothermal process

PV, =PV,

(iv) Fourth
compression of the gas (d — a)

(6.16.5)

Stage Adiabatic

Now, the cylinder is placed on a thermally
insulated stand and compressed adiabatically to
its original state a (P, V,, T)) as shown in Figure
6.16(e). This process is adiabatic, therefore, there
is no exchange of heat with surroundings, but the
work is done on the gas and hence its

temperature increases from T, to T,.

For this adiabatic process

PV =PV/J (6.16.6)

Note that over the whole cycle, the heat
absorbed by the gas is Q, and the heat given
out by the gas is Q,. Hence the efficiency n of

the carnot engine is

Q

=17 Q

n

Multiplying equations (6.16.2), (6.16.3)
(6.16.5) and (6.16.6), we get

P,V ,PV,'PV.P,V, = P,V,PV.' PVPV/

373744 2°2°3°3
LV T =yt
EAARERAS
V2 V3
v, =V, (6.16.8)
V2 V3
o dn 71 =In V_4 (6.16.9)

Using this result in (6.16.7), we get the
efficiency of carnot engine as

T,

n=1- T (6.16.10)
1

Equation (6.16.10) shows that the efficiency
of the Carnot engine depends only on the
temperatures of the source and the sink. Its
efficiency does not depend on the working
substance (if it is ideal gas). If the temperature
of the source (T)) is infinite or the temperature

of the heat sink (T,) is absolute zero (which is
not possible) then only, the efficiency of carnot
engine will be 100%, which is impossible.
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Hlustration 15 : The temperature of a
heat sink in a Carnot engine is 280 K and its
efficiency is 40%. How much should the
temperature of heat source be increased, at
constant temperature of sink so that efficiency
of the engine becomes 50% ?

and P — T for the whole process.

expansion. Then, its volume is restored to
original by compressing it at constant pressure
and then at constant volume its pressure is

made again P,. Sketch the graphs of P — V

Solution : T, =280 K, n, =04, n, = 0.5 Solution :
n, =1- T, Py Va TY
1
T,
lel—nlzl 04 =0.6 (1)
T, _ 280
06 6 = 466.6 K 3 bl
T P ’T (TA’ Vo TY
-1 _ - : A
n, =1 T, +x (where x = increase in (TA’ V,. 7) y
temperature of the source) 0
T, (@)
Tl+x:1_n2:1_0'520'5 2) p Ly T
A’ AT TA
Taking the ratio of equations (1) and (2),
Tl + X 0.6 /
T ~05 A
o 5T, +5x=6T, . T, =5 e B
T, 466.6 3 - VA Ta
5 3 93.32 K (TA’ v, TA)
T
Illustration 16 : The pressure of 1 mole 0 ®)
of an ideal gas is P, and temperature is T,. Figure 6.27

First its volume is doubled through isothermal

SUMMARY

System : Thermodynamic system is a part of the universe under thermodynamic
study.

Environment : The remaining part of the universe surrounding a system and having
a direct impact on the behaviour of the system is known as its environment.

Wall : The boundary separating the system and its environment is called the wall of
the system.

Thermodynamic Process : The interaction between a system and its environment is
called a thermodynamic process.

Isolated System : If a system does not interact with its surroundings then it is called
isolated system.

Zeroth Law of Thermodynamics : If the systems A and B are in thermal equilibrium
with a third system C, then A and B are also in thermal equilibrium with each other.

Phase Diagram : The graph of pressure against temperature indicating the phase
(solid, liquid or gaseous state) of matter at given temperature (T) and pressure (P) is
called phase diagram of that matter.
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8. Triple Point : The values of pressure and temperature at which all the three states
of matter co-exist in equilibrium is called triple point of the matter.

9. Thermal Expansion / Contraction : The increase in dimensions of a substance due
to absorption of heat is called thermal expansion, and decrease in dimensions of the
substance by releasing the heat is called thermal contraction.

10. Linear Expansion : The increase in the length of the body with increase in temperature
(by absorbing heat) is called linear expansion. Substances exhibiting uniform thermal
expansion in all directions are called isotropic substances.

11. Heat Energy : The total kinetic energy associated with the random motion of molecules
of the gas (such that the total momentum of motion is zero) is called heat (or thermal)
energy possessed by the gas.

12. Heat : The energy exchanged between a system and its environment, only due to the
difference of temperature between them is called heat.

13. Thermodynamic Work : The amount of mechanical energy exchanged between
two bodies during mechanical interaction is called thermodynamic work.

14. First Law of Thermodynamics : When a system is taken from initial state i to the
final state f, then the change in its internal energy (AE, ) is equal to the difference

between heat Q absorbed (gained) by it to the work W done by it. That means
AEint = Q - W

15. Adiabatic Process : When there is no exchange of heat (Q = 0) between a system

and its environment, the process is called adiabatic process.

16. Constant — Volume Process (Isochoric Process) : If the volume of a system is

kept constant during thermodynamic process, then it is called constant — volume process.
17. Cyclic Process : A thermodynamic process in which a system at one thermodynamic
equilibrium state is carried to another equilibrium state through a series of processes
and then brought back to its original (initial) state is called a cyclic process.
18. Calorie : The amount of heat required to increase the temperature of one kilogram

of pure water from 14.5 °C to 15.5 °C is called one kilocalorie. Its one thousandth

part is called Calorie.

19. Heat Capacity : The ratio of the heat Q supplied to a body, to a change in its
temperature AT, is called heat capacity H. of the body.

20. Specific Heat : The quantity of heat required per unit mass for unit change in
temperature of a body is called the specific heat of the material of the body.
21. Molar Specific Heat : The amount of heat required to change the temperature of

one mole of a gas by 1 K (or 1 °C) is called molar specific heat of the gas.

22. Specific Heat at Constant Volume (C,) : The amount of heat required to change
the temperature of 1 mole of gas by 1 K, keeping its volume constant, is called the

specific heat of the gas at constant volume C,,.
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23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.
35.

36.

Specific Heat at Constant Pressure (CP) : The amount of heat required to change
the temperature of 1 mole of gas by 1 K, keeping its pressure constant, is called the
specific heat of the gas at constant pressure Cp.

Heat of Transformation (Latent Heat) : The amount of energy per unit mass that
must be transferred as heat when a substance completely undergoes a phase change
(from one state to other) is called the heat of transformation (or Latent Heat, L)
Heat of Fusion (L) : When a solid substance of unit mass is transformed into liquid
(then the substance gains heat) or when the liquid is transformed into solid (then it
loses heat), the heat of transformation is called heat of fusion L.

Irreversible Process : If a process is reversed such that the intermediate states of
inequilibrium through which the system passes are not the same through which it has

passed during its transition from initial state to the final state, then such a process is
called an Irreversible process.

Reversible Process : If a process is reversed very slowly such that it returns to the
initial state following the same path (passing through the same intermediate states of
earlier process from initial state to the final state) then, such a process is called a
reversible process.

Heat Engine : A device converting heat energy into mechanical work is called heat
engine.

Efficiency of heat engine : In the cyclic process, the ratio of the work (W) obtained
during one cycle to the net heat (Q,) absorbed during the cycle is called the efficieney
(n) of the heat engine.

Refrigerator : If the cyclic process performed on the working substance in heat

engine is reversed, then the system works as a refrigerator or heat pump.

Coefficient of Performance (o.) of the refrigerator : The ratio of the heat Q2
absorbed by the working substance to the work W performed on it is called the
coefficient of performance (o) of the refrigerator.

Second Law of Thermodynamics

Statement of Kelvin—Planck : It is impossible to construct an engine which converts

the heat absorbed from the reservoir, completely into equal amount of work during
each cycle of the cyclic process.

Statement of Rudolf Clausius : It is impossible to construct a cyclic machine in
which continuous transfer of heat occurs from the reservoir at lower temperature to
a reservoir at higher temperature, without the input of energy by work.

Calorimetry : Calorimetry means measurement of heat.
Calorimeter : A device that measures the heat is called calorimeter.

Carnot engine : The Carnot engine converts heat energy into mechanical energy
using a reversible cyclic process consisting of two isothermal and two adiabatic
processes.

Efficiency of Carnot engine : The efficiency of Carnot engine is given by
T

n=1- ?2 This shows that the efficiency of Carnot engine depends only on the
1

temperature (T,) of the source and temperature (T)) of the sink. Its efficiency does
not depend on the working substance.
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EXERCISES
Choose the correct option from the given options :

1. An ideal gas has an initial pressure of 3 pressure units and an initial volume of 4
volume units. The table gives the final pressure and volume of the gas (in those
same units) in five processes. Which processes start and end on the same
isotherm ?

i i iii v | v
P 12 [ 6 5 4 1
v 1 2 7 3 12

(A) i, 1, iii, iv B) i, i, iv v (C) i i, iv v (D) i, iv, v
2. A certain amount of heat Q increases the temperature of 1 g of material ‘A’
by 3C° and 1 g of material B by 4 C°. Which material has greater specific

heat ?
(A) A (B) B
(C) A and B (D) Neither A nor B.

3. The measurement of temperature of triple point of water gives ................ °C
temperature.
(A) O (B) —273.16 (C) 100 (D) 0.01

4. When equilibrium is established between pure water and its vapour at
atmospheric pressure, the temperature is taken as .............. K.
(A) 100 (B) 273.15 (C) 373.15 (D) 273.16

5. The value of absolute zero temperature on a Fahrenheit scale is taken as
.............. °F.
(A) O (B) —273.15 (C) —459.67 (D) —356.67

6. On the temperature scales of °C and °F, which value of temperature is the
same ?
(A) O (B) 40 (C) 40 (D) 32

7. A gas system absorbs 450 cal of heat and the work done by the system is
200 cal. Then the change in the internal energy of the system is ......... cal.
(A) 250 (B) 850 (C) 325 (D) zero

8. A system can possess ......... , but cannot possess.................
(A) heat, heat energy (B) heat energy, heat
(C) heat, mechanical energy (D) work, heat energy.

9. Heat capacity of a body depends on the ........ as well as on ................

(A) material of the body, its mass

(B) material of the body, its temperature
(C) mass of the body, its temperature

(D) volume of the body, its mass. P

Il
~

10. Given figure shows P — V diagram
of one complete cycle of a cyclic
process. Affter one cycle, (a) the
internal energy of the gas AE, ~and
(b) the net transfer of heat energy
will be. >V

Figure 6.28
(A) positive, negative (B) positive, zero
(C) zero, negative (D) zero, positive
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11. In thermodynamics, the work done by the system is considered .............. and
the work done on the system is considered..............
(A) positive, zero (B) positive, negative
(C) negative, positive (D) zero, infinite

12. The density of water at 20°C is 998 kg/m?® and it is 992 kg/m® at 40°C. The

co-efficient of volume expansion of water is........... co

998 6 6
(A) 992 % 20 B) 998x20 (© 998x20 ™ 992 x20

13. The relation between pressure and volume of an ideal gas during isothermal

process is
(A) P' =7 T = constant, (B) P"~ ! T' = constant
(C) P' T! =¥ = constant, (D) P" T' ! = constant
14. The net heat absorbed by the system
P (N m?
for one cycle of the cyclic process
given in the figure is .............. J. 30 -
(A) 400 20 -
(B) 900 10+
) == o) >V ()
(©) 200 10 20 30 "
(D) 300 Figure 6.29

15. An ideal gas goes from state A to state B through three different processes 1,

2, and 3 as shown in figure. If the work done during these processes is
respectively Wl, W2 and W3 then. f
A) W, >W, >W,
B) W, =W, =W, i
©) W, <W, <W,

D) W, > W, > W, /

Figure 6.30

16. 100 g ice at 0°C is placed in 100 g water at 100°C. The final temperature of
the mixture will be .......... (Latent heat of melting of ice is 80 cal/g, and

specific heat of water is 1 cal/g C°).
(A) 10°C (B) 20°C (D) 30°C (D) 50°C

17. During some process on an ideal gas dW = 0 and dQ < 0. Then for this gas

(A) temperature will increase. (B) volume will increase.

(C) pressure will remain constant. (D) temperature will decrease.
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18. The work done in increasing the temperature of 1 mole ideal gas from 0°C to
100°C at constant pressure is ...........

(A)83x10°J (B) 83x102%J (C) 83 x 10?J (D) 8.3 x 10°]
19. The volume of an ideal gas increases by 24% during an adiabatic process. Its

pressure will decrease by ............ (y = %)

(A) 24% (B) 76% (C) 48% (D) 30%

20. The pressure of 10 mole gas changes from 8 atm to 4 atm during an isothermal
expansion at 27°C. The amount of heat absorbed by the gas is .......... J.

(A) 2079 R (B) 903 R (C) 187 R (D) 813 R

21. If a heat engine absorbs 50 kJ heat from a heat source and has efficiency of
40%, then the heat released by it in heat sink (environment) is................

(A) 40 kJ B) 201 (C) 30KkJ (D) 20 kJ

22. The efficiency of a heat engine is 30%. If it gives 30 kJ heat to the heat sink,
then it should have absorbed .......... kJ heat from heat source.
(A) 9 B) 39 © 29 (D) 42.8

23. If a heat engine absorbs 2 kJ heat from a heat source and releases 1.5 kJ
heat into cold reservoir, then its efficiency is............

(A) 25% B) 50% ©) 75% (D) 0.5%

24. For which value of the temperature will the values of Fahrenheit scale and
Kelvin scale be equal ?

(A) 459.67, (B) 574.32 (D) -32 (E) 100

25. A diatomic (rigid rotator) ideal gas is used in a Carnot engine as the working
substance. If during the adiabatic expansion part of the cycle, the volume of
the gas increases from V to 32 V, the efficiency of the engine is

(A) 0.35 (B) 0.25 (C) 05 (D) 0.75
26. On a hot day at Ahmedabad a trucker loaded 37,000 L of diesel fuel. He

delivered the diesel at Shrinagar (Kashmir), where the temperature was lower
than that of Ahmedabad by 23 K. How many liters did he deliver ? For diesel
Y =3a = 9.50 x 1074 C°!
(Neglect the thermal expansion / contraction of steel tank of the truck).
(A) 808 L (B) 36,190 L (C) 37808 L (D) 37,000 L

27. Figure 6.32 shows four rectangular (C%Izn

plates of equal thickness and made

from the same material. If their 3{

temperature is increased from T to

T + AT, rank the plates according to i 2 3

increase in (@) their height, and (b) : 4 o
their area, greatest first. 12 3 4 5 6 7 8 9 (m

Figure 6.31
(A)2,3,1,4 B) 1,2,3,4 © 41,23 [1D3,21,4
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ANSWERS

1. (D) 2.(A) 3.D 4.(C) 5 () 6. (C

7. (A) 8. (B) 9.(A) 10. (C) 11. (B) 12. (D)
13. (A) 14. (C) 15. (A) 16. (A) 17. (D) 18. (C)
19. O) 20. (A) 21. (C) 22. (D) 23. (A) 24. (B)
25. (D) 26. (B) 27. (D)

Answer the following in short :

What is a phase diagram ?

What do you mean by one kilocalorie ?
What is an irreversible process ?

What do you mean by Isotropic substance ?

SO

Why are the burns due to steam (vapour) more dangerous than the boiling
water ?

What is a quasi—static process ?

In which situation does the efficiency of Carnot engine become 100% ?
When can you say that two systems are in thermodynamic equilibrium ?

Lo *® A

What is adiabatic process.

10. What is cyclic process.

11. Why does the polyatomic molecules have more specific heat ?
12. What is coefficient of performance of a refrigerator ?

13. What is the isobaric process ? P |
14. Given figure shows the cyclic process
1-2-1 along different paths on P — V
diagram (Such that each time the
thermal equilibrium is established
between the system and its
environment). : vV

Figure 6.32
For which closed path the total work done by the system has maximum
positive value ?
15. At what temperature is the Fahrenheit scale reading equal to
(a) Twice that of the celsius scale reading ?

(b) Half that of the celsius scale reading ?
Answer the following questions :

Explain the zeroth law of thermodynamics.
State and explain the first law of thermodynamics.
Explain the working of heat engine and its efficiency.

B

Obtain an expression for the work done on a gas during its compression at
constant temperature.

5. When a system is taken from an initial state to a final state by different paths,
explain the work done using P — V graphs. Explain the work done during

cyclic process.
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Explain the reversible and irreversible processes.
Give only the statements of second law of thermodynamics.
Given figure shows four paths for P

taking a system from initial state i to 4
final state f.

(@) On which path will the change
in internal energy AE, ~be
maximum ?

(b) On which path will the work W 1 e
done by the system be
maximum ?

(¢) On which path will the transfer Figure 6.33
of heat be maximum ?

Solve the following Problems :

How much heat should be given to an Aluminium sphere of 200 g to carry it
from 26°C to 66°C temperature ? What will be the heat capacity of the
Aluminium sphere ? C = 0.215 cal g*' C*!

[Ans. : 1720 cal, 43 cal C°']
The pressure and temperature of 10 g of O, are 3 X 10° N m™ and 10°C

respectively. On heating the gas at constant pressure, its volume becomes 10
L. Calculate
(a) heat absorbed by the gas,
(b) change in internal energy of the gas, and
(c) the work done by the gas during expansion. (Take R = 8.3 J mol™' K™)
Consider O, as diatomic rigid rotator.

[Ans. : (@) 7929 J (b) 5664 T (c) 2265 J]
The temperature of the sink of a Carnot engine is 300 K and its efficiency is
40%. Find the decrease in temperature of the sink required to increase the
efficiency of the engine to 50%, keeping temperature of the source to be
constant. [Ans. : 50 K]
In a Carnot engine, temperature of the source is 500 K and that of the sink is
375 K. If the engine absorbs 600 k cal heat from the source per cycle, find
(i) its efficiency (ii) work done per cycle, (iii) heat released in the sink.
(J = 4.2 J/cal) [Ans. : (i) 25% (ii) 6.3 x 10° J (iii) 450 k cal]
1 mole ideal gas at 27°C temperature and 2 atm pressure is compressed

adiabatically to one eighth of its original volume. Find the final pressure and

temperature of the gas. Take y = 1.5 [Ans. : 45.2 atm, 848 K]
Calculate the work done on the gas in problem 5 given above.
R =2831J mol! K [Ans. : 9097 J]

An ideal gas is enclosed in a closed container of 0.0083 m? at 300 K
temperature and pressure of 1.6 x 10° Pa. Find final temperature and pressure
of the gas if 2.49 x 10* J heat is supplied to the gas. Neglect expansion of the

container. R = 8.3 J mol™' K™! [Ans. : 675 K, 3.6 x 10° Pq]
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8.

10.

11.

12.

Calculate the work required to be done to increase the temperature of 1 mole

ideal gas by 30°C. Expansion of the gas takes place according to the relation
2
V oc T3. Take R = 83 J mol”' K™ [Ans. : 166 J]

For an adiabatic process PV’ = constant. Evaluate this “constant” for an

adiabatic process in which 2 mol of an ideal gas is filled at 1.0 atm pressure
and 300 K temperature. Consider the ideal gas to be diatomic rigid rotator.

[Ans. : 1.48 x 10%]

One mole of an ideal monoatomic gas PA

. ' T, = 600 K
traverses the cycle of given Figure )
6.34. Process 1 — 2 occurs at
constant volume, process 2 — 3 is

adiabatic, and process 3 — 1 occurs

Pressure

at constant pressure. Compute the

required heat Q, change in internal

1 £ 3

energy AE, , and the work done W T, = 300 K T, = 455 K

nt’

for the processes. 1 — 2 and 3 — 1.

<V

Volume

Take : R = 8.314J mol™' K! Figure 6.34

Answer :

Process Q AE, \%%

int

1 —>2 3741 1) 37411] 0

3—>1 —3221.7J| —1933J | —1288.7J

A heat engine has an efficiency of 22%. If the difference between the heat
absorbed and heat lost by it in one cycle remains 75 J, then calculate the heat
obtained by the engine from heat source and heat lost in the heat sink during
each cyle. [Ans. : 341 ], and 266 J]

A heat engine getting energy from gasoline takes in 10,000 J of heat and
converts 2000 J into work. The heat of combustion (transformation) is

L. =50 x 10* J/g.
(a) What is the efficiency of the heat engine ?

(b) During each cycle, how much heat will be released by the engine in
the heat sink ?

(c) How much gasoline is burnt in each cycle ?

(d) If the engine performs 25 cycles per second, how much gasoline is
burnt in 1 hour ?

(¢) How much power is generated by the engine per second ? In
horsepower ? (1 hp = 746 W)

[Ans. : (a) 20% (b) 8000 J (c) 0.2 g (d) 18 kg/h (e) 50 kW, 67 hp]
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7.1 Introduction

Dear students, while studying the circular motion and the
projectile motion you have learnt that how the forces acting in
specific manners affect the trajectory of the particle. Even in
Std. IX, you have learnt about the wave motion, concept of
periodic motion (harmonic motion) and oscillatory motions, their
characteristics such as frequency, periodic time, amplitude etc.

The study of periodic motion is very much important in
physics. This motion plays fundamental role in understanding
generation and propagation of sound waves and electromagnetic
waves. You know that constituent particles like atoms, molecules
and ions too have oscillatory motion.

In this chapter first we refresh our concept of periodic
(harmonic) and oscillatory motion, and study such motion under
a position dependent forces. The mathematical formulations for
potential energy, kinetic energy and total mechanical energy will
also be seen. We shall also study the damping of oscillation,
forced oscillation and phenomenon of resonance.

7.2 Periodic Motion and Oscillatory Motion

If a body repeats its motion along a certain path, about
a fixed point, at a definite interval of time, it is said to
have a periodic motion.

The motion of hands of a clock, motion of moon around the
earth, and the revolution of earth around the sun are the best
examples of periodic motion.

If a body repeatedly moves to and fro, back and forth,
or up and down about a fixed point in a definite interval
of time, such a motion is called an oscillatory motion. The
body performing such motion is called an oscillator.

The motion of the bob of the pendulum and the motion of a
loaded spring are the known examples for oscillatory motion.
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All oscillatory motions are periodic
motions but all periodic motions may not be
oscillatory. Like the motion of hands of a clock,
motion of the earth around the sun are periodic
but not an oscillatory. The concept of to and fro,
back and forth or up and down about some fixed
point is not present in these cases.

We will see that the oscillatory motion can
be expressed in terms of sine and cosine
functions. The sine and cosine trigonometric
functions are periodic functions having period of
21 rad. In mathematics, these functions are
known as harmonic functions. Hence, oscillatory
motion is also called as harmonic motion.

7.3 Simple Harmonic Motion (SHM)

Simple harmonic motion is a simplest type
of periodic motion.

The periodic motion of a body about a
fixed point, on a linear path, under the
influence of the force acting towards the
fixed point and proportional to displacement
of the body from the fixed point is called a
simple harmonic motion (SHM).

Displacement

A body performing simple harmonic motion
is known as simple harmonic oscillator (SHO).

Let us consider a massless spring obeying
Hook’s Law. It is suspended vertically from a
rigid support as shown in Figure 7.1 and an object
of mass m is tied at its lower end. When we
pull an object downward and release, it will
perform (almost) simple harmonic motion.

Now use Figure 7.1 to understand some
basic terms associated with simple harmonic
motion.

Equilibrium position (Mean position)

The point about which the simple harmonic
oscillator performs simple harmonic motion is
known as equilibrium position or mean
position.

In the Figure 7.1 (a), (e) and (i), the object
is at mean position.

Displacement

The distance of the oscillator at any instant

from the equilibrium position is known as the

displacement of the oscillator at that instant.

Equilibrium
position

Time

Simple harmonic motion of a massive object attached to a spring and displacement—time graph

Figure 7.1
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In the Figure 7.1 (b) the displacement of the
oscillator at 7 = ¢, is y . The displacement of the
oscillator at ¢ = £, is —y, Figure 7.1(f).
Amplitude :

The maximum displacement of the oscillator
on either side of mean position is called
amplitude of the oscillator.

As shown in the Figure 7.1 (¢, g), the
maximum displacement achieved by the oscillator
is y,. Hence for this, y, be the amplitude of the
oscillator.

Periodic Time (Time period or period) :

The time required to complete one oscillation
is known as periodic time (T) of the oscillator.

In other words, the least interval of time after
which the periodic motion of an oscillator repeat
itself is called as periodic time of the oscillator.

ST unit of periodic time is second (s).

For the oscillator of Figure 7.1, 7, — 7, is the
periodic time.
Ferquency :

Frequency of simple harmonic oscillator is
defined as the number of oscillations completed
by the simple harmonic oscillator in one second.

Its SI unit is s™! or hertz (H)

It is denoted by f, and f = 1/T.
Angular frequency :

21 times the frequency of an oscillator is
called the angular frequency of that oscillator.

It is denoted by ® (= 27f)

Its SI uint is rad s

If we draw a graph of displacement of SHO
against time, it appears as shown in the lower part
of the Figure 7.1. Such motion can be represented
by mathematically as a function of time as under :

Phase

~ =
Y(t) = A sin (ot + ¢)

NN

Displacement Amplitude Angular Time  Initial
at time ¢ frequency phase

(7.3.1)

(epoch)
We know that the span of the sine function
is [—1, 1]. Hence the displacement y(#) of the
SHM varies between +A (See Figure 7.2). If

another SHM is represented by y(f) = B sin
(ot + ¢) with B < A than it will be of type -2
curve shown in Figure 7.2. And if B > A, the
curve will be of type -3.

¥

.——Y(0) = B sin (o + ¢); B>A

Alamaofs ; y(#) = A sin (0f+ ¢)
(®) 5 y(#) = B sin (or+ ¢); B<A
3 (for ¢ = 0)
¢} >
t
-A

Displacement of SHM as a function of time
Figure 7.2

The quantity (¢ + ¢) is known as phase of
the SHM at time ¢ and represents the state of
motion at that time.

The phase at t = 0 is called initial phase,
phase constant or epoch (¢) of SHM.

For one complete oscillation, phase of SHM
increases by 27 rad and hence after n oscillations
its phase is increased by 2nm rad.

As the motion is periodic with time period T,
the displacement of the oscillator at (# + T) must
be the same for any .

ie.

Y0 =yt +T)

A sin(of + ¢) = A sin [0 + T) + ¢]

sin(wf + ¢ + 2m) = sin (of + ©T + )

ot+ ¢ +2n =0t + oT + ¢

oT =27
_2m _ R §
L0 =7 =2nf (- T = f) (7.3.2)
Velocity :
Now the velocity of an oscillator is
dy(1)

1 =

() a1

v(t) = oAcos(ot + ) (7.3.3)

From equation (7.3.3)

v o= iAle —sin? (07 + ¢)
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Table 7.1
v = +0,/A% - A%sin? (of + §)
Values of y(?), v(¢) and a(?)
v = 4o AL — )2 (73.4) ¢ o| £ | I |31
A = = +A® = + Displacement
ty=0v=2ho =1, P ol A | o |-alo0
This is the maximum velocity or velocity y()
amplitude (v ) of the SHM. Velocity ®A 0 oAl 0 oA
t
At y = +A (end point of the SHM), v = 0 v
. Acceleration 3 >
Acceleration 0 |—®°A 0 [o°A| O
a(t)

The acceleration of SHO is

dv() _ d’y(@0)

a(t) = ar 12

a(t) = —w*Asin(ot + ¢)

at) = - y(o) (7.3.5)

Aty =0, a(t) = 0 and
at y = A, af) = T o’A

The graphs of particle displacement y(7),
velocity v(f) and acceleration a(f) against time f
of a SHM are shown in Figure 7.3.
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Graphs of Displacement, velocity and acceleration
of SHO against time (¢ = 0)

Figure 7.3

The variation of y(7), v(f) and a(f) with time
are also summerized in Table 7.1.

Illustration 1 : The displacement of a
simple harmonic oscillator is given by

y = 0.40 sin(440¢ + 0.61).
For this, what are the values of

(i) Amplitude, (ii) angular frequency,
(iii) time period and (iv) initial phase ?

Here, y is in metre and f is in second.
Solution :

Compare y = 0.40 sin(440¢ + 0.61)

with y = A sin(of + ¢)

(i) The amplitude is A = 0.40 m

(i) Angular frequency ® = 440 rad/s
22 1

X ——

7 440

E=2x

(iii) Periodic time T

=0.0143 s
(iv) Initial phase ¢ = 0.61 rad
7.4 The Force Law for Simple Harmonic
Motion

It is seen from equation (7.3.5) that the
acceleration of simple harmonic oscillator is a
function of time. Hence we can use Newton’s
second law of motion to answer a question : How
much force is needed for this acceleration ?

We know that

F = ma

5. F = —mo*y(t) (7.4.1)

This is restoring force.

According to Hook’s Law, the restoring force
is given by

F = —ky(r)

with k as spring constant

(7.4.2)
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Comparing equations (7.4.1) and (7.4.2), Illustration 2 : Length of an elastic

spring increases by 9 cm on suspending a body

of mass 14.4 g at its lower end. Now this

.. The angular frequency body is pulled down by 3 cm and released, so
% that it starts executing SHM.

k = mo?

m Find (1) amplitude and initial phase (epoch),

and frequency of oscillation (2) angular frequency and period,

1 k (3) phase at t = 3 s,
f=5- \/% (7.4.4) PREE _

(4) Equation of displacement and

The period of oscillation (5) displacement at t = 1.5 s

1 Take g = 1007* 5
T= = 27;\/% (7.4.5) e 8= TEns

Solution :

In many cases, the simple harmonic motion (1) Body is pulled down by 3 cm

can also occur even without spring. In that case

Hence its amplitude is 3 cm
k is called the force constant of SHM and it is

As the motion begins from the lower end, at

restoring force per unit displacement (k = —E). t=0,y=-A
7.5 Differential Equation of Simple Harmonic Sy = Asin (of + ¢) gives
Motion —A = A sind
According to Newton’s second law of . sing = —1
motion, 3
J 22 o S0 =5 rad
v(t t
F=ma=m () =m% (7.5.1) k
dt dt 2o = \/:
m
Comparing this with F = —ky(f)
) _ fme 1 [e
IO o) “NAL T m Al
dr’ .
2 _ [100xm
ORI o
Car T m?
_ 10m -1
dzy( ) . =3 rad s
172 = —oy(1) (- 74.3) o
! As T o
d’y(1)
+ 0%y =0 7.5.2
2 ¥() (7.52) o _ o
o 10%)
This is the second order differential equation 3
of the simple harmonic motion. The solution of
this equation is of the type, = % S
y0) = A sin ot (3) We know the phase is given by
or 0=ot+ ¢
y(t) = B cos of
or any linear combination of sine and cosine = % x 3+ 377[
functions,
y(t) = A sin of + B cos of 0= 23 rad

2
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(4) For the displacement at time #,
y = A sin (ot + ¢)

=3 sin(%t + 3Tn)(in cm)
(5 at t = 1.5 sec
. (10n 3n
y:351n(3 X15+2)

= 3 sin(5m + 3_1t)
2
y =3 cm
Illustration 3 : The SHM is represented
by y =3 sin 314 ¢ + 4 cos 314 ¢. y in cm and
t in second. Find the amplitude, epoch the

periodic time and the maximum velocity of
SHO.

Solution :
y = A sin (of + ¢)
= A cossinwt + A sindcoswt
Comparing y = 3sin314¢ + 4cos314¢

with above equation

3 = A cosd and
4 = A sind
. A’cos’d + A%sin’p = 32 + 42
SoAT =25
A=5cm
The initial phase (epoch) is obtained as
sind 4
tand = cosd — 3
4
A e 4
. & = tan (3)
Soh =53
Now T = 2n
o
_ 2n _
=314 = 0.02 s
The maximum velocity
Vmax = COA
=314 x5
= 1570 cm/s

Illustration 4 : A particle executes SHM
on a straight line path. The amplitude of
oscillation is 2 cm. When the displacement of
the particle from the mean position is 1 cm,
the magnitude of its acceleration is equal to
that of its velocity. Find the time period,
maximum velocity and maximum acceleration
of SHM.

Solution :
Here A =2 cm
When y = 1 cm,

The magnitude
of velocity

_ ] The magnitude
| of acceleration

©® /Az_yz = o’

Az—y2=(o2y2

22 -12=m* x 12

. = +f3rad/s

Lo _2n  2n
.. Period T = o ﬁ S

Now the maximum velocity

Vo= ®A

= ﬁ ><2=2\/§cms_1
The maximum acceleration= A®?>
=2x3
=6cm s
Illustration 5 : A spring balance has a
scale that reads 50 kg. The length of the scale
is 20 cm. A body suspended from this spring,
when displaced and released, oscillates with
period of 0.6 s. Find the weight of the body.
Solution :
Here m = 50 kg
Maximum extension of spring

2

y=20-0
= 20 cm
=02m
Periodic time T =0.6s
Maximum force F = mg
=50 x 9.8
=490 N
E 490
k= y =02
=2450 N m™
m
As T= 2n\/%
T’k
m = 2
4n
(0.6)* x 2450
= 4x(3.14)2 220k

". weight of a body = mg = 22.36 x 9.8
=219.1 N =22.36 kgf
[1 kgf (kilogram force) = g N;

where g = gravitational acceleration]
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7.6 Oscillations in Loaded Springs

(i) As shown in the Figure 7.4, consider a
series combination of two massless springs of
spring constant k, and k, suspended vertically
with one of its end fixed to a rigid support and
mass m is attached to the free end. Let the body
is pulled downward through small distance y and
left free to oscillate vertically.

Series combination of two springs

Figure 7.4

The increase in the length of spring 1 is y,
and that of spring 2 is y,.

Then
y=y *ty

But the restoring force (= mg) acting on
each spring is same.

o F=—ky, and
F = _kzyz
Asy=y +,
—F —F
Ty=— + —
ky ky

B ky + k,
ve o Bt

klkZ
CEE G K

Hence the equivalent force constant for
series combination of two springs is

(7.6.1)

Kk,

PHYSICS
Now period of oscillation,
T= 2n\/%
(kl + Kk, )
T = 2w, M 7.6.3
T kiks ( )
If k, =k, = k'
k'k'

thenk= k|+kv

so the equivalent spring constant is

_ K
k=73

and period of oscillation

T = 2111/216—”.1

(i1)) Now consider a situation as shown in
Figure 7.5, where a body of mass m is attached
in between the two massless springs of spring
constant k, and k,. Let body is left free for SHM
in vertical plane after pulling mass m.

In this situation when body is pulled to one
side through a small displacement y, one spring
gets compressed by length y and the second
spring gets stretched by y. Hence, the restoring
forces F, and F, set up in both these springs will
act in the same direction.

Mass loaded two springs

Figure 7.5
The net restoring force will be
F =F +F,
= —ky — k,y
= —(k, + k)y
= —ky

Hence, the equivalent spring constant in this
case will be,
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k=k +k, (7.6.4)
Now the periodic time

m _m
T=2n Al 2n k, + k, (7.6.5)

If k1 = k2 = k'then
k = 2k’

’ﬂ
and T = 21 2%

(iii)) Two massless springs of equal lengths
and having force constants k, and k, respectively
are suspended vertically from a rigid support as
shown in Figure 7.6. At their free ends, a block
of mass m having non-uniform density distribution
is suspended so that springs undergo equal
extension.

mg

Parallel combination of two springs

Figure 7.6

In this situation two bodies are pulled down
through a small distance y and the system is made
free to perform SHM in vertical plane.

Here, the springs have different force
constants. Moreover, the increase in their length
is the same. Therefore, the load is distributed
unequally between the springs. Hence, the
restoring force developed in each spring is
different.

If F, and F, are the restoring forces set up
due to extension of springs, then

F,

F, = —k,y.

Also the total restoring force (= mg)

F =F +F,

—k,y and

= —ky — ky

—ky = —(k, + k)y
Where k is the equivalent spring constant of
the parallel combination of two springs.
Sk =k +k, (7.6.6)
The time period of oscillation

T = ZE\/%
m

If k1 = k2 = k', then
k = 2k'

dT =2 Jﬂ
an =27 2k

Illustration 6 : A spring compressed by
0.1 m developes a restoring force 10 N.
A body of mass 4 kg is placed on it. Calculate
(1) the force constant of the spring, (ii) the
depression of the spring under the weight of
two bodies and (iii) the time period of oscillation,
if the body performs SHO. (g = 10 N/kg)

Solution :
Here F = 10 N
Displacement Ay = 0.1 m

m = 4 kg
We know
F
(1) k: Ay
_ 10
0.1
k =100 Nm™
; ~mg  4x10 04

i) T =2n %

T

Il
e
~
a
2]

Illustration 7 : A U-tube is partially filled
with a liquid of density p. The length of the
liquid column in each arm of the U-tube is L.
Now the free-surface of the liquid in one arm
is given a diplacement y in vertical direction
and allowed to oscillate. Prove that these
oscillations are simple harmonic. Also obtain
the period of SHM.
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A4

U-—tube filled with liquid
Figure 7.7

Solution :

When the liquid is displaced in one arm by y
unit in the downward direction the liquid in the
second arm is displaced by y unit in the upward

direction.

.. As shown in Figure 7.7 the difference in
the heights of the free-surfaces of liquids in the

two arms = 2y

.. Pressure created due to liquid column of
height 2y, P = 2ypg

where p = density of liquid; g = acceleration
due to gravity.

The force developed due to this pressure,
F =PA

- F =2ypgA = (2pgA)y = ky

S Focy

Since, this force acts in a direction opposite
to that of y, F oc — y

.. The oscillations are simple harmonic.

The period of oscillation

2n\/%
_m
=2n ZpgA

As mass of liquid m = LAp = 2yAp

2yAp
/l
T =2rn g

Illustration 8 : A rectangular pipe having
cross-sectional area A is closed at one end and

T

at its other end a block having same cross-
section is placed so that the system is airtight.

In the equilibrium position of the block, the
pressure and volume of air enclosed in the pipe
are P and V respectively. Prove that the block
performs SHM when it is given a small
displacement ‘x’ inward and released. Also
find the period of this SHM. Assume the walls
to be frictionless and compression of air to be
isothermal.

Solution :

X

Rectangle pipe
Figure 7.8
Due to small compression, suppose, increase
in pressure = AP and decrease in volume = AV

For an isothermal compression,
(P + AP) (V — AV) = PV (From Boyle’s
Law, PV = constant)

. PV — PAV + VAP — APAV = PV

Now APAV is very small compared to the
other terms. Hence, neglecting APAV and taking
AP as the subject to formula,

_ PAV _ PAx
AP =" ="y

Restoring force acting on the block in a

(© AV = Ax)

direction opposite to the displacement due to this
excess pressure,

F = AAP.
Substituting AP from eqn. (1) into eqn. (2),

2
F:(Pé Jx:kx

PA?
Vv

This force is opposite to the displacement and
is directly proportional to it. Hence, the block
performs SHM.

Now, period, T = 27:\/%
1
T = Zn( mV )2
PA’

where k = = constant
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Illustration 9 : A tunnel is dug in the
earth as shown in the figure and a body
is allowed to fall freely into it. Prove that the
body performs SHM. Assume the earth to be
a sphere of uniform density p. What is the
periodic time of the SHO ?

[}
1
2 X ,;,I
Fgcose :

n a—r—> £ P <“—Tunnel
1
]
1
1

Fg[')

.

0O

Figure 7.9
Solution : Suppose the body of mass m is

at a distance r from the centre O of the earth,
as shown in the Figure 7.9. In this position, it
will experience a gravitational force F P due to
the mass of spherical part of the earth of radius
r. The cosine component of F P is responsible for
the motion of the body in the tunnel.

S F= Fgcos@

3

’
When the body is at a distance r from the

Gm (inr3p)
=__ 2 7 cosO (1

centre of the earth, suppose its distance is x from
the midpoint P of the tunnel.

. cosO = % (2)
From equations (1) and (2)

F = (%nGpm)x

:>Focxandk=%1'pom

Also, this force is acting towards the mid-
point P.
.. Hence the body performs SHM.

Now period, T = 27 %

mXx3
T =12n AnGpm

3
T =2n 4nGp

7.7 Total Mechanical Energy in Simple
Harmonic Oscillator

A particle executing SHM possesses two
types of energy :

(i) kinetic energy (KE) due to the velocity
of the particle and

(i1) potential energy (PE) due to the position
of the particle.

Dear students, you are knowing that the
kinetic energy of the particle is

1
= —m?

2

Using equation,

y = ico,/Az - y2 we get,

K = %mcoz(A2 -y (7.7.1)
If the displacement of the particle is
y = A sin(®f + ¢) then v = Amcos(®t + ¢)

= %mﬁfAzcosQ(oot + ¢) (7.7.2)

In the present case, the force on the
oscillator is F = —ky (which is called restoring
force). In such a case the potential energy is
given by (as you studied in Semester-I).

I
U_Zky

. The potential energy for a particle
executing SHM is

(7.7.3)

= %kAzsinz(cot + )

Now, the total mechanical energy of an
oscillator

E =K+ U

(7.7.4)

p—

= —mv? + %ky2

— N

= SmoX(A* - y») + .%mmzy2

(v k= mw?

\S)

= %m(DZA2 (7.7.5)

or

= ~kA? (7.7.6)
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These equations (7.7.5) and (7.7.6) suggest
that the total mechanical energy of a linear simple
harmonic oscillator is constant and independent of
time ¢ as well as displacement y. But E oc A%

Figure 7.10 shows the graphs of kinetic
energy, potential energy and mechanical energy
of an SHO as a function of displacement.

Use equations (7.7.1), (7.7.3) and (7.7.6).

N E=K+ U
Energy
_ 1.
[ b
P E2
ot S i
\ i e—| 1
P 1 K:E_Ekyz
< s LS >
-A A O A A Yy

Energies of SHO against displacement
Figure 7.10
Following points are to be noted from the
Figure 7.10 :
(i) At mean position y = 0, the potential
energy is minimum (U = 0) and the kinetic

energy is maximum (K = %kA2 = E).
(ii)) At y = +A (end points of path), the

potential energy is maximum (U = lkA2 = E)

2

and the kinetic energy is minimum (K = 0).
(iii) The points P and Q at which the graphs
1

of U and K intersect, the value of U = K = EE
(iv) The co-ordinates of P and Q are

_ A E

(+ 2 5)-

Figure 7.11 shows the graph of kinetic
energy, potential energy and mechanical energy
of SHO as a function of time. (Use equations
(7.7.2), (7.7.4) and (7.7.6))

n
E(9)
l K(1) 18[0) . n
.§ I I (for ¢ = 0)
2 \/
=]
&5
)
0 T/4 T2 3T/4 T ¢t

Energies of SHO as a function of time

Figure 7.11

It is seen from the graphs 7.11 that K and
U completes two vibrations in time during which
SHO completes one oscillation. Thus the
frequency of kinetic energy and potential energy
is double than that of SHM.

Illustration 10 : A body of mass 10 kg
has a velocity of 6 ms~!, after one second of
starting from the mean position. If the time
period of SHO is 6 s, find the kinetic energy,

potential energy and total mechanical energy
of SHO.

Solution :
Here, m = 10 kg, ¢ = 0,
Vv=6ms,
T=6s
Now K = %m\ﬂ: % x 10 x 36 = 180 J

V = A cos ®f = WA cos(zT—nJ)

6 = Ao cos(2?7t X 1)

= Aw/2
Ao =12
Now E = %mAzooz
=%><10><144
E=7201J
As U =E — K = 720 — 180
U =54017

7.8 Simple Harmonic Motion and Uniform
Circular Motion
Consider a particle P moving with a constant
angular speed ® in an anti—clockwise direction on
a circular path having centre O and radius A (See

Figure 7.12). Here, particle is referred as reference
particle and the circle as reference circle.

>X

a

W
Uniform circular motion

Figure 7.12
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At time 7, the angular position of the particle is
given by ®f + ¢, with ¢ be the initial phase relative
to the reference line OX. Now the projection of P
on Y-axis is Q, which gives projection of position
vector OP = OQ = y(?) at time f.

From the geometry of the Figure 7.12,

0Q
OP
5y(0) = A sin(wr + )

sin(wf + ¢) =

(7.8.1)

This equation (7.8.1) represents the
displacement of particle executing SHM along
Y-axis.

If the projection of OP is taken on the
X-axis as OR then

OR
OoP
x() = A cos(@r + ¢) (7.8.2)

This equation (7.8.2) represents the

cos(t + ¢) =

displacement of a particle executing SHM along
X-axis.

Thus we conclude that :

Simple harmonic motion is the projection
of uniform circular motion on a diameter of

the reference circle.

Now the magnitude of velocity ? of the
reference particle P moving on the circle of radius
A with angular speed ® is v = ®A. The
projection of v on the Y-axis at time ¢ is shown
in Figure 7.13.

S‘"ﬁ— -wV = 0A
' (ot + ¢)
Qhiedey P
A ®?A sin (of + ¢)
. . (@1 + §) % x

v
Velocity and acceleration of uniform
circular motion

Figure 7.13
From the geometry of figure 7.13,
SQ
t+ o) = —
cos(f + ¢) oA

. w(t) = @A cos(®t + §) (7.8.3)

When the oscillator is moving in the positive
y-direction, v is positive and when the oscillator
is moving along the negative y-direction, Vv is
negative.

Similarly the component of centripetal
acceleration ®?A of the reference particle in the
y-direction is ®*A sin(wt + §).

7.9 Simple Pendulum

A system of small massive body
suspended by a light inextensible and
twistless string from a fixed (rigid) support
is called a simple pendulum.

Consider Figure 7.14. Entire mass of the
simple pendulum is supposed to be concentrated
at the centre of mass of the suspended bob. The
distance from the point of suspension to the centre
of mass of the bob is called (effective) length (/)
of the simple pendulum.

Simple pendulum
Figure 7.14
When the bob of the pendulum is displaced

to a point B, through a small angle O from its
equilibrium position O and then released, it
performs oscillations in a vertical plane. The
forces acting on the bob of mass are as follows.

(1) Weight of the bob (= mg) acting in the
downward direction and

_)
(2) Tension in the string T ' acting in the
%
direction BA .
The component of force mg are

-

(i) mg cosO acting along BC, and
%

(ii) mg sin® acting along BD

As thread remains taut,

T' = mg cos0. (7.9.1)
The second component of the force, mg sinO
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brings the bob back to its equilibrium position O.
Hence, this is the restoring force acting on the bob.
F = —mg sin® (7.9.2)
If the angular displacement of the bob is
smaller than

F = -mgb (as ® — 0, sinb = 0 )
arc OB
=TT
= —mg% (o arc OB = x)
mg
F = —(T)x (7.9.3)

Since m, g and [ are constants,
oo F=—kx

mg

with k = T (7.9.4)

Equation (7.9.4) gives the force constant for
simple pendulum.
Now the periodic time of simple pendulum,

m m
T 227'54? =2ﬁ1'mg/l
T =2 1’L
.. = LT g

Dear students, remember that for small angle
0, the periodic time of the simple pendulum is

(i) independent of the mass of the bob,

(i1) independent of the amplitude of the
oscillation,

(iii) depends on the length of the pendulum,

T o ﬁ, and
(iv) depends on the acceleration due to

1
gravity, T oc \/g .
From equation (7.9.5) following types of
graphs can be plotted (Figure 7.15).
Dear students, following points are also to
be noted :

(1) T o JZ does not mean that as [ —> o0,
T — oo

This relation is not valid for / > Radius of
the earth.

(i1) Instead of cotton thread, if the bob is
suspended by a metallic wire then the length of
pendulum will increase with the increase in
temperature and vice versa.

It means that the periodic time of the
pendulum increases or decreases depending on
the increase or decrease of the temperature. This
is the reason that pendulum clock slows down in
summer and moves faster in the winter.

(iii) The value of g is less at mountains or in
mines than that of surface of earth. Therefore,
the periodic time of simple pendulum increase at
mountains or inside the mines, in principle

N

Straight line Straight line

Parabola

N
7

N
7

1
N

2
T Hyperbola

(7.9.5)
The frequency of oscillation
1 _ 1 /8
f= T = 22\ (7.9.6)
and the angular frequency
_ _ |8
o =2nf = T (7.9.7)
N N
2
T Straight line T
>
Vi
N N
T T
Straight line
N
7

l

8

For simple pendulum T — \/7 I L A

N
7z

v

8

1 [
\/E,T—\/;,T—lande—ggraphs.

Figure 7.15
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(A) Simple pendulum in a lift :

If the simple pendulum is oscillating in a lift
moving with acceleration a, then the effective g
of the pendulum is

gp=8+a

+ sign is taken when the lift is moving upward
and

— sign is taken when the lift is moving
downward.

Hence, the periodic time for simple
pendulum in a lift is

, [
T =2r gia

Now, suppose that the lift is falling freely,
Ta=g

/ l
and T = 21 g—g = o0,

That is pendulum does not oscillate.

(B) Simple pendulum in the compartment
of a train :

If the simple pendulum is oscillating in a
compartment of a train accelerating or retarding
horizontally at the rate ‘a’ then the effective value
of g is

8= g~ +a’

~T=2n %
(g* +a*)?

(C) Second’s Pendulum :

The pendulum having the time-period of two
seconds, is called the second pendulum. It takes
one second to go from one end to the other end
during oscillation. It also crosses the mean
position at every one second.

Illustration 10 : What will be the time
period of second’s pendulum if its length is
doubled ?

Solution :

We know for second’s pendulum

l
T=2ﬂ:\/§:25

T =27 g

[\S]
~

[
\/2—x2n\/§
\/§x2

T'=12828s
Ilustration 11 : Length of a second’s

pendulum on the surface of the earth is l1 and

L, at a height *h’ from the surface of the earth.
Prove that the radius of the earth is given by

i
N

Solution :

Period of the second’s pendulum is
2 seconds.

R =
e

For the second’s pendulum on the surface

,l
of the earth, 2 = 27 g_]

where g, = acceleration due to gravity on
earth’s surface.

For the second’s pendulum at a height ‘&’
from the earth’s surface,

12
2=2 1/—
T gz,

where g, = acceleration due to gravity at a
height A from earth’s surface
l l g [
L -2 (1)
8 82 81 1
GM

But acceleration due to gravity, g = —— A)
r

where r = distance of the point from the
centre of the earth.

Now, r, = R, = Radius of the earth
=R, +h
From equations (A)
& __ RS

81 (R, +h)>
From equations (1) and (2),
L __R,

I, TR, +h
VLR 4\l k= IR,
(= LR, = L h

n
SR, = \/E_\/E

2
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7.10 Damped Simple Harmonic Motion

The simple harmonic motion represents a
highly idealized situation. A mechanical system
execute SHM only when no resistive or frictional
forces is acting on it.

In practice, the oscillations of any mechanical
system take place in some medium which offers
resistance. Also there may be internal frictional
forces in the mechanical system. Because of this
the mechanical energy of the oscillating system
is dissipated in the form of heat energy as it has
to do work against resistive force.

1
2
of SHO suggest that as mechanical energy

Equation E = —~ kA? for mechanical energy
decreases, the amplitude of oscillator also
decreases. Hence eventually motion dies out.

Thus, when a simple harmonic system
oscillates with a decreasing amplitude with
time, its oscillations are called damped
oscillations.

A simple pendulum experiences resistive
force of air, while oscillating in air. When a tuning
fork vibrates, the internal frictional forces are
acting in its metal.

As shown in the Figure 7.16, a block of mass
m oscillates vertically on a spring having spring
constant k. Attach a disc to a rod from the lower
end of the block and submerged into the liquid,
in the vessel. As the disc moves up and down,
the liquid exerts an inhibiting drag force (resistive
force) on the entire oscillating system. Because of
this the mechanical energy of the oscillating system
decreases.

Block

Disc

A damped simple harmonic oscillator

Figure 7.16

Experimental studies have shown that the
resistive force acting on the oscillator in a fluid
medium depends upon the velocity of the
oscillator.

Thus the resistive force or damping force
acting on the oscillator (when the velocity is not
too large) is

Fd oy
(7.10.1)

Here, b is damping constant and has the
SI unit of kg / second. The negative sign indicates

that the force F,; opposes the motion (velocity).

Thus, a damped oscillator will oscillate under
the influence of the following forces :

(i) restoring force Fy = —ky and
(i) resistive force F, = —bv
.. The net force F = Fy + F,

According to Newton’s Second Law of
Motion,

ma = —ky —bv
d’y dy
" C TR
d’y dy
m— b ky =0 (7.10.2)

This is the second order differential equation
for damped harmonic oscillation and the solution

of this equation is
Yy = A e sin ('t + ¢)  (7.10.3)
OR y(1) = A(D) sin(®'t + ) (7.10.4)

Here, A(f) = A e "™ is the amplitude of

the damped oscillation at time 7 and it decreases
exponentially with time.

The angular frequency ®"' of the damped
oscillator is given by

2
o' = k_ b (7.10.5)

Ifb=0 0= 1’% represents ideal SHM.

The graph of y(f) — ¢ for damped oscillator
is shown in Figure 7.17.
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A(t) = A e—bt/2m
AT y() = AP sin(@'t + §)

o A/\{ﬁﬁﬂt

i}raph of displacement-time of damped

oscillation (For ¢ = %)

Figure 7.17
We know that the mechanical energy of the
oscillator
_ 10
E = > kA
. E(n) = %kAZ(z)
E(t) = %kAz e iim (7.10.6)

It is also clear from equation (7.10.6) that
the mechanical energy of damped oscillation
decreases exponentially with time.

The equation (7.10.6) is valid only for small
damping, b << fkm .

Hlustration 12 : A simple pendulum is
made by suspending a small sphere of brass
at the end of a string. When it is oscillated in
air its period is T. Now this sphere is immersed
in a liquid of density 1/2 times that of brass
and oscillated. Prove that its new period is

2 T. Neglect all resistive damping force.

Solution :
When the sphere is immersed in liquid, the
buoyant force acting on it in upward direction =

m,g, where m is the mass of liquid displaced

0
by the sphere.

If weight of the sphere in air is mg,

its effective weight in liquid = mg — mg

Vp m
Here, m, = Vpo = > = 3;

where V = volume of the sphere = volume
of liquid displaced by the sphere and p, = density
of liquid, p = density of brass.
mg

.. Effective weight in liquid = mg — >

-1

*. Effective acceleration due to gravity in
liquid

=
oQ

:g =

/
Now, T oc \/; fromT:ZTE\/%
A /i _ /2_8
.. T —_ gl _ g
LT =427

—

Illustration 13 : Calculate the time

during which the amplitude becomes 2_" in

case of damped oscillations, where
A = initial amplitude .

Solution : A(f) = Ae P
A
But, A(?) = Y
A

.. ? — Aefbt/Zm

.. Taking log with base e on both the sides,
. bt _

Cm n In2

(natural log is written as [n)

= %(2.303) log,,(2)

(" In x = 2.303 log,x)

_ 2’2” (2.303)(0.3010)

Lt = 2Lb”(o.@:s)

7.11 Natural Oscillations, Forced Oscillations
and Resonance

When a system capable of oscillating is
given some initial displacement from its
equilibrium position and left free it begins to
oscillate. Thus the oscillations performed by it
in absense of any type of resistive forces are
known as natural (free) oscillations. The
frequency of natural oscillations is known its

natural frequency, f .

E.g. when a bob of the simple pendulum is
slightly displaced and then released, it performs
its natural oscillations with natural frequency

fo = 2_17t J g/l . (Here, we have neglected the

resistive force of air).
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Dear students, you must have enjoyed
swinging in a swing. You must have also
experienced that if you want to swing continuously
you have to apply push by pressing your feet
against the ground, repeatedly or someone has
to push you repeatedly (Figure 7.18). Hence
under the influence of external periodic force
swinging is continued.

A child enjoying swing
Figure 7.18

In most of the cases, the damping forces are
present and eventually oscillations die out with
time. Therefore to sustain the oscillations external
periodic forces are required.

Thus oscillations of the system under the
influence of an external periodic force are
forced oscillations.

Consider an external periodic force F = F sino?

acting on the system which is capable to oscillate.

Hence, equation (7.10.2) is written as

d? d

de; = —ky — bd_}t} + F, sinw?
d? dy ky K

" —g + b & + =2 = —sinot
dt m dt m m

(7.11.1)
This is second order differential equation of
forced oscillation. The solution of equation (7.11.1)
is given by
y = A sin (of + ¢)
Here, A and ¢ are the constants of the
solution.

They are found as,

5
A= 0 - (7.11.2)
[m2(@y} — ©)? + b*0?]?
oy,
and ¢ = tan”! —— - (7.11.3)
0

Here, m is the mass of the oscillator, v and
Y, are the velocity and displacement respectively
of the oscillator when periodic force is applied.

The oscillator initially oscillates with its natural
frequency. When we apply external periodic force,
the oscillations with natural frequency die out, and
then body oscillates with the frequency of the
external periodic force.

From equation (7.11.2) it is seen that the
amplitude of forced oscillations depends inversely
on (i) the difference (0)02 — ®?) and (ii) damping
coefficient b.

For small damping factor, bm << m(coo2 %)
hence equation (7.11.2) is written as

E
A= —F—F (7.11.4)
m(o,” — o)
For o = ®,
m(®,” — ®) << bw, hence
K
= = 7.11.5
ho ( )

As the value of ® approches to ®,, the
amplitude increases and for some characteristic
values of o the amplitude becomes maximum.
This phenomenon is known as resonance. The
value of o for which resonance occures is known
as the resonant frequency.

The graph of amplitude —w/®,, corresponding

to different values of damping factor b are

shown in Figure 7.19.
M

Amplitude

0 (0/0)0 =1 o/
0

Resonance curves
Figure 7.19
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For b = 0, the amplitude becomes infinite
when ® = .

As damping increases, peak value in the
curve shifts towards left.

Mechanical systems found in practice have

got one or more natural frequencies of their

Hence, soldiers marching on a suspended
bridge are advised to go out of steps. When a
bridge is designed, care is taken so that the
frequency of the external force due to the gusts
of wind and natural frequencies of that bridge
do not become equal or nearly equal. It is seen

that sometimes, in an earthquake, low and high

oscillations. If the frequency of the external rise structures remain less affected while medium

periodic force acting on a system become equal high structures fall down. This is because the

(or nearely equal) to the natural frequency of that natural frequencies of low rise structures are to

system, the system oscillates with a very large be higher and those of high structures are to be

amplitude and the system may break or collapse. lower than the frequency of the seismic waves.

SUMMARY
1. If a body repeats its motion along a certain path, about a fixed point, at a

definite interval of time, it is said to have periodic motion.

2. If a body moves to and fro, back and forth, or up and down about a fixed point
in a fixed interval of time, such a motion is called an oscillatory motion.

3. When a body moves to and fro repeatedly about an equilibrium position under a
restoring force, which is always directed towards equilibrium position and whose
magnitude at any instant is directly proportional to the displacement of the body
from the equilibrium position of that instant then such a motion is known as
simple harmonic motion.

4. The maximum displacement of the oscillator on either side of mean position is
called amplitude of the oscillator.

5. The time taken by the oscillator to complete one oscillation is known as periodic
time or time period or period (T) of the oscillator.

6. The number of oscillation completed by the simple harmonic oscillator in one
second is known as its frequency (f).

7. 2m times the frequency of oscillator is the angular frequency ® of that oscillator.

9. For simple harmonic motion, the displacement y(¢) of a particle from its equilibrium

position is represented by sine, cosine or its linear combination like
y(t) = A sin(of + ¢)

y(t) = B cos(ot + ¢)

y() = A' sinot + B' cosot.

where A' = Acosd and B' = Bsing

10. The velocity of SHO is given by v = + @ /A% -y

11. The acceleration of SHO is given by a = —o?%y



174

PHYSICS

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A particle of mass m oscillating under the influence of Hook’s Law exhibits
simple harmonic motion with

\/?
O = 4| ;
m
T:2n\/%
2

Differential equation for SHM is ?g + w’y = 0.

For series combination of n spring of spring constants k,, k,, k,, ...., k,, the

n?
equivalent spring constant is

1_1.,1 1
E:k_1+g+'.'+g and the periodic time T = 27‘5\/%

For parallel combination of n springs of spring constants k , k,, k;, ..., k,, the
equivalent spring constant is

k=k +k + k, + ... +knandperi0dT=2Tc\/%

The kinetic energy of the SHO is K = %moo2 (A% — y?)

The potential energy of the SHO is U = %@2

The total mechanical energy of SHO is E = K + U = %ma)zA2 = %kA2

For SHO, at y = 0, the potential energy is minimum (U = 0) and the kinetic
1

energy is maximum (K = EkA2 = E)

For SHO, at y = +A, the potential energy is maximum (U = %kA2 = E) and

the kinetic energy is minimum (K = 0)
Simple harmonic motion is the projection of uniform circular motion on a diameter
of the reference circle.

For simple pendulum, for small angular displacement

L
T=2n\/; and

—onf= 28 _ |8
o = 2nf = T =7
For simple pendulum, T is independent of the mass of the bob as well as the
amplitude of the oscillaions.

The differential equaiton for damped harmonic oscillation is
d’y  dy
— +b— +ky=0

" T e TR

with the displacement
Y0 = AeP™M sin(o ' t+ ¢)

k _ b~
m

and angular frequency ®' = 5
4m
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25. E(¢) =

time f.
26.

27.

28.

A =

kA2 ¢01m gives the mechanical energy of damped oscillation at

0 [—

A system oscillates under the influence of external periodic force are forced
oscillations.
The differential equation for forced oscillations is

Iy bdy k. _FK

0 .
aF + —y = —sinmt
dt? m dt m” =~ m

The amplitude for forced oscillation is

)

1
[m? (0% — ©°)% + b*w?]2

| EXERCISES

Choose the correct option from the given options :

1.

In SHM, the acceleration of the particle is zero when its

(A) Velocity is zero.

(B) displacement is zero.

(C) both velocity and displacement are zero.

(D) both velocity and displacement are maximum.

The maximum acceleration of a body moving in SHM is ¢  and maximum

velocity is V. Then its amplitude is
(A) Vzmax / amax

(€) v a D) v,

ax max

B) a*> v

max max

/ a
ax max

Which of the following is an essential condition for the motion to be simple
harmonic ?

(A) constant force.

(B) Force proportional to displacement.

(C) Force opposite to displacement.

(D) Force proportional and opposite to displacement.

The graph between time period T and length of a simple pendulum / is

(A) straight line. (B) ellipse.

(C) parabola. (D) hyperbola.

Periods of SHO are T and % They begin their motion simultaneously from

the mean position. What is the difference between their phases when 1 oscillation
of the oscillator having period T is completed.

(A) 45° (B) 72° (C) 90° (D) 112°

Period of an oscillator is T. In what time it completes 3m of its oscillation, if

8
motion begins from the fixed point.

3 5 2 8
() gT B) 3T © 7T  D3T
Velocity of a bob of a simple pendulum of length 0.5 m is 3 m/s when it

passes from the equilibrium position. When the pendulum makes an angle of
60° with the vertical, its velocity iS ........c........ . (Take g = 10 m/s?)
1

(A) % m/s B) 5 m/s (C) 2 mfs (D) 3 m/s
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8.

10.

11.

12.

13.

A mass m is attached to two springs of same force constants as shown in

Figure 7.20. What is

k
k T, k
m T2
: i
Figure 7.20
(A) 1 B) 2 <o 3 (D) 4

Three springs are connected to
a mass m as shown in Figure
7.21. What is T ?

(A) 275\/%
k k
m
(B) 2m 3%k
©) 2n 32_’]1: m|
2k
(D) 21 3m Figure 7.21

If F is the restoring force in the spring and k is spring constant, then what
is the mechanical energy stored in the spring when it is stretched by y on
loading ?

B2
(A) 2y B) ¢ © 72 (D) g2

The amplitude of an oscillator performing damped oscillation becomes 1/e times

the initial amplitude in time .......... .
(A) Z_nZ) (B) ZTm (C) e—bt/2m (D) eZm/b

An SHO begins its motion from the lowest point on its path of oscillation. Its

F2

phase after 10 oscillations will be .......... . Motion is along Y—axis and positive
X-—axis is the reference line.

(A) %n rad (B) 5m rad (C) 107 rad (D) %n rad

Let F = Fsin of is the external periodic force acting on the oscillator. If
amplitude of the oscillator is maximum for ® = ®, and the energy is maximum
for ® = ®,, then (® is the natural angular frequency)

(A) O, =0, and ®, # O, (B) 0, #0, and 0, = O,

© ®, * 0, and ®, # 0, D) o, = o, and 0, =0,
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14. A mass of 1 kg attached to the bottom of a spring has certain frequency of

vibration. What mass is to be added in order to reduce the frequency by half ?
(A) 1 kg (B) 2 kg (©) 3ke (D) 4 kg

15. A pendulum suspended from the ceiling of a compartment of a train has periodic
time 2 s. When the train is accelerating at 10 ms2 What will be its time

period when the train retards at 10 m s~
2
(A) 2 s B) 2 s (C) 242 s (D) E S
ANSWERS

1. B) 2. (A 3.D) 4. (C) 5 B 6. (O
7. (C) 8. (A) 9.(C) 10. B) 11. (B) 12. (D)
13. D) 14. (C) 15. (A)

Answer the following questions in short :

What is the work done by simple pendulum in one complete oscillation ?
What is the periodic time of a pendulum in freely falling lift ?

1
2
3. Write equation for peiodic time of oscillation of the liquid in U-tube.
4. What is an epoch ? In which unit it is measured ?

5

Amplitude of an SHO is 4 cm. At what distance from the equilibrium position,

the kinetic energy and potential energy becomes equal ?

6. What is the SI unit of force constant ?

7. Write the relation between the acceleration amplitude (a), the displacement

amplitude (A) and the angular frequency (®) for SHM.
8. Why does a simple pendulum eventually stop ?

9.  Write expression of the mechanical energy of damped harmonic oscillation for
b << Jkm.

10. Write general form of the second order differential equation for forced oscillation.

Answer the following questions :

Define periodic motion and oscillatory motion. Give proper examples of it.
Deduce an expression for the time period of a simple pendulum.
What are damped oscillations ? What are the factors affecting its motion ?

1
2
3
4. Deduce the relation for the total energy of damped harmonic oscillator.
5. Explain forced oscillations and resonance.

6

Show that for a particle in linear SHM the average KE over a period of

oscillation equals the average PE over the same period.

177
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7.  Obtain the co-ordinates of the points where the KE and PE against displacement
graphs intersect.
8.  What is the nature of acceleration against displacement curve of SHM ? What

is the slope of this curve ?

k-

the periodic time of a simple pendulum is independent of a mass of the

9. Periodic time of the particle excluding SHM is T = 2n1, Explain why then

pendulum ?

10. What provides the restoring force for simple harmonic oscillator in the following
cases ?
(i) Simple pendulum (ii) Spring (iii) Column of mercury in U-tube.

Solve the following problems :

1. Obtain the equation for SHM of the Y-projection of the radius vector of the
revolving particle P in case (a) and (b) of Figure 7.22.

Y Y
Pt = 0)
Pt = 0) 90°
60° X
X O
(0]
T=3s
T = 1 min
(@) )
Figure 7.22

[Ans. : (@) y =2 s1n 2nt % b)y=3 cos t

2. Three springs are connected to
a mass m = 80 g as shown in
Figure 7.23. What is the

effective spring content and g

periodic time, if k =2 N m™ ? k

[Ans. : k = 8 Nm™, T = 0.628 s]

Figure 7.23
3. A spring of length [ and force constant & is cut into two parts of length /, and
l,. Here I, = nl,. Obtain force constants k and k, respectively of these parts

in terms of n and k. [Ans. : k, = (1 + %)k, k, = (n +1)k]
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10.

An oscillator of mass 100 g is performing damped oscillations. Its amplitude
becomes half of its initial amplitude after 100 oscillations. If its period is 2 s

find the damping co-efficient. [Ans. : 0.693 dyn s cm™']

Amplitude of an SHO is A. When it is at a distance y from the mean position
of the path of its oscillation, the SHO receives blow in the direction of its
motion which doubles its velocity instantaneously. Find the new amplitude of its

oscillations. [Ans. : |J4A% — 3y2 ]

For an SHM prove that a°T?> + 4n*v* = constant, where a and v are
acceleartion and velocity respectively at any instant. T is periodic time.

A simple pendulum has a length L and a bob of mass m. The bob is oscillating
with amplitude A. Show that the maximum tension (T) in the string is (for

2
small angular displacement). T, == mg[l + (%) :|

Two simple harmonic motions are represented by y, = 10 sin% (12t + 1) and

Y, = 5(sin 31t + /3 cos3mt). Find out the ratio of their amplitudes. What are

A
the time period of two motions ? [Ans. : A—l =1L T =T, = 2 s]
2

3

For a linear harmonic oscillator the force constant is 2 x 10° N/m and total
mechanical energy is 160 J. At some instant of time, its displacement is 0.01
m. Find its potential energy and kinetic energy at this position.
[Ans. : 100 J, 60 J]
For a linear SHM, when the distance of the oscillator from the equilibrium
postion has values y, and y,, the velocities are v and v,. Show that the time
2 2 %
period of oscillation is T = 27‘{%} .
Vi ™0™
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8.1 Introduction

Friends, earlier we have studied that the universe is made
up of matter and radiation. This radiation propagates in the form
of waves. Waves have basic importance in almost every branch
of physics. Light and sound energy also propagate in the form
of waves. Different types of radiant energy emitting from the
sun also reaches us in the form of waves. Music produced from
musical instruments also reaches us in the form of waves.
Communication done through radio, television and mobile is due
to the waves. In 20th century, concept of matter wave was
introduced due to which importance of the waves also increase.

In this chapter we will learn about waves, types of waves,
speed of waves in different medium, reflection of waves,
superposition of waves, beats and Doppler effect.

8.2 Waves

When a particle moves in space it carries the kinetic energy
associated with it. There is another way to transport energy in
which the particle oscillates near its position and yet the energy
reaches too far from it. They transport their associated energy
to the far distance without leaving their position. Sound is
transmitted in air in this manner. When you say ‘Hello’ to your
friend, no material particle is ejected from your lips and reaches
to your friend’s ear. You create some disturbance in the air close
to your lips which propagates as a wave and reaches to ear of
your friend.

To understand clearly the concept of a wave, consider a
long and elastic string with one end fixed to rigid support and
other held by a person. The person pulls on the string keeping it
tight. Here, string is a one dimensional elastic medium. As shown
in Figure 8.1, suppose that A, B, C, ..... I are the particles of a
string. At time ¢ = O all the particles of the medium are in the
equilibrium state. (See Figure 8.1a)

(i) Suppose, at f = 0 a disturbance is produced by the person
in the particle A so that it starts simple periodic motion according
to y = A sinwt. The period of this oscillation is T.

(ii) Because of elastic property of the medium, suppose the
effect of disturbance produced at A is transmitted to particle B
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in time % During this time % , the displacement

of a particle A would be y = Asin(%) (%) _

A
E and particle B is on the verge of starting

its simple periodic oscillation, (See Figure 8.1 b)

(ii1) Now, during an additional time period of
T o LT T -
g that is at 3 + g = 4° the disturbance
produced at A reaches C and at that moment C
is on the verge of starting its oscillation. During

this time T , the displacement of particle A would

be y = Asin(%) (%) = A i.e. Displacement

of A is equal to its amplitude and that of B is

equal to % (See Figure 8.1(c)).

N R S S I

x|

Wave generation on a string

Figure 8.1

(iv) Thus, due to the disturbance produced
at A, the subsequent particles start oscillations
and transmit the effect of their oscillation to the
subsequent particles and the disturbance
propagates in the medium.

(v) In this way the propagating disturbance

reaches the particle D at ¢ = %, the particle E

at ar and the particle I at time T. At time

T one oscillation of A is completed and the par-
ticle I is just to start its oscillation.

This entire situation is shown in Figure 8.1.
Remember that the particles of the medium were
in the equilibrium position. At time 7 = 0, we
produced a simple periodic disturbance at the
particle A. This disturbance has travelled in the
medium and reached the particle I at time ¢ = T.

(vi) Here, disturbance considered is such that
it produces a simple periodic motion in the par-
ticle A and hence the shape produced in the string
is like a sine curve. If the displacement or oscil-
lation of particle A had been of some other type,
the shape formed in the string would also have
been accordingly of the other type. Thus, the
shape formed in the string gives an idea of
the type of disturbance. For example, if the
free end of the string snappad one, then the shape
formed in string is shown in Figure 8.2, which is
known as a pulse.

/\—-)

Shape formed on the string according to the type
of disturbance

Figure 8.2

As the time elapses this disturbance (or
shape in the string) passes over the particles
J, K, L,... etc. Here, the shape is that of the
sine curve is lying between the particles A and
I at time # = T. This shape proceeds further along
the string and comes between particles I and Q
at time ¢ = 2T as shown in Figure 8.3. During
this time the particles between A and I stop
oscillating and string comes back to its original
position.



Shape of the string at ¢t = 2T

Figure 8.3

Thus, by producing a disturbance at any
particle in the string, a shape corresponding to
the disturbance is produced and that shape
(without alteration) moves along the string, which
means that the disturbance propagates in the
medium of the string. The motion of the
disturbance in the medium (or in free space)
is called a wave disturbance or generally a
wave.

Remember that here the particles of the
string A, B, C... are not moving as a ‘single unit’
in the medium but they only displace or oscillate
about their equilibrium positions. Thus, wave is
not physical ‘body’ travelling in the medium. As
the effect of disturbance produced in any part of
the medium is being experienced by the
subsequent particles of the medium, the wave is
said to propagate. After the disturbance has
passed through any particle, it comes back
to its equilibrium position.

When the engine of a railway train joins the
coaches, in the beginning the first coach vibrates,
then the second coach and then the third coach
and so on. Thus, the effect of vibration moves
from the first to the last coach. This phenomenon
is the propagation of the wave in the medium
‘made up of railway coaches.’

Wavetrain

In the above discussion, if the particle
continues to oscillate in its simple harmonic
motion, the second waveform generated after the
first one follows it and so on. Thus, a series of
waveform appears to move ahead as a continuous
chain. Such a series of propagating waveform is
called a wave train.

We discussed a situation in which particles
participating in wavemotion are executing a simple
harmonic oscillation, here the wave shape formed
in medium is of the nature of a sine (or equivalent
cosine) curve. Such a wave is called a harmonic
wave.

PHYSICS

If the waves are continuously moving ahead
in the medium, they are called travelling or
progressive waves.

8.3 Classification of Waves

: The waves which
require elastic medium for their transmission are

(i) Mechanical waves

called mechanical waves. Such a wave
propagates due to the elastic properties of the
medium. For example, waves on a string, ripples
on the water suface, sound waves and seismic
waves. All these waves have the characteristics
that they are governed by Newton’s laws.

(ii) Electromagnetic waves : For the
propagation of electromagnetic waves no material
medium is essential. They can propagate in the
vacuum also. In this types of waves the
disturbance in the electric and magnetic fields that
propagates. Here, instead of particles, the vectors
of the electric and magnetic field intensities are
oscillating.

Light waves, radio waves, microwave,
X-ray etc. are the examples of the
electromagnetic waves. (More information you
will get in Std. 12)

(iii) Matter waves : Matter waves are
associated with moving electrons, protons,
neutrons and other fundamental particles and even
atoms and molecules. These particles constituting
matter, therefore, such waves are called matter
waves. The concept of these types of wave you
will learn in Std. 12. From the concept of these
waves scientific instruments are developed in
modern technology. The matter waves associated
with electron are employed in the electron
microscope.

In this chapter we will study only the
mechanical waves.

Transverse wave : Waves in which the
oscillations of the particles are in a direction
perpendicular to the direction of wave propagation
is called the transverse wave. The waves along
a string discussed in article 8.2 is an example of
transverse wave. Electromagnetic waves (e.g.
light waves) are also a transverse waves. In such
waves the locations of the maximum displacement
of the particle in one direction are called the
‘crests’ and locations of maximum displacement
in the opposite direction are called ‘trough’.
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These waves propagate through a medium in the
form of crests and troughs.

Longitudinal wave : Waves in which the
oscillations of the particles of medium are along
the direction of wave propagation are called
longitudinal waves. Sound waves propagating
in air are longitudinal. Such waves propagate
through a medium by forming condensations and
rarefaction in the medium. When waves
propagate in medium, the particles at medium
oscillate about their equilibrium position, in the
direction of propagation of waves.

For simplicity, the positions of the particles
of air at some instant of time in case of

longitudinal waves is shown in Figure 8.4.

R C R C
' [Variation in density

@ |

C R C R C R C

! Change in pressure

) A

o \p /SN[

or
\/ Average

Pressure density/
Distance — s ensity
Pressure

(©)

Longitudinal wave in air
Figure 8.4

When sound waves pass through that region
of air, the air molecules in certain region are
pushed very close to each other during their
oscillations. Hence, both density and pressure of
air increase in such regions. In such region
condensation is said to be formed. In the regions
between consecutive condensations, the air
molecules are found to be quite separated. In
such regions density and pressure of air decreases
and here rarefaction is said to be formed. (See
Figure 8.4)

Thus, during the propagation of sound the
layers of medium perform oscillation about their
mean positions and during this the condensations
and rarefactions are alternatingly formed. As the
effect of such oscillations reaches one layer after
the other, the condensations and rarefactions

propagate further and further in the medium. In
this way the sound propagates in a medium.
During the propagation of sound the pressure in
different region of the medium changes with time
and position. Hence, such waves are also called
the pressure waves.

The direction of the oscillations of the
particles of the medium is perpendicular to the
direction of propagation of transverse waves in
the medium. Hence during the propagation of the
transverse waves every element of the medium
experience shearing strain. But shearing stress is
possible only in solid medium. So, the transverse
waves can propagate in solid medium like string,
wire, rod but they cannot propagate in a fluid
medium.

During the propagation of the longitudinal
waves, the oscillations of the particles of the
medium are in the direction of propagation of the
waves. Hence, compressive strain is produced
during the propagation of these waves. Now,
compressive stress is possible in solids, liquids and
gases. So, the longitudinal waves can propagate
in any medium.

Thus, in a solid medium both types of
mechanical waves, transverse waves and
longitudinal waves can propagate whereas in
a fluid medium only longitudinal waves can
propagate.

[During an earthquake two types of waves,
transverse and longitudinal are produced on the
earth. They are known as S-wave (secondary
wave) and P-wave (primary wave) respectively.
Longitudinal wave (P-wave) is similar to sound
waves produced in the earth’s interior. The speed
of P-wave is approximately 4 — 8 km/s and that of
S-wave is approximately 2 — 5 km/s. In an S-wave,
particles in the earth’s interior vibarate at right angles
to the direction of the wave propagation. By
measuring the time interval between the first arrivals
of P-wave and S-wave, the origin of earthquake
(epicentre) can be determined.

8.4 Amplitude of A Wave, Propagation of
Energy in a Wave, Wavelength And
Frequency

Amplitude of a wave :

Amplitude of wave is the amplitude of
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oscillation of particle of the medium. As shown
in Figure 8.5 amplitude of the wave is A.

Propagation of energy in a wave :

A particle has to be displaced from its mean
position in order to produce a wave. Hence some
work has to be done on the particle. This energy
imparted to the particle will be in the form of
kinetic and potential energy of its oscillations. As
the successive particles experience the
disturbance, this energy is communicated to them.
Thus, energy is propagated in a wave. If the
medium has some internal friction, energy is
dissipated in the form of heat and hence, the
wave weakens on propagation.

Energy passing through a unit area
taken in the direction normal to the
propagation of the wave in one second is
called intensity of wave.

Wave Intensity (I) = Energy / Time

Area
SI unit of intensity of wave is % or Ez
m m

Its dimensional formula is M'L°T 3.

Energy of an oscillatory particle is

1

E = EkAz, hence the intensity of wave is

directly proportional to the square of its amplitude.
(I oc A?).
Wavelength :

The linear distance between any two points
or particles having phase difference of 27w rad is

called the wavelength (A) of the wave. Its SI
unit is m.

Amplitude and wavelength of a wave

Figure 8.5
As shown in Figure 8.5 the phase difference
of oscillation between particles P and R is
4mt — 21 = 21 rad. Hence, the distance between

P and R represent the wavelength (A) of a
wave. From the figure it is clear that phase
difference between consecutive crests or
consecutive trough is 2w rad. Therefore, the
distance between consecutive crests/trough is also
a wavelength of a wave. Same way, in case of
the sound waves the distance between
consecutive condensations or consecutive
rarefactions also represents the wavelength.
Wave number and wave vector :

Number of waves per unit distance is called

wave number (%) The SI unit of wave number
is m™'.

In the wave propagation the particles at
a distance of A has the phase difference of 27
rad. Hence, the particle at a unit distance has

phase difference of % 2% is known as wave

vector or angular wave number or propagation
constant (k).
2n

A

The SI unit of k is rad/m. Its dimensional
formula is M°L™'T?. Wave vector is in the
direction of wave propagation.

Frequency of a wave :

The number of oscillations performed by the
particle of medium in one second is known as
the frequency of oscillation of particle. Frequency
(f) of the wave is just the frequency of oscillation
of the particles of the medium. The number of
the wave passing through point in one second is
called frequency of the wave.

Its SI unit is s™' or Hz (Hertz).

® = 27f is called angular frequenecy of the

wave. T = 7 is the periodic time of the wave.

8.5 Wave Equation

A complete description for a wave
propagation can be obtained if we know
displacements of all the particles of medium
participating in the wave motion at any time. For
this purpose we shall derive the wave equation
for wave in one dimension, which gives
displacement of a particle having coordinate x at
time f. From such an equation, substituting the
appropriate values for x and #, we get the
displacement for any particle at a required time
and thus obtain a description of the wave motion.
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Such an equation is called wave equation.
(Here, we shall discuss wave equation only for
one dimension).

Here we shall obtain an equation for
travelling wave or progressive harmonic waves.
To obtain the wave equation of a wave
propagating in positive x direction, consider
particles of a medium as shown in Figure 8.6.

P Q R S T U \" w
a @ o Q o @ -] Q
L J
' Sf% !
x=0 ) X=x

Wave equation
Figure 8.6

Suppose, at ¢ = 0, simple harmonic oscillations
of the particle P start with zero intial phase i.e.
wave originates at P at time ¢ = 0. The
x-coordinate of the particle P is zero as well as
initial phase is also zero (¢ = 0). The equation
for the displacement of this particle would be,

y = A sinof (8.5.1)

Now when the wave originating at P travels
through a distance x, the medium particle (U)
lying at a distance x from P starts its simple

harmonic motion and the phase of its oscillation
would be less than that of P. Let the phase of
this particle (U) be & less than that of P. Hence
the equation for the displacement of particle at
distance x from P, would be,

y = A sin(wt — 0) (8.5.2)
Let the wavelength of wave be A. We know
that the phase of the particle at a distance A
from P, is less than that of P by 2m. Hence, the
phase of the particle at a distance x from P

would be less than that of P by zikx
_ 2mx
= (8.5.3)
Substituting & in equation (8.5.2)
y=A sin(OJl - 2—175)()
But 277[ =k
oy = A sin(of — kx) (8.5.4)

Here, (0t — kx) is known as the phase of
the wave at distance x from the origin at time 7.
The direction of wave vector k is taken along
the direction of propagation of the wave.

Equation (8.5.4) is the wave equation for the
progressive harmonic wave travelling in the
direction of the increasing value of x. If the wave
is travelling in the direction of decreasing
value of x then wf — kx is replaced by ot +

kx.
y = A sin(of + kx) (8.5.5)

o _2n _ 2m .
substituting ® = T and k = 5, in

equation (8.5.4)

y=A sin27c(% ~ %) (8.5.6)

If the velocity of wave is v, then substituting
A = VT in above equation

y=A sinzn(% - viT)

y=A sinznf(t - 1) - L -p ®57

% T
Now,

y=A sin2n€(vt - X)

Ly=A sinz—f(vt -x) (o v=f»A)
(8.5.8)

The above equations (8.5.6), (8.5.7) and
(8.5.8) are the different forms of wave equation
for the progressive harmonic wave.

If particle P is oscillating with initial phase ¢,
then the wave equation (8.5.4) will be as follows :

y = A sin(of — kx + ¢) (8.5.9)
8.6 Wave speed and phase speed

Wave travells a distance A in periodic

time T.
. _ Distance _ A
. wave speed v = TTime - T
But % =
v =fA (8.6.1)
B A(27wf)

271

But, 2nf = ® and 2775 =k

Y= (8.6.2)

>l

So far in the discussion of wave motion we
have seen that amplitude, period of oscillation and
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frequency of oscillation (f) of the particles of
medium are the amplitude, periodic time and
frequency of the wave respectively.

But the velocity of oscillating particle
and velocity of wave are not the same.

Note that, the frequency of the wave is
the property of the source of the wave while
the wavelength is the property of the
medium in which the wave propagates.

In the different mediums the wave speed is
different. Therefore, the wavelength of the wave
is also different in different type of medium. But
in a given medium the wave speed is constant.
Phase Speed

As shown in Figure 8.7 the wave is travelling
in the direction of increasing value of x. The
entire wave pattern is moving a distance Ax in
that direction during the interval Az. As the wave
moves, each point of the moving wave form
(such as point A) retains its displacement.
(Remember that points on the string do not retain
their displacement but point on the wave forms
do). For each point on the wave pattern phase
must be constant. In Figure 8.7 phase at point A
and A' is same.

. ot — kx = constant (8.6.3)

Here, both x and ¢ are changing. As ¢
increases, x must also increase to keep the
ot — kx constant. This confirms that the wave

pattern is moving towards increasing x.

Y Ax
A |~|A'L,

/AN

Wave motion
Figure 8.7
Differentiating above equation with respect
to 1.

A ot — k) =
7 (@f = kx) =0

dx _
(D_kdt 0
%—v:% (8.6.4)

Here, v is the phase speed of the wave.

Above equation (8.6.4) is similar to the
equation (8.6.2). So, the wave speed which we
find is the phase-speed of the waves in reality.

Illustration 1 : The frequency of the
radio-waves broadcast by Ahmedabad
Vividhbharati is 96.7 MHz. Find the
wavelength, wave vector and angular
frequency of these waves. Speed of radio

waves in air is 3 x 10% m/s.

Solution :

f=96.7 MHz = 96.7 x 10° Hz
v =3 x 10 m/s

Wave speed, v = fA

v 3% 10°
A= = 967 %100 = 3102m
Wave vector, k = %
_2x3.14
T 3.102
= 2.024 rad/m

Angular frequency, ® = 27f
=2 x 3.14 x 96.7 x 10°
= 6.07 x 10% rad/s

Illustration 2 : The wave equation of a
propagating wave is given by
y = 0.5sin(x — 60¢) cm. Find, (i) amplitude of
the wave (ii) wave vector (Zii) wavelength (iv)
angular frequency and frequency of wave (v)
periodic time and (vi) wave speed.

Solution : Compare the equation

y = 0.5 sin(x — 60f) = —0.5sin( 60f — x )
with wave equation

y = A sin(ot — kx)

(i) Amplitude of a wave A = —0.5 cm

(ii) wave vector k = 1 rad/cm

(iii) wavelength A = %

2x3.14
= —1 = 6.28 cm

(iv) Angular frequency of a wave
® = 60 rad/s

Now, from ® = 27f, the frequency of wave,

® 60
f: 2—71: = 2)(314 =955 Hz
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Illustration 3 : How far does sound
travel in air when a tuning fork of frequency
250 Hz completes 50 vibrations ? The speed
of sound in air is 340 m/s.

Solution : Wavelength of the wave produced

from tuning fork A = % = %58 = 1.36 m.

One wavelength is the distance travelled by
the wave in one complete vibration of tuning fork.

". Distance travelled by the sound in 50
vibrations.

=50 x A

=50 x 1.36 = 68 m

Illustration 4 : A stone dropped from the
top of a tower of height 100 m high splashed
into the water of a pond near the tower. When
is the splash heard at the top ? The speed of
sound in air is 340 m/s. At what time the splash
is heared at the top, after it is dropped ?

Solution : Suppose 7, is the time taken by

the stone to reach the surface of water and Z, is

the time taken by the splash to reach from water
surface to the top. The splash will be heard at

the top of the tower after time 7 =7, + 1,
Now, time 7, taken by stone to reach water
surface can be determine as follows :
_ 1. .
s =Vt 2 g1
s =100 m, v, =0, g = 9.8 m/s’
: _ 1 2
. 100 =0 + 2(9.8)tl
Lt =452
Now, time 7, taken by the splash to reach
water surface to the top is,

_ __Distance 100
~ Sound speed ~— 340

Lt=1 1, =452+ 029 = 481 s

Illustration 5 :

t, =029 s

Equation of a one
dimensional propagating wave is,

. - X
y= 581n30n(l 240).

Here, y is in metre and 7 is in second.

(i) Is the particle of medium moving in
positive Y or negative Y direction at the origin at
time f = 0 ? i.e. what will be produced first-
crest or trough ?

(i) Find the displacement, velocity of the
particle and the slope of the wave at 480 m away
from the origin at time 7 = 2 s.

(iii) Find the speed of wave.

Solution :

(i) At x = 0, starting from ¢t = 0, if y
increases in the negative direction then the trough
will be produced and if y increases in the positive
direction then the crest will be produced.

Here, at x = 0, y = 5 sin30nz. Hence,
starting from ¢ = 0, here y increases in the positive
direction. Hence, first a crest will be produced

at the origin.

(i) Displacement at t = 2 s for a particle at
x =480 m

_ M)
240

= 5sin307(0) = 0 m

y = 53in30n(

Velocity of the particle,

dy X )
V= E = 150ncos30n(l 240
_ _ 430
= 150ncos30n(2 240)
= 1501 m/s
Slope of the wave,
dy 5n _L)
E =% cos3OTc(l 240
= —%0053075(2 - %)
__on
-8

(iii) Compare the given equation with,

y = A sin2nf (t - f)
.. Wave speed v = 240 m/s

Here, note that the wave speed and the
magnitude of velocity of the particle taking part
in the wave propagation are not equal.
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8.7 Wave Speed in Medium

8.7.1 Speed of Transverse Wave on
Stretched String :

Earlier we have seen that the particles of
the string come back to their original position after
the disturbance (or wave) has passed through
those particles. In order that particles come back
to their original positions, restoring force and hence
elasticity in medium are essential. Moreover, the
inertia of the medium plays a role in deciding the
displacement of the oscillatory particles. Thus,
the elasticity and intertia of medium are
necessary for the propagation of the
mechanical waves. From these two properties
of medium, the speed of wave in a meduim is
determined.

It is found that the speed of transverse
wave in a medium like a string kept under the
tension, depends on (i) linear mass density (W)
and (ii) tension T in the string.

Here, we will obtain the speed of wave on
a string using dimensioned analysis.

Linear density of a string means mass per
unit length (W) of the string.

Dimensional formula of

[Total mass of string] M
M= [Total length of string] ~ 1!

- MILITO
Dimension of Tension T = M'L!T2

Suppose, wave speed

v=rkpt (8.7.1)
Here, k = dimensionless constant and
[a, b] € R.

Substituting dimensions on both the sides,
MOLI'T—I — [MIL—ITO]a [MlLlT—Z]b
— Ma+b L—LH-b T—2b
Comparing dimensions of both the sides,
a+b=0,-a+b=1and -2b =-1

'.a:—% andb:%

Substituting value of @ and b in equations
(8.7.1)

SIE

-1
v=kp?3T

From the experimental and other studies,
k=1
, T
V=4 (8.7.2)
Above equation shows that wave speed is
independent of frequency of a wave and

amplitude of a wave.

Illustration 6 : A long wire PQR is made
by joining two wires PQ and QR of equal radii.
The wire PQ has length 4.8 m and mass.
0.06 kg. The wire QR has length 2.56 m and mass
0.2 kg. The wire PQR is under the tension of
80 N. Find the time taken by a wave produced
at the end P to reach the other end R.

Solution :

Mass per unit length for the wire PQ,

_0.06 1 g
MT 728 T80 m

Mass per unit length for the wire QR,
02 _ 10 kg

H27 256 ~ 128 m
Speed of wave in the wire PQ,

yo= L = 80 _ g0 s
! Wy 1
80

Speed of wave in the wire QR,

v2: l: &:32111/8
VHz ﬁ

.. Time taken by the wave to reach R from
Pr= tl + t2

PQ | QR
Vi V2
48 256
80 32
=0.14 s

Illustration 7 : A uniform rope of length
12 m and mass 6 kg hangs vertically from a
rigid support. A block of mass 2 kg is attached
to the free end of the rope. A transverse pulse
of wavelength 0.06 m is produced at the lower
end of the rope. What is the wavelength of
the pulse when it reaches the top of the
rope ?
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Solution :

m, = 2 kg

Figure 8.8
As the rope is heavy, its tension will be
different at different points.
mass of rope m, = 6 kg
mass a block m; = 2 kg
Tension at the lower end of rope,
T, =mg=72¢g
Tension of the upper end of rope,
T, = (m1 + mz)g
=(6+2)g =38g

T
wave speed in a string v = \/%

v =1

The frequency of the wave pulse will be the
same everywhere on the rope and U is also the
same throughout the rope as it is uniform.
Therefore,

Ao T

Wavelength of wave at lower end of rope,

Ao [Ty

Wavelength of wave at upper end of rope,

o T

AT

M AT
TZ
and 7\,2 = )‘1 T
1

Ilustration 8 : The speed of transverse
wave going on a wire having length 50 cm
and mass 5.0 g is 80 m/s. The area of cross-
section of the wire is 1.0 mm? and its Young’s
modulus is 16 x 10" N/m?. Find the extension

of the wire over its natural length.
Solution :

Length of the wire L = 50 cm = 50 x 102 m
mass of wire m = 5g = 5 x 107 kg
cross sectional area of wire
A=1mm’ =1 x 10° m?
Young’s modulus of wire Y = 16 x 10! N/m?
wave speed in a wire v = 80 m/s.
mass per unit length of wire,
5x107°

_m _ —— — _ )
n= L 50 % 102 1 x 107~ kg/m

T
The wave speed in wire v = \/E
.. Tension in wire= T = F = u?
= (1 x 107%) (80)*
=064 N

A

Now, Young’s modulus Y = W
L

.. Extension in the length of wire,

FL
AY

(64)(50 x 1072)
1x107%@16x 10

= 0.02 mm
8.7.2 Speed of sound waves (longitudinal
wave) in a medium :

AL=

It is found that the speed of longitudinal
waves like sound waves in a medium depends
on (i) the elastic constant E and (i) density p of
the medium.

Using these facts, we can obtain the speed
of the longitudinal waves using dimensional

analysis as follows.

Wave speed v = kE“p®

Here, k is dimensionless constant and
[a, b] € R.

Now, [E] = M'L7!T 2 [p] = M'LT°

Writing dimensional formula on both the
sides,
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— [MIL—IT—Z](Z [MIL—3T0]b
— Ma+b L—a—3b T—2a
Comparing dimensions on both the sides,
a+b=0,-a-3b=1and 2a =-1

MoLIT!

o1 __1
.a—zandb— >
1 1

From the experimental and other studies
k=1,

, E

-V =49p (8.7.3)

The propagation of longitudinal waves in fluid
is in the form of condensations and rarefactions.
In such a situation due to the variation in pressure
of different regions of the medium bulk modulus
(B) is taken as the elastic constant.

B

» (8.7.4)

During the propagation of longitudinal waves
in a linear medium like a rod, the longitudinal
strain is produced. Hence in such a situation
Young’s modulus is taken as the elastic constant.

_ Y
-V =49p (8.7.5)

Table 8.1 gives the speed of sound in various
media.

LV =

Table 8.1 Speed of sound in some media
(Only For Information)

Medium Speed (m/s)

Gases

Air (0°C) 331
Air (20°C) 343
Helium 965
Hydrogen 1284
Liquids

Water (0°C) 1402
Water (20°C) 1482
Seawater 1522
Solids

Aluminium 6420
Copper 3560
Steel 5941
Rubber 54

It is clear from the Table (8.1) that although
the densities of liquids and solids are much greater
than those of the gases, the speed of sound in
them is higher. It is because liquids and solids
are less compressible than gases. i.e have much

greater bulk modulus.
Newton’s Formula :

Newton assumed that the process of
propagation of sound in gas (or air) is isothermal.
Hence, the isothermal bulk modulus is to be used
in the equation (8.7.4).

For an isothermal process PV = constant
(Taking T = constant, PV = pRT = constant)

Differentiating with respect to V,
av. dpP

PdV +VdV =0
p_ _ydP _ _dP
s P= VdV = dV/V—BulkmodulusB

Thus, isothermal bulk modulus B = Pressure P.

__dp_|
dVIV

W d —\/E—\/E 8.7.6
.. Wave speed v = o = Ap (8.7.6)

This formula is called Newton’s formula for

(... B —

the speed of sound in air.
Illustration 9 : Obtain the speed of
sound in air at STP using Newton’s formula.

Mass of 1 mole of air = 29.0 x 107 kg.

P =101 x 10° P)
Solution :
STP =224 L =224 x 1073 m?

Volume of 1 mole of air at

Mass
Volume

-3
PT 204x107 T 224
.. Speed of sound in air at STP,
P

p

- \/1.01 x 10° x 22.4
29.0

Density of air at STP p =

v =

= 279.3 m/s
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Laplace’s Correction :

The speed of sound according to Newton’s
formula is 279.3 m/s while its experimental value
is 332 m/s at STP. This suggests that there is
some defect in the formula (8.7.6)

Laplace suggested that the temperature
of the region where condensation is formed
increases and that of the region of rarefaction
decreases. Hence, the process of propagation
of sound in a medium cannot be considered
isothermal.

The process of formation of condensation and
rarefaction in the medium is so quick that the
heat produced during the condensation, is absorbed
at the same place during rarefaction before being
dissipated outside. Relatively small thermal
conductivity of gas also helps in not allowing the
heat to be dissipated outside. Thus, the process
of sound propagation in the gas is adiabatic
and not isothermal. Hence, adibatic bulk
modulus of the gas should be used in place of
isothermal bulk modulus.

For an adiabatic process of an ideal gas,

PVY = constant

Where vy is the ratio of two specific heats
C, and C,,.

Differentiating the equation with respect

to V.
P~yVY"+VYd—P—0

dVv
. dapP
.YP+V v - 0
—dP
= =7P
dv
A
S B =yP
Thus, for an adiabatic process bulk modulus
B=vyP
Using this value of B in equation (8.7.4)
vP
wavespeed v = ? (8.7.7)

For air y is 1.41. Speed of sound comes out
331.6 m/s at STP on taking this value of v. This
agrees very well with the experimental value. To

determine speed of wave in ideal gas Laplace
equation (8.7.7) should use instead of Newton’s
formula.

Various factors affecting speed of sound
waves : The equation of state for 1 mole of
ideal gas is.

PV = RT (u =1 mol)

RT
P= v
yP
Substituting value of P in v = \/;
YyRT
LV =V
But, pV = mass of one mole gas =

molecular mass M of gas

. Speed —,/—YRT
©+ Speed v =4[

From this expression it is clear that the speed

(8.7.9)

of sound in a gas is directly proportional to the
square root of its absolute temperature (T).

ie. v o \/T

If pressure (P) of the gas is changed keeping

its temperature constant, E remains constant as

the density p of the gas directly varies as the
pressure P. Therefore, the speed of sound in a
gas does not depend on the pressure of the
gas at constant temperature and constant
humidity.

Density of water vapour is less than the
density of dry air at same pressure. Hence, the
speed of sound increases with increasing

vP
humidity as per v = ?

Illustration 10 : Show that the velocity of
sound in a gas at temperature f is given by,

= (14 55g)

Where, v, is speed of sound in air at 0° C
(t << 273)

Solution : The speed of the wave in gas is
YRT
™

i.e.vocﬁ

If, v, = speed of sound in gas at #° C

0
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v, = speed of sound in gas at 0° C
SV 273 +1
' Vo - 273
(~ T(K) = t(°C) + 273)

1
. _ t )2
.vt—v(1+273)

Using binomial expansion and neglecting

higher order terms,

1 t
W:o@+zxfﬁ)

_t
v, = (1+546)

[Note : If the speed of sound in air at
0° C is 332 m/s, than speed at 1° C will be,

v, = (1+%)

332(1 + ﬁ) = 332.61 m/s

Thus, the velocity of sound in air increases
by 332.61 — 332 = 0.61 m/s for every 1° C rise
in temperature.]

Ilustration 11 : If the velocity of sound
in air at 27° C and 76 cm of mercury is 345
m/s. Find the velocity at 127° C and 75 cm of

mercury.

Solution : Remember that there is no effect

of change of pressure on the velocity of sound.

If v, and v, be the velocities of sound at

27° C and 127° C, then we have

T2 273+ 127 \/’
T 273+27
". Speed of sound at 127° C

4 4
v, =V, X \/g:345>< § = 398.4 m/s

2

Illustration 12 : The speed of sound in
dry air at STP is 332 m s™!. Assume air as

composed of 4 part of nitrogen and one part
of oxygen. Calculate speed of sound in oxygen

under similar condition when the density of
oxygen and nitrogen at STP are in the ratio of
16:14.

Total mass

Solution : Density of air = Total volume

_ (Mass of oxygen)+(Mass of nitrogen)
P, = (Volume of oxygen)+(Volume of nitrogen)

B (VX py) +(4V X py)
Pa = V +4V

Py T 4pn
5

p0(1+4><p—Nj
Po

5

14
144
p(+ ><16)
5

= 0.9p,

1 /ﬂ
Speed of sound v ¢ —= (" v = )
b p

". Speed of sound in oxygen, v, o %
Po

Speed of sound in air v, L

TN,

LV, =V, x 09487 =332 x 0.9487

= 0.9487

& |
(=)

= 314.77 m/s

8.8 Superposition Principle and Reflection of
the Wave

So far we have discussed a single wave
propagating on a string. Suppose two persons
holding the string at the two ends snap their hands
once, then two wave pulses will be produced and
move towards each other as shown in figure
8.9(a). The pulses travel at same speed because

the medium is same.
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Principle of superposition
Figure 8.9

Suppose the maximum displacement of
particle in first wave is 0.5 cm and in second
wave is 0.2 cm. As the two wave approaching
each other, at any instant both the waves will
overlap in some region of the string. Then after
they move with their original shape and in their
original direction. The net maximum displacement
of the particle of string in overlaped region would
be 0.5 cm + 0.3 cm = 0.8 cm.

Suppose the two persons snap the end of
the string such that wave pulse generates at both
the end of the string as shown in Figure 8.9(b).

In the first wave pulse the maximum
displacement of particle is 0.5 cm in upward and
in the other wave pulse the maximum
displacement of particle is 0.5 cm in downward
direction.

When the wave pulses approach each other,
at some instant they overlay on the string and
displacement of all the particles will be 0.5cm +
(—0.5 cm) = 0. However, the velocities of the
particles will not be zero. In this situation, string
becomes straight everywhere than both the wave
pulses will emerge and move in their original
direction.

From the above observation principle of
superposition can be given as follows.

“When a particle of medium comes
under the influence of two or more waves
simultaneously, its net displacement is the
vector sum of displacement that would occur
under the influence of the individual waves.”

Reflection of Waves :

(a) Reflection of waves from a rigid
support :

Suppose a wave propagating in the direction
of decreasing value of x, represented by the
equation y = A sin (of + kx) reaches a point
x = 0, when the wave arrives at the rigid end it
exerts a force on the support (wall). By Newton’s
third law, the support exerts an equal but opposite
reaction force on the string. This reaction force
generates a wave at the support which travels
back along the string in the direction opposite that
of incident wave. This wave is known as
reflected wave.

I “7\Incident wave
0

X

11T

Reflected wave
\/__

Reflection of wave from rigid support
Figure 8.10




194

PHYSICS

Oscillation of the particle at point x = 0, due
to wave y = A sin(wf + kx), can be represented
(8.8.1)
But, the support at x = 0 is fixed, the

as, y, = A sinof

displacement at x = 0 must always be zero.
According to principle of superposition, the
displacement at x = 0 due to reflected wave. It
can be give as,

Y, = —A sinot (8.8.2)

Equation (8.8.2) can be represented as
follows :

y, = Asin(®t + 7) (8.8.3)

This shows that as the wave reflected from
a fixed support, its phase is increased by 7. Thus,
the ‘shape’ of the waveform is inverted on
reflection. i.e. Crest becomes a trough and trough
becomes a crest.

The reflected wave is travelling in the
direction of increasing value of x. So the equation
can be written as,

y, = A sin(0f + T — kx)

S0y, = —A sin(of — kx) (8.8.4)

If the incident wave is travelling in the
direction of increasing value of x, then
y; = A sin(wt — kx) (8.8.5)

And equation of reflected wave can be given
as,

y, = —A sin(wt + kx) (8.8.6)

(b) Reflection of waves from a free end :

As shown in Figure 8.11 suppose one end
of a string is tied to a very light ring which can
slide or move without any friction on a vertical
rod. Such an end of the ring is said to be free

end and here, we will understand the reflection
of waves from such a free end.

-—

)_/H\KIP_ci_dent wave

(3

-—

-
'L)—R
\Cg

——

, Reflected wave

Reflection of a wave from a free end
Figure 8.11

Suppose the crest like shape of the wave
produced from the other end of the string reaches
the ring. The ring is then pushed upwards as it is
not fixed. Hence the string tied to the ring is also
pulled up. As a result of this, now, a reflected
wave pulse is generated from this end of the string.
Phase of this reflected waves is equal to the phase
of the incident wave. So, in this situation the shape
is not inverted and a crest is reflected as a crest
and a trough as a trough only. Moreover, during
such a reflection both the waves are
simultaneously present on the ring in same phase
and hence the displacement of the ring on the rod
is twice the amplitude of the incident wave.

From this discussion it is clear that
if the equation of the incident wave is

y; = A sin(wf + kx) then the equation of its
reflected wave from a free end will be

y, = A sin (©f — kx) (8.8.7)

Thus, a travelling wave at a rigid
boundary or a closed end, is reflected with
a phase reversal of m but the reflection at
an open boundary takes place without any
phase change.

8.9 Stationary Waves

When two waves having the same amplitude
and frequency (i.e. wavelength) and travelling in
mutually opposite directions are superposed, the
resultant wave formed loses the property of
propagation and a stationary pattern is created in
the medium. Such a wave is called a stationary

wave. | |
[ L o

A string fixed at both the ends with
rigid supports
Figure 8.12

To understand stationary waves, consider a
string of length L, kept under a suitable tension,
fixed at its two ends. The harmonic waves
produced in this string will be reflected from rigid
supports repeatedly so that each element of string
is under the influence of “incident” and
“reflected” waves.

Let the wave propagating in the direction of
increasing x be
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y, = A sin(of — kx) (8.9.1)
The reflected wave propagating in the
direction of decreasing x will then be,

y, = —A sin(of + kx) (8.9.2)
According to principle of superposition, the

displacement of a particle of a string is given by,

y=y3+ty

= A sin(wf — kx) — A sin(of + kx)
Now,
.y = —2Acosmt sinkx (see foot note)

= —2A sinkx cosmt (8.9.3)

The functional form of this wave is not of
type flot + kx) which means that it is not a
travelling or progressive wave. Equation (8.9.3)
is an equation of a stationary wave. Energy
does not propagate in this type of a wave
and hence it is named as a stationary wave.

The term ‘cos ®t’ of the equation (8.9.3)
shows that each particle of the string is executing
a simple harmonic motion and their amplitudes
depends upon position x according to 2Asinkx.

Here, amplitudes of all the particles are not same.

The location of particles for which sinkx =
0, have zero amplitude and these points remains
stationary. These points are called ‘Nodes’.

The positions in a stationary wave where
the amplitude always remains zero are called
the ‘Nodes’.

Now sinkx = 0
. kx = nmw where n = 1, 2, 3 ...
Cox= AR _ nm
T kT 21;
"3y
. _ ha
X = > (8.9.4)
This shows that the nodes are located at a
' _ A, 3r nh
distance x = 7 A, 3 e > from the end
x = 0. The distance between the successive
node is %

C+D C-D
Foot note : sinC— sinD = 2 cos ) sin 3

Maximum amplitudes occur at points for
which sinkx = +1. These points are called
“Antinodes”.

The positions in a stationary wave where
the amplitude always remains maximum are
called the ‘Antinodes’.

sinkx = +1
o ke=(Qn - 1)% where, n = 1, 2, ...

2n—-Dn
2k

2n — 1)%

(8.9.5)
A

Thus, the antinodes are located at x = =,

3% 5k from the end x = 0. Distance

4 4
A

between successive antinode is also 5

Distance between a node and an adjacent

antinode is A

4
In Figure 8.13 the antinodes are shown as A
and the nodes are shown as N.
The displacement of string at the end x = 0
and at the end x = L is always zero because the

string is fixed to a rigid suppot at x = L.

. sinkL = 0

. kL = nm where n = 1, 2, 3, ......
. 2n o _

- L=nr

) _ 2L

=S (8.9.6)

This equation shows that for a string at given
length L, stationary wave can be formed only
with waves having specific discrete values for

their wave length like 2L, L, 271", %, .....
appropriate to different values of n. Thus, waves
with arbitrary wavelength cannot form stationary

waves on a string of a given length.

The frequency of the standing waves
produced on a string will have corrosponding to
its restricted wavelength. It is given by,

Be i

n

" f,= 57 (from equation 8.9.6) (8.9.7)
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L =
@n=1
Fundamental frequency

I
J

0
@

.
>

g
2A

= 12

|
|

b)yn=2

Second harmonic or first overtone
oo

_ 3
— 2
c)n=3

Third harmonic or second overtone

&

il
1

|
|

Stationary waves on a string

Figure 8.13

orfn:%\/g

Where, v = speed of wave on string = E

(8.9.8)

Substituting 7 = 1 in equation (8.9.7)
- v
hi = 2L

Here, f, is called fandamental frequency
or first harmonic.

Taking n = 2,

f, is called second harmonic or first
overtone.

Taking n = 3,

Li=ar =¥
f; is called third harmonic or second
overtone

In this way taking successive integral values
of n, all possible oscillation of the string are

obtained and corresponding frequencies of the
fourth, fifth etc. harmonics are obtained.

Figure 8.13 shows oscillation of string with
first, second and third harmonics. Form figure it
is clear that number of loops produced on the
string is same as value of n.

These oscillations with discrete frequencies
in various harmonics are called the ‘Normal
Modes of Oscillation of a system.

Frequencies appropriate to the different
normal modes of vibrations can be obtained from
the following equation.

ny
fu=aL ="

Here, f, is the frequency of wave produced

where n = 1, 2, 3....

on a string. It is also called nth harmonic or
(n — Dth overtone. The integer n indicates the
number of loops on the string.

Illustration 13. : The stationary waves
produced in a 60 cm long string tied at both
the ends with rigid support are represented by
y = 4sin (%) cos (96mr). Here, x and y are

in cm and 7 is second. Find out,

(1) position of nodes,
(2) positions of anti-nodes,

(3) maximum displacement of the particle at

X =15 cm
(4) the equation of the component waves.
Solution : Comparing
y = 4sin (%)cos (967tr) with

y = 2Asin (kx) cos (w?),

A=2cm k= %% and ® = 967 rad/s
But, k = Z}L_n
" ZTR :% = A =30 cm
(1) Positions of nodes
= n_27», where n = 1, 2,...

15 cm, 30 cm, 45 cm
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(The particles at 0 cm and 60 cm are tied
to the rigid supports and hence they are not
considered here.)

(2) Positions of antinodes,
=2n -1 )%,
=75 cm, 22.5 cm, 37.5 cm, 52.5 cm

(3) Maximum displacement of the particle at

a distance
X = 2Asin kx

.| X
:4sm(15)

= 4sin(%) (. x=5cm)
_ 3
= 47

=2J§ cm

@) y= 4sin(71t—§) cos (967t

=2 Sin(% + 967Tt) +

where n =1, 2, 3,...

(mx
2 sm(15 967”)

.. Component of waves are

y, = 2sin(% + 96751)cm and,

v, = ZSin(% - 96T[l)cm

Illustration 14 : The equation of a
progressive, harmonic waves travelling
in a medium is given by an equation
y; = Acos (ax + bt); where A, a and b are
positive constants. This wave is reflected from
a rigid support kept at x = 0. The intensity of
the reflected wave is 0.64 times that of the
incident wave.

(a) What are wavelength and frequency of
the incident wave ?

(b) Write the equation of the reflected wave.

(c) Express the resultant wave in the form
of progressive and stationary waves.

Solution :
(a) Incident wave is y, = Acos (ax + bt)

Comparing this equation with the wave-
equation y = Acos (kx + of),

. wave-vector k = a

. 2n
T

A=

2n
a

Angular frequency ® = 2nf = b

. s_ b
'f_2n

(b) Intensity I oc A%, where A = amplitude.
Suppose amplitudes of the incident and the
reflected waves are A and A, respectively and

I, and I, are their intensities respectively.

L (A

LA

A I 3 1

Ao 2 |2 2
- | = = (0.64

Al (Il ) ( )

A, =08 A (v A = Amplitude of the
incident wave = A)
Amplitude of the reflected wave
A, =08 A
Equation of the reflected wave
y, = —A, cos (bt — ax)
.y, =—0.8 A cos(bt — ax)
(c) Resultant wave y =y, + y,
= A cos(bt + ax) — 0.8 A cos(bt — ax)
= 0.8 A [cos(bt + ax) — cos(bt — ax)]
+ 0.2 Acos (bt + ax)
= —1.6 Asin (ax) . sin (bf)
+ 0.2 Acos (bt + ax),
where, stationary wave,
y, = —1.6 Asin (ax) . sin (bf) and

progressive wave Y, = 0.2 Acos (bt + ax)

Illustration 15 : A block is attached to
the free end of a sonometer wire. The wire
has fundamental frequency f, Hz in this
situation. Now the block is immersed in water
and it is found that the wire has a fundamental
frequency f, Hz. When the block is immersed
in some liquid, the fundamental frequency of
the wire is f; Hz. Find the specific gravity of
the material of the block and that of the liquid.
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Solution : The force of buoyancy is different
when the block is in air, in water and in liquid.
So the effective weight is different in these cases.
Hence, tension in the wire is also different and
as a result the frequency is also different for the
wire of same length and same material.

Suppose, the weight of block in air is W, in

water W, and in liquid W.

1 [T

R m
Here, L and p being constant,
foo JF
T = kf? where, k = constant of
proportionality.
But, tension T = Weight W
S W o= kf?
. _ L2 _ f2 )
W= K5 W, = kLS W, =k
According to Archimedes’ principle,

Fundamental frequency, f =

Specific gravity of block

Weight of block in air
Loss of weight of block in water

.
Wi=W,  f7-f°

Specific gravity of liquid

Loss of weight of block in liquid
~ Loss of weight of block in water

W - W, KA K
TW, W, Tk —kf>
) f12 _ f32
TR -1

8.10 Stationary Wave in Pipes

As stationary waves are formed on a string
due to superposition of incident and reflected
transverse waves of definite frequencies,
stationary waves are also formed due to reflection
of longitudinal waves of definite frequencies in
the air column, from the end of a pipe. The flute
trumpet, clarionet etc. are the musical instrument
that are organ pipes in which stationary
longitudinal waves are formed. Such pipes are
of two types : (1) an open pipe in which both
ends are open e.g. flute. (2) a closed pipe in
which one end is closed, e.g. clarionet.

Just as in case of string, a node obtained at
the fixed end, for a closed pipe a node is always

formed at the closed end because longitudinal
waves are reflected from closed end. If the pipe
is narrow compared to the wavelength of wave,
an antinode is formed at the open end (slightly
outside). The situation is slightly complicated for
the reflection of longitudinal waves at the open
end of the pipe.

Stationary Waves in a Closed Pipe :

For stationary waves to be formed in a closed
pipe the wavelength (A) of the wave should be
such that a node is formed at the closed end of
the pipe and an antinode at its open end. In
stationary waves the distances between nodes and
A 3L 5A A
40 4 4
where n =1, 2, 3,....

antinodes are

Similarly, in general stationary waves is
produced in a pipe of length L for wavelength A
only when,

L=@2n- 1)% (8.10.1)

where n = 1, 2, 3, ...

In a closed pipe the value of possible
wavelengths required for stationary waves are
given by,

4L
M= an-1)

The frequency of stationary waves in pipe

(8.10.2)

will be,

n=1 n=2 n=3
(@) (D) (c)
n = 1 Fundamental frequency (first harmonic)
n = 2 Third harmonic (first overtone)
n = 3 Fifth harmonic (second overtone)

Stationary waves in a closed pipe

Figure 8.14
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L fy= @D (8.10.3)
where, v is a speed of wave.

(1) Taking n = 1,
_ v
Uy
f1 is known as fundamental frequency
or the first harmonic.
(ii) Taking n = 2,

L=3t =% ¢ f =30

f2 is known as third harmonic or first
overtone.
(iii) Similarly for n = 3,

fi= e -n=2 =5

f3 is known as fifth harmonic or second
overtone.
In general, the frequency of n™ mode of
normal oscillation in closed pipe is given by,

- v _
=(2n - 1,

where n = 1, 2, 3,....

(8.10.4)

Here, fn represents (2n — 1) harmonic or

(n — 1)™ overtone.

Thus, in the closed pipe all the harmonics
are not possible. The harmonics are possible only
for odd multiples of fundamental frequency

(s 3fp S e ).
[In this reference, equation (8.10.3)
can be written as,

f,=nf, = % where n = 1, 3, 5....

where, f, represent nth harmonic or

2

The frequencies for which stationary waves

( r-l ) th overtone]

are formed are called natural or characteristic
frequencies of the given pipe.

Stationary waves in an open pipe :

In an open pipe, antinodes are formed at both
the ends. We know that in stationary waves

3k nh

7»,2 ..... )

A
2 b
Where n = 1, 2, 3,.......

Therefore, in an open pipe of length L, the

distances of antinodes are

stationary waves can be produced only of those
wavelength A for which,

_ nh
L=7
So, possible wavelenghts in pipe will be,
A, = 2L (8.10.5)
n

The frequency of a stationary waves in open
pipe will be,
ny
f=L == (8.10.6)
A, 2L
where, v is speed of a wave.

N
21
N A
U °
n=1 n=3
(a) (®) (©
Fundamental Second Third
frequency or harmonic harmonic
first (first (second
harmonic overtone) overtone)

Stationary waves in open pipes

Figure 8.15

(i) Substituting n = 1 in equation (8.10.6)

_ v
fi = L (8.10.7)
Here, f1 is called the fundamental
frequency or the first harmonics (See Figure

8.15a) which is double than the fundamental
frequency of a closed pipe. (" f, = ﬁ).

(i1) Taking n = 2,

Jf, is called the second harmonics or
first overtone.

Thus, taking different values of n in equation
(8.10.6) third, fourth ..... harmonics can be
obtained. In general, for an open pipe the nth

harmonic or (n — 1)th overtone,
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=50 =1f, (8.10.8)

where, n = 1, 2, 3....
Thus, all the harmonics (f,, 2f, 3f;....) are

possible for an open pipe.

Thus, in both the types of the pipes there
are normal mode of oscillation for the air columns
of the pipes.

[llustration 16 : If the second overtone
of a closed pipe and third overtone of an open
pipe are same, find the ratio of their lengths.

Solution :

For a closed pipe second overtone means

fifth harmonics. Put n = 5, in following equation,

Sv

- _ =

f=3r = a1
for an open pipe, third overtone means fourth

harmonics. Put n = 4 in following equation,

_nv _ 4v
F=2L = 21,

Now, the frequency is same for both the
pipes.

el B L =5
L, =3 ORL:L,=5:8

Illustration 17
resonance tube resonates with a tuning fork

: Air column of a

of frequency 800 Hz when its lengths is 9.75
cm. If the length of the air column is increased
to 31.25 cm then also it resonates with the
same tuning fork. Find speed of sound in air.

Solution : In the experiment of resonance
tube, the arrangement of a closed pipe is obtained

by immersing one end of a pipe in the water.

When oscillations are produced in the air
column with the help of a tuning fork having
frequency equal to the natural frequency of air
column it oscillates with large amplitude, and large
intense of sound is heard. This is a phenomenon
of resonance.

Here, f= 800 Hz, L, =9.75 cm, L, = 31.25 cm

frequency fl : : t
| | |

I
Wave with || | i
frequency ! : ' lt
| |
i i

Resultant

displacement e “‘U-U_U ny“ YQU_U__U_U)” i

Resonance tube is a closed pipe. For a
closed pipe the natural frequency is given by

_ -1 2
f=@n-1) -
Taking n = 1 for first resonance,
N
f= 4L
1
v
"L =-—
1 4f
Taking n = 2 for second resonance,
_ v _ 3
f=0@x2=1 7 =31
2 2
: 3v
. L2 = 4f

. Speed of sound v = (L, — L)) (2f)
= (31.25 = 9.75) (2 x 800)

= 34400 cm/s

= 344 m/s

8.11 Beats
So far we have applied principle of

v
2f

superposition to two waves propagating in opposite
direction with equal amplitude and equal
frequency. It produces the non-progressive wave
like stationary waves.

Let us now consider two waves having equal
amplitudes and travelling in a medium in the same
direction but having slightly different frequencies.
Now we will apply principle of superposition to
study the oscillation of a particle of a medium.

g, et :
SN AN T

€ Period of beat—  Frequency of resultant

1 N
h- 5 Wave (fl zfzj

Beats
Figure 8.16
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Suppose, two harmonic waves superpose at
a particular position in the medium are,

y, = Asin ot = A sin 27f t and

y, = A sin ®f = Asin 27t

Here, initial phase of both waves is zero. f,
and f, are the frequency of first wave and second
wave respectively.

Remember that here we are locally observing
the effect of superposition of two waves on any
one particle.

Suppose, at time t, the resultant displacement
of a given particle is y then according to
superposition principle,

y=y,ty

= A sin 27tf|f + A sin 27t

-7 i+
Ly = [2Acos2n[%] f] sin 2n(%}t

(8.11.1)
1+ f
y = Alsin 271( = th
or y = A'sin 27 ft (8.11.2)

Above equation shows that the resultant
oscillations of a given particle are the oscillation

hi+h

with a frequency f = [ J Here, f is the

average of the two combining frequencies. The
resultant amplitude is,

fl‘fz}

A' = 2Acos 27‘5( 5 (8.11.3)

and it changes periodically with time. Here,
amplitude is a periodic function of time. Its

/i 1~ f 2 '
frequency is | — 5 f

Therefore, the period of oscillation is,

7= 1l_-_2 (8.11.4)
A

In time period T, the ‘cosine’ function attains

its maximum value and zero twice. Hence, this
function becomes f, — f, times maximum in unit
time. Therefore, the amplitude of oscillations
becomes f, — f, times maximum and f, — f,
times zero in unit time.

D _
Foot Note : sinC + sinD = 2sin(C; jcos [CTDJ

If these waves are sound waves, then
loudness of sound is proportional to the square
of the amplitude (I oc A?), the loudness of sound

also becomes f, — f, times maximum and f, - f,

times zero in unit time.

Thus, phenomenon of the loudness of
sound becoming maximum periodically due
to superposition of two sound waves of equal
amplitude and slightly different frequencies
is called the ‘beats’. The number of beats
in unit time is f, — f,. It is also called
frequency of beat.

Note : In case of sound waves, in order to

hear the beats clearly, f1 — f2 should not exceed
about 6 to 7.

The phenomenon of beats can be
experienced by taking two tuning forks of the
same frequency and putting some wax on the
prongs of one of the forks. Loading with wax
decreases the frequency of a tuning fork a little.
(By filling one of the prongs of a fork, its
frequency will increase a little) When these two
forks are vibrated and kept side by side, the
listener can recognise the periodic variation of
loudness of resulting sound. Musician tune their
different musical instruments with the help of beat
phenomenon.

Illustration 18 : When two tuning forks
A and B were sounded together, 20 beats were
produced in 8 seconds. After loading one of
the tuning forks with a little wax, they produce
32 beats in 8 seconds. If the unloaded fork
had a frequency of 512 Hz. calculate the
frequency of the other.

Solution : Suppose, tuning fork B is loaded
with wax. Frequency of tuning fork A,

fy =512 Hz

Frequency of tuning fork B, f; = ?

Before loading wax, number of beats per
second,

§2H
—8—.52

. Frequency of B before loading wax
either 512 + 2.5 = 514.5 Hz
or 512 — 2.5 =509.5 Hz
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After loading wax on B,

beats per second = ? = 4 Hz.

Frequency of B after loading is,

either 512 + 4 = 516 Hz

or 512 — 4 = 508 Hz

Since, after loading the wax frequency of a
tuning fork B is lowered. In above calculation
we can see that before loading wax, frequency
of B is 509.5 Hz and after loading it is 508 Hz.

Hence, original frequency of B (i.e. before
loading) will be 509.5 Hz.
8.12 Doppler Effect

Whenever there is a relative motion between
a source of a sound and a listener with respect
to medium in which the waves are propagating,
the frequency of sound experienced by the
listener is different from that which is emitted by
the source. This phenomenon is called Doppler
effect. This effect was discovered by Austrian
physicist Johann Christian Doppler (1803—1853).

The frequency of sound of a whistle of the
train is found to be more than original frequency
and hence its sound appears more shrill (of higher
pitch) when the train is approaching you. When
it is passing by you, the frequency of sound
experienced is same of that of actual sound
emitted, and when the train is receding from you,
the frequency listens lower than actual and sound
appears less shrill than the actual.

To understand Doppler effect, consider, as
shown in Fig. 8.17, a listener moving with velocity

v, and a source of sound moving with a velocity

vy along straight line with respect to stationary
air.

As a convention, the velocities in the direction
from listener to source are considered as positive
and from the source to the listener are considered
as negative. The speed of sound is always
considered positive. With this convention, we will
obtain a general result from which other cases
can be obtained easily.

Moving Listener : Suppose, a listener L

moving with velocity v, towards a stationary

sources S. (See Figure 8.17a) The source emits a

sound wave with frequency f, and wavelength

v
= —. Where, v is the speed of sound wave
S

in air.
L v S
o— ] @ v
H ource
Listener v, S
A
(@)
le we
L IS e i ">l
*— Ve ®— @ v
b 0 ' a
vy o
BET
®)
Doppler effect
Figure 8.17

These waves are travelling towards the listener.
Hence, the speed of waves travelling towards the

listener, relative to the listener will be v + v, . So
the frequency f; listened by the listener will be,

v+ v

fi=— (8.12.1)

Moving Source and Moving Listener :
Now suppose the source is also moving with

velocity v, in the direction of L to S. (See Figure
8.17 b)
Let the source of sound (S) be at O at time

t =0 and at O'at time f = T. Where, T = 1

fs

is the periodic time of emitted sound.
Now, the distance travelled by the source in
time T will be,

00' = v T
The wave (crest) emitted by the source at

t = 0 will cover the distance VT in time T. From
the figure, Oa = Ob = VT

Now, at time ¢ = T, the source is at O' and
it emits successive wave (crest). The wave
moving towards the listener will be in the region

O'b and the wave moving away from the listener

will be in region O'a.
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The wavelength of the wave moving towards
the listner,

A = Distance betwen successive wave
(crest) in region O'b
= v, T +T

SR RS 8.12.3
I 1 - _fs) (8.12.3)

Substituting value of A in equation (8.12.1)

v+ v
fo= oo . s (8.12.3)
or h _ s (8.12.4)
v+, v+og

From the Figure (8.17) it is clear that the

waves in the front of the source (region O'a)
are compressed, hence the wavelength is
decreasing due to motion of the source, while
behind the source (region O'b) waves are
stretched out hence its wavelength is increasing.
Here, waves are travelling in the same medium
(air), then why their wavelengths are changing ?
Think over it. The relative displacement of source
and wave is responsible for that.

Some Special Cases :

(i) Listener is stationary and source is
moving towards the listener, then according

to the accepted conventions, taking v = —vg and
v, =0 in equation (8.12.3), the frequency listened
by listener,

v

ho= vV — Vg fs

i.e. listener will listen the frequency higher

than the actual frequency (f; > fo).

(ii) Listener is stationary and source is
moving away from the listener, then v, =0
and vg = +vg,

v
v+ vsfS

Frequency listened by listener f; =

This shows that f; < f,. i.e. Listener will
hear the lower frequency than actual frequency.
(iii) Both the source and listener are
approaching each other, then v, = +v, and

v, = —v. Therefore,

S S

V+ v

L=

In this case, f; > fq

v—vg"S

(iv) Both the source and listener are

moving aways from each other, then
vp=—v and vg = +vg

L f = ok

TILT oy 4y 7S

In this case, f| < f

In all these cases the medium (air) is
considered stationary. If wind is blowing from the
source to the listener (in the direction of velocity

of sound) with velocity v, the velocity of sound
willbe v + v ~and if the wind is blowing in
opposite direction to the motion of sound waves,
the velocity of sound will be v — v, .

Moreover, it is assumed that the velocities

of the listener and of the source are less than
the velocity of sound.

Illustration 19 : A police siren emits a
wave with frequency 300 Hz. The speed of
sound is 340 m/s. (a) Find the wavelength of
the waves in the air if the police car is at
rest. (b) If the police car is moving at 108
km/h, find the wavelength of the waves in front
and behind the car.

Solution : (@) When the police car is at rest,
Js =300 Hz, v = 340 m/s

Wavelength of the waves emitted from the
siren.

(b) Speed of a police car vy = 108 km/h
= 30 m/s

v+

NOW’fL: v+ vg’S

If the listener is in the region of the front of

the moving car, then v, = 0, and Vg = —Vg

. _ )%
o f;’ront - fS

v_vS
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v %

}\'front V= Vg

Js

V- Vs 340 - 30

- }\'front = fs = W =1.033 m
For behind the police car,
v, = 0 and vy = +v¢
%
Jochina = v+ Vg Js
_v+vg 340 +30
kbehind = T4 T 300 1.233m

Illustration 20 : A SONAR system fixed
in a stationary submarine in the sea operates
at a frequency 40 kHz. An enemy submarine
moves towards the SONAR with a speed of
360 kmh™!. What is the frequency of sound

reflected by the submarine ? The speed of

sound in water is 1450 m s

Solution :fs = 40 kHz, v = 1450 m/s

The frequency of the waves from the
SONAR will undergo a change in frequency in
two steps.

(1) When the waves are moving towards the
enemy’s submarine which is in motion, the

frequency of waves will change. In this case

SONAR is a source (S) and submarine is a
listener (L).

Therefore, Vg = 0 and

360 x 1000
VL:36OKH1/}1=W = 100 m/s
N vty

oW, fi, = v+ Vg < Js
1450 + 100
= 14500 *A0x 10
= 42.758 kHz

(i1) The enemy submarine will reflect waves
of frequency 42.758 kHz and will act as a source
of waves, while SONAR will act as a listener

@L).
fg = 42.758 kHz, v, =0, v, = —100 m/s
Frequency of reflected wave,

v+ v

2 vV + Vg

1450 + 0
= 1450 100 X 42758 x 10°

45.92 kHz

Thus the frequency of reflected waves from
submarine, moving towards SONAR is
45.92 kHz.

SUMMARY

1. Waves :

The motion of the disturbance in the medium (or in free space) is
called wave pulse or generally a wave.

2. Amplitude of a wave : Amplitude of oscillation of particles of the medium is

called the amplitude of a wave.

3. Wavelength and frequency : The linear distance between any two points or
particles having phase difference of 27 rad is called the wavelength (A) of the

wave.

Frequency of wave is just the frequency of oscillation of particles of the medium.

Relation between wavelength and frequency :

v=f A= o where, v is the speed of wave in the medium.

k b

4. Mechanical waves : The waves which require elastic medium for their
transmission are called mechanical waves. e.g. sound waves.

5. Transverse and longitudinal waves :

Waves in which the oscillations are in a

direction perpendicular to the direction of wave propagation are called the

transverse wave.
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10.

11.

Waves in which the oscillations of the particles of medium are along the direction
of wave propagation are called longitudinal waves.

Wave Equation : The equation which describe the displacement for any particle
of medium at a required time is called wave equation. Various forms of wave
equations are as follows :

(i) y = A sin (of — kx) (ii) y = A sin (%_%)

(iii) y = A sin 2nf(t - %) (iv) y = A sin 27“@: ~ X

The above equations are for the wave travelling in the direction of increasing
value of x. If the wave is travelling in the direction of decreasing value of x
then put ‘+’ instead of ‘~’ in above equations.

The elasticity and inertia of the medium are necessary for the propagation of the
mechanical waves.

The speed of the transverse waves in a medium like string kept under tension,

T

uw

Vv =

where, T =Tension in the string and L = mass per unit length of the string =

I3

E
Speed of sound waves in elastic medium, v = \/%

where, E = Elastic constant of a medium, p = Density of the medium.

N : : B YP
Speed of longitudinal waves in a fluid, v = p = F
C

where, B = Bulk modulus of a medium y = C—P = 1.41 (for air)
v

y
Speed of longitudinal waves in a linear medium like a rod, v = \/;

where, y = Young modulus, p = Density of a medium

At constant pressure and constant humidity, speed of sound waves in gas is
directly proportional to the square root of its absolute temperature.

v=1/% “ya AT

The speed of sound in a gas does not depend on the pressure variation.

Principle of Superposition : When a particle of medium comes under the
influence of two or more waves simultaneously, its net displacement is the vector
sum of displacement that could occur under the influence of the individual waves.

Stationary Waves : When two waves having same amplitude and frequency
and travelling in mutually opposite directions are superposed the resultant wave
formed loses the property of propagation. Such a wave is called a stationary
wave.

Equation of stationary wave : y = —2 A sinkx cos of

Amplitude of stationary wave : 2 A sin kx
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12.

13.

14.

15.

16.

i . . n\
Position of nodes in stationary wave X, = 2

where, n = 1, 2, 3..... At all these points the amplitude is zero.

Position of antinodes in stationary waves,
_ A _
x,=(@2n - 1)4 where , n =1, 2, 3,....

The amplitude of all these points is 2A.
Frequencies corresponding to different normal modes of vibration in a stretched

string of length L fixed at both the ends are given by,

_nw _ n |T _
fn_ZL_ZL m where n = 1, 2, 3......

In a closed pipe the values of possible wavelengths required for stationary wave

pattern are given by.

W - AL

"= @n -1 and possible frequencies, f, = 2n — 1) AL (2n — 1),

where, n = 1, 2, 3,..... and L = length of pipe.

In a closed pipe only odd harmonics like fl, 3f1’ Sfl, .... are possible.

In an open pipe the values of possible wavelength required for stationary waves

are given by,

Xn = % and possible frequencies, fn = % = nf1 where, n =1, 2, 3, ...... and
L = length of pipe.
In open pipe of the harmonics like f, 2f, 3f, ........ are possible.

Beat : The phenomenon of the loudness of sound becoming maximum periodically
due to superposition of two sound waves of equal amplitude and slightly different

frequencies is called the ‘beats’.
Number of beats produced in unit time = f, — f,

Doppler Effect : Whenever there is a relative motion between a source of
sound and a listener with respect to the medium in which the waves are
propagating the frequency of sound experienced by the listener is different from
that which is emitted by the source. This phenomenon is called Doppler effect.

vEiv
Frequency listened by the listener, f, = vty Js
= Vs

Where, v = velocity of sound, v, = velocity of a listener,

v = velocity of a source, f; = frequency of sound emitted by the source.
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EXERCISES

Choose the correct option from the given options :

1.

Mechanical waves carry ........
(A) energy (B) matter
(C) both energy and matter (D) neither energy nor matter.

A tuning fork makes 256 vibrations per second in air. When the velocity of
sound is 330 m/s, then wavelength of the wave emitted is .........

(A) 0.56 cm (B) 0.89 m (©) 1.11m (D) 1.29 m

When a sound wave of frequency 300 Hz passes through a medium, the
maximum displacement of a particle of the medium is 0.1 cm. The maximum
velocity of the particle is equal to ................

(A) 601 cm/s (B) 30w cm/s (C) 30 cmf/s (D) 60 cm/s

1

The speed of wave of frequency 500 Hz is 360 m s™'. The minimum distance

between two particles on it, having phase difference of 60° is .......
(A) 023 m (B) 0.12m (C) 833 m (D) 60 m

If the speed of the wave shown

y
in the Figure is 330 m/s in the 0.05 n-ll/\ /\ /\
given medium, then the equation O | / >
of the wave propagating in the | \/ \ / [ \/ "1
positive x-direction will be ........ l————— 0.25m _—

Figure 8.18

(A) y = 0.05 sin 21t (4000 ¢ — 12.5x) m
(B) y = 0.05 sin 27 (4000 7 — 122.5x) m
(C) y = 0.05 sin 21 (3300 ¢ — 10x) m
(D) y = 0.05 sin 2 (3300 ¢ — 10f) m

The equation y = A sin? (kx — ®f) represents a wave with amplitude ...... and
frequency ........

A o ) )
(A) A, o2 ®B 5.7 ©) 2A, 4 D) VA, 77

Two pulse travels in mutually
opposite directions in a string with 10cm_y e Som__y
a speed of 2.5 cm/s as shown in (a) (b)

figure. Initially (at £ = 0) the pulses

(c) (d)
state of string after two seconds ? Figure 8.19

are 10 cm apart. What will be the

The speed of the component waves of a stationary wave represented by
y = 10 sin (100 7) cos (0.01x) is ............

Where, x and y are in metre and 7 is in second.

(A) 1ms™! (B) 10°m s (C) 10°ms™" (D) 10*ms™!
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

The mass of 7 m long string is 0.035 kg. If the tension in the string is 60.5 N,
then the speed of wave on string will be ..................

(A) 77 m s7! (B) 102 m s™! (C) 110m s (D) 165 ms™!

If the maximum intensity of the beat produced by the superposition of two
waves is x times the intensity of superposing wave then x = ........

A) 1 (B) 2 © 2 (D) 4

Two waves of wavelengths 2.00 m and 2.02 m superpose with each other to
produce beats in 1 s. If the speed of both waves is the same, their same
speed iS ..cceevneennne

(A) 400 m/s (B) 402 m/s (C) 404 m/s (D) 406 m/s

The speed of the component waves of a stationary wave is 1200 m/s. If the
distance between consecutive antinode and node is 1 m, then frequency of
standing wave will be .............

(A) 300 Hz (B) 400 Hz (C) 600 Hz (D) 1200 Hz
Suppose the listener and sound source both are approaching each other with
speed of 50 m/s on a straight path. If the v frequency listened by listener is
440 Hz, what is the frequency of the wave produced by the source ? (speed
of wave in air is 340 m/s)

(A) 327 57! (B) 3675 (C) 390 s (D) 591 57"

The fundamental frequency of the air column in a closed pipe is 512 Hz. If
the pipe is open from both the ends, the fundamental frequency will be ........
Hz.

(A) 1024 (B) 512 (C) 256 (D) 128

The air column in a closed pipe experiences first resonance with a tuning fork
of frequency 264 Hz. If the length of the air column in the closed pipe is .....
cm. The speed of the sound in air is 330 m/s.

(A) 31.25 (B) 62.50 (C) 93.75 (D) 125

When the temperature of an ideal gas is increased by 600 K, the velocity of
sound in the gas becomes /3 times the initial velocity in it. The initial tem-
perature of the gas is .....cccccceeee.

(A) =73 °C (B) 27 °C (C) 127 °C (D) 327 °C

Beats are produced by two waves given by y, = A sin (2000m)f (m) and
Y, = A sin (20087)t (m). The number of beats heard per second is ........

Ao B) 1 <€ 4 (D) 8
A source of sound is moving towards a stationary listener with 1/10 of the
speed of sound. The ratio of apparent to real frequency is ..........

(A) 10/9 (B) 11/10 (C) (11/10)% (D) (9/10)

A transverse wave is described by the equation y = A sin 27 (%—%) For

which wavelength of a wave, maximum particle velocity is two times the wave
velocity ?

A) A = TA B) A =

T % (C) A =7mA (D) A =27A
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20.

The temperature at which speed of sound in air becomes double of its value at
0°C iS .oee. .

(A) 273 K (B) 546 K (C) 1092 K (D)0 K

1. (A) 2. (D)  3.(A) 4. (B) 5. (C) 6. (B)
7. (C) 8. (D) 9.(C) 10. (D) 11.(C) 12. (A)
13. (A)  14. (A) 15. (A) 16. (B) 17. (C) 18. (A)
19. (C)  20. (C)

Answer the following questions in short :

10.

11.
12.

13.

14.

15.

Give the definition of wave intensity and give its SI unit.

What is angular wave number of a wave ?

What is the distance travelled by the progressive wave if its wavelength is A
and frequency is f ?

Which characteristics of a medium are required for the propagation of
mechanical wave ?

What is pressure wave ?

How the wave speed is changing with change in the temperature of a
medium ?

What will be change in the speed of a wave in wire if the tension in wire
increased four times ?

What will be the effect on the speed of a wave if the pressure of the medium
will change ?

The wave equation of a wave is y = 5 sin (0.01x — 2f). Where x and y are
in cm. What is the speed of a wave ?

What will be the change in the phase of a wave, if the wave on the string is
reflected from the rigid support ?

What is the amplitude of node and antinode in a stationary wave ?

What is the distance between consecutive antinode in a stationary wave if the
distance between consecutive node and antinode is 5 cm ?

In a closed pipe fundamental frequency is 300 Hz. What will be the frequency
of second overtone ?

Frequency of the source of sound is 440 Hz. If the relative velocity of source
and listener is zero then which frequency will be listened by a listener ?

What is a beat ?

Answer the following questions :

1.
2.
3.

Explain the classification of the waves. Give the example of each wave.
Explain wavelength, wave number and frequency of a wave.

With the help of dimensional analysis, obtain the expression for the wave speed
propagating in the string kept under tension.

Explain the propagation of sound waves in the air.

Write the Newton’s formula for speed of a wave in air. Expain Laplace
correction in Newton’s formula.
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10.

Obtain the one dimension wave equation y = A sin (of — kx) for the wave
propagating in the direction of increasing value of x.

Write the superposition principle for the waves and explain it.

What are stationary waves ? Obtain the expression for the stationary wave in
case of string fixed at its two ends.

Show that in a closed pipe the harmonics are possible only for odd multiples of
fundamental frequency.

What is Doppler effect ? When the source of sound is stationary and listener
is moving towards the source, obtain the expression for the wavelength of

wave travelling towards the listner.

Solve the following problems :

1.

In case of the progressive harmonic waves, prove that the ratio of the
instantaneous velocity of any particle of the medium to the wave speed is

equal to the negative of the slope of the waveform at that point at that instant.

Two types of waves, transverse (S) and longitudinal (P) are produced in the
earth during an earthquake. The speed of the S wave is approximately
4.0 km/s and that of the P wave is 8.0 km/s. In a seismograph, recording the
earthquake the P wave is recorded 4 min earlier than the S wave. Assuming
that both types of waves travel on straight line, find the distance of the origin
of the quake from the seismograph. [Ans. : Approximately 1920 km]

The amplitude of the progressive harmonic wave is 10 m. During the wave
propagation, the displacement of a particle which is at a distance of 2 m from

the origin is 5 m after 2 s. Another particle which is at 16 m from origin has
displacement of 5./3 m in 8 s. Find the angular frequency and wave vector
of a wave. [Ans. : ® = /8 rad/s, k = m/24 rad/m]
The equation for a wave travelling in x—direction on a string is,
y = 3 sin [(3.14x — (314)f]. Where x is in cm and t is in second.
(1) Find the maximum velocity of a particle of the string.
(i1) Find the acceleration of a particle at x = 6.0 cm at time = ¢ = 0.11 s.
[Ans. : Maximum velocity = 9.4 m/s, a = 0]
At 0 °C temperature, a source of sound of frequency 250 Hz emits sound
waves of wavelength 1.32 m. What will be the increase in wavelength at
27 °C ? [Ans. : 0.06 m]
At what temperature the hydrogen gas will have the speed of sound waves in
it will be equal to the speed of sound in oxygen at 1200 °C ? The density of
oxygen is 16 times that of hydrogen. [Ans. :—180.9 °C]

The length of a sonometer wire between its fixed ends is 110 cm. Where
should the two bridges S, and S, be placed in between the ends so as to
divide the wire into 3 segments whose fundamental frequencies are f, : f, : f, =
1:2:37? [Ans.:Ll:60cm,L2=300m,L3=200m]
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8.

10.

11.

A wire having a linear mass density 0.05 g/cm is stretched betwen two rigid
supports with a tension of 450 N. The wire resonates at a frequency of 420
Hz. The next higher frequency at which the same wire resonates is 490 Hz.

Find the length of the wire. [Ans. : 2.1 m]

The length of a string is 100 cm. The frequencies of two consecutive harmon-
ics formed on the string are 300 Hz and 400 Hz respectively. The maximum
amplitude is 10 cm when the string oscillates with its fundamental frequency.
Write the equation of the stationary wave in this case.

[Ans. : y = —10sin (178—’6) cos(200m)t (cm)]

Find the difference of apparent frequencies of the sound of a car horn heard
by a stationary listener when the car is moving towards and away from the
listener with a speed 54 km/4. The frequency of sound emitted by the horn is
500 Hz and speed of sound in air is 340 m/s. [Ans. : 44.2 Hz]

The whistle of an engine, approaching a hill with a speed of 10 m/s produces
sound of frequency 660 Hz. Find the frequency experienced by the driver of
the sound reflected from the hill. The speed of sound in air is 340 m/s.

[Ans. : 700 Hz]

Meghnad Saha (1893-1956)

reaction—before the global scientific community. This later became Saha’s Thermo Ionization
Equation. In 1927, Meghnad was elected as a fellow of London’s Royal Society. He invented an
instrument to measure the weight and pressure of solar rays. The lasting memorial to him is the
‘Saha Institute of Nuclear Physics’ founded in 1943 in Calcutta. Saha passed away on

February 16, 1956.

Meghnad Saha was born on October 6, 1893 in Sheoratali, a village in
the District of Dacca (now in Bangladesh). In 1911, he came to Calcutta to
study in Presidency College. He came to be recognised as a scientist of

| substance. In 1920, he went to England to prove his theory—equation of
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SOLUTION
| CHAPTER 1 |

Figure
Here the origin is taken on the centre of carbon (C).

r = distance of oxygen from carbon = 1.130 x 107" m,

m,, = mass of oxygen = 16 g mol™!, m_ = mass of carbon = 12 g mol!

O C

1 = distance of carbon from origin = 0, r, = distance of oxygen from origin
=r=1130 x 10"'m

T+ mgr,

r =
cm me +my,

- - -
. - mv,+ mv,+ myv
2. Velocity of centre of mass v, = L1 z -2 33

m1+ ny +m3

3. Here for car m = 1000 kg, @, = 4.0 m s, initial speed Vo, = 0ms™!

For truck m, = 2000 kg, @, = 0 m 572, Vo, =V, = 80 m s

After 3 sec, the speed of car v, =V, tat
1

After 3 secs the distance travelled by car d, = volt + %alﬁ

The distance travelled by truck in 3 sec. d2 =t (o a,=0)

(a) The distance of centre of mass of the system of car-truck is

B md, + myd,
em m;+ m,

b) In one dimension My, = mv + m,v,

Von = m; + m, ( M:ml+m2)
4. At t =0 sec. xlz—15 m, x2:15m
m, = 40 kg, m, = 20 kg
mx; + myx,
- Xem my+ m,

As the centre of mass is remaining stationary, x_ = const. Hence find x,

from the values of X, and X, for t = 2,4 ,6 sec. At t = 0, the cat and dog
are at rest.

v, =v,=0=p =p,=0

=p=p +p,=0



SOLUTIONS 213
'

Att=2s

x(2s)—-—x(0s) _ Ax _ X(238) = x0s)
Vi 2s T A 2T 2s

Hence, p,=my, p, =my, and p = P, tp,

Similarly, repeat calculations for f = 4 s and 7 = 6 s.

5. ke -7, >| r, ]

@

m,

0
le N
[ r g
Figure
In figure, the origin is taken at centre of mass.
. Position of m, from origin = —r, Position of m, from origin = r,
L oo M tmn oy =
S r, =0= m +m, Somr = myr,
m I-
1 2
—L = (1)
m2 1
o . . in the d . ml n )
Performing union in the denominator Mmoo, T n o -
ny
(cr=r+r,) .. rzzi{m1 n m2:|
: o . . mEny, ntn oy
Performing union in numerator in equation (1) = = —
m, h Ul
m,
N m 4+ m,
6. Here, the centre of mass of the system made up of three spheres is
- - —
mr,,, +mr, + mr, -
ro= cml cm2 cm3  Where r , = centre of mass of sphere
an m+m+m o
1, etc.
7. Here, the density of sphere of radius R is p. Hence, the mass of original
sphere
4 ;3 .
M=pV=px§nR @
3 3 s 3 —_ i 3 11
The mass of small sphere of radius ‘a’ is m = p X 3 na (i)

Hence, the mass of the remaining sphere after removing small sphere of radius
‘a’ from the original sphere of radius ‘R™ is m, = M — m,.
Cmy = Fmp R - @) (iii)
LMy = ZTP
ﬁ

The centre of mass of original sphere r.,, = (0, 0, 0)



214

PHYSICS

%

The centre of mass of small sphere of radius ‘a’, B = (b, 0, 0)
The remaining sphere has symmetry about X-axis, but no symmetry about
Y and Z axes. Hence, the centre of mass of remaining sphere is, say
BN
rZ = (_x9 Oa O)
The sphere of radius R is made up of small sphere of radius ‘@’ and the

. . . % % %
remaining sphere (without small sphere). Hence, Mr,, = m n + m,r,
~ M, 0, 0) = m (b, 0, 0) + m,(—x, 0, 0). Comparing x co-ordinates

: m -

M@O) =mb —myx .. x = m, b (iv)
Using results (ii) and (iii), we get X.
From the figure, the masses of the three particles, the positions and forces

acting on them during steady positions are

%
m =40 kg, no=(2.3) m, F = (-6 0N
%
m, = 8.0 kg, o= 2) m, F, = (12 cos 45°, 12sin 45°) N
- -
m, = 40 kg, B =1, -2) m, F, = (14, 0) N
- — -
r_) _mn+mn + s

cm
m; + m2+ ns

— —
According to the Newton’s second law F = Ma,,, , M = m, +m, + m,

N . . - = —
- -
~ F+ E + K =Ma,, R _hE+E+E
M
%
e = (axcm’ aycm)
Hence the magnitude of acceleration Ia_> = 4/( )2 + ( )2
g cm!' — axcm aycm

a

xcm

yem
and the direction of acceleration with X-axis is 0 = tan™ ( j = e
From the figure, the centre of mass of the original plate of uniform density ‘p’

%
and radius ‘R’ is r.,, = (0, 0) (1)

Th f f plate of radius X is 1., = (&, 0 2
e centre of mass of plate of radius 5 18 Temy =0 )

When the plate of radius % is cut from the plate of radius R, the remaining

plate has symmetry about X-axis, but no symmetry about Y-axis. Hence the
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centre of mass of remaining plate must be away from the origin along X-axis

%
as say (—x). .. Temy = (=x, 0) 3)
_ . . R -
The original plate is made up plate of radius 2 and remaining plate
M, 1oy + My 1.,
Fom = 1 em + 2 Tem2 4)
M, + M,

2
Where M, = Mass of plate of radius % oM = Tc( ) p

2
M, = Mass of remaining plate = nR*p — M, = nR%*tp — n(%) p

-8

Where p = Density of plate, # = thickness of plate

=
[

%
Hence, from equation (4) calculate r,,,, .

| CHAPTER 2 |

O+ 0
Using equation 6 = 3 t find @, Substituting ®, in the equation

) P
e:@0t+§(xt find o.

Substituting values 6 = o + %Oltz find o. Now from O = 5
o

find © and represent © in rotations.(2w rad = 1 rotation)

. (0_(00 . > . .
Using o = P find a. Now I = m r°, using T = la, find 1
2 2
0"+ o
from @ = ———C find 6. Now work = T - 0
20
- - . R
Use [ = F x P, F =4 +6] + 12k and
— N R R
P =my =50@Q;] +3; +6k)
gsin®
Linear acceleration for a body rolling down the slope is a = 7 _ 57
K
]

Substituting K = R the radius of gyration for hollow cylinder obtain a.

2 2
0" + o,
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10.

11.

Moment of inertia of the system I, =1, + I,. I = Moment of inertia of

the object of 100 kg relative to z axis I, = moment of inertia of the object
of 200 kg relative to z axis. As the distances are relative to z axis,
z coordinate is not taken in to calculation.
_ _ 2

L=1+1 =ma +)) (D
position vectors for the objects of 100 kg and 200 kg are (2, 4, 6) and
(3, 5, 7) respectively.

=1+ L =100 08+ ), L =1+ L, =200 () + y%)

X 2y
] 1 1 2 2
Substitute in (1)

2 gsinb
Using K = ER for solid sphere in v* = 7~ 57 find v.
]
. IS TP I N
Now using mgh = 5 mv + 5 Iw*. Calculate rotational kinetic energy.
(3107
Consider Earth as solid sphere and taking its moment of inertia I = %MR2
2 2n T :
and ® = T = 24x3600 substitute in L = I® and obtain L.
- 2 . _ 2
I =1.+ Md, sl =1 - Md,
- 2 _ 2 2
Now I, =1.+ Md,” =1 - Md~ + Md,
= Il + M(d22 - dlz) mA m D

From the figure the moment of
inertia I of the system about the
axis passing through O.

Moment of inertia of the sphere M M M

about the axis passing through its HO — ___________O H ®

centre is IC = 2MR2

5

From the figure moment of inertia

of the system about the axis EF
=1 +L +1;+I

Using I = I, + Md"” FO
2R 1 = 2MR2
I, = SMR% I, = SMR%
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12.

13.

14.

_ 2 MR? 21 = 2MR? 2
I; = SMR? + Ma* I, = SMR? + Ma
S 1 = 2MR? + ZMR® + ZMR® + ma® + EMR® + ma?
5 5 5 5
- 2(%MR2+Ma2)

rI:O,rZ:Zm,r3:4m,r4:6m,m1=1kg,m2:2kg,m3:3kg,

m, = 4 kg
2 2 2
+ m,r,” + myr,

_ 2
Now, IAB = mr, + myr,

Total kinetic energy = Linear kinetic energy + Rotational kinetic energy

_ 1 - 19
—2mv+210)

2

for disc I = substituting ® =

,

2

Total kinetic energy = %mv2 + %T v_2 = %mv
r

Rotational kinetic energy = imv

The fraction of total kinetic energy

in the form of rotational kinetic energy

To find moment of inertia of thin
circular ring or circular wire about
an axis passing through its centre
and perpendicular to its plane and
radius of gyration, consider a thin
ring with mass M and radius R as
shown in the figure. Length of the
ring [ that is the circumference of

the ring is 2mR.
Mass per unit length of this ring

Mass of the ring M
A= Length of thering ~— 2R
- _ _ M
Mass of the element of the length dx as shown in the figure = A - dx = 1R dx

If dI is the moment of inertia about the axis ZZ'.

dl

(mass of the element) (perpendicular distance from ZZ' axis)
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_ M,
di = 57 R - dx (1)

For the moment of inertia I of the ring as a whole about axis ZZ' integrate
equation (1) in the interval from x = 0 to x = 2nR.

2nR
f[ar - {%R.dx

[o—
I

1 M dx _ M
’ 0 27

I
|
=

I

R[x]oz"R = 2M7TR[2nR -0l 1 =MR> (2

Comparing equation (2) with I = MK?, K?> = R?, Radius of gyration K = R

15. The vector sum of the forces acting on the light rod,

— — — — — — - .

F=F + E, + F, + F o+ F; (F is the resultant force)
— 4),} — A N = A N
F=KJ+FKJ*tTEC)D+EJ+FEKE)

%
Now, moment of force F relative to point A = vector sum of the moments
of component forces.

'.F-x=[F1x0]+[F2><x1]—[F3><(x1+x2)]+[F4><(xl+x2+

x3) — [F5 X (x1 +x, + X+ x4)]

X =

| CHAPTER 3 |

1. If two forces become equal at distance x from the centre of the Earth,

GM
GM,m _ s ’ M = Mass of the Earth,
2 2 ‘
X (r—x)

MS = Mass of the sun. r = Distance between the sun and the Earth. From
this find x.

2. M, = Volume x Density = (%“Re3 )(p)

“ 8= R 2e = %HGPRE. Hence find g.
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The required centripetal The gravitational force
force for the Earth's on the Earth by
3. circular motion — the Sun
1\/161/'02 GMsMe
e 2
r r
M=
y G

4.  For the circular motion of the satellite,

GM, [GM,
vy = p = 2R, (r=R,+R,=2R)

4 2
Find I from this. Now T? = (Gi\t/le jrj. From this find T

5. For circular motion of satellite mv*/r = GM, m/r*

o .1 5, GMm
.. Kinetic energy of satellite 5my™ = ———
2 2r
) -GM,m
But potential energy = ———
’
o ) -GM,_m
.. Total energy = kinetic energy + potential energy = 5
r
GM,m
. Escape energy =
2r
1., GMm Lo
v, = P From this find v,.
. . . mv2 GMem
6. For the circular motion of the satellite, R~ R 2 = (gm (N
¢ e
GM, o, 2nR,
(- g= Rez) Sovi=gR,. But v = T
Put this value in equation (1) and find T.
. . . W”’YO2 GMem GME
7. For circular motion of the satellite, = ) SV = R
R, R, e
2GM, v
For the object lying on the surface of the Earth, v, = R . Find o
e e

8. At the given point the total energy = a2 | Y| a2

a d

2G(M, +M,)m
d

.. Escape energy =

2G(M, +M,)m
If the escape velocity is v,, then lmv 2= (M, 2)

S mv, p . Hence, find v,
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9. In this special case, the circular motion is governed by,

2
(Centripetal force —mr" J - (Gravitational force _GI\S}mJ
Ve

Also put v = % Hence, find T2

| CHAPTER 4 |
1. Here, weight of wire = tensile force = ldg and breacking stress =
Tensile force d DL = Breaking stress
Area - e - - dg

2. If increase in lengths of AB, BC and CD wires are Al, ., AlBC and AlCD,

find these increments using

_ FL
- AY”

and Displacement of D = Al, . + Al,. + Al .

Al Displacement of B = Al g Displacement of C = Al T Al

BC

3. Centripetal force necessary for circular motion is supplied by restoring force.

_ FL . _ YAAL _ my? _ mo’12
Y= ApN F = L and F = L - L compose these two

values of F.

4. Draw EB.D. for both the masses and calculate tension T.

T Al Stress

Here, Stress = A and ;= Y

5. First ditermine Al using Y = _EL_. now use illustration 3.
AAL”

Use U = %Y X stress X strain X volume.
6. Al =1 oc At .. % = ocAt

Now use Y = El. here F is tension. Now find F.

A At’

| CHAPTER 5 |

1. Find velocity of water coming out of nozzle using Ajv, = Ay,

1

Now for vertical motion y = Egtz, ¥y = 1 m, for horizontal motion x = vt

2 2
oy L x| .o 2yvy”
-y =38 ) s P
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Pressure at A = Pressure at B
oo (h + 2d)pg + P, =P, + 12d)g Liquid
Now, find p,. .
For horizontal flow Al
/Water

1 > _ 1
P, + S PV = P, + 5PV,
P — P. = l (V 2 _ v 2)
| 2 7 PV, 2
" Pug gth, — h) = %pwam (1*22 — rlz) insert other values to get h,.
Work = TAA = T2r (r} — r?)

rhpg

2cos0

2Tcos0 . . .
~h = W Use this formula to calculate heights of water in both
the arms. Then find the differences.
_2vr

n= 9 7 (p Py8

Here, constant velocity of bubble is the terminal velocity.
and 8. Use equation given in hint.
4T

Find P, usng P, — P, = |~ P, = 10’ Pa
Now for isothermal change P,V = P,' %
Find P,', No P,' — P ' = % take R' = % and calculate P_'.
| CHAPTER 6 |

m =200 g AT =T,— T, C = 0215 cal g C!, Q = mCAT

_Q
and H. = AT
(@) 32 g O, =1 mole

10 _ 5

. 10g02=§=€ mole

LU= 3 mole
.. - 6
P=3x10°Nm?% T=273+10=283K
From the ideal gas, state equation,
HRT
P
and V, =10 L = 107 m’

PV, = URT, = V, =

Hence, the work done by the gas
W =PV, - V)
(b) As O, is diatomic rigid rotator,
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L

C =

v R

N [

PV,
pR

and PV, = URT, = T, =
“AE =Cy (T, - T)
(o) AElm =Q-W
- Q=AE_+W

T
3. Here T2 =300K,M=40% =04, n=1 - ??, Hence calculate Tl.

Keeping T, = constant, ' = 50% = 0.5, then T," =

From,n' =1 — T , find T
1
4. T, =500K,T,=375K, Q =600k cal

o T, QT L
(i) Efficiency n =1 — T, (i) Q ~ T = Q= T, *Q

J
Hence network done W = (Q, — Q,) x 4.2 cal

(iii) Heat gained back in heat sink is = Q,
5. T,=27°C=27+ 273 =300 K

ool»—

P, =2 atm, p =1 mol, ¥ =15, V

(a) For adiabatic process PVY = constant

V Y
. Y
L PNI =P, VI, = Pf—P(Vf)

(b) According to the ideal gas state equation P,V, = uRT,

PV, = URT FiV, 1; T,=T A

. e l_,l, . ,‘, - -y = :> e l ——

7V A A f PV,
HR(T; = T;)

6. For adiabatic process W = 1 . Here the volume decreases, hence,

y —

the work done is negative.

—uR(T; - Tf) HR(Tf - T)
y—1 B y—1

7. According to first law of thermodynamics, .. AE, =Q — W

For closed gas container, the volume is constant => AV =0 .. W =0

PV .. _ . _
AE, = Q = uC,AT = RT C AT (0 PV = uRT, .. p = RT)
) QRT )
. AT = PVC, (For monoatomic gas C,= R)

". Final temperature Tf =T, + AT. For ideal gas P,V, = URT; Pfo = MRTf
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(0 V= V)
P, T T
A _p L
p - T ~FP=P7

2
8. Here, n =1 mol, AT=30C°=30K, Vo T3

2 _1
V= AT3, A = constant, .. dV = A%T 3dT

T+ AT T+ AT
Hence, W = [ PdV = [ %dV(vPV:ptRT, S PV=RT pu=1)

+
B +J' —5 _ 2R J‘ _2 R [T]T+AT
B -3 T 3 T
T AT3
2

%R[T + AT — T] SoWo= gRAT

9. Here, P=10atm =101 x 10° Nm™> T=300K, p =2 mol, R=8311]
mol™! K™

For diatomic (rigid rotator) gas y = l. According to ideal gas state equation

5
HRT o
PV = uRT, .. V = 5 For adiabatic process, PV' = Constant
uRT Y
. Constant = P P

10. Here T, =300 K, T, = 600 K, T, = 455 K for monoatomic gas f = 3

For 1 mole gas

/RT, /RT, .
E o = — E o,= 3 and E, , ; = Internal energy at point

JRT,
2

3 =

Process 1 — 2 : Process is isobaric = W1 =0

“Q =AE ,  =E

int> 12 in® 2 Eim’ 1

Process 3 — 1 : Process is isobaric

" AE, _, , =Q, - W, W, =PdV

1nt’ 31
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11.

12.

But as the volume of the gas is decreasing, W is negative

. W, =-PdV = —uR(T, - T) and AE, - E

int’ 31 in® 1 Eint’ 3

Hence Q, = AE g W,

int’

Q1_Q2 QI_QZ
n=22%=0.22,Q1—Q2=75J,n=Q—1=>Ql=

and Q, =Q, =751
Here Q, = 10,000 J, W = 2000 J, L. = 5.0 x 10* J/g

W
(a) Efficiency of engine M = Q_l’

(b) During each cycle, the heat given into heat sink is Q, = Q, — W,

(c) Let ‘m’ gram gasoline is used during each cycle.

" Ql :mLC Soom = L_Ca
(d) Gasoline used in each cycle = m gram

.. Gasoline used in 25 cycles per second is M = 25 x m gram

. Gasoline used in 1 hour = 60 x 60 x M g/h = ............. kg/h
(e) Power generated by engine in 1 second = Number of cycles per
second x (work done during each cycle)

| CHAPTER 7 |
@T=3sA=2emo="2=2L g-60=12
.'.y:25in(%t+§)
() T=1minz60s,A:30m,0):%:%—0,4)2_900:_%

Cy = T
SLy=3 cos(30l‘)

K:k+2k+k:8Nm],T:2n\/%:0.628s

Here F = —kl = —k(I, + ), Also F, = —k [, = —k(l, + l—l).'.kl =(+ l—l) k,
n n

And F, =k, = ~k(, + 1) - kn + Dk
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10.

£ =100 x 2 =200 s, A(f) = AP

mleOg,A(t)z%,

2 2 2 2 2 2
V= im,/4A =3y, Vo = imw/Al -y Asv, =2 2\[A wew — Y =
2 2
1/A new — Y . AAT — ¥y = A% -y AT A4 — 4yt 4y,
Anew = ‘\’4A2 - 3y2
v = (;)\/A2 — vy, a=-0%T= 2—0? a’T? + 415? = 4T°®*A? = Constant.
T — mg cos® = mv*/L .. T = mg cos® + mv?/L

T=T . when cosO = 1 and v is maximum

2

v2mx =2hg=2gL %, VZmax =2hg=2gL( - cos@l),
=2gL (sinze—o) (* sin’0 = —I_COSZO) =2 L %
2 ' 2 2

W N
w2

= 10sin Gt + 7). A =10, 0, =31 =T, =

y, =5 (sin3ms + 3 cos3mt) = A cosd sin 3nz + A,sing cos 37t

Y, = A, sin 3t + ), A, = (57 + (533)* = 10

A
2 And =& =

® 3 A,

) =3n,T2=

PE = %ky2 Total mechanical energy E=K + U ... K=E - U

V) = 601/A2 - )’12 » V) = (’)VAZ - Y22 ’v12 - v22 - COZ(YZZ - y12)

27

T==
()
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| CHAPTER 8 |

1. Differentiate wave equation y = A sin (0f — kx) w.r.t ‘¢, the instantaneous

d
velocity of a particle at time ‘# will be, v, = d_)t) = A® cos (ot — kx).

Now, wave speed v = w/k

d
Slope of wave at x = d_i = — kAcos (ot — kx)

. Vp dy

From above all three equations, — = ———

v dx
2. Speed of P wave v, = 4 Speed of S wave v, = 4 _
’ p t’ S t+240

(" 4 min = 60 x 4 = 240 s)

By solving these two equations f = 240 s

and find out d.

Now, substitute value of ¢ and Vp in equation Vp =

3. A:10m,x1=2m,t1:2sandy1=5m,x2=16m,t2:8sand
y,=543 m

Now, substitute these values in equation y = a sin (0f, — kx,)

_ T
©-k= 13 (1)

From equation y, = Asin (07, — kx,) you will get,

0)—2k=2—n4 )

Subtracting equation (2) from equation (1)

k = 2—75‘ rad/m, substitute value of k in equation (1), ® = 7/8 rad/s

4. 'y =3 sin ((3.14)x — (314)¢) differentiate equation w.r.t. ‘t’
dy
V= I (3) (314) cos ( (3.14)x — (314 )

.. Max speed of particle = (3) (314) =94 m s~!. Differentiate above equation
wrt. ‘1.



SOLUTIONS 227

a= % = —(3)314)(314) sin ( (3.14)x — (314))

Now put x = 6 cm and ¢ = 0.11 s,
a = — (3) (314)* sin (67w — 117) = (-3) (314)? sin (-57) = 0.

5. T,=0.+273=273K A, =132m T, =27 +273 =300 K, A, = ?

S, ST Ve

Substitute the values in above equation, 7»2 = 1.384 m,
Increase in the wavelength AL = A — A = 0.064 m

6. T,=1200+ 273 = 1473 K, p, = 16 p,, T,, = ? Now, v, = v,

. [YRT,  |YRTy _ Pu 1
- /pOV ‘1/pHV LTy =T, % o = 1473 X 1o = 9206 K

oo Ty =92.06 — 273 = — 180.94°C

7. Wave speed is same in all parts of the wire as the medium (wire) is same
v =fh = Hh = A
Each section of wire is oscillating with fundamental frequency (f = 2L)
S f, QL) =f,2L) =f, 2L,), Now, put f, : f, =1:2and f, : f;=1:3
in above equation and determine L,, L, and L.

8. W=005glkm, f, =420 Hz, f, _ =490 Hz, T = 490 N

+ 1

Suppose the wire vibrates at 420 Hz in its nth harmonic and at 490 Hz in its

T
(n + D)th harmonic. According to f = % \/%

_n [T _n+l T
n = 2L u (1) and fn+1_ 2L \/; 2

Taking the ratio,

fn+1 n+1 .
f— = L n=6 (by putting value of f, and f . )
420 = B [430 900 . p =200 5
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9.

10.

11.

L = 100 cm, f, = 300 Hz, f, _, = 400 Hz, 2A = 10 cm

Now, f —f,=m+1)f —nf, - f, =100 Hz

> n o+ 1

2L L2 m
1 =200 cm, .. k= % = 100 rad/cm

T =
o = 2xf, = 2m(100) rad/s

Equation of stationary wave, y = —10 sin(%x) cos (2007)t cm

v+0
When the car is moving towards the listener, le = ( v — j J,
S

v+0
When the car is moving away from the listener, sz = (V 5 j A
S

le_fL2= (v—vvs_v-:vsjfs

Substitute, v = 340 m/s, Vg = 15 m/s and fS = 500 Hz in above equation.

f, — 1, = 442Hz
fy =600 Hz, v = 340 m/s, v, = 10 m s~

When the engine is moving with the speed 10 m s~! towards the hill, we can
consider its image moving in opposite direction. Listener is sitting in the engine
and engine is moving towards the hill. Hence, direction of v, is along L to S

and direction of Vg is from S to L.

' v+ 340 +10
= V= Vg < Js = 340 -10

x 600 = 700 Hz
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APPENDIX

SINE AND COSINE RULES

0 sin o _ sin B _ sin vy
b c

a

(i) ¢? = a®> + b> — 2 abcos vy
(iii) Exterior angle, 0 = o0 + B

TRIGONOMETRIC IDENTITIES

() sin*0 + cos*® =1 (i) 1 + tan*® = sec’®
(i) 1 + cor?0 = cosec®® (iv) sec’® — tan®0 = 1
(v) cosec’® — cot’® = 1 (vi) sin20 = 2sind cosO

(vii) 0520 = cos?0 — sin*0 = 2cos”® — 1 = 1 — 2sin’0
(viii) sin(o. + B) = sinacosP + cosasinf

(ix) cos(a + PB) = cosacosP F sinosinf3

o + B o + P
(x) sina, + sinf3 = 2sin 5 |cos >
a + B a - B
(xi) coso + cosP = 2cos| T 5 |cos| T 5

a + B a - B
(xii) cosa. — cosP = —2sin( 3 jsin( > ]

Values of sine and cosine for special angles :

0° 30° 45° 60° 90° | 180° | 270° | 360°
function 0 rad % rad % rad % rad % rad| mrad 371! rad | 2nrad
sin 0 % % g 1 0 =l 0
cos 1 g % % 0 =l 0 1
tan 0 % 1 3 © 0 © 0
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Quadratic Formula :

If ax? + bx + ¢ = 0, then, x =

—b+~/b* —4ac

2a
Formulae of Log :
1. 1If log a = x, then a = 10* 2. log(ab) = log(a) + log(b)
3. log( % ) = log(a) — log(b) 4. log(a™) = n log a
5. loga=1 6. In a = log " = 2303 log,,a
Important Expansions :
- . . n(n—Dx*
1. Binomial Expansion (1 + x)" =1 4+ nx + 3 + o x<1
+1)x*
(lix)'"=1¢nx+% ...... x <1
x x°
2. ex=1+x+7+?+ ..... when x < < 1, then ¢ =1 + x
x° x°

3. ln(1+x)=x—7 +? +..(0x1 <1

when x << 1, then In(1 + x) = +x.
4. Trigonometric Expansion (0 in radian)

. 3 0° .. 0’ 0*
(1)sm9=9—§+§+ ..... (11)cos@=1—a+m+ .....
63 5
iii) tanO = 0 + — + — +....
(iii) tan 3 15
If O is very small, then sin® ~ 0; cosO ~ 1 and fan® ~ O rad
dy dy
Y dx Y dx
x" nx"! sec x sec X tan X
sin x cos x cosec x —cosec x cot x
" 1
cos X —sin? x Inx <
cot x —cosec? x tan x sec? x
cos kx —k sin x e e*
sin kx k cos x a® a’ln a

Working rules of derivatives :

d ) d B
(D a(k) = 0 (where, k is a constant) 2) =1
<y = 2 ~ dy _ dy du
Q) (ky) = k I (where k is a constant)  (4) = dn
_ dy _du  dv i} dy _dv , du
() I0y = u 4 v, then dx  dx T dx ©) 1f y = uv, then x Yax T Vax

dy dx dx

N Ify= %,then— =

dx v2
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Integrals of Some Standard Functions :

fx) Feo = [£Cx )dx fi) Fo = [f( x )
n+ 1 n+1
x" + c (ax + b)" 1(ax+b) + c
n+1 a n+1
(n=++1)
1 .
T Inx+ c sin x —cos X + ¢
e e+ c cos X sSin x + ¢
kx l kx 9 _ =
e ke + c sin kx kcosx+c
a* 1
a” —+ cos kx —sin kx + ¢
Ina k




232

PHYSICS

Sl

N »

10.

11.
12.
13.
14.
15.
16.

REFERENCE BOOKS

PHYSICS, Part 1 and 2, Std. XI, GSBST
PHYSICS, Part 1 and 2, Std. XI, NCERT

Fundamentals of PHYSICS by Halliday, Resnick and Walker

University Physics by Young, Zemansky and Sears

CONCEPTS OF PHYSICS by H. C. Verma

Advanced PHYSICS by Tom Duncan

Advanced LEVEL PHYSICS by Nelkon and Parker

FUNDAMENTAL UNIVERSITY PHYSICS by Alonso and Finn
COLLEGE PHYSICS by Weber, Manning, White and Weygand

PHYSICS FOR SCIENTIST AND ENGINEERS by Fishbane, Gasiorowicz,

Thornton

PHYSICS by Cutnell and Johnson

COLLEGE PHYSICS by Serway and Faughn
UNIVERSITY PHYSICS by Ronald Reese

CONCEPTUAL PHYSICS by Hewitt

PHYSICS FOR SCIENTIST AND ENGINEERS by Giancoli

Heat Transfer by Holman



233

LOGARITHMS

6 8 L|9 § v|€ ¢ L] 6 8 L 9 S 14 € [4 3 0 6 8 L|9 S v|[€ 2 L] 6 8 A 9 S v € 4 3 0

v € €|€ ¢ ¢} | 0] 9666|1666 | L866 | €866 |8.66 | ¥.66 | 6966 | G966 | 1966 | 9566 | 66 L 9 9 |S v € |2 ¢ 1]|96EL|88EL |08EL | cLEL | ¥OEL | 9GEL | 8YEL | OVEL | 2EEL | ¥2EL| VS
v ¥ €|€ 2 2|t L 0] cS66|8v66 | Ev¥86 | 6€66 | ¥E66 | 0E66 | 9266 | 1266 | L166 | 2L66| 86 L 9 9|9 ¥ € |2 ¢ L]9leL|80€L |00€L | c6CL | ¥8cL | GLcL | L9¢L | 6ScL | LSCL | €VCL| €S
v ¥ €€ 2 2|} L 0] 8066 |€066 6686 | #1686 | 0686 | 9886 | 886 | L/86 | ¢/86 | 8986 | L6 L L 9|9 ¥ € |c ¢ L|S€cL|9¢cL (8lcL|O0lcL |cO0cL | €6LL | S8LL (LLLL | 8I9LL | 09LL| CS
v ¥ €|€ ¢ ¢}t | 0] €986|6586 | ¥S86 | 0586 | S¥86 | 1786 | 9€86 | CE86 | L286 | €286 | 96 8 L 9 |S v € (€ ¢ L|2StL|EvhL (SELL|9CIL |8LLL| OLLL | LOLL [€60Z | #¥80L | 940L| LS
v ¥ €|€ ¢ ¢+ L 0] 8I86|1¥186 | 6086 | S086 | 0086 | G616 | 1616 | 9816 | 816 | LLL6| S6 8 L 9|9 ¥ € (€ ¢ |]|490L)|6S0L |0S0OL | c0L | €E0L | ¥2OL | 91L0L | LOOLZ | 8669 | 0669 | 0S
v v €|€ ¢ ¢} |+ 0]€..6)|89.6 | €926 | 6526 |¥SL6 | 0SL6 | V.6 | V.6 | 9EL6 | LE€L6| V6 8 L 9 |S v v (€ € L|1869|cL69 1969 | SS69 | 9v69 | LEGS | 8269 (0269 | L1169 | 2069 | 6F
v v €|€ ¢ ¢} |+ 0] .2/6|ccl6 |LL.6|€LLE6 [BOLE | €0L6 | 6696 | #7696 | 6896 | G896 | €6 8 L 9|S v v (€ ¢ 1]€689|1¥889 G489 | 9989 | LS89 | 8¥89 | 6€89 (0€89 | 1289 | 2189 | 8F
v ¥ €|€ 2 2|t L 0] 0896|5296 | L1296 | 9996 | L1996 | LG96 | 2596 | L7796 | E¥96 | 8€96| ¢6 8 L 9|9 S v |€ ¢ L]€089|Vv6/9 |S8L9 | 9449 | £929 | 8G9 | 67,9 | 6€L9 | 0EL9 | LS9 | LY
v ¥ €€ € S|}t L 0] €€96|8296 | ¥296 | 6196 |¥196 | 6096 | S096 | 0096 | G656 | 06S6| L6 8 L L |9 S v (€ ¢ L]|2k,9)|2c0L9 (€699 | ¥899 | G299 | G999 | 95999 (9799 | LE99 | 8299 | 9P
v ¥ €|€ 2 2|t L 0] 9896|1856 | 9256 | LLS6 | 99SG6 | 2956 | LSS6 |29S6 | L¥S6 | 2¥S6| 06 6 8 L |9 S v (€ 2 L]|8L99|6099 6659 | 0659 | 08G9 | L£G9 | L9G9 [ SS9 | 2¥S9 | 259 | SP
v ¥ €€ 2 2|} L 0] 8E96|€€S6 |82S6 | €256 | 8156 | €156 | 6056 | Y056 | 6616 | V616 | 68 6 8 L |9 S v (€ ¢ 1]2cs9|€LS9 (€089 | €619 | ¥8Y9 | ¥LV9 | ¥OV9 | ¥SP9 | GPEQ | SEVO | Vb
v ¥ €|€ ¢ ¢}t | 0] 6876 |¥8v6 | 6416 | ¥.v6 696 | SOV6 | 09¥6 | SS¥6 | 0S¥6 | S¥¥6| 88 6 8 L |9 S v (€ ¢ L]|Sev9|SI¥9 | SO¥9 | S6E9 | S8E9 | SLEQ | G9€9 [ GSE9 | G¥E9 | GE€9| €F
v ¥ €|€ ¢ ¢}t L+ O] O0rv6|SEV6 | 0EV6 | Scvb6 |0cv6 | SL¥6 | OLY6 | SO¥6 | 00V6 | S6E6| L8 6 8 L |9 S v (€ 2 L]|S2E9|vIE9 |10E9 | ¥629 | ¥829 | 229 | €929 | €529 | €¥29 | 2€29| eV
S ¥ ¥|[€ € 2|2 | || 06E6|S8E6 |08E6 | SLE6 | 0LE6 | GS9E6 | 09E€6 | SSE6 | 0SE6 | SYE6| 98 6 8 L |9 S v (€ ¢ L]|ccc9|cle9 1029 | 1619 |08I9| 0LI9 | 0919 (6719 | 8EL9 | 8CL9| LY
S ¥ ¥|[€ € 2|c | |L|Ove6 |SEE6 | 0EE6 | SCE6 | 02E6 | SHE6 | 60E6 | ¥OE6 | 6626 | ¥6c6| S8 OL6 8 (9 S v (€ 2 L|ZLL9|LZO0L9 (9609 | G809 | G209 | ¥909 | €509 |2¥09 | LEOS | L209| OF
S ¥ ¥|€ € 2|c |} | |682c6|v826 (6126 | /26 | 6926 | £9¢6 | 8Gc6 | £€5¢c6 | 8¥c6 | Evc6| V8 OL6 8|4 S Vv |€ ¢ L]0OL0O9 |666S |886S | LL6S | 996G | GS6S | ¥6S | €€6G | 265 | L16S| 6€
S ¥ v|€ € 2|c | || 8€Ec6|cec6 |Lceco | cccb |LLc6 | Clc6 | 90¢6 | L0c6 | 9616 | 1616 €8 OL6 8 (4 9 S (€ ¢ 1]6689|8885 (/4485 | 998G | SS8S | E¥8S | €8S | 1285 | 608S | 86.S| 8€
S ¥ v|€ € 2|2 | 1|9816|08I6 [SLI6 |0LI6 |S9L6 | 6SI6 | ¥SI6 |66 | EVI6 | 8EL6| 28 OL6 8 (42 9 S (€ ¢ |9849|G44S |€94G | 2cSLS |O0v.LS | 624G | L1LS [ S0LS | ¥69G | 289G | L€
S ¥ ¥|€ € 2|2 | L|€e16|82l6 (ccl6 | LLL6 |cki6 | 906 | LOL6 | 9606 | 0606 | S806| I8 FLOL8 (£ 9 G | € |049G|899S | L¥9S | GE9S | €29SG | L19G | 996G | £8GS | GLGS | €9GS| 9¢€
S ¥ ¥|€ € ¢|2¢ | ||6L06|¥,06 6906 | £906 | 8506 | €506 | L¥06 | 06 | 9€06 | LE06| 08 LLOL6 |£L 9 S |¥ € | SSS|6€ESS | £2SS | ¥1SS | 20SS | 06%S | 84¥S | S9¥S | €S¥S | L¥PS | S€
S ¥ ¥|[€ € 2|c |} || Sc06|0206 |SH06 | 6006 | ¥006 | 8668 | €668 | L868 | 868 | 9268 | 61 LLOL6 |8 9 S |¥ € |82rS|9LYS | €0PS | L6ES | 8LES | 99€S | €GES | OVES | 82E€S | SLES| V€
S ¥ ¥|€ € 2|2 | || L68|S968 0968 | ¥S68 | 6V68 | EV68 | 8BE68 | CE68 | LC68 | L268| 8L ¢l 0L 6 (8 9 S ¥ € |]|20ES|68cS |942S | €9¢S | 0SS | LECS | ¥ecS | L1cS | 861G | 981G | €€
S v ¥|€ € 2|2 | +]SI68|0I68 |1068 | 6688 |€688 | /888 | 888 (9/88 | 1/88 | G988 | LL cl L6 |8 4L S | € L|2LLS|6SLS [SPIS|cELS |6L1S | SOLS | 260G 6405 | S90S | LSO0S| 2€
S § ¥|€ € 2|c | 1|6988|7S88 8788 | c¥88 | LEBS | €88 | S¢88 | 0c88 | 188 | 8088 | 9L ck LLOL8 42 9 (¥ € 1]|8E0S|tec0S | LLOS | L66V | €86V | 6961 | SS61 | 2v6V | 826% | V16V | LE
S § v|€ € ¢|c |+ 1]|c088|L648 1648 |S8.8 |6448 | ¥/./8 | 898 (2948 | 9548 | 1S/8| S €L LLOLI6 L 9 |[F € L]006Y |988Y | L8V | LS8V | EV8Y | 6281 | 18V | 008 | 984 | L.V | 0€
S § ¥v|¥v € ¢|c } ||Sv/8|6E/8 (€€L8 | Lc/8 |cc/8 | 91/8 | 0148 | ¥0L8 | 8698 | 698 | VL €L ch OL6 £ 9 (¥ € | |LSLV |cviy |82SLy | €LLY | 8697 | €891 | 6991 | ¥SOV | 6€9Y | ¥29¥ | 62
S S ¥ |¥ € 2|2 | 1|9898 (1898 G298 | 6998 | €998 | LG98 | 1G98 | S¥98 | 6€98 | €€98| €L vL 2k LL|6 8 9 [§ € ¢2]609Y|v6Sy | 645y | ¥9SY | 8¥SY | €EESY | 8LSY | 20SY | L8V | 2L¥¥ | 82
S S V| v € 2|2 |} |4298| 1298 [SGI98 | 6098 | €098 | L6S8 | L6S8 | S8SG8 | 6468 | €458| ¢L 7L €L LLE6 8 9 (S € <c|9Shy |Ovvy | Sevy | 601 | E6EV | BLEV | C9EY | 9VEY | 0EEY | VIEY | L2
S S ¥ |¥ € 2|2 | ||/998| 1998 [ GSS8 | 6798 | €¥S8 | LESB | LES8 | SCS8 | 6168 | €1S8| L GL €L LL[OL 8 L[S € c|86cy|18cy | S9¢y | 6¥cy | cEcv | 9ler | 00cr €8Iy | 991y | 0SLY | 92
9 G v |v € 2|2 L L]9098|00S8 | v618 | 88¥8 |28¥8 | 9L¥8 | 0L¥8 | €9¥8 | LG¥8 | LS¥8| 0L Sl vl CL|OL 6 L[S € c|EELy |9LLY | 660F | 280F | SO0Y | 8¥0F | LEOY | VL0V | L6B6BE | 646E| ST
9 § v |v¥ € 2|2 L+ L|Svy8|6EY8 |CEYS | 928 (028 | VL¥8 | LOV8 | LOV8 | S6E8 | 88€8| 69 9l v Sk 6 L [S V¥ <c|296€ |Sv6E | LC6E | 606E | C68E | ¥28E | 9G8E | 8EBE | 0C8E | 208E | Ve
9 § v |v¥ € €|c | |]<28e8|9.E8 |0LEB | €9€8 | LSEB | LSEB | ¥¥EB [ BEEB | LEEB | G2€E8| 89 LL G €L 6 L |9 Vv <C|¥8LE|99.€ | Lv/LE | 62LE | LLLE | 269E | ¥29E [ GGOE | 9€9€ | L19€E | €2
9 G G| € €2 L L]|6LE8|CLEB |90EB | 66¢8 | €628 | L8288 | 0828 | #7228 | £L928 | 928 29 Ll Gk vi|2k O 8 [9 +¥ 2| 86SE|64SE | 09SE | L¥SE | 22SE | 20SE | €8VE | ¥OVE | ¥PPE | ¥evE | 22
9 ¢ G| € €2 L || ¥Se8|8vc8 | L¥C8 | G€C8 [ 8228 | ¢cc8 | S1c8 | 60¢8 | c0C8 | S6L8| 99 8L 91 vi|cl O 8 [9 V¥ <c| ¥OPE | SBEE | SOEE | SYEE | ¥CEE | YOEE | ¥8CE | €9¢E | EVCE | ¢ccE| L2
9 G G| € €|C | 1]|6818|c8I8 |9218 6918 (2918|9518 | 6718 [2VI8| 9€I8 | 6218 S9 6L L1 GL|EL L 8 [9 ¥ <c| LO2E | L8LE [ 09LE | BELE | 8LLE | 960€E | SL0E | #SOE | 2E0€ | OLOE | 02
9 G G |v¥ € €2 L L]c2t8 |98 |60l8 |cOL8 (9608 | 6808 | 2808 | S208 | 6908 | 2908 | ¥9 Oc 81 9L|€L LL 6 [L V¥ <] 686¢|.L96¢ | S¥6C | €c6C | 006¢C | 882 | 998¢ [ €€8C | 018C | 88/ | 61
9 ¢ G|¥ € €2 | || Ss08|8¥08 | L¥08 | SE08 (8208 | 208 | 108 | L008 | 0008 | €66L| €9 2 6L 9L|¥VL 2L 6 |L S <2|S9/¢|cvlc |8LLc | S69¢C |2/9¢ | 8¥9¢C | G29¢ | L09¢ | £/G2 | €SS2 | 8L
9 9 G |¥v € €|c | || /86L)|086L |€CL6L|996L (6S6L | cS6L | S¥6. (8E6L | LE6L | ¥26L| 29 ¢c Oc LL|Sk ¢k OL[2 S <c|62Sc|t0Se | 08ve | SSve | 0Eve | SOve | 08EC | SSEC | 0€€C | ¥0ES | L)
9 9 G |v v €2 L+ L|ZI64|0L6L |€06L |968. (6882 | 288 | G482 (8982 | 0982 | €982 | 19 ve L2 8L|9L €L L8 S €] 6.¢c|€Secc | Lece | L0ce | SLke | 8Vie | ecle | S60c | 890¢ | L¥0C| 9t
9 9 S |v ¥ €(C | L|9¥8.|6€8L |cE8L | Sc8L (818L| 018L | €08L (69LL | 68LL | 28LL| 09 Gc ¢c Oc|Zk vI LL[8 9 €| ¥I0cC |86} | 6564 | LE6L | €06} | G281} | L¥8L [8I8L | 061 | L9LL| SE
L 9 S |v v €(c V V|VLLL|L9LL |09LL |\ CSLL (SYLL | 8ELL | VELL (€CLL| 9VLL | 60LL| 6S /2 ve 1|8t Gk CL(6 9 €| 2ELL|COLL | €49} | ¥¥OL | VLOL | ¥8S) | €GS) [ €2SL | 267 L | LOVL| VL
L 9 S |v v €2 L | 0LL|P69L | 989L | 649 (2L9L | ¥99L | LS9L |6%9L | 2¥9L | ¥€9L| 8S 6¢ 9¢ €¢|6l 91 €10 9 €| 0EVL |66EL | LO9EL | SEEL | €0EL | LLC) | 6EC)L [90C) | €LLL | 6ELL| €L
L 9 S|S v €|2C ¢ L|.429L|619L |2Cl9L | V09L |L6SL | 68SL | ¢8SL | ¥#LSL | 99GL | 69SL| LS L€ 82 vc|tc LI ¥L|OF L €| 90k} (220} | 8E0L | #00L | 6960 | #€60 | 6680 | ¥980 | 8280 | ¢640| Ct
L 9 S|S v €|c ¢ | SSL|€vSL |9€SL | 82SL (02SL | €LSL | SO0SL | L6%.L | 06%L | 28¥L| 99 ¥€ 0€ 9¢|€cC 6} SI|LL 8 ¥ | SS20| 6140 [ 2890 | S¥90 | 090 | 6950 | LESO [ 26¥0 | €SY0 | ¥I¥O | LI
L 9 S |S v €2 2 L\|VvivL|99VL |6SYL | \SYL |EYVL | SEVL | LY. (6LVL | CLVL | YOVL| SS L€ €€ 6¢|Sc lc LI|cl 8 ¥ | ¥.€0 | VEEO | ¥620 | €S¢0 | ckeO | 0410 | 8210 (9800 | €#00 | 0000 | OL
6 8 L|9 S v| (€ ¢ | 6 8 L 9 S 14 € 4 5 0 6 8 2|9 S v (€ 2C L] 6 8 L 9 S 14 € 4 I 0

ooualeylq ues| oouBlayig UBB|\
SIWHLIHY DO 1 SINHLIHVOYO01




PHYSICS

234

6 8 L|9 § v|€ T | 6 8 L 9 S 14 € c L 0 6 8 L|9 S v|€ 2 | 6 8 L 9 S 14 € 4 L 0

02 8L 9L|PL LL 6| L S <C|L.L66|1S66 | LE66 | 8066 | 9886 | €986 | O¥86 | L186 | G616 | ¢L.6| 66 9 9 G|¥ v €|2 L L|SSie|8rLE | LVLE | ECLE |9CLE | BLIE | CLLE [ SOLE | LBOE | 060E | 6¥F°
02 8L 9L|EL LL 6| L ¥ <2|0SL6 |LcL6 | SOL6 | €896 | L1996 | 8E96 | 9196 | ¥6S6 | 2LS6 | 0SS6 | 86 9 9 G|¥ ¥ €2 I L] €80E|9L0€ | 690€ | 290€ | SSOE | 8Y0€E | L¥OE | ¥EOE | L2OE | 020E | 81"
0c LI SL|EL LL 6| L v <] 8256|9056 | #8176 | 296 | Lvv6 | 6LY6 | L6E6 | 9LE6 | ¥SE6 | ECE6 | L6 9 9 G|¥ € €2 L L|€ELOE|900€E | 666¢C | c66C | S86C | 6.6¢C | 2L6C | S96C | 8S6C | LS6C| LV
6L LL SLIEL LL 8|9 ¥ <C| LLE6 | 0626 | 8926 | Lc6 | 9cc6 | ¥026 | €816 | 2916 | LL6 | OCclL6 | 96 9 ¢ G|¥ € €2 | || vv6ec |8E62 | LE6C | ¥c6e |LL6C | LL6C | Y062 | L68C | L68C | ¥88C| 9"
6L LI SL|ck OL 8|9 ¥ ¢ 6606 |8L06 | LS06 | 9€06 [ 9L06 | G668 | V.68 | ¥S68 | €€68 | €L68 | G6 9 ¢ G|¥ € €2 L |.4.82c|1/.82 |¥98¢c | 8S8¢C | LS8c | v¥8< | 8E€8<C | LE€8C | G¢8c | 818c| S
8L 9L vL|2ck OL 8|9 v <c|c688|c/88 | 1S88 | €88 (0188 | 0648 | 0448 | 0548 | 0€48 | OLL8 | ¥6 9 S v|¥ € €2 | L|ct8c|S08c |664¢ | €6lc (982c | 08L¢c | €442 | /922 | V9Le | ¥vSLc| v
8L 9L vL|2k OL 8|9 ¥ <c]0698 0498 | 0G98 | 0€98 (0198 | 0658 | 0/S8 | IGS8 | €S8 | L1S8 | €6 9 S v|¥ € €2 |+ }|8vic|cvic |SELC | 62LC (€clc | 9LLe |0LLC | ¥0LC | 869¢C | c69¢| €V
ZL SE vL|ek OL 8|9 Vv <c|c6v8|cly8 | ESV8 | EEV8 | VIV8 | G6E8 | SLE8 | 9GE8 | LEEB | 8LEB | 26 9 G v|¥ € 2|2 |+ }+|S89¢ 6492 | €492 | £99¢ | 99¢ | GS9¢ | 6¥92C | 2¥9¢ | 9€9¢ | 0€9¢ | ev”
LL SLEEL|[LL 6 8|9 ¥ <C|6628 (6428|0928 | ¥e8 | ccc8 | ¥0c8 | G818 [ 9918 | VI8 | 8CL8| L6 S S v|¥ € 2|2 L+ L|Pv29c |8L92 | cL9c | 9092 | 009¢ | ¥6S<C | 88S<C | 28S¢ | 94G2 | 0LS¢2| W
LL SLEL|LLB L9 v <2]OLL8| 1608 | 2408 | ¥S08 [ SE08 | L1088 | 866L | 086 | ¢96L | EV6.L | 06 S S ¥|¥ € 2|2 + | Vv9Sc |6SSe | €9S¢ | L¥S2 | L¥Se | SESC | 6252 | €2S¢ | 8LS2 | clse| o
OL VL CL|LL 6 L|S v <C|Sc6L|L06L |688L )| 048L [2S8L | ¥E€8L | 918 | 86LL | 08LL | ¢9LL| 68 S S v|€ € 2|2 L L|90Sec |00Se |S6ve | 68ve |€8vc | LLVC | 2Lbe | 99V2 | 09ve | SSve| 6€°
OL VL CL|bL 6 L|S Vv <C|Svll|.L2LL |60LL) L69L |1¥292 | 9G9/Z | 8E€9Z | k29L | €09/ | 985/ | 88 S ¥ v|€ € ¢|2 |+ }|evve|evbe |8EVE | cEve |Leve | keve | Sive | OLve | ¥0be | 66EC| 8€"
9L ¥ CL|OF 6 L |S € <C|89SL | SSL | ¥ESL | 9LSL |66VL | 28VL | YIVL | L¥vL | OEVL | EVVL | L8 S ¥ v|€ € ¢|2 | ||€6gec|88EC |28€C | LLEC | LLEC | 99€C | 09€C | 9S€C | 0SEC | vvEC| L€
SLEL2LIOL8 L|S € 2|96EL|6LEL |2C9EL | SYEL | 8CEL | LLEL | S6CL | 8L2L | L9CL | V2L | 98 S ¥ v|€ € 2|2 | || 6ceec|ceec |8cEe | €cee |LIEc | clee | LOEC | LOEC | 96¢cc | L6cc| 9¢€°
SLE€LCLIOL8 L[S € c|8ccl |l |¥6LL | 8LIL [I9VL | SPLL|6CLL |CHEL | 960L )| 6202 | S8 S ¥ v|€ € ¢|2 |+ }|98ce |08ce |SLce | 0Lce |S9¢e | 6Sce | ¥See | 6¥¢e | ¥iee | 6Ecc| S€°
SLEL LLOL 8 9|9 € 2|€90L |Lv0L | LEOL | SLOL | 8669 | 2869 | 9969 | 0569 | ¥€69 | 8169 | ¥8 S ¥ ¥|€ € 2|2 |+ || vEce |8cce |€cce |8lee |€Lde | 80cce | €0ce (86lc | €612 | 88lc| VE”
L €L LL|I6 8 9SG € <¢|c069|.889 | L1289 | GS89 [ 6€89 | €289 | 8089 | 2649 | 9229 | 1929 | €8 v ¥ €€ 2 2|t L 0]€8lec|8LLC |€LLe]|89Llec [€9lc | 8SlLc | ESLe |8VLlec | Evic | 8Ele| €€
L 2L LL|6 8 9SG € <2|Sr.9|0€49 | SHL9 | 6699 €899 | 8999 | €599 | LE99 | 2299 | L099 | 28 v ¥ €€ 2 ¢t L 0)eciec|8cle |€cle|8Liec [E€ELLec| 60l | ¥OLE | 6602 | ¥60C | 680C| ¢€"
L 2L LL|6 8 9SG € <C|c6S9 2499 | 19S9 | 9SO [ LESO | 9LG9 | LOS9 | 9819 | LL¥O | LSV | L8 v ¥ €€ 2 ¢}t L 0] ¥80c|080c | 5202 | 0L0¢ | S90c | L90c¢ | 9502 | LSO0eC | 9¥0c | ev0c| LE"
€L 2LOLI6 L 9|V € L|erv9 |L2h9 |2LP9 | L6E9 [ €8E9 | 8BIEI | €S€9 | 6EE9 | ¥2E9 | OLES | 08 v ¥ €€ 2 ¢}t L 0} 4e0c |ccoe | 820c | €20c | 8L0Oc | ¥L0c | 6002 | #002 | 000 | S661 | 0€"
€L LLOLI6 L 9|¥ € ]S629|1829 |99¢29 | ¢Sc9 |LE€c9 | €229 | 6029 | #7619 | 0819 | 9919 | 64 v ¥ €€ 2 ¢t L O] 66} |986L | 286} | LL6} (L6} | 896L | €961 | 656} | #5611 | 0S61 | 62"
€L LLOLI8 £ 9|¥ € F]2SI9|8EL9 |¥CI9 | 6019 [S609 | 1809 | £L909 | €S09 | 6€09 | 9¢09 | 8L v ¥ €€ ¢ ¢}t L+ OfSv6l|Iv6L | 9€6} | CE6L (82C6) | €C6L | 616L | VL6 | OL6L | SO6) | 82"
Ck LLOLI8 £Z S|Vv € L|cCL09 |866S | ¥86S | 0L6S | LS6S | EV6S | 6€6S | 916G | C06S | 888G | LL v € €€ ¢ 2|+ L Of 106} |(L68L | c68) | 8881 | ¥88L | 648L | GZ8F | L48) | 9981 | €98} | L2°
CLLLBG |8 L S|¥ € L]S485|198S | 878G | ¥€8S | 128G | 808S | ¥6.S | 184S | 894G | ¥SLS | 9L v € €€ 2 ¢}t L 0]8s8L|vS8L |678L | Sv8L | L¥8L | LEBL | 2E8L | 828t | ¥28L | 028l | 92"
CLOL6 |8 L S|V € L|LrLS|82LS |SLLS | 20LS [ 689G | GL9G | 2995 | 679G | 9€9G | €29G | SL v € €|l ¢ C|+ L Of|9I8L|LI8E | L08)L | €08 | 66LF | S6LL | L6LL [98LL | 28LL | 8LLL| ST
cLOL6 |8 9 SG|¥ € L]OL9S |86S9S | 989G | ¢LSS | 6GSS | 9vSS | ¥€SS | L2SS | 80SS | S6VS | vL v € €l 2 2 S| L Of VLLL |OLLL |99LL | 29LL (8SLL | ¥SLL | OSLL | OVLL | 2VLL | 8ELL| Yve°
LLOL6 |8 9 S|V¥ € L|€8YS|0LYS | 8SYS | SYS | €EVS | 02¥S | 80YS | S6ES | €8ES | 0LES | €2 v € €l c 2 c| b L OfV¥ELL |0CLL |92LL | 2Lt (8LLL | YLLL | OLLE | 90LL | 2OLL | 869L | €2
LLOL6 |£ 9 S|¥ 2 | |8SES|9YES | €EES | LCES | 60ES | L62CS | ¥82S | 2L2S | 092S | 8%2S | 2L € € €lc ¢ ¢k L Of¥69L 069}k | 289} | €89} (649} | GLOL | L9 | 299} | €99} | 0991 | ¢e°
LLOL8 |4 9 S|V € 1]|9€cs |veeS |2heS | 002S [88LS | 9LLS | ¥OLS | 2SLS | OVLS | 62LS | L2 € € €2 ¢ c|k L 0999l (259 | 8Y9L | ¥¥OL | L¥OL | LEOQL | €E9L [ 629k | 929t | €29t | LT
L6 8|4 9 S|v 2 L|ZLIS|SOLS | €605 | B80S | 0L0S | 8S0S | L¥0S | SE0S | €20S | CL0S | 02 € € €lc 2 F[F L Of8IOL V9L | LLOL | LO9) (€09} | O09L | 965t | 265t | 68Ck | G8S) | 02"
OL6 8 (|4 9 SG|€ 2 L]000S 6867 |LL6V | 9961 | SS61 | EV6V | 2E6F | 0261 | 6061 | 8687 | 69 € € €|l2 ¢ L+ L Of I8SL 84Sk | ¥LS)L | OLSE | L9GE | €9G) | 09Gt 9GSk | 2SSt | 6VSE| 6L1°
OL6 8 |4 9 v|€ <2 |88V |SGL8Y |¥98Y | €S8V |8y | LEBY | 618 | 808V | L6LY | 98.1 | 89 € € ¢lc 2 L[ L OfsvSt |cvSE | 8ESE | SE€SE | LESLE | 82SL | ¥2SL | LeSE | LLSL | vLSL| 8L°
OL6 8 |Z S v |€ <€ V|SLLy V9LV |€SLY | Sviy |2CELY | Lely | OLLY | 669Y | 8891 | LL9V | L9 € € ¢lc 2 L[FL L O]OLSE|ZL0SL | €0SE | 00St (96¢L | €671 | 687 | 9871 | €8V | 64171 | LL°
OL6 2|9 S v |€ € }|199FV |999F | S¥I¥ | ¥E9Y | ¥2Or | €19 | €09 | 26SY | 18SY | LLSY | 99 € € ¢l 2 L[ L O)9Lvk |clyL | 697 |99V [29v) | 6SYL | SSY L | 2S5Vt | 6¥1 L | Syl | 9L
6 8 L |9 S v|[€ <2 L]|09SY |0SSy | 6ESY | 62SY | 6LSY | 80SY | 86V | L8VY | LLvY | L9V | G9 € € ¢lc 2 L[ L Ofevvl |6EVL |SEVLE | 2EVL |62 ) | 9cvL | cevL | 6LV | OLvL | ELvL| SI°
6 8 L |9 S v |€ ¢ V|LSvy |9YPy | 9EVY | 9evv | 9Ly | 90V | S6EY | S8EY | SLEV | G9EY | ¥9 € € ¢lc 2 L[F L 0Of60vt |907L | €OV | OOV} [96EL | €E6EL | 06EL | L8EL | #8EL | 08EL | PIL°
6 8 L |9 S v|€ 2 L|SSEy |SveEY | SEEY | Scey | SLEV | SOEY | S62Y | G82V | 9Lch | 9927 | €9 € € ¢l ¢ L[ L OfZLe) |vLEL | LLEL | 89EL [SGOEL | LOEL | 8SEL | GSEL | 2SEL | 6VEL| €V
6 8 L |9 S v|€ <2 L|99cy |9vch |9€ey | Leey | Licv | LOcv | 861y | 88LY | 8LLY | 6917 | 29 € ¢ 2|2 ¢ L| L L OfoveEL [EvEL | OVEL | LECL | YEEL | OEEL | LeEL | vCEL | LeEL | 8LEL| CL°
6 8 L |9 S v|[€ 2 L|6SLy|0SLY |OVLY JOELY [ LSy | LLLY | 2OLY | €601 | €801 | ¥20V | L9 € 2 ¢|lc 2 L[ L Oofsiect|cLEL |60EL | 90CEL [€0EL | O0EL | L62L | ¥62t | L6CL | 88CL| LL°
8 L 919 S v|[€ 2 L|v¥o0ov |SSov | 9¥0F | 9€0v | L2Ov | 81O | 600F | 666€E | 066E | L86E | 09 € ¢ 2|2 F L] L 0]s8cl|c8ct |62k | 942k | L2k | LLC) | 89Ck [ S92k | 29¢L | 6SCL| OF°
8 L 9|9 S v|€ ¢ |]|cL6eE |€96€ | ¥S6E | SYEE | 9E6E | 9¢6€ | LL6E | BO6E | 668E | 068E | 6S € 2 ¢l L L[ L Of9sct |€ScL |0Sck | Lyel |Svel | evel | 6E2L | 9€2t | €€CL | OECL | 60°
8 L 9|9 ¥ v|€ ¢ |]|288¢|€L8E | ¥98E | GS8E | 9¥8E | LEBE | 828E | 618E | L18E | c08E | 8S € ¢ ¢|lec + L|[F L OfZLech |Sccl |ccct | 6Leck [9lek | €lct | LLCL | 802k | SOck | cOct | 80°
8 L 9|9 v €€ 2 |€6LE |V8LE | 9LLE | LO9LE | 8GLE | 0SLE | LVLE | €EELE | ¥CLE | SLLE | LS ¢ ¢ ¢clc b L[F L O)66LL|LBLE [VELE ) LELE [68LE | O98LE | €E8LE |O8EE | 8ZLEL | SZLL| 207
8 L 9|9 ¥ €€ 2 L].40LE|869€ | 069€ | L8IE | €49€ | ¥99€E | 9G9€ | 8¥9€ | 6E€9€E | LEIE | 9SG ¢ ¢ 2|2 F Lk b OfCLEL|6BOLL | ZOLE | #OLL | LOLE | 6SEE | OSEE | ESEE | LSEL | 8VEE| 90
L L 9|9 ¥ €2 ¢ ]|e2eoe |vI9€ | 909€ | L6SE | 68SE | L8SE | €49€ | G9S€ | 9GS€E | 8YSE | 99 ¢ ¢ ¢|lc b L[F L OfOvkL|EVLLE [OVLE | BELL [SELL | CELL JOSLE | LCHE | SCHL | cch)L| SO
L 9 9|9 v €|2 2 L|OoySe |2eSE | ¥2SE | 9LSE | 80SE | 66VE | L6VE | €8VE | SLVE | LO9YE | ¥S ¢ ¢ ¢|lc b F[F L Of6FLE|ZELE [PEEEQCHEL [60FE | ZOKE | #OLE | COLE | 660F | 960L | ¥O
L 9 9|S ¥ €2 2 L|6Sve|LShE | EVPE | 9EVE | 8evE | OcvE | 2LYE | YOVE | 96EE | 88EE | €S ¢ ¢ ¢+ L L] O Ofv60L|L60L | 680 | 9801 | ¥80F | L8OL | 640F | 9L0F | #20L | €Z0L| €0
L 9 S |S ¥ €2 ¢ || I8EE |ELEE | G9€EE | LSEE | 0GEE | evEE | YEEE | L2EE | 6LEE | LLEE | 2GS ¢ ¢ ¢|+ L L[F O Of690F 290} |90} | 290} [ 6SOL | LSOL | ¥SOL | 2S04 | OSOL | £Z¥OL| 20
L 9 S |9 ¥ €2 ¢ |]|v0ee |962€ | 682E | I8cE | €LcE | 99¢€ | 8G2E | LGeE | EvcE | 9€cE | LS ¢ ¢ ¢+ L L[F O OfSvOL |cvOL [OFOF | 8E0L [ SEOL | €EE0L | OEOL | 82Ok | 920k | €20L| LO
L 9 S |¥ ¥ €2 | L]|8cee|lcce |¥Iee | 90cE [66LE | c6LE | ¥8LE | LLLE | OLLE | 29LE | 0S ¢ ¢ ¢/t L L[FL O OftecOL|6LOL [9LOL | ¥LOL [CLOL | 600L | LOOL | SOOL | 200k | OOOL| 0O
6 8 L |9 § v|(€ ¢ | 6 8 L 9 S 14 € [ I 0 6 8 L|9 S v|€ T | 6 8 L 9 S 12 € (4 L 0

wo:w\_QEO ues|n @oualayig ues|N
swyiltiebojriuy swyiltiebojriuy




235

NATURAL SINES

0O O O O O | 000°k | O0O°L [ OOO'L | O0O°L | OOO'}L | 6666 | 6666 | 6666 | 6666 | 8666 | 68 oL 8 9 v ¢ 6S0L | 9¥0L | ¥€0L | Sc0L | 600L | L669 | ¥869 | cL69 | 6569 | Lv69 | VvV
0O o0 0O 0 o 8666 | 8666 | L666 | L666 | L666 | 9666 | 9666 | S666 | G666 | ¥666 | 88 L8 9 v ¢ | ¥E69 | 1269 | 6069 | 9689 | ¥889 | 1/89 | 8S989 | S¥89 | €€89 | 0289 | €V
8 3 0O 0 o £666 | £666 | c666 | 1666 | 0666 | 0666 | 6866 | 8866 | /866 | 9866 | L8 L 6 9 Vv ¢ | L089 | V649 | €849 | 6949 | 9S9/9 | €V/9 | 0E€L9 | LL/.9 | ¥0L9 | 1699 | ¢V
8 3 L 0 O G866 | 7866 | €866 | ¢866 | 1866 | 0866 | 6,66 | 8166 | L.66 | 9166 | 98 L 6 L v ¢ 8299 | G999 | 2G99 | 6€99 [ 9299 | €199 | 0099 | 4859 | ¥4S9 | 19599 | I¥
8 3 L 0 O /66 | €66 | ¢/66 | 1,66 | 6966 | 8966 | 9966 | G966 | €966 | c966 | S8 L 6 L v ¢ | LvS9 | ¥ES9 | L2S9 | 8099 | ¥6¥9 | 18¥9 | 89¥9 | GS¥9 | Lv¥9 | 82¥9 | OF
4 3 3 L 0 0966 | 6966 | LS66 | 9566 | ¥S66 | ¢S66 | LS66 | 6¥66 | V66 | S¥66 | V8 L 6 L v ¢ | viv9 | LOV9 | 88€9 | V€9 | L9EQ | LVEQ | VEEQ | 0CE9 | LOE9 | €629 | 6€
4 3 3 L 0 €¥66 | ¢¥66 | Ov¥66 | 8E66 | 9€66 | ¥E66 | €66 | 0E66 | 8266 | SC66° | €8 L 6 L G 2| 0829 | 9929 | 2929 | 6€29 | S2c9 | Ll29 | 8619 | ¥8L9 | 0LI9 | 4S19°| 8€
¢ ¢ 3 L0 €266 | Lce6 | 6166 | L166 | ¥166 | CL66 | 0OL66 | L066 | S066 | €066 | 8 ¢l 6 L G 2| evi9 | 6219 | SLL9 | 1OL9 | 8809 | ¥£09 | 0909 | 9¥09 | 2€09 | 8109 | LE
¢ ¢ 3 L0 0066 | 8686 | S686 | €686 | 0686 | 8886 | G886 | ¢886 | 0886 | L/86°| I8 ¢l 6 L § ¢ | ¥009 | 066S | 946S | <€96S | 8V¥6S | ¥E6S | 026S | 9065 | C689 | 8485 | 9€
¢ ¢ 3 L0 /86 | 1/86 | 6986 | 9986 | €986 | 0986 | LS86 | ¥S86 | LS86 | 8¥86° | 08 ¢l 6 L S ¢ | ¥98S | 0S8S | S€8S | LeB8S | L08S | €64SG | 64.S | ¥9.G | 0S49 | 9€4S" | S€
€ ¢ 4 8 3 G¥86 | c¥86 | 6686 | 9€86 | €€86 | 6¢86 | 9286 | €286 | 0286 | 9186° | 64 ¢l Ol L S ¢ le/S | £L0LS | €69S | 89S | ¥99S | 0S9S | S€9S | 1299 | 909G | ¢6SS | v€
€ ¢ 4 3 3 €186 | 0186 | 9086 | €086 | 6616 | 9616 | c6.6 | 6816 | G816 | 1846°| 8L ¢k Ol L S ¢ | L/SS | €9G9S | 8¥SS | VESS | 6LGS | S0SS | 06¥S | 9L¥S | L9¥S | 9vPS | €€
€ € 4 3 3 8//6 | ¥..6 | 0L.6 | 1916 | €9.6 | 6S.6 | GSL6 | 1S.6 | 87.6 | ¥¥i6° | LL ¢l 0l L G 2| cevS | LI¥S | cOvS | 88ES | €4€S | 89€S | ¥¥ES | 62€S | VIES | 6625 | 2€
€ € 4 3 3 0v/6 | 9€/6 | 2€L6 | 826 | ¥cl6 | 026 | GLL6 | LLL6 | L0L6 | €046° | 9L 2L 0l L § ¢ | ¥82S | 0425 | G925 | OveS | SceS | OleS | S61S | 08LS | 991G | 0S1S | L€
v € 4 3 3 6696 | 7696 | 0696 | 9896 | 1896 | £/96 | €196 | 8996 | 1996 | 6596 | SL €L 0l 8 G ¢ GELS | 02IS | SOLS | 060S [ SZ0S | 090S | S¥0S | 0E0S | SLOS | 000S | OF
v € ¢ ¢ 3 GG96 | 0996 | 9¥96 | 196 | 9€96 | c€96 | Lc96 | ¢cc96 | L196 | €196 | VL €L Ol 8 § ¢€ G86v | 0L6v | SS6v | 6€6V | vc6¥ | 6067 | ¥68Y | 6487 | €987 | 8¥8V | 6¢
v € ¢ ¢ 3 8096 | €096 | 8696 | €6596 | 88596 | €896 | 81596 | €156 | 89S6 | €996° | €L €L Ol 8 § € €E8YV | 818V | c08V | L8LV | cLLy | 9SLV | WiV | 92Lv | OLLY | S69V' | 8C
v € € ¢ 3 8556 | €996 | 8¥96 | cvS6 | LES6 | 2E€S6 | L2S6 | 12S6 | 91S6 | LIS6' | L €L 0l 8 G € 6.9% | ¥99% | 8¥9¥ | €€9¥ | LL9v | 209% | 98S¥ | L4S¥ | SSS¥ | OvSYy | Lo
S v € ¢ 3 G0S6 | 0056 | 7676 | 6876 | €876 | 8L¥6 | cL¥v6 | 99¥6 | L9¥6 | SS¥6™ | 1L €L 0l 8 ¢ ¢ veSy | 60SY | €6¥v | 8Lvv | 29¥v | 9vvy | L€YY | Slvy | 66EY | ¥8EY | 9¢C
S v € ¢ 3 6v¥6 | v¥¥6 | 8EV6 | CEV6 | 9¢¥6 | Lev6 | SLi6 | 60V6 | €0V6 | L6E6 | OL 11 S 8 § € 89€Yv | ¢Sev | LE€ev | lcEv | SOEY | 68cy | vicv | 8Sev | evev | 9¢ev | Sc
S v € 2 3 L6E6 | G8E6 | 61€6 | €L€6 | L9€6 | L9€6 | ¥SE6 | 8¥E6 | 2vE6 | 9€€6° | 69 €L 1l 8 ¢ ¢ Oley | 96ty | 6LLY | €9l | Lviv | LELY | SLLY | 660F | €80F | L90V | V¢
S v € ¢ 3 0€e6 | €266 | L1€6 | LIE6 | ¥OE6 | 8626 | 1626 | S826 | 846 | ¢/26° | 89 Ve LL 8 ¢ ¢ LSO | SE0¥ | 6L0% | €00¥ | 486E | LL6E | SS6E | 6€6E | €26€ | LO6E | €2
9 v € ¢ 3 G926 | 6526 | ¢S26 | Svc6 | 6€26 | c€C6 | Scc6 | 6lc6 | clc6 | S026™ | 49 4 8 G ¢ 168E | G/8€ | 698€ | €¥8E | L28E | LI8E | S6.€ | 8L.€ | 29.€ | 9¥.LE'| cC
OIS € ¢ 3 8616 | L616 | ¥8L6 | 8416 | LLI6 | ¥9L6 | LSL6 | 0SL6 | €VI6 | SEL6" | 99 vE L 8 ¢ ¢ 0€LE | VLLE | L69E | 189E [ S99€ | 6¥9€ | €€9€ | 919€ | 009€ | ¥#8S€E" | lc
9 g v ¢ 3 8¢l6 | L6 | L6 | LOL6 | 00L6 | ¢c606 | S806 | 8406 | 0L06 | €906 | S9 vE L 8 § ¢€ £9G¢ | LSSE | S€9€ | 8LSE | c0SE | 98¥€ | 69VE | €SvE | LEVE | OcvE | Oc
9 g v € 3 9506 | 8¥06 | L¥06 | €€06 | 9206 | 8L06 | LLO6 [ €006 | 9668 | 8868 | 9 4 8 G ¢ v0vE | L8EE | LLEE | SSEE | 8EEE | 22EE | SOEE | 682€ | cLcE | 9S¢€" | 61
9 S v € 3 0868 | €468 | S968 | LS68 | 61768 | cv68 | ¥E68 | 9c68 | 8168 | 0L68" | €9 4 8 9 ¢ 6€ce | €¢ce | 90ce | 06LE | €LLE | 9GLE | OvlIE | €cle | ZOLE | 060E | 8L
L S v € 3 2068 | 7688 | 9888 | 8488 | 0488 | 2988 | ¥S88 | 9788 | 8€88 | 6288 | €9 4 8 9 ¢ ¥,0€ | LS0€ | O¥0€ | ¥20E€ | LOOE | O66¢ | v16¢ | LS6C | O¥6C | ¥c6e | LI
L 9 v € 3 1288 | €188 | G088 | 9648 | 8848 | 0848 | L./8 | €9/8 | 9S/8 | 9¥/8°| |9 4 8 9 ¢ L06¢ | 068c | ¥#.82 | LS8c | Ov8c | €¢8c | L08c | 06Zc | €Llc | 9S4 | 9L
L 9 vy € 3 8€/8 | 628 | le/8 | <¢1/8 | ¥0/8 | S698 | 9898 | 8498 | 6998 | 0998 | 09 4 8 9 ¢ Ov/2 | €22 | 902 | 6892 | 2492 | 999¢ | 6€9¢ | cc9¢ | S09¢ | 88Sc | St
L 9 v € 3 cS98 | €798 | ¥E€98 | Sc98 | 9198 | L098 | 66598 | 06S8 | 18S8 | 498" | 6S 4 8 9 ¢ L/Sc | ¥SSc | 88Sc | lcSc | ¥0Sc | L8Vc | OLvc | €Svec | 9€be | 6Lve | VI
8 9 G € <2 | €998 | ¥9S8 | G¥S8 | 9€S8 | 9¢S8 | LIS8 | 80S8 | 66¥8 | 06¥8 | 08¥8° | 89S 4TS 8 9 ¢ c0ve | 98€c | 89¢2 | 1S€c | ¥EEC | Ll€2 | 00€C | ¥82c | L9cc | 0S¢ | €L
8 9 S € ¢ L.¥8 | 29¥8 | €S¥8 | €¥¥8 | ¥EVY8 | Gc¥8 | SGL¥8 | 90¥8 | 96€8 | L8E8 | LS vE L 6 9 € €€c¢c | Glcc | 86lc | I8le | ¥9le | Lvlc | OEle | €LLE | 960C | 640 | ¢k
8 9 S € ¢ | L/e8 | 89€8 | 89€8 | 8¥EB | 6EE8 | 62€8 | 0cE€8 | 01LE€8 | 00€8 | 0628 | 99 4 6 9 ¢ c90c | S¥0c | 820c | LLOC | ¥661 | LL6L | 6S6L | c¥6L | Sc6L | 8061L° | LI
8 L S € ¢ 1828 | /28 | 1928 | 1928 | P28 | L€e8 | Lce8 | Lle8 | 20c8 | c618° | SS 4 6 9 ¢ 168L | ¥/8L | LS98L | O¥8L | 228l | SO8L | 88ZL | LZZL | #SZL | 9€ZL°| OL
8 L S € ¢ 1818 | LZ18 | 1918 LSI8 | L¥I8 | LELB | LcI8 LLI8 | 00L8 | 0608 | ¥S vL ¢l 6 9 ¢ 6LLL | 20ZL | 9891 | 8991 [ 0S9L | €€9L | 9L9L | 66SL | €8Sk | ¥9SL° | 6
6 L G € ¢ | 0808 | 0L08 | 6908 | 6708 | 6€08 | 8208 | 8108 | L008 | L66Z | 986L | €S v ¢l 6 9 € L¥SL | OESL | €1GL | S6¥L [ 8% | L9¥L | v¥¥L [ 92l | 60VL | 26EL° | 8
6 L S Vv 2 | 946L | G96L | GS6L | v¥6L | ¥E€6L | €26L | 2L6L | 206L | L68L | 088L" | 2S vL ¢l 6 9 € v.€L | LSEL | OvEL | €€l [ SOEL | 882k | L2k | €92t | 9¢€ct | 6lcL’ | Z
6 L S Vv < | 698 | 698L | 8¥8L | LEBL | 928 | SI8L | ¥08L | €6LL | @8LL | VLLL| LS vL ¢l 6 9 € Logk | #8LL | Z9LL | 6%LL | SE€LL | SLLL | Z6LL | 080L | €901 | S¥OL | 9
6 L 9 Vv @ | 094Z | 6¥LL | 8ELL | LcLL | 9LLL | SOLL | ¥69L | €89L | /9L | 099/°| 0S vL ¢l 6 9 € 8201 LLOL | €660 | 9460 | 8560 | L¥60 | #260 | 9060 | 6880 | ¢480°| S
6 8 9 Vv < | 6v9L | 889L | L29L | SI9L | ¥09L | €6SL | 18SL | 0LSL | 6SSL | L¥SL' | 6F vL ¢l 6 9 € ¥S80 | L€80 | 6180 | 2080 [ S840 | 4920 | 0SZ0 | €€40 | SLZ0 | 8690 | ¥+
oL 8 9 Vv ¢ | 989Z | ¥eSL | €LSL | LOSL | O6¥L | 8LvL | 99vL | SSV.L | €vvL | LEVL | 8F Sk ¢l 6 9 ¢ 0890 | €990 | S¥90 | 8290 [ 0190 | €650 | 9450 ( 89S0 | L¥SO | €2S0° | €
oL 8 9 Vv ¢ | OcvZ | 80VL | 96EL | S8EL | €LEL | L9E€L | 6VEL | LEEL | SCEL | VIEL | LY gL ¢l 6 9 ¢ 90S0 | 88%¥0 | L4¥0 | #S¥0 [ 9€¥0 | 6L¥0 | LO¥YO [ ¥8E0 | 99€0 | 6¥€0° | <€
oL 8 9 V¥ ¢ | 20€L | 06cL | 842, | 992 | ¥vSeL | evel | 0€cL | 8leL | 90cL | €61L° | 9OF gL cl 6 9 € cee0 | ¥1€0 | L1620 | 6420 | 2920 | ¥¥e0 | LccO | 6020 | 2610 | SZILO 3
oL 8 9 v @ L8LL | 69LL | LSLL | SPLL | €ELL | OChL | 80LL | 960L | €80L | LZ0L'| S¥ gL cl 6 9 € /S10 | O¥IO | 22l0 | SOLO [ £800 | 0Z00 | 2S00 [ S€E00 | ZLOO | 0000° | O
S ¥ € C il 06°0 080 [YA] 09°0 050 A €0 oC'0 ol’0 000 nm S ¥ € C il 06°0 080 [YA] 09°0 050 ot’0 €0 T ol’0 000 m

sodualayleq uesiy VS 8Y 44 9€ 0€ e 8L <k 9 0 w sodualayieq uesiy VS fte14 44 9€ 0€ e 8L <k 9 0 w

SANIS TVvHNLVN

SANIS TVHNLVN




PHYSICS

236

oess | sosz | ol | zeve | ovir | 6vs6l sge | 291z | 99'g0 | 62725 | 68 62 €2 | 2+ 11 9 | s9e6 | oce6 | 9686 | 1986 | 2286 | €626 | 6526 | Sez6 | 1696 | 25967 | vv

8025 | v22v | 20vv | z670v | 61788 | ogse | soee | zg1e | vios | vosz| ss 8z zz | 4t 11 9 | ez96 | 06S6 | 9556 | €256 | o6v6 | L5v6 | veve | Lece | 8see | see6 | ev

1272 | e00z | 06ve| 9s'ez | 0622 | 202z | 0z12 | svoz | vesr | soer]| s /2 12| 9+ 11 s | e626 | 0926 | szze | seL6 | e9t6 | Lere | 6606 | 2906 | 9g06 | v006° | zv

over | eszt | vezi | eso1 | seor | 6sc1 | ovst | 905t | zowr | osvr| o8 9z 1tz | 9+ oL S | zze8| w68 | ores | 888 | sves | oies | s8z8 | vSz8 | vess | €698 | it

oyeanooe ceel | zoer | oser | ooer | 12z | svae oz | ven | oot | evin | ss §2 02| Sk Ob S| 2998 | 2698 | 1098 | 58 | 4vS8 | biS8 | 18v8 | 1Sv8 | L2ve | Lees’| Ov
Anueroimns oz | esor | azor | ssor | 6201 | 0zor | zoor | sves | 2206l vise| ve vz 0z | S+ oL S | 19e8 | zees | zoes | €28 | eves | vies | ssis | 9si8 | szi8 | 8608’ | 6e
196U0] ou 22666 zs0z°6| 62506l zs16 | 6922 | zzvo | 921 | s9se | 9g9z | evvi-el e8 ve 6L | vt 6 S | 6908 | ovo8 | zros | €862 | vs6L | 9z6s | 868 | 6982 | L1+8L | €18 | sE
saoualayIq ueap ggzo'8| 8sie | 2908 | 9669 | sses | zesv | 296e | zooe | 990z | vSi12| 28 € 8L | YL 6 G | G8LL | LSLZL | 6CLL| LOLL | €L9L | 9V9L | 8L9L | 06SL | €9SL | 9€SL"| LE
vozoz| sess | svss | 0zzz | zie9 | zzio | oses | g6si | 6sse | ssied| 18 ez 8L | v+ 6 G | 80sz| v8vs | vsvs | zevs | oove | ezes | oves | eres | eees | s9zs| 9t

zevzol zv21-0] 9901-0l sovoe| ssz6 | vz | zose | vess | z622 leizod os 2z 8L | € 6 v |e6sges| zres| 9812 | 6512 | eers | zovz | ooz | vSoz | szos | zoos | se

ovio | szss | 9zos | gsvy | e | cove | vzez | zzvz | 6261 lovyigl 62 le ZL| e 6 v | 969 | 0569 | ve69 | 6689 | €289 | Lv89 | 289 | 9619 | 1229 | svio| ve

0260°5| v0so's| svoos| vess | zsie | 9izs | sszs | 298z | eovs | ovors| sz lz ZL| et 8 v | ozzo| v699 | 6999 | v¥99 | 6199 | +659 | 6959 | vis9 | 6159 | vevo | €€

ov99 | zszo | voss | esvs | zors | zesv | vy | siov | zoos | siees| 22 0z 9t | 2t 8 v | 69v9 | svv9 | ozve | seco | Lze9 | oves | zzeo | ze29 | ez29 | 6ve9| ze

19z €12| 091 201 €S| 262 | se9z | cosz | 961 | €9k | seel | 2zok | €120 | sov0 |80L0W| 9L Oc 9k | gk 8 v | vcg9 | 0029 [ 9LL9 | 2Si9 | 82l9 | vOL9 | 0809 | 9509 | SEO9 | 6009 | L€
zez 981 | 681 €6 9v | 2i86 | 02s6 | zeze | Lves | 2998 | Less | sii8 | 8v8s | esss | 1zesg| sz Oz 9L [ et 8 v | 9865 | 1969 | 8865 | ¥I6S | 068S | L9859 | ¥¥8S | 028G | L64S | ¥..S"| 0F
v0Z €91 | 221 18 v | 290 | 9089 | vss9 | sos9 | 6509 | 9iss | 9.55 | eses | sois |vesve| v 6L Sk gk 8 v | 0.9 | Zg/S | ¥OLS | 189S | 8S9S | S€9S | Cl9S | 689G | 999G | €¥SS™| 62
08l vvL| 8oL 22 9c| ovov | oevy | 61w | ss6€ | eS8 | vvse | zeee | ezie | viee |60L2E| €L 6L SL | k8 v | 02SS | 86YS | SLVS | CSvS | OEVS | LOVS | ¥BES | c9€S | OVES | ZL€S"| 8¢
191 62L| 96 ¥9 g2£| 90ge | soez | gote | orel | 9rzi | vest | veer | oviL | 1960 | 220 2z 8k SL | W L v | S62S | eles | 0ScS | 8ceS | 902S | ¥BLS | 9IS | 6ELS | ZLIS | S60S"| ZLg
svL 9LL| 28 85 62 |s6soe|sivoe|zezoe| 1o00e| 2886 | viz6 | vvse | Sze6 | 8026 |2vo6E L2 8L SGH | W L v | €05 | SOS | 620S | 800S | 986V | vO6Y | Sv6v | LS6Y | 668V | L/8V| 9T
LeL vOL| 82 26 9z | 8288 | 9128 | 9sse | secs | eczs | 808 | 6z6L | 922 | szor |siviE| o 8L ¥L [ WL v | 9S8V | VEBY | €18V | L6LV | OLLV | 8LV | L2y | 90LY | ¥BOY | €99V"| ST
6LL G6 | 1L v ve| 9ees | 6212 | veos | 6889 | 9vz9 | S099 | vov9 | see9 | 2819 | 15092 69 8L vi [ W L v | cvOv | leov | 66SY | 8.SY | LSSY | 9ESY | SISY | v6YY | €LYV | eSvv'| Ve
80L /8| 9 ev 22| 9i6s | 2845 | 6v9s | 1S | 98es | sses | ezis | zoos | ossv | 1sivE| 89 Lb vL 0L L €| EVY | LYY | 06EV | 69EYV | 8V.LY | LcEv | LOEY | 9828 | S9gv | Svev'| €C
66 6. | 09 ov o0z | 2z9v | vosv | esev | 292y | eviv | ecov | go6e | 688 | £29¢ |6SSEE L9 ab o | @ £ @ || R | W || GEv|| G | @l || sy || DO || el || Cel || G| o
26 €, | ss .& 81| svve | zeee | ozze | eoie | 8662 | 6882 | 18s2 | €292 | 99sz |o9vzE| 99 Zb €L Ob £ €| 020% | 000V | 6L6E | 6S6E | 6EGE | 6L6€ | 668E | 6186 | 698€ | 6€8E"| 12
g8 89| 15 ve 21| ssez | isez | svie | svoe | evel | evsl | evzi | evoL | evsi |svriel so ZL €L O £ €| 6188 | 66/€ | 6LLE| 6SLE | BELE | 6LLE | 669E | 6/9€ | 6S9E | OVOE" [ 02
8. €9 | v 1e oL | sver | tser | ssiL | ogor | s960 | 2280 | 8220 | 9890 | v6S0 |€0s0e| +9 9L €L | Ok £ €| 029€ | 009€ | LBSE | LOSE | LYSE | 22SE | 2S0SE | SBVE | €9VE | EVVE" | 61
e/ 85| v» 62 S| elvz |czeoz|eez0e|srioz|Ls00e| 066 | €886 | 2626 | Liz6 | 9296°L| €9 O 8L || OF B8 )| DR || TOE || GRS )| Sl | e || A || AU | O || @ || @) b
89 65| v sz vi| evse | 8sv6 | sze6 | 2626 | oree | 826 | Lvoe | 2968 | 2888 | 088t 29 ob Eh | O © @) G| [ | [6IE]| IS || EELE | ElE || ELiE || CEuE | OAUS )| A AL
v9 15| 8¢ 9z ¢ | 8zz8 | 0ses | zze8 | sev8 | sivs | Lves | sozs | o068 | Siis |ovosk| L9 9L €L 6 9 €| 8€0E | 6LOE [ 000E | 186C | 296c | €v6C | ¥26e | S06C | 9882 | 2982 | 9F
09 8v| 98 v2 2L | 996. | e68L | 0z8L | Lvis | sz9r | 09s | esss | tovs | Lees | teest| 09 O €L 6 9 €| 6v¥8c | 0882 | LI8S | 26l | €L/¢ | vSLZ | 9BLe | LLLZ | 8692 | 64927 | Si
95 ov | ve ez L1 | 152z | 281z | eriz | svos | 2,69 | 6069 | 2v89 | S2s9 | 6029 |Eev99'L| 65 Ok ¢k | 6 9 €| I99¢ | c¥9T | €c9c | SO9C | 989C | 89SC | 6vSc | 0€Sc | cisSc | €6ve | vi
€5 ev | ee 12 L | 2289 | 2159 | svv9 | 889 | 61€9 | GS29 | 1619 | 8219 | 9909 |£009°t| 8S | @ 9 ©) S8 B || || CUR || DOE || W || e || S | & || G| GO
os ov| og oz oL | Lv6S | 088G | si8s | 2526 | 2695 | €95 | 285 | z1ss | ssvs |e6est| LS | 8 9 O GEE| wkE | vk | 638 || AleE | CElE|| Wl || @lE | G || || &b
gy 8¢ | 62 61 0L | oves | 2825 | vzes | 9915 | sois | 1sos | veer | seev | zssv |9zsv'i| 9s Sk et | 6 9 €| LOle| 680C | LL02 | €90C | S€0C | 9LOC | 866L | 086L | c96k | v¥6L | LI
st 9e | 2z 8. 6 | oy | sizv | esov | soov | ossy | 96wy | evvy | ssev | seev | 18er'l| ss sboEk || @ 9 @ el Sk | eEsk || BABE | EEEE || SRRl | A0SR || GE2L )| GEL )| il ek
ey ve| 92 L 6 | 622v | 9L1v | veir | Lzov | 6Lov | 896 | 9i6e | s9se | vise |v9Let| vS G e @ 9 @) GAL || LAl || GRAR || DGR || EASL | el || G || @Rl || @l || vEEl)| @
Iy ee| G2 9L 8 | eize | e99e | e19e | v9se | vige | sove | 9ive | L9ge | 6iee |ozee'l| es Sk gk | 6 9 €| 99SL | 8YSlL | OESL | clSh | S6vh | Lyl | 6SYL | Lbvl | €2¥l | SOvL'| 8
6c 1e| vz 91 8 | zzze | szie | sz1e | 6208 | 2eo0e | gs6z | ss6z | zesz | ovez |e6.2'L| 2s Sk ek | 6 9 €| 88€L | OLEL | SSEL | VEEL | ZIEL | 662 | 18SL | €92l | ovel | 8eel'| L
8e oc | ez G+ 8 | esze | sosz | 299z | 2192 | 2i52 | lzsz | esve | leve | eesz |6vE2 L LS Sk ek | 6 9 €| Okek | @6k [ SZLL | ZSLL | 6ELL | cehh | YOLL | 980L | 6904 | LSOL"| 9
9c 62| 22 ¥ . | sose | 192z | siee | vzie | 11z | 8802 | svoz | 2002 | 096k |8LELL| OS Sk ¢k 6 9 €| €0l | 9lOL | 8660 | 1860 | €960 | S¥60 | 8260 | 060 | 2680 | S280°| S
ve 82| g v 2 | sz81 | ee8L | e6si | oszL | sozi | 2991 | 9z9r | s8SL | wwSL |vOSLL| 6v €| @ O G| AED| G || || QU0 || AMO | GRMY || @840 || DD | ADAD) || GERY || ©
e sz | oz e £ | sovi | eevi | eser | evel | coek | 9zt | veer | v8LL | Svik |9oLiL| s | @ 9O O 0| TEED | LED|| G0 || & | EED || A8 || G350 || &R0 || Y| 6
2e sz | 6L e 9 | 2901 | 820t | 0660 | 1S60 | €160 | G280 | 2880 | 6620 | 1920 | VLot Lt e @ 9 6| JED| CEHD | @20 E || A0 | Gl || B0 || TEED | A5 || G| @
1e sz | 8L 2t 9 | 9890 | 6v90 | 2190 | sz50 | s8eso | roso | vovo | szvo | zeeo |sseo't| ov Sk oeb| 6 9 €| cee0 | ¥I€0 | 2620 | 6420 | 2920 | v¥eO | £Lge0 | 6020 | 2610 | SZLO"(
oc v2 | 8L 2L 9 | eLeo | €820 | 2o | 220 | 910 | Lvio | soro | 0zoo | seoo | 0000t St Sk ¢k 6 9 €| /SL0| OvIO | SctO | SO0 [ /800 | 0200 | 2500 | SEO0 | £100 | 0000°| O
s v | € 2 1| 60| 80 | 20| 90 | 50 | o#0 | €0 | 20 [ ot'0 | 00 m s v | e 2 1| 60| 80 | o20 | 90 | 50 | o#0 | €0 | 620 | ot'0 | w00 m
saousIeyIaa UlBIN v 8v 2% 9e og vz 8l 2t 9 0 3 seoussayIaq Ulep S 8 2y 9 oe ve 8L 2L 9 0 3

SLINIONVL TVHNLVN

SLINIONVL IVHNLVN




	Prastavana 16-8-14
	CH-1
	CH-2
	CH-3   16-8-14
	CH-4
	CH-5
	ch-6
	ch-7
	CH-8
	Solution
	PARISIS

