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FUNDAMENTAL DUTIES

(a)

(b)

(©)

(d)

(e)

()

(2)

(h)

(1)
)

(k)

It shall be the duty of every citizen of India :
to abide by the Constitution and respect its ideals and

institutions, the National Flag and the National Anthem;

to cherish and follow the noble ideals which inspired our

national struggle for freedom;

to uphold and protect the sovereignty, unity and integrity

of India;

to defend the country and render national service when called

upon to do so;

to promote harmony and the spirit of common brotherhood
amongist all the people of India transcending religious,
linguistic and regional or sectional diversities; to renounce

practices derogatory to the dignity of women;

to value and preserve the rich heritage of our composite

culture;

to protect and improve the natural environment including
forests, lakes, rivers and wide life, and to have compassion

for living creatures;

to develop the scientific temper, humanism and the spirit of

inquiry and reform;
to safeguard public property and to abjure violence;

to strive towards excellence in all spheres of individual and
collective activity so that the nation constantly rises to higher

levels of endeavour and achievement.

to provide opportunities for education by the parent or the guardian, to
his child, or a ward between the age of 6-14 years as the case may be.
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About This Textbook...

We are very pleased to present before you the textbook for Mathematics of
semester IV for standard XII following the new syllabus prepared by Gujarat
Secondary and Higher Secondary Board on the basis of NCERT syllabus, in
extension of Mathematics textbooks of semester I and semester 1l for standard XI
and semester III of standard XII.

This textbook has been prepared originally in English as in the case of textbooks
of semester I and II for standard XI and semester III of standard XII. The manuscript
has been thoroughly examined by learned teachers from schools and colleges
through a workshop organized in the month of June. The suggestions and proper
amendments had been accepted and the revised manuscript has been translated in
Gujarati. The Gujarati version was also examined by teachers from schools and
colleges and the necessary amendments were made. The English manuscript and
the translated version in Gujarati were examined by language experts and the
corrections were made. This way the final draft of the manuscript was prepared.

A second review had been carried out in the end of July by subject experts from
universities and technological colleges. They were retired mathematics professors of
eminence. Their recommendations were accepted and amendments were made.

In chapter 1, we apply differentiation to various problems in mathematics like
coordinate geometry, approximation; maximum and minimum values of a function and
rates of change of one variable with respect to another, especially with respect to
time which will consequently help to study applications of differentiation to science.
Chapter 2 continues the study of integration which has began in semester III. Here,
since the study continues, the prerequisite is knowledge of indefinite integration
studied in semester III. Some examples can be studied by techniques of any of the methods
from these two chapters. Chapter 3 introduces definite integration. Theorems and
examples freely make use of indefinite integration techniques. Chapter 4 is about an
application of integration. It shows how to calculate certain areas bounded by some
known curves. Chapter 5 is further application of integration to solve differential
equations. Here, only some simple techniques are studied. Chapter 6 is the study of
algebra of vectors useful in three dimensional geometry. The concept of Vectors was
introduced in semester II. These concepts are revised. Abstract approach to vectors and
geometrical significance are studied. Chapter 7 deals with applications of vectors to
three dimensional geometry of lines and planes.

In between, some explanations are given in boxes. They are meant to explain
further the concept introduced earlier or to add some comments on them. They are
for more understanding only.
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Attractive four-colour title, four-colour printing and figures make this textbook
visually rich and adds more to its utility value. Plenty of illustrations and exercises

are integrated to explain various concepts and variety of problems. They will help the
students in achieving good marks in semester examination as well as competitive
examinations.

We thank all who have helped to prepare this textbook. We hope that all students,
teachers and parents would like this textbook. Positive suggestions to enhance the
quality of this textbook are welcome.

— Authors




APPLICATIONS OF DERIVATIVES

Life is good only for two things - discovering mathematics and teaching mathematics.
— Siméon Poisson
<
Each problem that I solved became a rule, which served afterwards to solve other
problems.
— René Des Cartes

1.1 Introduction

We have defined the derivative of a function and studied several methods to find the derivative
of a function.

In the introductory article in std. XI, semester II, we had introduced the notion of a derivative using
the slope of a tangent to a curve intuitively. Now we will study this application and several other
applications of a derivative such as rate of change of a quantity w.rz. another quantity, finding
approximate values of a function at some value in its domain, equations of tangents and normals to a
curve at a point and the orthogonality of curves, increasing and decreasing functions and maximum and
minimum values of a function. These mathematical concepts are used to apply differentiation to
find optimum values in Physics, Economics, Social Science, Biology, Chemistry etc. Des Cartes
and Newton explained creation, the shape and colour of rainbows using these ideas. Geophysicists
use differential calculus when studying the structure of the earth's crust while searching for oil.

1.2 Rates of Change

Let s = f(¢) be the equation of rectilinear motion of a particle, where s represents displacement

at time ¢ (i.e. directed distance from origin). If the displacements at time 7, and #, are respectively

. . . . . . . . S — 85
s; and s,, its average velocity during time interval 1, — 7, is given by the ratio H—1 Let
As = s, — 5, At = 1, — 1, and average velocity = %
As t, — t;, we get instantaneous velocity v of the particle at time #,.

. As ds Y
v= lm &, =
At—>0At dt

N

Thus rate of change of displacement
s = f(©) w.rt time ¢ is the instantaneous
velocity of the particle at time 7.

P(x, f(x
Similarly for any function y = f (x), Zx_y is 76

the rate of change of y = f(x) w.r.t. x.
For another example if volume V = f(r), QG+ hf(x + h)

r radius, % is the rate of change of volume

of a sphere w.r.t. radius.

For a ‘smooth’ continuous curve y = f(x), Ie}
let P(x, f(x)) and Q(x + A, f(x + h)) be two
points on the curve. (Fig. 1.1)

Y' Figure 1.1
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& faxt+th-fw

Slope of the secant PQ =

x+h—x
_ fx+h— f(
h

As h — 0, Q — P, P remaining on the curve. Since the curve is ‘smooth and continuous’,

<~
slope of tangent at P = lim (slope of PQ)

Q—-P

_ lim fG&x+h-fw
h—0 h

= /')

The slope of the tangent at P(x, f(x)) to the curve y = f(x) is f'(x).

In practice, we encounter many problems in which the rate w.z¢. time is required.
In these circumstances x, y etc. are functions of time z.

. dy _dy dx .
So by Chain rule o e di will be useful to calculate such rates.

Example 1 : Find the rate of change of volume of a sphere w.r.£. radius. Find this rate when » = 3 cm.

Solution : For a sphere, V = %Ttr3, where V is the volume and 7 is the radius of the sphere.

av _ 4 2y — 2
D = AnGr?) = 4nr

(d—V) =4 X 9 = 36T cm3/cm
dr/r=3

The rate of change of volume of a sphere, w.zz. radius when the radius is 3, is 36T cm3/cm.
Example 2 : The rate of change of volume of a sphere w.r:t. time is 16T cm3/sec. Find the rate of
change of its surface area w.zf. time at the moment when the radius is 2 cm.
Solution : Volume of a sphere, V = %Ttr3, where 7 is the radius

Volume changes w.r.t. time. So » and V are functions of time 7.

av _dv dr_ 4 2 dr
dr ~ dr di o 3T Xy
_ 42 dr
471 A1
= 42 4L av _ 3
16T 41Tr A1 ( dr 16T cm /sec)
% = % cmlsec
Now surface area of a sphere, S = 47102
ds _ds dr
dt dr dt
- dr
= 8Tr di
= 81r %
. 3277'6 = 16T cm?/sec r=2)
ds _ Rm _ 2
(a't)r=2 > 16T cm“/sec

The rate of change of surface area of the sphere is 16T cm?/sec, when r = 2 cm.
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Example 3 : A stone is dropped into a quiet lake and circular ripples are formed. Circular wave fronts

move at the speed of radius increasing at the rate of 5 cm/sec. How fast is the area increasing
when the radius is 10 cm ?

Solution : Area of a circle, A = T2, where r is the radius.

da _ da  dr
dt dr dt
— dr
= 2Ttr dr
Now r = 10 ¢m and % = 5 cml/sec
daa

;= 2T X 10 X 5 = 1007 cm?/sec.

The area enclosed by the waves increases at the rate of 1007 cm?/sec.

. . . o d .
We say as x increases, y increases if and only if 2> 0. We say as x increases, ) decreases

dx
if and only if % < 0. Later on in this chapter, we will study the concept of an increasing
(decreasing) function. If Zx_y > 0, then y is an increasing function of x and if Zx_y < 0, then y is a

decreasing function of x.

Example 4 : Air is being pumped into a spherical balloon so that its volume increases at the rate

80 cm3/sec. How fast is the radius of the balloon increasing when the diameter is 32 cm ?

Solution : Volume of a sphere, V = %TCr3, where 7 is its radius.

av _dv dr _ A0 dr _ 2 dr
dr ~dr S dr - 370 g T Ay
Nowd—V=80 cm3/sec,r=2=16 cm
dt 2
— dr
80 = 41 - 256 di
%=%cm/sec

The radius increases at the rate of % cmlsec

Example 5 : A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled away
along the floor away from the wall at the rate 3 cm/sec. How fast is its height on the wall
decreasing when the foot of the ladder is 4 m away from the wall ?

Solution : Let / be the length of the ladder. A is the end-point of the ladder on the wall. C is the
point where the ladder touches the ground. AB is a part of the wall.

From the figure 1.2, x2 + )2 = 2.

dx @ _ A
2xEE+2y =8 =0

=
|
+
<
I
]

y <

Figure 1.2
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% = 3 cmlsec (% > 0 as y is increasing when ¢ increases)
P 0.03 m/sec

dt

Q =
3 dr + 4(0.03) =0
dx _ 04 dx o is d ing when ¢ is i i
7R dr as x is decreasing when 7 is increasing

The height of the ladder on the wall is decreasing at the rate of 4 cm/sec.

Example 6 : Find the point on the curve y = x°

y w.rt. time is 3 times the rate of change of x w.rt. time.

Solution : We have y = x3 + 7.

. dy _ , dx
leenE—3dt
dy _ ;5 dx
NOWE—:;)C di
: s dx _ 5 0dx
From (i) and (ii) 3 dt 3x dt
x2=1

x=1or—1

y=8or6

+ 7, where the non-zero rate of change of

(i)
(i)
(% # 0)

The required points on y = x3 + 7 where the non-zero rate of change of y w.r:t. t is 3 times

rate of change of x w.rt. ¢ are (1, 8) and (—1, 6).

Example 7 : On a national highway, a car is driven East
at a speed of 60 km/hr and a staff bus is driven
South at a speed of 50 km/hr. Both are headed for
the intersection of the roads. The car is 600 m away
and the bus is 800 m away from the intersection.
Find the rate at which the car and the bus are

approaching each other.

Solution : C is the intersection of the roads. B
represents the position of the car and A represents the
position of the bus at a time. Let BC = x, AC = y at a
moment. The distance between the car and the bus is
AB = z.

From figure 1.3, x2 + )? = 22,

dx

Todt
x =0.6 km and y = 0.8 km

s 2= 0,62 +(0.8)2 = 1 km

Now, x2 + y2 =72

> C

X

Figure 1.3

ar —60 km/hr D —50 km/hr, negative as x and y are decreasing functions of time.
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o dx 4o, Do dz

dt dt dt
dz _ 1 (.dx , d
dt 4 (x dt +ydt)

= % (0.6 (—60) + 0.8(=50))

= =76 km/hr
The bus and the car are approaching each other at the rate of 76 km/hr

Example 8 : The total cost in rupees associated with the production of x units of an item is given by
C(x) = 0.005x3 — 0.02x2 + 10x + 10000. Find the marginal cost, when 20 units are produced.
[Note : Marginal cost means the rate of change of total cost w.r.z the output x.]
Solution : We have C(x) = 0.005x3 — 0.02x2 + 10x + 10000

dc

Marginal cost MC = = = (0.005)3x* — (0.02)2x + 10
(%)x ~ 5o = (0.005)1200 — (0.02)40 + 10
= 6—08+ 10

=152
The required marginal cost is ¥ 15.2.
Example 9 : The total revenue in rupees received from the sale of x units is given by
R(x) = 10x% + 20x + 1500. Find the marginal revenue when x = 5.
[Note : Marginal revenue means the rate of change of total revenue w.r.t. the number

of units sold.]

Solution : We have R(x) = 10x% + 20x + 1500
drR

a=20x+20
(=), _5 =100+ 20 =120

The marginal revenue is ¥ 120.

Example 10 : The volume of a cube is increasing at the rate of 12 c¢m3/sec. Find the rate at which

the surface area is increasing, when the length of the edge of the cube is 10 cm.

Solution : Volume of a cube, V = x3, where x is the length of an edge.

av _ dv dx
dt dx dt
— 3,2 dx
3x dr
av _ 3
But ar 12 cm?/sec
_ 1.2 dx
12 = 3x s
dx _ 4
dt x?

APPLICATIONS OF DERIVATIVES 5



Now surface area of the cube, S = 6x2

as _ ds dx
dt dx dt
- dx
12x dr
_ 4
= 43
X
(ﬁ) = 48
dt)x =10 10
das _ 4.8 cm?/sec
dt

The rate of increase of surface area is 4.8 cm?/sec.

Example 11 : A water tank is in the shape of an inverted cone. The radius of the base is 4 m and the
height is 6 m. The tank is being emptied for cleaning at the rate of 2 m3/min. Find the rate at

which the water level will be decreasing, when the water is 3 m deep.

Solution : Let the height of the water level at any instant be /4 and the radius of water cone be 7.

. C e . . OA _ OD
Using similarity of triangles, 5C — BD
4 _6
r h
L = l
h 3
= %
"7

Now the volume of water at any time ¢ is,

\% ST h
_1 M)
315( 9o~ ) " Figure 1.4
_ 4mh?®
27
4V _ Am (3;2dh
dt 27 (3h dt)
4V _ anh® dh
dt 9 dt
dh _ 2 _ dv
dt  4mh* dt
Now % = =2 m3/min (Volume is decreasing)
dh _ 2 _
dr ~ anne 2
(G8), - 5 = ==
dit/n=3 21O

— 1

2T

The height is decreasing at the rate % m/min.

6 MATHEMATICS 12 - IV



10.

11.

12.

13.

14.

15.

Exercise 1.1

The surface area of a cube increases at the rate of 12 cm?/sec. Find the rate at which its
volume increases, when its edge has length 5 cm.

Find the rate of change of volume of a cone w.rt. its radius, when the height is kept constant.
Find the rate of change of lateral surface area of a cone w.rt. to its radius, when the height
is kept constant.

The volume of a sphere increases at the rate 8 cm’/sec. Find the rate of increase of its surface
area, when the radius is 4 cm.

The volume of a closed hemisphere increases at the rate of 4 cm3/sec. Find the rate of increase
of its surface area, when the radius is 4 cm.

A cylinder is heated so that its radius remains twice of its height at any moment. Find the rate
of increase of its volume, when the radius is 3 ¢m and the radius increases at the rate 2 cm/sec.
Find the rate of increase of its total surface area also in this case.

A stone is dropped into a quiet lake and ripples move in circles with radius increasing at a
speed 4 cmi/sec. At the time when the radius of a circular wave is 10 cm, find the rate at
which the area enclosed by the waves increases.

A rectangular plate is expanding. Its length x is increasing at the rate 1 cm/sec and its width
y is decreasing at the rate 0.5 cm/sec. At the moment when x = 4 and y = 3, find the rate of
change of (1) its area (2) its perimeter (3) its diagonal.

A ladder 7.5 m long leans against a wall. The ladder slides along the floor away from the wall at
the rate of 3 cm/sec. How fast is the height of the ladder on the wall decreasing, when the foot of
the wall is 6 m away from the wall ?

A concrete mixture is pouring on ground at the rate of 8 cm3/sec to form a cone in such a way
that the height of the cone is always %th of the radius at the time. Find the rate of increase of
the height, when the radius is 8 cm.

The total cost in rupees associated with the production of x units is given by

C(x) = 0.005x3 — 0.004x2 + 20x + 1000. Find the marginal cost when x = 10.

The total revenue in rupees received from the sale of x units of a product is given by

R(x) = 20x%2 + 15x + 50. Find the marginal revenue when x = 15.

A man 2 m tall walks away at a rate of 4 m/min from source of light 6 m high from the ground.
How fast is the length of his shadow changing ?

Area of a triangle is increasing at a rate of 4 cm?/sec and its altitude is increasing at a rate of
2 cmisec. At what rate is the length of the base of the triangle changing, when its altitude is
20 c¢m and area is 30 cm??

Two sides of a triangle have lengths 4 m and 5 m. The measure of the angle between

them is increasing at a rate of 0.05 rad/sec. Find the rate at which the area of the triangle

increases, when the angle between the sides (fixed) has measure %

APPLICATIONS OF DERIVATIVES 7



16.

17.

18.

19.

20.

1.3

Two sides of a triangle have lengths 10 m and 15 m. The angle between them has the measure

increasing at a rate of 0.01 rad/sec. How fast is the third side increasing when the angle

between sides having lengths 10 m and 15 m (fixed) has measure % ?

The radius of a spherical balloon increases at the rate of 0.3 cm/sec. Find the rate of increase
of its surface area, when the radius is 5 cm.

If y = 3x — x3 and x increases at the rate of 3 units per second, how fast is the slope of the
curve changing when x = 2 ?

A particle moves on the curve y = x3. Find the points on the curve at which the y-coordinate
changes w.r.t. time thrice as fast as x-coordinate.

Find the points on the parabola y?> = 4x for which the rate of change of abscissa and ordinate

1S same.

Increasing and Decreasing Functions

We have seen in the third semester that /(x) = ¢°, a € RY, x € R is an increasing function

of x for a > 1 i.e. as x increases, the value of f(x) also increases. This was observed looking at the

graph of f(x) = &*. But this is not always possible or even convenient for all functions. Let us find a

criterion for this.

Consider f(x) = 2x + 3, x € R. Here obviously, X 5
=X
X < xy = 2x; < 2x, Y
= 2x; +3<2x,+3
= f(x) <f(x), Vx.x, € R
Thus f is ‘increasing’ on R. We have
observed sine is increasing in (O, %) X o) X
Consider f(x) = x2, x € R (Fig. 1.5)
In the first quadrant f(x) = x2 increases
with x and asx proceeds towards right of
Y-axis, y-coordinate increases. But on the left N
of Y-axis, as x increases, ) decreases. Y
Figure 1.5

Now let us formally define this concept.
Definition : Let (a, b) be a subset of the domain of a function. We say,
(1) f is increasing on (a, b) (denoted by f T) if
x; < x, = f(x) < f(xy), Vx;, x, € (a,b)
(2) fis strictly increasing on (a, b) if x; < x, = f(x)) < f(x,), Vx], x, € (a, b)
(3) fis decreasing on (a, b) (denoted by f J') if x; <x, = f(x)) 2f (), Vxl, x, € (a, b)
(4) fis strictly decreasing on (a, b) if x; < x, = f(x)) > f(x,), Vxl, x, € (a, b)

MATHEMATICS 12 - IV



We say f is increasing (or decreasing or strictly increasing or strictly decreasing) on R or a
subset of R which is a subset of its domain D, if f is increasing in every open interval (or decreasing

or strictly increasing or strictly decreasing) which is a subset of R or of D as the case may be.

Consider following graphs :

Y Y
N N
f@ = [x] — y=x
@0
ol — X < > X
A4
Figure 1.6 Figure 1.7
Figure 1.6 is the graph of the increasing function f(x) = [x] in [0, 1), [1, 2)... It is increasing on R.
Y
See that increasing actually means non-decreasing. 0\
. . . . . 2‘
Figure 1.7 represents the graph of a strictly increasing function. X H
Figure 1.8 is the graph of f(x) = [ 2 — x 0<x<1 < > X
g graph of f(x) ol T §\‘
1 1 <x<2
3—x x=22
Here f is decreasing for x = 0. J
Figure 1.8
f is constant, so f is non-increasing and non-decreasing for 1 < x < 2.
= 32 Y
f(x) = x2, x < 0 represents the graph of a y=2x
decreasing function. (Fig. 1.9)
A function increasing or decreasing at a point :
Let f be defined on a domain containing an open X' S X
interval 1. Let x, € I and let some /&, 2 > 0 be so small
that (xy, — h, xy + h) C L
If f is increasing in (x, — &, x, + /), we say f is increasing at x,. “("

If fis decreasing in (x, — /&, x, + h), we say f is decreasing at x,. Figure 1.9

If f is strictly increasing in (x, — h, x, + h), we say f is strictly increasing at x,,.

If f is strictly decreasing in (x, — h, x, + h), we say f is strictly decreasing at x,.

If f is increasing for all x, € I (decreasing, strictly decreasing or strictly increasing),
then we say f is increasing (decreasing, strictly decreasing or strictly increasing) on I.

Now we will find some criteria to determine the nature of a function whether increasing or

decreasing.

APPLICATIONS OF DERIVATIVES 9



Theorem 1.1 : If f is continuous on [a, b] and differentiable in (a, b), then

(1) fis increasing on (a, b) if f'(x) 2 0 Vx € (a, b)
(2) fis decreasing on (a, b) if f'(x) £ 0 Vx € (a, b)
(3) fis strictly increasing on (a, b) if f'(x) >0 Vx € (a, b)
(4) fis strictly decreasing on (a, b) if f'(x) < 0 Vx € (a, b)
(5) fis constant on (a, b) if f'(x) =0 Vx € (a, b)
Proof : Let x; € (a b), x, € (a b) and x; < x,. Since f is continuous on [a, b] and

differentiable in (a, b), there exists ¢ € (xy, x,) C (@ b) so that f(x,) — f(x;) = (x, — x) f'(c).

(Mean value theorem)
(1) Iff'(x) 20, Vx € (a b), fi(c)=20asc€ (x, x,) C (a b).
Since x; < x5, X, —x; > 0
F1©) (v = x) 2 0
f@y) = f@xp) 20
&) S fxy)
x; < x, = fx) S f(x)), Vx,x, € (a b)
f is increasing on (a, b).
2) Iff'(x) £0, Vx € (a b), f'(c)Z0.
x; <x, = f(x)) 2 f(x). Vx..x, € (a b),
fis decreasing on (a, b).
3) Iff'(x) >0, Vx € (a b), f'(c)>0.
x; < xy = f(x)) < f(xy), Vxl, X, € (a, b),
f is strictly increasing on (a, b).
4) Iff'(x) <0, Vx € (a b), f(c)<O.
x; < xy, = f(x)) > f(x,), Vxq, x, € (a, b),
f is strictly decreasing on (a, b).
(5) If f'(x) =0, Vx € (a b), f'(c)=0.
f(xy) = f(x)) =0, Vx, x, € (a b)
f@y) =f@)  Vx.x, € (@ b)

fis a constant function on (a, b).

Do you remember how arbitrary constant was introduced in indefinite integration ?
In view of the remark preceding the theorem, f is increasing or decreasing on [a, b] also
according as f'(x) = 0 or f'(x) < 0 respectively in (a, b).

Similar remarks apply for strictly increasing and strictly decreasing functions.
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Example 12 : Prove that sine function is strictly increasing in (—5, 3).

Solution : Lsinx = cos x
dx

i I =
cosx >0, if x € ( > 2).

sine function is strictly increasing in (—%, %)
Example 13 : Prove that f(x) = (%)x is strictly decreasing on R.

Solution : f(x) = (%)x =27
f'(x) = —2log 2 <0 as log,2 >0 and 27 > 0.

f1is strictly decreasing on any interval (a, b)) C R.
f(x) = (%)x is strictly decreasing on R.

Example 14 : Prove that f(x) = tanx, x € R — {(Zk - 1)% | k € Z} is strictly increasing in every
quadrant.
Solution : f(x) = tanx
S = sexx >0 Vxe R—{@k—-1DE|ke z].

f(x) = tanx is strictly increasing in all intervals like (0, %), (%, ‘It),... etc.

f(x) = tanx is strictly increasing in all quadrants.
Example 15 : Prove that f: R — R, f(x) = ax + b is strictly increasing for a > 0 and strictly
decreasing for a < 0.
Solution : f(x) = ax + b
f'x) =a
If a >0, f'(x) > 0 and so f is strictly increasing on R.
If a <0, f'(x) < 0 and so f is strictly decreasing on R.
As an example f(x) = 5x + 7 is strictly T and f(x) = —2x + 3 is strictly 3
Example 16 : Prove that f(x) = x3, x € R is increasing on R.
Solution : f'(x) = 3x2 > 0
fisTonany(a, b) C R
fis T on R.
Example 17 : Prove that f: R — R, f(x) = x> + 3x2 + 5x is strictly increasing on R.
Solution : f(x) = x> + 3x% + 5x
f'(x) =3x2 4+ 6x + 5
=3x>+6x+3+2
=3x+1)?+2>0, Vxe R

fis strictly increasing on R.
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Example 18 : Find the intervals in which /: R — R, f(x) = x2 — 6x + 15 is strictly increasing or
strictly decreasing.
Solution : f(x) = x2 — 6x + 15
flx)=2x—6
If x <3,2x <6 and f'(x) < 0.

fis strictly decreasing for x € (—oo, 3).
If x> 3,2x > 6 and f'(x) > 0.
fis strictly increasing for x € (3, o).
Example 19 : Determine in which intervals the function f: R — R, f(x) = x> — 6x2 — 36x + 2
is increasing and where it is decreasing.
Solution : f(x) = x> — 6x2 — 36x + 2
f'(x) = 3x% — 12x — 36

b
o % 4
8

=3(x* —4x—12) __,
=3(x —6)(x +2)
(1) Ifx < —2,thenx <6
x+2<0,x—6<0
f'(x)=3x—6)(x+2)>0
fis Tin (—o0, —2). (Infact strictly T)

2) f2<x<6,thenx+2>0,x—6<0
f'(x) =3x —6)x+2)<0
fis 4 in (=2, 6).
3) Ifx>6,thenx+2>0,x—6>0
f'(x) >0
7is T in (6, o).
Example 20 : Determine where f(x) = tan~!(sinx + cosx), x € (0, T) is increasing and in which

interval it is decreasing.

Solution : f(x) = tan~\(sinx + cosx)

. B 1 X (cosx — sinx)
S =75 (sinx + cosx)?

cosx — Sinx

T 1+ (sinx + cosx)?
(1) Ifx e (0, E), then cosx > sinx

(cosx IS (f, 1) and sinx € (O, f))
Also 1 + (sinx + cosx)? > 0
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f'(x) > 0 for x € (0, %)

fis increasing in (0, %)

2) x € (%, %), cosx < sinx. Thus, cosx — sinx < 0 and if x € (%, 712), cosx < 0, sinx > 0

cosx—sinx<0.Forx=%,cosx—sinx=0—1=—1<0

ifxe (7). /() <0

fis decreasing in (%, TC).

Example 21 : Prove that f(x) = x!90 + sinx — 1 is increasing for x € (0, ).
Solution : f(x) = x190 + sinx — 1
f'(x) = 100x° + cosx

For x € (0, %), x?? > 0, cosx > 0. So f'(x) > 0.

For x = %, x?? > 0, cosx = 0. So f'(x) > 0.

If x € (%, Tl:), x> 1 and —1 < cosx < 0.
f'(x) > 0.
fis (strictly) increasing in (0, T0).
Example 22 : Prove f(x) = log sinx is increasing in (0, %)
Solution : f(x) = log sinx

) = —L_ - ' ( E)
') it X cosx = cotx > 0 in (0, > )

f is increasing in (0, %)

X
log x>

Example 23 : Determine intervals in which f(x) = x > 1 is increasing and where it is

decreasing.

Solution : f(x) = @

logx—x-—  logx—1
(logx)>  (logx)’

S =

(1) x<e, then logx < loge =1
logx — 1 < 0. Also (logx)? > 0
f'ix) < 0.
fis 4 in (1, o).
(2) If x > e, then logx > 1. So logx — 1 > 0 and (logx)? > 0
f'(x) > 0.
7is Tin (e, o).
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Example 24 : Prove f(x) =

Solution : f(x) = lanx

J'(x)

X

lanx iq increasing on (O, %)
_ _sinx
XCOSX

XCOSX - COSX — SInX (COSX — XSinx)

(xcosx)?

X (CoSs*x + sin’x) — sinxcosx

(xcosx)?

X — Sinx cosx

(xcosx)?

Now,0<x<%. So 0 <sinx<x,0<cosx <1

0 < sinx cosx < x

x — sinx cosx > 0. Also (xcos x)> > 0

fl

(x) > 0

fis Tin (0.%).

Exercise 1.2

1. Prove that cot : R — {kTt | Kk € Z} — R is decreasing in all quadrants.
2. Prove that cosine is a decreasing function in (0, TT).
3. Prove that sec is an increasing function in (0,%).
4. Prove that cosec is an increasing function in (%, TC).
5. Prove that f(x) = a* is T, if a> 1.
6. Prove that f(x) = log,x is T, x € R
7. Determine the intervals in which f is increasing and the intervals in which f is
decreasing :
(1) f: R —> R, fx)=3x+7
(2) f: R —>R, f(x) =8 — 5x
(3) f:R—>R, f)=x>—2x+5
(4) f:R—R, f(X) =9+ 3x —x?
(5 f:R—>R, f@x) =x+3x + 10
(6) f: R =R, f) =3x* —4x3 — 12x2 + 5
(7) f:(, T = R, f(x) = sinx + cosx
(8) f: R =R, fx) =—2x3 —9x2 — 12x + 1
9) f:R >R, @) =@+ 1) x—3)
10) f: (0»%) — R, f(x) = log cosx
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10.
11.

12.

13.

14.

15.

16.
17.

18.

19.

20.
21.

a1 f: (%, Tl',) — R,  f(x) = log | cosx |
1
(12)f: R—= {0} > R, f(x) =¢e”*

Prove that if | is an open interval and I M [—1, 1] = @, then f(x) = x + é is strictly
increasing on 1.

Prove that f(x) = x> — 3x2 + 3x + 100 is increasing on R.

Prove that f(x) = x190 + ginx — 1 is increasing on (0, 1).

4 _ 4

Find intervals in which f(x) = %x 5

X3 — 3x2 + 3—56x + 11 is increasing and intervals in

which it is decreasing.

48inX — 2X — XCOSX

Find in which intervals, f: R — R, f(x) = > T cosx

is decreasing and intervals in

which it is increasing.

Prove f(x) = x*, x € RY is increasing if x > é and decreasing if 0 < x < é.

4

Decide the intervals in which f(x) = sin*x + cos*x is increasing or intervals in which it is

decreasing. x € (0,%).

Find the value of a for which the function f(x) = ax®> — 3(a + 2)xZ + 9(a + 2)x — 1 is decreasing
for all x € R.

Find the values of a for which f(x) = ax> — 9ax? + 9x + 25 is increasing on R.

Prove that f(x) = (x — 1)¢* + 1 is increasing for all x > 0.
) . PO . i
Prove that f(x) = x* — x sin x is increasing on (0, 5 )
Prove f: R — R, f(x) = x% is increasing for x € R and decreasing for x < 0 without using
derivative test and using the definition only.
Prove f: R = R, f(x) = 2¥ + 27¥ is increasing for x € (0, oo) and decreasing for x € (—oo, 0).

Determine intervals in which following functions are strictly increasing or strictly
decreasing :

(1) f:R =R, f(x) =x3 —6x2 — 36x + 2

(2) f:R =R, f(x) = x* — 4x

(3) f: R =R, S =@x—1) x—2)

4) f:R >R, fx) =2x3 — 12x2 + 18x + 15
(5) f:RT >R f) = xfx+l

6) f:R" =R, f() = x% (x + 3)%

(7) f:(0, T) = R, f(x) = 2x + cotx

(8) f: R >R, f(x) = 2cos x + sin*x

(9) f:R >R, f(x) =log(1 + x?)
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(10) f: R > R, f(x) =x0+ 192x + 10

(11) f: R = R, fx) = xe*
(12) f: R > R, f(x) = x2&

(13) f: RY >R, f(x) = k’%

(14) f: Rt = RY,  f(x) =x log x

1.4 Applications to Geometry

(1) Tangents and Normals : We know that if y = f(x) is a differentiable function in (a, b),
f'(xg) is the slope of the tangent to the curve y = f(x) at (x, f(xy)), X, € (a, b).

So a tangent to a curve y = f(x) at (x, f(xy)) is the line passing through (x,, y,) and
having slope f'(x,), where y, = f(x)). If a tangent at (x,, y,) is vertical, it does not have
a slope.

The equation of tangent at (xy, y,) to the curve y = f(x) is y — yy = f'(xg)(x — X)),
where the tangent is not vertical. If the tangent is a vertical line through (x,, y,), its
equation is x = x,.

A tangent may intersect the curve again. The tangents y = 1 or y = —1
intersect the graph of y = sinx, x € R in infinitely many points. (Touch)

A normal to a curve y = f(x) at (xy, yy) is a line perpendicular to the tangent at that
point and passing through (x,, y,). If the tangent is not horizontal, f'(x)) # 0. Then the

slope of the normal at (x;,, y,) is — ﬁ, since slopes m;, m, of perpendicular lines satisfy
0
». The equation of the normal at (x\, y,) is y — yy = — m (x — x¢) (f'(xg) # 0)

If f'(xg) = 0, the equation of the normal at (x,, y,) is x = x,. If the tangent at (x,, y,) is

vertical, the equation of the normal at (x,, y) is y = y,.

Example 25 : Find the slope of the tangent and the normal to y = x3 — 2x + 4 at (1, 3).

Solution : The equation of the curve is y = x3 — 2x + 4.

Zx—y=3x2—2
d _
(ay)le—l

The slope of the tangent to y = x3 — 2x + 4 at (1, 3) is 1.
Since a normal at a point is perpendicular to the tangent at the point , its slope at (1, 3) is —1.
(mym, = —1)
Example 26 : Find the equation of the tangent and the normal to the circle x2 + 2 = ¢? at (xp, yy)-

Solution : The equation of the circle is x2 + y? = g2,
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dy Y
2x+2y— =0 A N A
Y dx I I
I I
dy x - 1 1
—=—=ify#0
ax oyt I I
I I
The equation of the tangent at (x,, y,) is, ! |
X : X
Yoy =y =X 0 #0) A A
1 I I
I I
=yt = g g : |
2 2 x = —ay (¥
xx, + =x,7 +
17N TN M ! o
But x,2 + y,> = a* as (x,, y,) lies on the circle x? + )? = a?. Figure 1.10

xx; + oy, = a® is the equation of tangent at (x, ¥y) to the circle x2 + 3?2 = 0,#0)
Corresponding to y; = 0, A(a, 0), A'(—a, 0) are two points on the circle.

The tangents at A and A' are vertical and have equations x = a and x = —a respectively.
Taking (x;, ¥;) = (a, 0) or (—a, 0) repectively in the equation xx; + yy; = a* also, we get
2 2

xa+0=a2i.e.xa=a or —xa = a

x = a and x = —qa are tangents at A and A'. (a # 0)
At all points (x;, y;) on x2 + y2 = a2 the equation of tangent to x% + 2 = a? is xxy+yy, = a’.
A normal to x2 + y2 = &? is perpendicular to xx; + oy = a* and passes through xp, yp-

Its equation is xy; — yx; = x;y; — y;x; = 0.

A line perpendicular to ax + by + ¢ = 0 and passing through (x;, y;) has equation

bx —ay = bx; — ayy.

The equation of the normal to x2 + )2 = 4% at (xy, ¥y is xy; — yx; = 0 and it passes
through the centre (0, 0) of the circle.
A radius (i.e. line containing radius) is always a normal to the circle.

2 2 2
Example 27 : Find the equation of the tangent and the normal to x3 + y3 = g3 at x = acos30,
y = asin0. 0 € [0, %) (a>0)
2 2 2 2
Solution : See that x3 + y3 = (acos30)3 + (asin’0)3
2
= a3 (cos?® + sin’0)
2
— a3
2 2 2
(acos0, asin30) lies on x3 + y3 = g3,
1
2.3 42,739 _
Now 5 X + 3V T o 0
1 .
3 —(asin®0)3
Do xS
X3 —(acos’0)3
. . sin ©
The equation of the tangent at (acos30, asin30) is y — asin’0 = — Zos0 (6 — acos30)

ycos® — asin’® cos® = —x sin® + asin® cos>0
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xsin® + ycos® = asin® cosO (sin*0 + cos?0)

= a sin® cosO

The equation of the tangent at (acos30, asin’0), © € (0,%) is
xsin® + ycosO = asin® cosO
The equation of the normal at (acos30, asin30) is
xcos® — ysin® = acos30 cosO — asin30 sind
= a(cos*® — asin*0)
= a(cos?0 — sin?0)(cos?0 + sin’0)
= acos20

The equation of the normal at (acos>0, asin30) is xcos® — ysin® = acos20.

Remember : A line perpendicular to ax + by + ¢ = 0 has equation
bx — ay = bx| — ay,, if it passes through (x;, ).

Example 28 : Find the equation of the tangent and the normal to y? = 4ax at (af?, 2at)

Solution : The equation of the curve is 2 = 4ax.

2y Zx—y = 4a X

2Q2at) % = 4a

Zx—y = if1#0 0 x
The equation of the tangent at (ar2, 2af) is

y — 2at = %(x — a?) (t # 0)

ty — 202 = x — ai? Figure 1.11

x — ty + ar> = 0 is the equation of the tangent to

2 = 4ax at (ar?, 2at) where t # 0

The equation of normal at (ar, 2art) is tx + y = Hat*) + 2at.

tx +y — 2at — ar® = 0 is the equation of the normal to y? = 4ax at (ar?, 2af). @#0

Now if £ = 0, the corresponding point on parabola is (0, 0). The tangent at (0, 0) is vertical
and its equation is x = 0. Normal at # = 0 is perpendicular to x = 0 and passes through (0, 0).

Hence its equation is y = 0.

See that these equations can also be obtained from general equations by putting ¢ = 0.

Example 29 : Find the equation of the tangent to y = ‘/3x — 2 parallel to 4x — 2y + 5 = 0.

Solution : The slope of the line 4x — 2y + 5=0is m = —% = —_iz =2.
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The slope of tangent to y = ‘/3x— 2 must be 2 as parallel lines have same slopes.

dy
dx
Since y = ‘/3x —2 is the equation of the curve,

=2

1-3
dy 13
dx 243x—2
9 = 16(3x — 2)

Let (x(, y) be the point of contact.

_ 9 _
Then Xy = %(ﬁ+2) ié, Yo =

J; 3
The equation of tangent at (% %) isy — % = 2( - —) (m = 2)
24y — 18 = 48x — 41
48x — 24y = 23 is the equation of the tangent to y = J?mc_—Z parallel to 4x — 2y + 5 = 0.

[Verify that 48x — 24y = 23 is parallel to 4x — 2y + 5 = 0 and is not coincident with
4x — 2y + 5=0.]
Example 30 : Find the points on x2 + y2 — 2x — 3 = 0 at which the tangents are parallel to X-axis.

Solution : The equation of the curve is x2 + y2 — 2x — 3 = 0

2x+2yj——2—0 (i)

The tangent is parallel to X-axis. So its slope is zero.

2x—2= (using (i)

Now, x2 + 32 —2x—3=0
1+3y2-=2-3=0 x=1)
=4
y=%x2
The tangents at (1, 2) and (1, —2) to the circle are y = = 2 and they are parallel to X-axis.
Example 31 : Find the point or points on y = x> — 11x + 5 at which the equation of the tangent is

y=x— 11
Solution : The equation is y = x> — 11x + 5.
Zx—y =3x2 — 11 @

The slope of y =x — 11 is 1.

The slope of the tangent is 1.

dy

Ezl
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3x2—11=1 (using (i)

3x2 =12
x2 =4
x=x2

Ifx=2y=x—1llx+5=-9.Ifx=-2,y=x3—1lx+ 5=19
Point of contact may be (2, —9) or (=2, 19).
At (2, —9), the equation of the tangent is y + 9 = 1(x — 2) (slope = 1)
o y=x—11I.
But the tangent at (=2, 19) cannot have equation y = x — 11 as (=2, 19) does not lie on
y=x—11.
The tangent at (2, —9) has equation y = x — 11.
Example 32 : Show that tangents to y = 7x3 + 11 at x = 2 and at x = —2 are parallel.
Solution : The equation of the curve is y = 7x3 + 11.

Zx—y=21x2=84atx=i‘2

Ifx=2,y=7x+ 11 = 67. If x = =2, y = —45.
The equations of tangents at (2, 67) and (—2, —45) are respectively y — 67 = 84(x — 2) and
y + 45 = 84(x + 2). (m = 84)
84x — y = 101 and 84x — y + 123 = 0 are equations of the tangents at (2, 67) and
(=2, —45) respectively.
They are having same slopes and are distinct lines.
They are parallel.
Example 33 : Find the equation of the normal to x2 = 4y passing through (1, 2).

Solution : The equation of the curve is x2 = 4y

Y
2x =4 e
4y _x
dx 2
The slope of the normal at (x(, y,) is _x%) xg # 0)
The equation of the normal at (x,, y) isy — yy = _x% (x — x¢) @)

If it passes through (1, 2), 2 — y, = _xlo (I = xy)

2

xO(Z - x%) =2+ 2x (xg® = 4vp)
xo3 =8

_ _ X()Z _
The equation of the normal at (2, 1) isy — 1 = — % x—2)=—x+2 (using (i)

x + y = 3 is the equation of the normal to x2 = 4y passing through (1, 2).

20 MATHEMATICS 12 - IV



(1) If x, = 0, then y, = 0. Normal at (x,, ) »
is x = 0. It does not pass through (1, 2)

(2) Here the normal passes through (1, 2) and is o) X
not at (1, 2). It is proved to be a normal at (2, 1).
(1, 2) does not lie on x2 = 4y. v
Figure 1.12

Example 34 : Prove that the sum of the intercepts (if they exist) on axes by any tangent to
Jx + J_ = Jc is constant. c>0).x#0,y#0)

Solution : The equation of the curve is \/; + \/_ = ‘/;

d_y
dx

|H

&

+ 5 =0

5

(x # 0)

&S

The equation of the tangent at (x;, y;) isy — y; = —‘/% (x —xy)
1

Y
e R iy £0,y, %0
\/;1 ‘/_ ‘/_ (xy »1 )
‘/_ \/Z \/y_l = \/; ((xg5 yp) lies on \/; + J_ = JZ)
It intersects axes at (‘/x_1 Je. 0), (0, \/Y_l Jo).

The sum of the intercepts on axes is \/x_l\/; + \/y_l\/; =Jc (‘/x_1 + \/y_l)
- Jede

= C

'?II
|‘< ﬁ|‘<

The sum of the intercepts of any tangent to ‘/; + J_ = \/; on axes is constant.

If x; = 0 or y; = 0, the points on the curve are (0, c¢) or (¢, 0). The tangents at these

points are respectively x = 0 and y = 0 and do not have both the intercepts.

Example 35 : Prove that any normal to x = acos® + a0 sin®, y = asin® — ab cos0 is at a constant
distance from origin. O # %, ke 7

Solution : Since x = acos® + a0 sin® and y = asin® — ab cosO

de _ —asin® + asin® + a0 cosO = a0 cosO

do
dy , .
- = acos® — a cosO + ab sin® = a0 sind
dy sin©
Tr  cos® (cos® # 0)
cos0
The slope of the normal at O-point is — TR (sin® # 0)
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cosO

The equation of the normal at O-point is (y — asin® + a0 cos0) = — (x — acos® — ab sin0O)

sin©
ysin® — asin®0 + ab sin® cos® = —xcosO + acos*® + aO sin® cosO
xcos® + ysin® = a(cos?0 + sin?0) = a

. . . . k1t
xcosO + ysin® = a is the equation of the normal at O-point. (9?5 5 )

. .. B lcl
If its distance from origin is p, then p = —W

l—al
— = | a| which is a constant.

[What happens if 6 = an 2]

(2) Angle between two curves :

The measure of the angle between two curves is defined to be the measure of the angle between
the tangents to them at their point of intersection.

A result : Let y = f(x) and y = g(x), x € (a, b), be equations of two curves and f(x) and
g(x) are differentiable in (a, b). If they intersect at (x4 yg), X, € (a, b). The measure O of the
angle between them is given by

S '(xp) - 8'(xp)
1+ f'(xo) &'(x0)

Explanation : We know if m, and m, are slopes of two lines, the measure O of the angle
between them is given by

tanQ, =

m —ny

tanQL = T+ mm,

Also the slopes of tangents at (x,, y,) are f'(xy) and g'(x,).
So m; = f'(x,) and m, = g'(x,). Hence the result.

If f'(xy) g'(xp) = —1, OL = L and we say the curves intersect orthogonally.

2
If f'(xy) = g'(xy), the curves touch each other at (x,, y)-

Example 36 : Prove that x2 — »2 = 5 and 4x2 + 9y? = 72 intersect orthogonally at every point of
intersection.

Solution : Let us first find the points of intersection.
x2 —y2 =35, 4x2 4+ 92 =72 @)
4x2 — 4y? = 20 using x2 — y? = 5. (ii)
Solving (i) and (ii), 13y% = 52
2 =4.Soy=%2

x2—4=5 (x2_y2=5)
x2 =09, So,x=*%3
The points of intersection are (3, 2), (3, —2), (=3, —2), (-3, 2).

dy _
=0

The slope of the tangent to x2 — y2 = 5 denoted by my is given by m, = %

For the first curve 2x — 2y

For the second curve 8x + ISny—y = 0.
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The slope of the tangent to 4x% + 9y = 72 at (x, ) denoted by m, is given by m, = —g—;

4x?
fn S 36 _ 1

At all the points of intersection the curves (hyperbola and ellipse) intersect orthogonally.

Example 37 : Prove that y = ax?, x> + 3y% = b2 are orthogonal.
dy

Solution : The slope of the tangent to y = ax> at (x, y) is denoted by my. So m; = i 3ax?.
xZ + 3y2 = b2 implies 2x + 6y ZZ =0
Th 2 2 _ 2 - _dy _ _ x
e slope of the tangent to x~ + 3y~ = b~ at (x, y) is denoted by m,. So m, = T3y
- 2y (X)) = _ﬁ I : : : — 3
mymy = (3ax) ( 3y) y 1 as at the point of intersection y = ax

The curves intersect at right angles.
[The curves do intersect as substituting y = ax3 in x2 + 3)2 = b2, we get x2 + 3a2b® = b2
This equation has a solution.]
Example 38 : Find the measure of the angle between x2 + y2 —4x — 1 =0 and x2 + y2 — 2y — 9=0.
Solution : The equations of curves are x2 + 2 —4x — 1 =0, x2+ )2 —2y — 9 = 0.
At the point of intersection, x2 + 2 = 4x + 1 =2y + 9.

4x — 2y = 8
2x —y =4
y=2x—4

Substituting y = 2x — 4 inx2+3y2 —4x—1=0, x2+ 2x—4)2 —4x—1=0
5x2—20x+15=0

¥ —4x+3=0

x =3 or 1. So correspondingly y = 2x — 4 =2 or —2

The points of intersection of the circles are (3, 2) and (1, —2).

Nowforx2+y2—4x—1=0,2x+2yiilx—y—4=0 (@)
d d
2 2— —_— = _y— _y= I
and for x= + y 2y —9 =0, 2x+2ydx I 0. (i)
1 At @3 2)'6+4d—y—4=0 6+4d—y—2d—y=0 (Using (i) and (ii))
) dx . dx ~ “dx &
For x2 + y2 — 4x — 1 = 0 slope of tangent m1=—%.

For x2 + 2 — 2y — 9 = 0 slope of tangent m, = —3.

B —%+3 B | m—m,
2
_ T
o=
) ia—ad 4o 4y, ine (i "
2) At(1,-2):2 4dx 0, 2 4a’x de 0 (Using (i) and (ii))
_ _1 _ 1
As before m; =—3, My =3
_1_1
23
tanO = |7 "1 [=1
6

APPLICATIONS OF DERIVATIVES 23



-z
=7

The circles intersect at both the points at an angle having measure %.
Example 39 : Where does the normal to x2 — xy + 2 = 3 at (—1, 1) intersect the curve

again ?

Solution : x2 — xy + »2 = 3 is the equation of the curve.

2x—(xd—y+y)+2yfilx—y=0

dx
_ oy (— b dy _
At (=1, 1), =2 = E+1)+2E_0
dy _
35 3
.ody _
The slope of the tangent at (—1, 1) is i 1.

So the slope of the normal at (—1, 1) is —1.
The equation of the normal at (=1, 1)isy —1=—=1(x+ 1)
x + y = 0 is the equation of the normal at (—1, 1).
To find the points of intersection, let us solve.
x+y=0and x2 —xy +)? =3
Substitution y = —x in x2 — xy + y2 = 3,
3y2 =
x=*1
Since x = —y, the point of intersection is (1, —1) as x # —1.
The normal drawn at (—1, 1) intersects the curve at (1, —1).

[(=1, 1) is the point at which normal is drawn. So it is the foot of the normal. Hence x # —1.]

2 2
Example 40 : Prove that % - Z—z = 1 (a® # b?) and xy = ¢ cannot intersect orthogonally.
2 y2
Solution : One of the equation is % il =1
2x _ 2y dy _ 0
a’ b dx
dy b2x

The slope of the tangent to the curve, m; = T ay (Why y # 0)
The other curve has equation xy = ¢2

dy

— + =
x—oty 0
The slope of the tangent to the curve, m, = — %

_(B2x Ny _ B2 2 2
mlmz—(azy)(—;)——a—zi—l as a* # b-.

The curves (hyperbolas) cannot intersect at right angles.

If a? = b2, they intersect orthogonally. Hence rectangular hyperbolas x2 — 2 = ¢ and

xy = ¢ intersect orthogonally. That they do intersect can be verified.
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10.

11.

12.
13.
14.

15.

16.
17.

18.
19.
20.

21.
22.

23.

Exercise 1.3

2 2
Find the equation of the tangent to % - Z_Z =1 at (xq, y))-

Find the equation of the tangent to y> = 4ax at xp, Y-

Find the slope of the tangent to y = x3 + 5x + 2 at (2, 20).

Find the slope of the normal to y% = 4x at (1, 2).

Find the equation of the tangent to 32 = 16x, which is parallel to the line 4x —y = 1.

Find the equation of the normal to »? = 8x perpendicular to the line 2x — y — 1 = 0.

x> v’ x> y’ ) .
Prove that the curves @+ A + b+, =1, T+ + b, = 1 intersect orthogonally, if

they intersect. (7\1 # 7»2)

Prove that portion of any tangent to x = acos’0, y = asin’0 intercepted between axes has

constant length.
Prove that 2x2 + y2 = 3 and »? = x intersect at right angles.

Prove that circles x2 + 2 = ax and x + y? = by are orthogonal.

(1) Find the equation of the tangent to y = sinx at (%, 1).

(2) Where does it intersect the curve again ?

Find equation of tangent to x = cos0, y = sin® O € [0, 2T) at O = %

Find equation of tangent to y = 4x3 — 2x> passing through origin.

(2, 3) lies on y* = ax3 + b. The slope of the tangent at (2, 3) is 4. Find « and b.

The slope of the tangent to xy + ax + by = 2 at (1, 1) is 2. Find a and b.

Find the equation of tangent to x = a(0 — sinB), y = a(1 — cos0).

Prove that parabola y? = x and hyperbola xy = k intersect at right angles, if 842 = 1.

Where does the normal to y = x — x2 at (1, 0) intersect the curve again ?

Find g, b if tangent to y = ax? + bx at (1, 1) is y = 3x — 2.

Find the equation of tangent to x> + )3 = 6xy at (3, 3). At which point is the tangent horizontal
or vertical ?

Prove xy = ¢%, ¢ # 0 and x2 — y? = k%, k # 0 intersect orthogonally. (Compare : Example 40)

Find the equation of the tangent to given curves at given point :

2 2
W -3 o (53)
S _
@) &+ 5 =1 at (—1, 442)
3) »¥=x>2—-x) at (1, 1)
(4) 32 = 5x% — x2 at (1, 2)

(5) 202+ y3H2 =252 —y?) at (3, 1)

Find points on x%y2 + xy = 2 where tangent has slope —1.
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24. Find the measure of the angle between

(1) y=x%y=(x—2)7? (2) 2 —32=3,x2+)2—4x+3=0
25. Find the equations of tangents to y = cos(x + y) parallel to x + 2y = 0.

26. Find the equations of tangents to y = ﬁ, x # 1 parallel to the line x +y + 7 = 0.

n n
27. Prove that i + 2 =2 touches (%) + (l) =2 for all » € N — {1}, the point of contact

b b
being (a, b).

28. X-axis touches y = ax® + bx2 + cx + 5 at P(—=2, 0) and intersects Y-axis at Q. The slope of
the tangent at Q is 3. Find a, b, c.

1.5 Approximation and Differentials
Error : We know that Lm S+ -fx)

h—0 h
and x € (a, b), x + h € (a, b).

= f"'(x), where fis a differentiable function in (a, b)

If 4 is ‘very small’,

fx+h-fx)
h

fx+ h) — f(x) =f'(x)h + u(h)h.
Let f(x+h) — f(x) =Af(x)and h = (x + h) — x = Ax.

= f'(x) + u(h) where u(h) is a function of 4 and as &4 — 0, u(h) — 0.

A f(x) is a ‘small’ change in f(x) caused by a ‘small’ change Ax in x.

s AF®) = f'(O)Ax + uAx)Ax
f'(x)Ax is called differential of y = f(x) and is denoted by dy. Also A f(x) = Ay.
Ay = dy + u(Ax)Ax

Since u(Ax)Ax is very small and can be neglected, we say dy is an approximate value of Ay

and we write Ay = dy.
Also dy = f'(x)Ax ()
Moreover for the function y = x, f'(x) = 1.
dx = 1.Ax
For the independent variable x, Ax = dx.
Thus from (i) dy = f'(x)Ax = f'(x)dx

) ven _ dy)

S = G
dy _ @y
dx (dx)

d
On L.H.S. we have derivative of y = f(x) and is not a ratio, but on R.H.S. We have a ratio %

of differential of y and differential of x.
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Ay is also called an error in calculation of f(x).

s Ay = ody = (o)A
Moreover f(x + Ax) = f(x) + f'(x)Ax.

Geometrical Interpretation of Differential :

v C// (dy)(xo, )
'\A(xo, S (xp)) {~% +Axg, [ (xg + Axg))
vl D “Af(x)
/ Axo
o X
A4

Figure 1.13
Let A(x(, f(xy)) be a point on the curve y = f(x).
B(x, + Axy, f(x, + Axo)), is also on the curve. C is the point on the tangent at A to the curve
v = f(x) lying on the vertical line through B.
The equation of the tangent at A is y — y, = f'(xy) (x — x) (f'(xg) is slope of the tangent)
At C, x = x, + Ax,
y-coordinate of C, y =y, + (x, + Axo — x0).f'(xp)
= f(xo) + f'(xo) Axo
= fxp) + (dy)(x()’ o)
CD = y-coordinate of C — f(x,) = (dy)(xo’ o)
BD = f(xy + Axo) = fxp) = Af(xo) = Ayo
BC = |Ay0 - (dy)(xo, y0)|
As B moves nearer and nearer to A on the curve, BC — 0. Hence dy = Ay.
Thus f(x, + Axo) = f(xy) + f'(xy) Ax, is called the approximate value of f(x) for x = x, + Axo
obtained by linear approximation using tangent to y = f(x).

Example 41 : Obtain approximate value of {101 and /99 using differentiation.

Solution : Let f(x) = 1/;, x e R
Let x = 100 and x + Ax = 101 (We know 100.)

Ax=1. (Ax=x+ Ax — x = 101 — 100)
oy = L L1
f(x)—z)c—z’/m—20 0.05

Now f(x + Ax) = f(x) + f'(x) Ax
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£(101) = £(100) + £'(100) Ax
= J100 + (0.05)(1) = 10.05
An approximate value of 101 is 10.05.
For /99, let x = 100, x + Ax = 99, Ax = —1
J99 =£(99) = £(100) + £'(100) Ax
J100 + (0.05)(—1)
10 — 0.05 = 9.95

(Ax = 99 — 100 = —1)

x Approximate Value
J1o1 10.05
J99 9.95
J102 10.1
J98 9.9

Actual Value
10.0498756....
9.94987437....
10.0995049....
9.89949493....

We observe that as Ax — 0, actual value
approaches true value. Here the actual value is

smaller than the approximate value, as the tangent

lies above the graph of y = Jx or y? = x.

1
Example 42 : Find approximate value of (65)3.

[Note : We will henceforth not use the phrase ‘using differentiation’ but it is implied.]

1
Solution : f(x) = x3.

X =64, x + Ax = 65. So, Ax = 1

-2
f@)=3x 3=—7 =7 =3 S0 Af(¥) = () Ax = ¢

1 1
(657 = (647 + Af(x) =4+ =18

Example 43 : Find ran 46°.

Solution : Let f(x) = tanx and x = %, xeR—{(Zk—l)%lkeZ} (450 = %R)
R
= .L = l
Ax ! 180 180

f(x) = sec?x = (\/5)2 =2

Af(x) :f'(x)Ax=2.% z%

28
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tan46° = tan45° + A f(x)

~ s
=1+ )
An approximate value of fan 46° is 1 + 9—7'(:)

Example 44 : Find approximate value of (1) cos ! (=0.49) (2) sec”! (=2.01)

Solution : (1) Let f(x) = cos”lx, x = =0.5, Ax = 0.01

) — _ __2 -
f@ =T B Af@) = f0) Ax =~

3

os~1 (—0.49) = cos™! (—0.5) + Af(x)

o —1 o1
= T — cos  (0.5) S0v3

- T _ —
T=3 "5
2 1
3 5043
Another method : Let f(x) = cos”lx, x = 0.5, Ax = —0.01
os 1 (—0.49) = T — cos™ ! (0.49)

T — (cos™! (0.5) + f'(x) Ax)

-n-Z - (—%)(—o.m)

2m 1
3 5043
(2) Let f(x) = sec x, x =2, Ax = 0.01

1!

SO = T T A = S A -

ec”! (=2.01) =T — sec”! (2.01)
= T — (sec 12 + f'(x) Ax)

- (% + 20(:1/5)
_2m 1
T3 T 20043
Example 45 : Find approximate value of (1) log,10.01 (2) log;,10.1 (3) log,(e + 0.1)
(log e = 0.4343, log,10 = 2.3026)

Solution : (1) Let f(x) = log,x
Let x = 10, Ax = 0.01, f'(x) = % =L =01
Afx) = f'(x) Ax = 0.001
log,(10.01) = log,10 + f'(x) Ax
= 2.3026 + 0.001

= 2.3036
(Actually log,10.01 = 2.30358459....)
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log, x
(2) Let f(x) = log;ox = _loge 0 = log,x - log;ge

=(0.4343) log x
Let x = 10, Ax = 0.1

VALCO R o
A f'(x) = £'(x) Ax = (0.04343) (0.1) = 0.004343
log;((10.1) = log;(10 + f'(x) Ax
=1.004343
(Actually log;o(10.1) = 1.00432137....)
(3) Let f(x) = log,x, x = e, Ax = 0.1

S ==L Arw = reac= G = 1k

log,(e + 0.1) = log,e + f'(x) Ax

=1+ % = 1.03678794
e

(Actually it is 1.0367879441....)
Example 46 : If there is an error of x % in the measurement of radius of a sphere, what is the

approximate error in the measurement of volume and surface area ?

Solution : There is x % error in the radius.

= X
Ar R
Volume of a sphere, V = %Ttr3

av _ 4 — 4102
o 3TC(3r2) 47U

Error in volume AV = % Ar
— A2 XL
47T 100

3 100 100
There is approximately 3x % error in the volume.
Surface area S = 4702

ﬁ=87‘I:r

dr

Error in surface area AS = % Ar

- L xr
8T 100

= 2041 355

_ 2xS
100

There is approximately 2x % error in surface area.
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Example 47 : The radius of a sphere is measured as 7 m with error of 0.02 m. What is the

approximate error in the volume ?

Solution : For a sphere, volume V = %Ttr3

r=7m, Ar=0.02m

DV - Ln(312) = 4m?

ar
. av

AV = Ir Ar
= 412 . Ar
= 470(49)(0.02)
=3.92 T m3

There is approximately 3.92 T m? error in the volume.
Example 48 : Find the approximate error in the surface area of a cube with edge x cm, when the edge
is increased by 2 %.

Solution : S = 632, Ax = 2X

100
ﬁ =
dx 12x
AS = 4as . Ax
dx
AS = 12x Ax
_ 2X
= 12x . m
_ A6x?) _ 48
100 100

There is approximately 4 % increase in the surface area.

Example 49 : Prove that for a triangle inscribed in a circle of constant radius, sides change according

d. db di . Lo
to Cosa ~ t Zoss T COSC c = 0 in usual notation, if da, db, dc are small.

. a b c . .
Solution : We have 5;;x = S5inB = smc — 2R according to sine rule.

a = 2RsinA, b = 2RsinB, ¢ = 2RsinC, R constant.

da _ db _ de _
= 2RcosA, 4B 2RcosB, C 2RcosC

da = % AA = 2RcosA AA etc.

da db dc
cosA T TosB T cosc = 2R(AA + AB + AC)

=2R(A(A + B + Q)
= 2R A(T)
=0

da db dc

cos A + cos B + cos C

=0

Example 50 : When a circular plate is heated, its radius increases by 0.1 cm. Find the approximate

increase in area, when the radius is 5 cm.
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Solution : For a circle, area A = T2

dA

dr 27r
AA = 48 Ar = o1 Ar = 21(5)(0.1)
AA = T cm?

2

There is T cm* increase in area approximately.

Example 51 : If f(x) = cosx, find the differential dy and evaluate dy when x = % and Ax = 0.01.

Solution : y = f(x) = cosx

dv = £'(x) Ax = (—0.5)(0.01)
dy =—0.005

Example 52 : Prove that if 4 is very small, sinh = h.

13.

14.

15.

16.

17.

Solution : Let f(x) = sinx, x = 0, x + Ax = h
f'(x) = cosx, f'(0) = cosO = 1
flx + Ax) = f(x)+ f'(x) Ax
Sy = f(0)+ f(0) A (h = Av
sinh = sin0 + cos0 - h

sinh = h, if h is small.

Exercise 1.4

Find approximate value (1 to 12) :

L 1 1
v0.37 2. (0.999)'° 3. (80)* 4. (255)*
1 1
(399)? 6. (32.1)° 7. cos 29° 8. sin61°
1
tan31° 10. log,(100.1) 11. log;((10.01) 12. (16.1)*

If the radius of a cone is twice its height, find the approximate error in the calculation of its

volume, when the radius is 10 ¢m and the error in the radius is 0.01 cm.
If there is an error in measuring its radius by Ar, what is the approximate error in the volume

of a sphere?

1
2
the energy. What increase in the velocity v which caused it ?

Kinetic energy is given by k = =mv2. For constant mass there is approximately 1 % increase in

Area of a triangle is calculated using formula A = %absinC. If C = % and there is an error in

measuring C by x %, what is the percentage error in area approximately ? a, b are kept constant.

Find approximate value of f(3.01) where f(x) = x> — 2x2 — 3x + 1.

32
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18. Find approximate value of f(1.05) where f(x) = 2x* — 3x + 5.

19. Find the approximate increase in the volume of a cube when the length of its edge increases
by 0.2 ¢m and its edge has length 10 cm.

20. Find the approximate increase in the total surface area of a cone when its height remains constant
and the radius increases by 2 % at the time when its radius is 8 c¢m and the height is 6 cm.

21. Find approximate value of cos 131—2, knowing the value of cos %

%
1.6 Maximum and Minimum Values

We have seen some applications of differential calculus. Now we will learn an important

application of differential calculus to optimization problems.

We may wish to find maximum volume of a box, minimum cost of a can to contain fixed quantity
of fruit juice or minimize the cost and maximize the profit etc.

Definition : A function f has an absolute or global maximum at c if f(c) 2 f(x), Vx € D_,
c € Df and a function has an absolute or global minimum at ¢ if f(¢) £ f(x),

Vx € Df, c € Dj. The maximum and minimum values are also called the extreme values of

S on Df.
Definition : A function f defined on an interval I has a local maximum value at ¢ € 1,
if for some # > 0, (c — h,c+ h) C 1 and f(c) 2 f(x), Vx € (c — h, c + h).
A function f defined on an interval I has a local minimum value at ¢ € 1, if for some

h>0,(c—hc+hCl andf(c)Sf(x),VxE (c— hy,c+ h).

Note :| If I is a closed interval local maximum or local minimum cannot occur at

an end-point of the interval because of the condition (¢ — &, ¢ + h) C 1.

However global maximum or global minimum may occur at an end-point.

Y

N

f(x) = sinx, x € R takes global maximum
(5.25)
lforx=0“4n+1) %, n € Z and global minimum

I
o

y
—1 for x = (4n + 3)%, n € Z. Consider

f(x) = x2, x € R. Since x2 20 Vx € R,

f(0) = 0 is global minimum as well as local
minimum but f has no global maximum. But

if the domain of f is restricted to [—3, 5],

say, it has a global maximum f(5) = 25. v

Figure 1.14
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4
y=x
The function f(x) = x3, x € R has
no extreme value in R. < > X
Look at following graph.
N
Y Figure 1.15
4/
I
I
I
/) e !
I
f© f@© [
/(@ ] X
a O a
\ Figure 1.16

See that the global minimum occurs at x = a in [a, a'] and the global maximum occurs at x = d.
f(b) is local maximum and f(c¢) and f(e) are local minimum values. Also global minimum occurs at
an end-point of the interval but global maximum occurs at an interior point of the domain. Now we
assume following result without giving proof.

The Extreme Value Theorem : If a function f is continuous on [a, b], f attains its
global maximum value at some ¢ € [a, ] and global minimum value at some d € [a, b].

These are called extreme values of the function.

Y Y Y
a b
@i@ | / Slsls
<:“\ £@ 1) f© [f@ SRS
1
o X o X o) X
(@ (b) (©
Figure 1.17

In figure 1.17(a) both maximum and minimum values of f occur at an interior point of [a, b]. In

figure 1.17(b) the maximum occurs at ¢ € (a, b) and minimum at d = b. In figure 1.17(c), there are
two maxima (i.e. more than one).
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Look at figure 1.18.

Here the domain of the function is [1, 4]

but the function is discontinuous at x = 2. Its
range is [0, 4). For no x € [1, 4], f(x) = 4.
The function has no maximum.

Hence, we have kept the assumption that

fis ‘continuous’ in the extreme value theorem.

But a discontinuous function could well

have maximum and minimum value.

Y

—_
- S

Figure 1.19

. X +2 X +2
See that in figure 1.19(a), we get /| = ==

which is larger than f(x,), where x;, € (0,2). No

f(x) can be maximum. Similarly f (%) < f(xy), so f(x)
has no minimum value.

Mid-point of AC is B and mid-point of OA is D.

+2
Thus we get a larger value f (xlz ) at B than any
value f(x|) at A and a smallar value f (%) at D than
value at A.

There is no maximum or no minimum.

Y

N

(c.f ()

(d.f(d)

c+h

Figure 1.20

1 2 3 4
Figure 1.18

Look at figure 1.19.

The function is continuous on (0, 4), but it
has neither maximum nor minimum value. The
range is (1, oo). Hence, the condition ‘closed
interval® enters in the extreme value theorem.

f(x) = x in (0, 2) has no maximum or
minimum but f(x) = x in [0, 2] has maximum
f(2) = 2 and minimum f(0) = 0. For f(x) = x,

X +2
let x; € (0, 2). Then x; < ) <2asx; <2

Y

4

N

X +2

, (%) Ay B(232) c@)
Figure 1.19(a)

Look at the graph (figure 1.20).
f has a local maximum at x = c. In

(¢ — h, ¢), fis increasing and therefore
f'(x) > 0. In (c, ¢ + h), fis decreasing
and so f'(x) < 0. As x takes values
in (¢ — h, ¢ + h) and passes through
¢, f'(x) changes from positive to
negative. Also f'(c) = 0.

Similarly at x = d, f has a local
minimum and f' changes sign from
negative to positive and f'(d) = 0.
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Thus we accept the following theorem without proof.

Theorem 1.2 (Fermat's Theorem) : If f has a local maximum or local minimum at ¢ and if
[ is differentiable at ¢, then f'(c) = 0.

S
7

Although this is only a necessary condition
and not sufficient. For £(x) = x3, £'(0) = 0 but

it does not have a maximum or minimum.

N
A\ 4
<

Such a point where the graph crosses its
horizontal tangent is called a point of inflexion.
For f(x) = x3, (0, 0) is a point of inflexion.

At (0, 0) tangent is horizontal. v
Figure 1.21

Fermat's theorem is named after Pierre Fermat (1601-1665). He was a French lawyer and
mathematics was his hobby. He was one of the inventors of analytic geometry (the other being
Des Cartes).

Y
Also fmay have an extreme value at
x = ¢ and f may not be differentiable
at c.
x f(x) = | x| has minimum at x = 0.
0 f(0) = 0] = 0 is minimum value of
f(x) = |x| but f is not differentiable
v for x = 0.
Figure 1.22 Hence we define,

A Critical Number (Point) : A critical number (point) ¢ of a function is a number ¢ € Df
such that f'(c) = 0 or f is not differentiable at c.
Thus if f has a local maximum or local minimum at x = ¢, ¢ is a critical number of f.

We now state following first derivative test from above discussion.

First Derivative Test : Let f be defined in an open interval I = (a, b). ¢ € I is a critical

point of f and f is continuous at c.
(1) If there exists a positive number % such that (¢ — h, ¢ + h) C I, f'(x) > 0 in
(c— h, ¢) and f'(x) < 0 in (¢, ¢ + h), then f has a local maximum value at c.
(2) If there exists a positive number % such that (¢ — h, ¢ + h) C I, f'(x) < 0 in

(c— h, c) and f'(x) > 0 in (¢, ¢ + h), then f has a local minimum value at c.

(3) If f'(x) does not change sign as x takes values in (¢ — h, ¢ + h) for any h > 0,
f has neither maximum nor minimum value at x = ¢. Such a point is called a point

of inflexion.
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For some A > 0

f'(x) changes from +ve in (¢ — A, ¢) to —ve in (¢, ¢ + h) f(c) is a local maximum

f'(x) changes from —ve in (¢ — A, ¢) to tve in (¢, ¢ + h) f(c) is a local minimum

Sometimes, it may not be easy to handle first derivative test. Then we may use following second
derivative test.

Second Derivative Test : Let f be defined on an interval I = [a, b]. Let ¢ € (a, b). Suppose
f"(c) exists. Then

(1) f has local maximum at x = ¢, if f'(¢c) =0, f'"(c) < 0.
(2) f has local minimum at x = ¢, if f'(c) = 0, f'"(c) > 0.
(3) The test fails to give any conclusion if f'(c) = f'"(c) = 0.

Note : f"(c) < 0, f'(¢c) = 0 means f'(x) is decreasing at x = ¢ and since f'(c) = 0,
f'(x) changes from +ve to —ve.

f(x) has a local maximum at x = c.

Similarly if f'(c¢) > 0, f'(¢c) = 0 we can conclude that f(x) has a local minimum at x = c.

3
Example 53 : Find the critical points for f(x) = x*(4 — x), x € Rt U {0}.

Solution : f(x) = 4x% — x%
_2 3
G A

3

- 45 ->)

f'x) =0, if x = % and f'(x) does not exist at x = 0 but 0 € Df.
The cricital points are 0 and %

Example 54 : Find local maximum or minimum values of f(x) = |x|. x € R

Solution : f'is not differentiable at x =0, 0 € Df. So 0 is a critical point and the second derivative
of f does not exist at x = 0.

f(x)={x x=20

—X x<0
flx) =1 if x>0

and f'(x) =—1 if x<O.

f'(x) changes from negative to positive as x passes through 0 and f is not differentiable
at x = 0.

f'(x) changes from negative to positive as x changes from (=4, 0) to (0, &), A > 0.
f has a local minimum value f(0) = 0 at x = 0. f has no maximum value.
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Obviouslyf(x) =|x|=20 Vxe R

f has a local and global minimum at x = 0.

To find extreme values for a function defined on a closed interval [a, b].
(1) Find local maximum and local minimum values of f.
(2) Find values of f at end-points.

The largest of the values obtained in (1) and (2) is global maximum and the smallest of the values
obtained in (1) and (2) is the global minimum value of f.

Example 55 : Examine for maximum and minimum values : f(x) = 3x* — 16x3 + 18x%, x € [—1, 4]
Solution : f(x) = 3x* — 16x3 + 18x2
f'(x) = 12x3 — 48x% + 36x
12x (x2 — 4x + 3)
2x(x —3)x — 1)
f'(x) =0=x=20,1 or 3.

f"(x) = 36x2 — 96x + 36

f"0)=36>0,7"(1) =-24<0,f"3)=72>0

£(0) is local minimum and f(0) = 0 is local minimum.

f has local maximum at x = 1 and (1) = 5 is local maximum.

f has local minimum at x = 3 and f(3) = —27 is local minimum.
Local maximum or minimum values can occur only at an interior point of [—1, 4].
For global maxinum and minimum values, consider f(—1) and f(4).

f(=1) =37, f(4) =32

SO) =0, f(1) =5, f(3) =27, f(=1) =737, f(4) =32

f(=1) =37 is global maximum occuring at an end-point.

f(3) =—27 is global minimum and it occurs at an interior point 3 € (—1, 4).
Example 56 : Find maximum and minimum values of the function f(x) = x3 — 12x + 1, x € [-3, 5]

Solution : f(x) = x3 — 12x + 1

f'(x) =3x2 — 12 = 3(x — 2)(x + 2)

flx)=0=>x=1%2

Sf"(x) = 6x

f"2)y=12>0

f(2)=8—24+1=—15is local minimum value.

f"=2)=-12<0

f(=2)=—-8+ 24 + 1 =17 is local maximum value.
Moreover, f(=3) =27 +36 + 1 =10, f(5) =125—-60 + 1 = 66

F(2)=—15, f(=2) = 17
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f(5) = 66 is global maximum and

f(2)=—15 is global minimum.
Example 57 : Find maximum and minimum values of the function f(x) = 3x> — 5x3 — 1, x € [-2, 2]
Solution : f'(x) = 15x* — 15x2
=15x2(x2 = 1)
=15x2(x — D(x + 1)

f'x) =0 = x=0orx==I

f"(x) = 60x3 — 30x

f"(1Hy=30>0

f(1) ==3 is local minimum value.

f"=1H=-30<0

f(=1) =1 is local maximum value.
But /"(0) = 0

Second derivative test fails.

f'(x) = 15x2(x — D(x + 1)

x2>0,ifx#0
If-l<x<lthenx+1>0andx—1<0

flx) <0 for—1 <x<1.

f'(x) does not change sign as x increases in (—1, 1).

0 is a point of inflexion.

f(2)=96 —40 — 1 =55

f(=2)=-96 + 40 — 1 = =57. Also f(1) = =3, f(—1) = 1.

f(2) = 55 is global maximum and f(—2) = —57 is global minimum value.

Example 58 : Determine maximum and minimum values of f(x) = x — 2cosx, x € [—T, T]

Solution : f(x) = x — 2cosx

f'x) =1+ 2sinx

f'x) = 0 = sinx = —

0=

x:_%’ —gn X € (|, T

Now f"(x) = 2cosx

P-E) = 2ol -8) 2 - >0

S(-F) = - —ocos(-§) --Z-2xLB 23
f(_%) = —% — 3 is local minimum value at x = —%,
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7(-38) = 2eos(~5F) = 2005 35 2cos{ =)

=2 (@) =—J3<0
f(_S?TE) = —STR +2 (@) = ‘/5 — 5?“ is local maximum value.
f(@@) =T — 2cosTT =T + 2
f(=T) = =Tt — 2cos(—M) = —TC — 2cosT = —T0 + 2
f(m) =1 + 2 is global maximum value.

f(—%) =—-J3 - % is global minimum value.

Example 59 : Find maximum and minimum values of f(x) = 4x + cotx; x € (0, )
Solution : Now f'(x) = 4 — cosec’x = 0

cosec’x = 4

sin’x =

-PI»—‘

sinx = x € (0, T

f"(x) = —2cosecx (—cosecx cotx)

2

2cosecex cotx

a3

(E
6
f (%) = 2L 4 /3 is local minimum value at x =

and f (T) = IOTR — J3 is local maximum value at x = 5?75_

[Why no global maximum or global minimum ?]
Example 60 : Prove that out of all rectangles with given area, the square has minimum perimeter.
Solution : Let the given area be A and the lengths of the sides of the rectangle be x and y.

A =xy
Now perimeter of the rectangle, p = 2x + 2y
=2x + 24
X
Now & —g=2-24_
dx X
x2=A
X = \/X (Since x is the side of a rectangle, x > 0)
A _ A
Y=< "Ja \/X

Since x = y the rectangle becomes a square.
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d2
Also =L =0 — 2A(—2x3) =22 > 0
dx X

The perimeter is minimum when the rectangle becomes a square.

[Note : |(x +1)2 = (x = »)2 + 4y = (x — »)? + 4A
. (x + y)? is minimum when x = y as (x — y)?> = 0 and minimum value of (x — y)? = 0
if x =y and A is a constant.

The perimeter of a square is minimum.

Example 61 : Find a point P on y? = 8x nearest to A(10, 4) and also find minimum distance AP.
Solution : Parametric equations of a parabola are (ar?, 2ar).
Here 4a = 8. So a = 2.
A typical point on the parabola is P(2/2, 41).
Now AP? = (212 — 10)2 + (41 — 4)?
=44 — 402 + 100 + 1612 — 321 + 16
Let f(f) = 4t* — 242 — 32t + 116
f'() =166 — 48 — 32
16(83 — 3t — 2)
16(t + 1)(* — t — 2)
16(t + D2(t — 2)
fl)y =0=t=—lorr=2
Let t € (=1 —h, —1 + h) where 7 > 0. Lett=—1 +1,
“1l—h<—-1l+t,<—-1+hie—-h<t;<h
() =16(t+ D2 — 2) t=-1+1)
= 166,23 +1)>0if0<1 <3
f'(®) does not change sign in (—1 — A, —1 + h)

f has no maximum or minimum at r = —1.
f(p) = 4812 — 48

") =192 — 48 =144 > 0

f (@ is minimum, if ¢t =2

AP? is minimum for 7 = 2. For t = 2, P is (8, 8).

If P(8, 8), then AP = ‘/(10—8)2 +(8—4)2

_ JitTo

= 2\/5 is minimum
The point nearest to A(10, 4) and lying on y* = 8x is P(8, 8).
Example 62 : Find the maximum area of a rectangle inscribed in a semi-circle of radius r.
Solution : Let us consider the semi-circle in upper half-plane of X-axis.

Let A(x, ) be one vertex of the rectangle in the first quadrant. Obviously other vertices are
B(x, 0), C(—x, 0) and D(—x, y).
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AD =2x, AB =y

The area of the rectangle f(x) = 2xy

S
7

Also x2 + )2 = 2 D A(xy)

y = r2—x2 >0

X

f) =232 2 c O B
2X(—2x)
' = 2 2 = =~/
S =222 + ——

Figure 1.23
N R ¢
r-—Xx r2 _x2
202 —2x?)
r2 — x2

. . . . r._r
Area is maximum for a square and maximum area is A = 2xy = 2 - oA r2.

(1) A = 2xy
Now x2 + y2 = (x — y)? + 2xy
=G-yP+A
A =72 — (x — y)? is maximum if (x — »)?> minimum. But (x — y)? > 0.
(x — »)? has minimum value 0 when x = y. Hence maximum A = 72,
(2) Let x = rcosB, y = rsin® (Parametric equations of xZ + y? = r2)
A = 2xy = 2r25in0 cosO = rZsin20
T

A is maximum when O = 7 as sin20 = 1 is maximum for O = %

Maximum area = 2
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Example 63 : A cylinder is inscribed in a sphere of radius R. Prove that its volume is maximum if its

: . 2R
height is ek
Solution : Let the radius and the height of the cylinder be » and % respectively.
Then R2 = 2 + hTZ

Volume of the cylinder, V = Ttr2h

- 2 _ B2
V=m(R = L),
= MR%h — %h3
4V _ maR2 — 32
h Z(4R 3h°)
av. _ - 2R
d’V _ m_gpy - BUA _ _ Figure 1.24
Also £ = T(—6h) = 21 — J3TR <0
The volume of the cylinder is maximum if /& = ZTl; .
Maximum volume is TT2h = T (R2 - hTZ) h
— 2 _ RZ)2R
T (R 3 ) J3
_ 4TR’®
3/3

Example 64 : A cylindrical can is to be made to hold 1 / oil. Find its radius and height to minimize

the cost.

Solution : The cost of making the can is minimum, if the metal used to make the can is minimum.

Its total surface area S is given by S = 2172 + 2Trh
Now the volume V = 772k and 1 litre is 1000 cm?.

r C
V = 1r2h = 1000
1000
= mr?
S =212 + 2mr X 1000
s r TCr2 h cm
= 22 + 2090
-
ds _ _ 2000 _ 3 _ 500
dr 41t 2 0=r T
1
= (300)3
r= (32 |
5 Figure 1.25
d’s 4000
—_—l — — >

1
500)3 cm and

Surface area and hence the cost is minimum if » = (T

w o

L

= 2(%)3 cm = 2r

1000(70)
2
3

h =
T(500)

Thus the height of the cylinder should equal its diameter for minimum cost.
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Example 65 : Find the point on the line y = 2x — 3 nearest to origin.

Solution : Let M = (x, 2x — 3) be any point on the given line.

OM2 = x2 + (2x — 3)2 Y
=5x2—12x+ 9
Let f(x) =5x2—12x+9
1) =lx—12=0=x=2 (3.0) .«
(@] 6 _3
Also f"(x) =10 > 0 M($.-3)
0,3)
Distance OM is minimum if x = %, y = Z(Q) -3=-3 l/
5 5
- (& _3 v
M_(5’ 5)
Figure 1.26

= (36,9 _ ﬁizzaﬁ _ 3
OM 25 25 25 5 Js

0+0—3 3

= ,/az+b2 B

OM is perpendicular distance of origin from y = 2x — 3 and M is the foot of perpendicular.

-5

Ja+1

Exercise 1.5

Find the maximum and minimum values of following functions (1 to 15) :

1. f(x)=5—3x+ 5x2 —x3 x € R
2. f(x) =x*— 6x2 x € R

1 2
3. f(x) =x3(x + 3)3 x e R
4. f(x) = 2cosx + sin*xc x € R
5. f(x) = log, (1 + x?) x € R
6. f(x) = xe ™ x € [0, 2]

1
7. fx) = °g;x xe [l,3]
8. f(x)=‘/16—x2 x| <4
9. f® =T x € [1,2]
10. f(x) = sinx + cosx x € [0, 27]
1. f(x) = 528 x € [0, 27]
12. f(x)=x‘/1—x 0<x<1
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13.

14.

15.
16.

17.

18.
19.
20.

21.

22.

23.

24.

25.

26.

f(x) = 3x* — 83 4+ 12x2 — 48x + 125 x € [0, 3]

f(x) = sin2x x € [0, 27]

f(x) =2x3 — 24x + 107 x € [1, 3]

A window is in the form of a rectangle surmounted by semicircular opening. The total
perimeter of the window is 10 m. Find dimensions of the window for maximum air flow
through the window.

Prove that the right circular cone of maximum volume inscribed in a sphere of radius » has
altitude 4?1*

Find two positive numbers whose sum is 16 and the sum of cubes of them is minimum.

Find positive numbers x, y for which x + y = 35 and the product x2y° is maximum.

Show that the semi-vertical angle of the cone having maximum volume and given slant height
[ is tan_lﬁ .

A open box with a square base is to be made. Its total surface area is ¢2, a constant. Prove

3
. . . C
that its maximum volume is —6 Nk

Find a point on circle x> + y2 = 25 whose distance from (12, 9) is minimum. Find also the point
for which it is maximum. Explain geometrically.
Sum of circumference of a circle and perimeter of a square is constant. Prove that the

sum of their areas is minimum when the ratio of the radius of the circle to a side of the

square is 1:2.

An open tank with a square base is to be made to hold 4000 litres of water. What are the
dimensions to make the cost minimum ?

f(x) = x3 + 3ax? + 3bx + ¢ has a maximum at x = —1 and minimum zero at x = 1. Find a, b
and c.
If a right triangle has hypotenuse having length 10 c¢m, what would be its largest area ?

*

Miscellaneous Examples :

Example 66 : Suppose we do not know formula for g(x). But g'(x) = x2+12, Vx € R. Also

2(2) = 4. Find approximate value of g(1.95).
Solution : Here x = 2. Ax = 1.95 — 2 = —0.05

gx + Ax) = g(x) + g'(x) Ax

g(1.95) = g(2) + g'(2) (—0.05)

=4 — (0.05)4
=4—-02
=3.8
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Example 67 : Find the common tangents of y = 1 + x2 and y = —1 — x2. Also find their points of contact.

. & 2
Solution : Let PQ touch y = 1 + x< at

P and y = —1 — xZ at Q. Let P have
x-coordinate a.

P(a, 1 + a?), Q = (—a, —(1 + a?))

1+ a? - (-1 +d)
a—(—a)

&~
Slope of PQ=

_20+d>) _1+a®

2a a

Alsoy =1+ x> = @ = 2x

Y dx

Slope of tangent at P = 2a.

2

1 + a® = 242

a? =1

a=*1

P=(1,2),Q=(-1,-2)
Similarly, R = (=1, 2), S(1, —=2)
. .
The equation of PQ isy —2=2(x — 1)
y—2=2x—2
2x —y =0

>
Similarly, the equation of RS is 2x +y = 0.

Y
1 y=1+x2
P
X
o
S
y=—1-x2
v
Figure 1.27

.
(PQ is a tangent)

The equations of common tangent are 2x — y = 0 and 2x + y = 0.

Example 68 : The position of a particle is given by s = £(f) = £ — 6/2 + 9¢, s is in meters, ¢ is in

seconds.

(1) Find the instantaneous velocity, when ¢ = 2.

(2) When is the particle at rest ?

(3) Find the distance travelled in first 5 seconds.

Solution : % =) =32 —12t+9

(M 'O, =, =12 —24 + 9 = —3m/sec

(2) When the particle is at rest, its velocity at that time is zero.

32 —12t+ 9
P—4r+3=0
t=1or3

The particle is at rest at # = 1 and ¢ = 3.

3) f'()=30—D—3)

Fort <1 and ¢t > 3, f'(t) > 0, and f(¢) is increasing and f(7) is decreasing for r € (1, 3).

The motion is divided into 3 parts (0, 1), (1, 3), (3, 5).
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Total distance covered is s; + s, + 55, where

sp =1/ =fO) =4 s=[fC —f()|=]0—4[=4
s3= 1 (5) = f(3) | = 20

Total distance covered is 20 + 4 + 4 = 28 m.

| £(5) — f(0) | = 20 is not the total distance covered.

Example 69 : An exhibition is to be arranged in a rectangular ground. A fencing of 80 m is done on
three sides of the plot and the fourth side is not to be covered by fencing. What should be the

dimensions of the ground to cover maximum area ?
Solution : We have 2x + y = 80

A = xy = x(80 — 2x) = 80x — 2x?2 Y
A )= 80 —4x =0 = x =20
x
d’A x x
=—4<0
dx?
Largest area is covered if the lengthis |
y=80—2x = 89—40=40 m Figure 1.28
and the breadth is x = 20 m.
Maximum area covered is 40 X 20 = 800 m?
| Only for information :
C(x) is the cost of producing x units. C(x) is the cost function.
C'(x) is the marginal cost.
c(x) = % is the cost per unit. c(x) is average cost function.
, xC'(x) — C(x)
') = —
For minimum of average cost c'(x) = 0.
S xC'(x) = C(x)
s C'(x) = C;x) = ()
If the average cost is minimum, marginal cost = average cost.
If the profit is maximum, marginal revenue ii{_l; = marginal cost % and

R"(x) < C"(x).
If p(x) is the sale price per unit, if x units are sold, p is called demand function.
The total revenue is R(x) = xp(x).

R(x) is called revenue function. R'(x) is marginal revenue function.
If P(x) is the profit function.

P(x) = R(x) — C(x)

For maximum profit P'(x) = 0

S R'(x) = C'(x)

.. Marginal revenue = marginal cost for maximum profit.

Also P"(x) = R"(x) — C"(x) < 0

S R'"(x) < C"(x) for maximum profit.
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Example : A company estimates that the cost of producing x ball-pens is C(x) = 3000 + 2x + 0.001x2.
(1) Find the cost, average cost and marginal cost of producing 1000 ball-pens.

(2) At what production level, will the average cost be minimum and what is that minimum
average cost ?

q ] 5 C(x
Solution : (1) The average cost function is c(x) = %
_ 3000 +2x +0.001x>
X
3000

== + 2 + 0.001x
Also marginal cost function is C'(x) = 2 + 0.002x
For production of 1000 ball-pens, C(1000) = 3000 + 2000 + —L_x (1000)2

1000
=73 6000

c(x) = % =¥ 6 per ball-pen.

C'(x) =2 + 5 X 1000 =3 4

(2) For minimum average cost :
Marginal cost = Average cost
C'(x) = cx)

2+ 0.002x = % + 2+ 0.001x

_ 3000
0.001x = "

x2 = 3000 X 1000

x = 1/3,><106 =3 x 103 = 1730

Hence, 1730 ball-pens should be manufactured for minimum average cost.

Minimum average cost = ¢(1730) = 339 + 2 + (0.001)(1730)

— 300
=30 +2+1.73

=173 +2+1.73
=% 546

Example 70 : Find the point on xy = 8, nearest to P(3, 0) having integer coordinates and the

minimum distance. x>0

Solution : Let the required point on xy = 8 be Q(x ,%)

64
PQ? = (x =3+ 7

Let f(x) = (x — 32 +
S@W=2-H-H oo x-3=5

=33 —64=0

=D +x2+4x+16)=0
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x =4 (Verify that x3 + x2 + 4x + 16 = 0 has no integer solution !)
_(128)(-=3)

fr@=2- =
gy =y 4 1293 _ 7
fr@ =2+ =2 =1>0

f(x) is minimum for x = 4.

The point nearest to P(3, 0) and lying on xy = 8 is Q(4, 2).

PQ = Ji+4 =5

Example 71 : Find a point on »? = 2x nearest to (1, 4) and the minimum distance.

Solution : For y2 = 2x = 4ax, a = %

Let Q(1, 4) and P (%tz, t) be any point on parabola.
PQ2 = (L2 — 1P+ -4y

A—FP2+1+2-8+16

INES

A =8+ 17

INTE

Let f(1)= 41— 8+ 17

fHO=0=>F—-8=0=1=2
f"H=32=12>0

f (@ is minimum, if ¢t =2

P2, 2), Q(1, 4)

PQ = F = /5 is the minimum distance.

Example 72 : A rectangular sheet of tin 45 cm X 24 cm is to be made into an open box by cutting off

squares of the same size from each corner and folding up. Find the side of the square cut off
from each corner for maximum volume of the box.

Solution : Let x cm be the side of the square removed from each corner.

Length and breadth of the box are (45 — 2x) c¢m and (24 — 2x) c¢m. The height is x cm.

The volume V = (45 — 2x)(24 — 2x)x

= 4x3 — 138x2 + 1080x
- 0= 12x2 — 276x + 1080 = 0 = x2 — 23x + 90 = 0

x=18or 5 45 cm
But if x = 18, breadth 24 — 2x = 24 — 36 < 0 !

x # 18 and so x = 5 24 em
The length of the side of square removed is 5 cm.

=24x — 276 = 120 — 276 < 0

V is maximum if x =5 cm Figure 1.29
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10.

11.
12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.
23.

Exercise 1

Water is dripping out from conical funnel at the rate of 5 cm3/sec. Slant height of the cone
formed by water is 4 cm. Semi-vertical angle of the cone is % Find the rate at which the
slant height decreases.

Height of a kite is fixed at 40 m. The length of the string is 50 m at a moment. Velocity of the
kite in horizontal direction is 25 m/sec at that time. Find the rate of slackening of the string at

that time.

Altitude of a triangle increases at 2 cm/min. Its area increases at the rate 5 cm?/min. Find the
rate of change of length of base when the altitude is 10 cm and the area is 100 cm?.

Find the intervals in which f(x) = 2x3 — 3x%Z — 36x + 25 is (1) strictly increasing (2) strictly
decreasing.

Find the intervals in which £(x) = (x + 1)3(x — 3)3 is (1) strictly increasing (2) strictly decreasing.
Prove x!01 + sinx — 1 is increasing for | x| > 1.

Find the intervals where f(x) = x* + 32x is increasing or decreasing. x € R

Find the intervals in which f(x) = x2¢™* is increasing or decreasing. x € R

Prove that curves xy = a? and xZ + 2 = 242 touch each-other.
_X
Find the equation of tangent to y = be ¢ where it intersects Y-axis.

Find the measure of the angle between 2 = 4ax and x% = 4ay.

Prove that y = 6x3 + 15x + 10 has no tangent with slope 12.

Find points on the ellipse x2 + 2y> = 9 at which tangent has slope %.

Find maximum and minimum values of f(x) = x — 2sinx x € [0, 2]

Find maximum and minimum values of f(x) =1 — ™ x=20

Find maximum and minimum values of f(x) = x2 + % x#0

Find where f(x) = 4x — tanx, —% <x< % is increasing or decreasing and find its maximum and
minimum values.

Where does f(x) = x + J1—-x, 0 < x < 1 increase or decrease ? Find its maximum and

minimum values.
2

Determine critical points for f(x) = x3 6 —x)

0 |—

, x € [0, 6] and determine where the function is

increasing or decreasing. Find also maximum and minimum values.
Find the maximum and minimum values of f(x) = sin*x + cos*x. x € [O, E].

X
Show that f(x) = (%) has local maximum at x = %.

Show that out of all rectangles with given area a square has minimum perimeter.

Show that out of all rectangles inscribed in a circle, the square has maximum area.
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24.

25.

26.

27.

28.

29.

Prove that the area of a right angled triangle with given hypotenuse is maximum, if the triangle

is isoceles.

A point on the hypotenuse of a right triangle is at distances a and b from the sides making right
angle. (a, b constant). Prove that the hypotenuse has minimum length (a% + b%)%

Show that the semi-vertical angle of a right circular cone with given surface and maximum volume
is sin~! %

Find the measure of the angle between curves, if they intersect :

(1) xy=6,x% =12 2) y=x%L x2+y2=20

(3) 22 =x312=32x, (x, ) #(0, 0)  (4) »* = dax, x> = 4by

(5) »* = 8x, x2 =27y 6) x2+y?=2x,3%=x

(1) Prove x% = 4y, x2 + 4y = 8 intersect orthogonally at (2, 1) and (=2, 1).

(2) Prove x2 =y and x> + 6y = 7 intersect at right angles at (1, 1).

Select a proper option (a), (b), (¢) or (d) from given options and write in the box given
on the right so that the statement becomes correct :

(1) The side of an equilateral triangle expands at the rate of V3 cmisec. When the side is

12 c¢m, the rate of increase of its area is ...... . ]
(a) 12 cm?/sec (b) 18 cm?/sec (© 33 cmPisec (d) 10 cm?/sec

(2) The distance s moved by a particle in time 7 is given by s = > — 612 + 61 + 8. When the
acceleration is zero, the velocity is ...... . ]
(a) 5 cmlsec (b) 2 cm/sec (c) 6 cmlsec (d) —6 cm/sec

(3) The volume of a sphere is increasing at the rate of T cm/sec. The rate at which the
radius is increasing is ...... , when the radius is 3 cm. ]
(a) 3_16 cmlisec (b) 36 cm/sec (c) 9 cmlsec (d) 27 cml/sec

(4) There is 4 % error in measuring the period of a simple pendulum. The approximate
percentage error in length is ...... .(Hint : T = 2RE ) ]
(a) 4 % (b) 8 % ©) 2% d) 6 %

(5) Approximate value of (31)% is ...... . ]
(a) 2.01 (b) 2.1 (c) 2.0125 (d) 1.9875

(6) The height and radius of a cylinder are equal. An error of 2 % is made in measuring height.
The approximate percentage error in volume is ...... ]
(a) 6 % (b) 4 % ©)3 % d 2%

(7) The tangent to (ar?, 2at) is perpendicular to X-axis at ]
(@) (4a, 4a) (b) (a, 2a) (©) (0, 0) (d) (a, —2a)
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(8) The line y = mx + 1 touches y? = 4x, if m = ... ]

(a) 0 ) 1 (c) —1 (d) 2
2 2 2 4 a
: 3 3 _ 3 _a__4da | .

(9) The equation of normal to x* + y a’ at (2 5 ./5) is ... ]
@2x+y=0 (b)yy=1 (c) x = (dx=y

(10) f(x) = x* decreases in ...... ]

1

@) (0, ¢) ) (0.2) © (0. 1) (d) (0, o0)

(1) f(x) =2|x — 2|+ 3|x—4]is ... in (2, 4). ]
(a) decreasing (b) increasing (¢) constant (d) cannot be decided

(12) f(x) = x7 + 5x3 + 125 is ...... . ]
(a) decreasing in (0, o°) (b) decreasing in (—oo, 0)
(¢) increasing on R (d) neither increasing nor decreasing in R

(13) The local maximum value of f(x) = x + é is ... ]
(a) 2 (b) —2 (c) 4 (d) —4

(14) The local minimum value of @ is ... ]
() —1 (b) 0 © = d) e

(15) If log,4 = 1.3868, then approximate value of log,4.01 = ...... ]
(a) 1.3867 (b) 1.3869 (c) 1.3879 (d) 1.3893

(16) The circumference of a circle is 20 ¢m and there is an error of 0.02 ¢m in its measurement.
The approximate percentage error in area is ...... ]
(a) 0.02 (b) 0.2 (c) T ) =

(17) If the line y = x touches the curve y = x2 + bx + ¢ at (1, 1), then ...... ]
@b=1,c¢c=2 ®b==1l,c=1 (@©b=1c=1 db=0,c=1

(18) y = ae*, y = be™™ intersect at right angles if ...... (a#0,b#0) ]
@a=7% by a=b ©a=—3 da+b=0

(19) Tangent to y = 5x° + 10x + 15... ]

(a) is always vertical
(b) is always horizontal
(c¢) makes acute angle with the positive X-axis

(d) makes obtuse angle with the positive X-axis
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(20) f(x) = 2x + cof 'x — log | x + 1/1+x2 | is ... ]

(a) decreasing on (—oo, 0) (b) decreasing on (0, <0)

(¢) constant (d) increasing on R

(21) The sum of two non-zero numbers in 12. The minimum sum of their reciprocals

is ... ]
@ 15 ®) 7 © % @ +

(22) The local minimum value of f(x) = xZ + 4x + 5 is ...... ]
(a) 2 (b) 4 (c) 1 (d -1

(23) The maximum value of f(x) = 5cosx + 12sinx is ...... ]
(a) 13 (b) 12 © 5 ) 17

(24) The minimum value of f(x) = 3cosx + 4sinx is ...... ]
(@) 7 (b) 5 (c) =5 (d) 4

(25) f(x) = x log x has minimum value... ]
@ 1 (b) 0 © e ) —=

(26) f(x) = Y3 cosx + sinx, x € [0, %] is maximum for x = ...... ]

T T T

(@ < ®) = Oy (d)o

Q7 f®) = (x —a)® + (x — b)? + (x — ¢)* has minimum value at x = ...... ]
@) Yabe Batb+ec (o) Lr2re (@ 0

(28) f(x) = (x + 2) e is increasing in ...... ) ]
(@) (=0, —1) (b) (=1, —o=) (©) (2, =) (d) R*

(29) The measure of the angle of intersection between y* = x and x2 = y other than one at
(0, 0) is ...... ]
(@) tan~'% (b) tan™'3 © & @ %

(30) The point where normal to y = x> — 2x + 3 is parallel to Y-axis is ...... ]
(a) (0, 3) (b) (-1, 2) (c) (1, 2) (d (3, 6)

(31) The slope of normal to 32+ 1,3 — 1)at¢t=1is ..... ]
@ (b) —2 (©) 2 () —%

(32) The equation of normal to 3x2 — y2 = 8 at (2, —2) is ...... ]
(a)x +2y=-2 (b)yx —3y=28 C)3x+y=4 x+y=0
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(33) The angle made by the tangent with the +ve direction of X-axis to x = e’ cost, y = e sint

att=%is ...... ]

TT TT TT
(@) & X © 0 @ Z
(34) The equation of tangent to y = cosx at (0, 1) is ...... ]
(@x=0 (b)yy=20 (©x=1 dy=1
. . T .
(35) The equation of normal to y = sinx at (7,1) is ... ]
@x=1 (b)x =0 (c)y=§ (d)x=%
(36) At ...... on circle x2 + y2 — 2x — 3 = 0, the tangent is horizontal. ]
(a) (0, 23) () (2, £3) © (1,2, (1,=2) () (3, 0)
(37) The point on »? = x where tangent makes angle of measure % with the positive X-axis
is ... ) ]
@ (4-3) (b) (2. 1) (©) (0, 0) (d) (=1, 1)
(38) A cone with its height equal to the diameter of the base is expanding in volume at the rate
of 50 cm3/sec. If the base has area 1 m?2, the radius is increasing at the rate ...... ]
(a) 0.0025 cm/sec  (b) 0.25 cml/sec (¢) 1 cmlsec (d) 4 cm/sec
(39) The rate of increase of f(x) = x3 — 5x2 + 5x + 25 is twice the rate of increase of x
for x = ... . ]
-3 -1 1 -3 1 1
(a) =3, — (® 3. 4 (¢) =3, L (d) 3, -

(40) The radius of a cone increases at the rate of 4 cm/sec and the altitude is decreasing at the
rate of 3 cm/sec. When the radius is 3 c¢m and altitude is 4 cm, the rate of change of

lateral surface is ...... ) ]
(a) 30 T cm?/sec  (b) 10 cm?/sec (c) 20 T cm?/sec (d) 22 T cm?/sec
(41) The rate of change of surface area of a sphere w.r.t. radius is ....... . ]

(a) 8 T (diameter) (b) 3 T (diameter) (c) 4 T (radius) (d) 8 1T (radius)

(42) The rate of change of volume of a cylinder w.rt. radius whose radius is equal to its

height is ...... . ]
(a) 4 (area of base) (b) 3 (area of base) (c) 2 (area of base) (d) (area of base)
(43) f(x) = tan 'x — x is ... . ]
(a) increasing on R (b) decreasing on R (c) increasing on R (d) increasing on (—oo, 0)
(44) f(x) = tanx — x, x € R—{(2k—l)%|k€ Z} is ... . ]
(a) increasing on its domain (b) decreasing on its domain
(c) increasing on (0,%) (d) decreasing on (0,%)
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A5)f(x)=2x —tan Yx —log | x + J1+ 2 | is oone. . (x € R). ]

(a) increasing on R (b) decreasing on R
(¢) has a minimum at x = 1 (d) has a maximum at x = 1
(46) If ......, then f(x) = x2 — kx + 20 is strictly increasing on [0, 3]. ]
(@ k<0 B o<k<1 ©1<k<?2 d2<k<3
(47) f(x) = |x — 1| + |x — 2| is increasing if ...... . ]
(a) x> 2 b)x<1 )x<O0 d)x < =2
(48) Normal to 92 = x3 at ...... makes equal intercepts on axes. ]
8 8 8 8
@ (-4,-%) () (4,+%) (©) (+4.8) @ (8.8
(49) y = mx + 4 touches y? = 8x, if m = ... . ]
1 1
(@ % (b) —1 (©) 2 (d) -2
(50) The measure of the angle between the curves y = 2sin?x and y = cos2x at x = %
is ... : ]
T s T b4
@ I RS ©Z @ L
(51) The normal to x2 = 4y passing through (1, 2) has equation ...... ) ]
(@) 2x =y b)yx+y—3=0 ()2x+3y—8=0 dx—y+1=0
(52) The local minimum value of x% + % (x #0) is ...... . ]
(a) 12 (b) 22 (c) —12 (d) 2
(53) The minimum value of secx, x € [Z?R, TC] IS .. . ]
(@) 1 (b) =2 (©) 2 (d 7
(54) The maximum value of cosecx, x € [%, %] is ... . ]
2 s T
(a) 2 b) 75 © L @z
(55) If f is decreasing in [a, b], its minimum and maximum values are respectively ......
and ...... . ]
(@) f(a) and f(b) (b) f(b) and f(a)
a+b a+b
(© fl=2 ) and f(a) (d) f(b) and f| —
@
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Summary

We have studied the following points in this chapter :
Derivative as a rate measurer.

Increasing and decreasing functions.

Applications to Geometry : Tangents and normals
Angle between two curves.

Differentials and approximate values.

Maximum and minimum values.

N QN N A W -

Application to optimization problems and practical applications.

RAMANUJAN

He was born on 22nd of December 1887 in a small village of Tanjore
district, Madras.

He failed in English in Intermediate, so his formal studies were
stopped but his self-study of mathematics continued.

He sent a set of 120 theorems to Professor Hardy of Cambridge. As
a result he invited Ramanujan to England.

Ramanujan showed that any big number can be written as sum of

not more than four prime numbers.

He showed that how to divide the number into two or more squares or cubes.

When Mr Littlewood came to see Ramanujan in taxi number 1729, Ramanujan said that

1729 is the smallest number which can be written in the form of sum of cubes of two

numbers in two ways,
ie. 1729 =93 + 103 = 13 + 123

since then the number 1729 is called Ramanujan’s number.
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INDEFINITE INTEGRATION

Science without religion is lame, religion without science is blind.
— Albert Einstein

L 2
A man is like a fraction whose numerator is what he is and whose denominator is what

he thinks of himself. The larger the denominator the smaller the fraction.
— Tolstoy

2.1 Introduction

In semester IlI, we have studied about the definition of indefinite integral, working rules,
standard forms and method of substitution for indefinite integrals. We have also studied trigonometric

X =

> =1 integrals of the type _[ sin™x « cos"x dx, m, n € N,

substitutions, an important substitution fan

integrals of the e dx dx AXTD dx and —AFB dx. Still
& typ fm2+bx+c’ j‘/axz+bx+c’ ax®> +bx +c j‘/a.x2+bx+c ’

there are functions for which integration using these methods is not possible or may be difficult. For

x> +1
(xX* +2)2x* +1)
we have to develop some other techniques.

1

example, log x, sec™ 'x, e*sinx, etc. are such functions. For integrating such functions,

In this chapter, we will learn methods for obtaining integrals of such functions.We know the rule
of differentiating the product of two functions. Now we will learn a method to find integral of
product of two functions. It is known as rule of integration by parts.

2.2 Rule of Integration by Parts
If (1) f and g are differentiable on interval I = (a, b) and

(2) f' and g' are continuous on I, then _[f(x) g'x)dx = f(x)gx) — jf'(x) g(x) dx
Proof : Here f and g are differentiable functions of x. So f-g is also differentiable and
according to working rule for differentiation of a product,

% ) g0] = f(x)-gx) + gx)-f'(x) @
Now, f, g f' and g' are continuous on I and hence they are integrable over I.

f¢' and gf" are also continuous and hence integrable.

From (i), using definition of antiderivative,

@) g = | [/@)-g6) + gk)-f'@)] dx

= [ /@ @) de + [ f100)-gk) dx

@ g dy = £ g) = [ 1) g) dx (i)
This rule is known as Rule of Integration by Parts.

Applications of Rule of Integration by Parts in Practice :
Rule of integration by parts is _[ fx) gx)dx = f(x) gx) — f f'(x) - g(x) dx
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If we take f(x) = u and g'(x) = v in this expression, then f'(x) = % and g(x) = _[va’x.

The new form of this rule will be Juv dx = u _[vdx — f(% jv dx) dx. (iii)

(1) In the above formula, we have transformed the problem of integration of product
of two functions into another problem of integration of product of two functions to make the

integration simpler. The new product is the product of the derivative of one function % and integral

of the other jv dx. (i.e. % _[v dx). Thus we do not get the integral of the product 'f u - v dx directly

but the product is transformed into another possibly simpler integrable product f(% Iv dx) dx.

Therefore, it is called the rule of integration by parts.

(2) While using this formula, we must select # and v properly. Let us understand this by an

example.

Find : fx-sinx dx

If we take v = x and v = sinx, then

x-sinx dx = x | sinx dx — ix sin x dx ) dx
J f [ (g T sinxas)

dx

—Xx cosx + _[ (1 - cos x) dx

= —xcosx + sinx + ¢

But, if we choose u = sinx, v = x, then

o . B d ..
_[x sinx dx sme‘x dx J(dx (sin x) J. xdx) dx

2 2
i X s X
sin x - =3 j(cosx 5 )dx

2
X . — 1 )
5t sin x 2J.cosx x- dx

Thus, for this type of choice, power of x increases and the integrand is transformed into
comparatively more complicated integrand having higher power of x. Therefore, the choice of u
and v is very important. The success of this method depends on careful selection of » and v. We
shall keep the following things in mind while using the rule.

(i) Integral of v is known.

.. . . . du
(ii) It is simpler to integrate dx _f v dx.

Keeping these points in mind, we frame a rule.

L : Logarithmic function, I : Inverse trigonometric function, A : Algebraic function, T : Trigonometric
function, E : Exponential function. First letters of above functions generate LIATE. The first function
appearing in this order in product #- v to be integrated is taken as u. This order is formed keeping

above two points in mind. This is a convention, not mandatory.
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1

1

For example : (1) In the product x - sin™ 'x, x is algebraic and sin 'x is inverse trigonometric

function. Now in LIATE rule, inverse trigonometric function precedes algebraic function. Hence

1

we take u = sin” 'x and v = x.

(2) In the product x-e*, x is algebraic and e* is exponential function. Now in LIATE rule,
algebraic function precedes exponential function, so we take ¥ = x and v = e*.

(3) While using rule of integration by parts, when we integrate v we shall not add constant of

integration. If we write the integration of u = sinx as —cos x + k, where k is any constant,

then J.xsinx dx = x jsinx dx — J(%x f sinxdx)dx

=x (—cosx + k) — f(—cosx + k) dx
= —x cosx + kx + jcosx dx — Jk dx
= —x cosx + kx + sinx — kx + ¢

= —x cosx + sinx + ¢

This shows that, while integrating u = sinx as —cos x + k, k is eliminated. Hence, we will

add arbitrary a constant when we complete integration of product J (% _[ % a’x).

(4) To integrate a function like log x, cosec™lx, tan™!x etc., we are unable to guess a function

1

whose derivatives are log x, cosec™ 'x, tan 1x. So, we take these functions as u and 1 as v. The

integral of 1 is x.

For example, let [ = Jlogx dx, we take
I = J logx-1dx

Here u = log x and v = 1 gives,

I = logx[1dx— J[%logxf 1ax] dx
- Cxr — 1.
= logx-x J(x x)dx
=xlogx — .[ 1 dx
=xlogx —x+c¢
(5) Some times we have to use this rule repeatedly.

For example consider, 1 = _[xz e dx

Here, u = x? and v = &> gives

I =x? Iesx dx — f(%xz jesx dx)dx

sx sx
xz-e? — J(er?)dx

2
= X~ ,5x _ 2 S5x
= ¢ 5_[xe dx

%esx—%[xj.esx dx—f (%xj.eSx dx)dx]. u=x,v=e"
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2 S5X S5X

- X 5x_ 2 e e
= ¢ S[x 5 f(l S)dx]
2 5x

— XD Sy 2 |x x_ 1. e
< e S[Se S 3 + c
2

= X7 p5x . 2X ,5x 4 2 ,5x
5e 55 ¢ +1256 + c

— x|l 2 2x 2
€ [5 25+125]+c

a

(ii) Generally we will denote the integral by I.

2

. _ —x""
(1) In generalfx” e dx = eX [i 5P = %xn I+ %

1t .pn!
o4 (l)—"] .

an+1

Example 1 : Evaluate : J x cos(3x + 5) dx
Solution : Let u = x and v = cos(3x + 5)

I = _[xcos(3x + 5) dx

x J. cos(3x + 5) dx — J(%x Jcos(3x + 35) dx) dx

— sm(33x+5) _ f(l . sm(33x+5))dx

=& sin(3x + 5) — % _[sin(3x + 5) dx

cos(3x +5)

3 + c

3
= % sin(3x + 5) +
X

1
3
sin(3x + 5) + é cos(3x + 5) + ¢

(O8]

Example 2 : Evaluate : jsec_lx dx, x >0
Solution : Let u = sec”!x and v = 1

I = Isec_lx-l dx

= sec_le 1 dx — f(% sec x f 1 dx) dx

= sec !

1
oy — —_— . ) d
X X J(x '—xz—l x) Ix
=xsec_1x—f 1 dx

-1

x—log|x+ Jx2-1|+c¢

= x sec |

xsec lx —log (x + 2 —-1) + ¢

x sin”'x

Example 3 : Evaluate : f ﬁ de, 0<x<1
1— x?

x sin~'x
Solution:1=f— dx, 0<x<1
Ji— x>

Letsin_1x=e,0<9<%a50<x<1

(x| =xas x>0

x > 0)
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x = sin0, dx = cosO dO

0 sin®
1 = | =——":cosO dO
j‘h—sinzﬁ cos

0 sin®
I = f s - cosO dO
cosO

= jesine do
— 0 [ 5ind do — f(%ejsme )

= —0 cosO + I(l - cos0) dO
=—0 cosO + sin® + ¢

=—0 1— sin®0 + s5in® + ¢

=—sin_1x-‘/1_x2 +x+c
_ 2 2 =1
——‘ll—x «sin 'x +x +c

Second Method :

X

Let v = sin 1x and v = 2

First we find integral of v, i.e., f

X L
f 2dx=J-(1—x2)2°xdx
‘/1—)6

=—1Ja - x2)_% (—2x) dx

1
2 L
1
=—(1—x2)2
X
f 1—x? de = —y1-2?

x sin”'x
Now, I = f dx

Ji— x>
= sin x Jﬁ dx — f(% sin Ix jﬁ dx) dx
i ayi=2) = [ 775 o as

=—J1—x2sinx+x+c¢

(cose > 0)

(cos® = {1—sin’0)
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Example 4 : Evaluate : jex cosx dx
I = Ie" cosx dx

Let u = ¢* and v = cos x

Solution :

|

er J. cosx dx — f (% er Jcosx dx) dx

= eXsinx — J.exsinxdx

= e*sinx — [exfsinx dx — J(diex Isinx dx)dx]
X

= e‘sinx — [—e* cosx — j(ex (—cos x)) dx]

= e¢'sinx — [—e¥cosx + _fexcosxdx]

=efsinx + e cosx — Jexcosxdx

I =&fsinx + fcosx—1+ ¢
21 = e* (sinx + cosx) + ¢

1 = d(sinx + cosx) + &
2 2
I = %(sinx + cosx) + ¢

(u = &%, v = sinx)

and v = ¢ also and integrate.

In the product ¢* cosx, trigonometric function precedes exponential function as per LIATE
rule. Hence, u = cosx and v = ¢ must be selected. But we have taken u
Remember earlier we stated that the rule LIATE is for convenience only. But we may take u = cos x

e’ and v = cosx.

Example 5 : Evaluate : Ixz 2% dx

Solution : Let u = x2, v = 2%

1 = sz 2% dx
_ d
= x2 j2x dx — f(a)# I2x dx)dx
_ 5 2.X 2)C
= x og, 2 —j(2x logez)a’x

2 X
X< 2 2
= —_ X

log,2  log,2 J x2% dx

N N NEY. Ly [2% ax)a =x,v=2
= Tog,2 Tog,2 X i (dxx ) dx (u=x,v=2
_ x2 2% I A 1-2% 4

log, 2 log, 2 _x log,2 log,2 X
_ x% 2% 2 rx - 2% 1 X +
~ log,2 log,2 [log,2 log,2 logeZ] ¢
X2 x-2% 1! N KX +1
= —— 4 =

log,2 (log,2) (log, 2)?

jx22x dx = J.xze)‘]og2 dx
2 2
=exlog2[x — 2x2+ 23]+c=2x[x — 2x2 23]+c
log2 (log2) (log2) log2 (log2) (log2)
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We observe from above illustration that sometimes we have to use formula of

integration by parts repeatedly.

Example 6 : Evaluate : _[xseczx tan x dx

2y tanx dx

Solution : I = _fxsec
Let u = x and v = sec?x tan x

First we find jv dx, i.e. jtanxseczx dx

J tan x sec’x dx = f (tan x) (% (tan x)) dx
_ (tan x)?

2

_ ftan’x
2
2

J.tanxseczx dx = t‘me
Now, I = j x sec’x tanx dx

= x_[tanx sec’x dx — f(ix ftanx°sec2x dx) dx

dx
2 2
— . lan’x _ . lan’x
x - X5 f(l > )dx
=X ran?x — l.f(seczx — 1) dx
2 2
- X 2. _ 1 _
<= tan<x [tanx — x] + ¢
2 2
=X g2y — L X
2tanx 2tamx+2+c
. 1-x?
Example 7 : Evaluate : f cos (1+x2) dx, x >0
) (=X
Solution : I = fcos ( 2) dx
1+x

Let © = fan lx, so that x = tan® and dx = sec?’0dD, 0 < 0 < % asx > 0

1-tan’0
I = Jcos_1 (_) sec?0 do

1+ tan®0
= J‘cos_1 (c0s20) - sec?® dO
0<o<Z
0<20<Tm
cos 1 (cos20) = 20 a)
I =2 JG sec20 40
~2 [0 [ sec?0 aB — J (4 6 [ sec20 a0) a0

=2 [G-Iane—fl-tane do]
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=21[0-1anB — log | secO|] + ¢

Now, 0 = tan x

sec?0 =1 + tan?0 = 1 + x2

secO = 1/1+x2

I =2 [x-tan 'x — log J1+ 21+ ¢

1
=2xtan"'x — 2log (1 +x%)* + ¢
=2xtan 'x — log (1 + x%) + ¢

1- x>
Second Method : Let us transform cos™! (1 N xz)

Letx=tan9,0<9<%asx>0

4 1-x? B 4 1-tan’0
cos (1+x2)_ cos (1+tan26)
= cos~ ! (cos20)
=20

=2 tan x

. 1-x?
Now, fcos (1+x2)dx

= I 2 tan”x dx

_nl,. - d _
=2 _tan Iy jdx— J(amn 1x_[l dx)dx]

T 1
=2 _tan lx.x—J(m.x)dx]

=2 |x.tan 1x — % J 22X dx]

1+ x2

=2 |xtan x — % log (1 +x2)] +c

=2xtan 'x — log (1 +x2) + ¢

(sec9>0as0<9<%)

(0 <20 < m)

[Note : | If x < 0 then —Z < © < 0.

-T<20<0
0<—20<m
In step (i) cos (cos 20) = cos !(cos (—20)) = —20
I=-21[01tn0 — log |secO|] + ¢
= 2x tan 'x + log(1 + x%) + ¢
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Exercise 2.1

Find the integrals of the following functions with respect to x.

1. xZlogx x>0 2. (3 + 5x)cosTx
3. cos lx x € [—1, 1] 4. x2e3
5. x2 tanx 6. sin ! % x> 1
7. sin (log x) x>0 8. secix
9. _1—?osx x #2n, n € 7 10. x3 sinx?
11. tan! l_xz ,0<x<1 12. x coix cosec*x
13. x cos3x 14. x2 — 1 cos x"
) logx
15. (1 — x*) logx x>0 16. 1t x>0
17. ) x € (0, 1) 18. m 0<x<l1
¥

2.3 Some More Standard Forms of Integration

Now we will obtain integrals of ‘/ 2 +42, ‘/a —x2, ePsin(bx + k), e®cos(bx + k) using

integration by parts or trigonometric substitutions and accept them as standard forms.
a | x2—a2dx=%\/x2—a2 - log|x+ 2 —d’| + ¢ «?* > a?)
Proof : I = J\/xz—az dx
I = J\/xz—az -1 dx
‘/xz—az Il dx — I(%sz—az _[l dx)dx
\/x —a? J 2 P ) dx

—xyfP-d? - [ =

X—Cl

[2 —a’ +
=xx—a jxaadx

/2 2 /2 2 I . S
xyYx“—a —j x“—a dx—afmdx
—x‘/xz—az —1—a?log|x + x?—a? | + ¢
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21 =x\/x2—a2 — & log |x + yX*—a®| + ¢

2
I =% x> —a? —%log|x+ 2 —a’|+ ¢

Second Method :

We can obtain the same standard form taking x = a secO. (x > a > 0)

I = J‘/xz—az dx

Proof : Let x = a secO. So dx = asecO tan® dO, 0 < 0 < % as x> a> 0.

I = J‘/az sec?0 — a2 - asec® tan® dO
= J‘Jaz tarto * asec® tan® dO

1 = a® [ secO - 1an®® d0
= a? [ secB (sec?® — 1) dO
= &2 [ (sec®® — secB) dO
= o [ 5ec®® d® — a? [ secO dO

=& jsece - sec?0 d0 — a2 Isece do

a? [sece Jsecze do — f(% secO f sec?0 de) de] —a? Jsece do
a? [secO® tan® — J(sece tan® - tan®) dO]— a? jsece do
= a? [secO® tan® — _[ secO - tan’*0 dO] — a? _[ secO dO

a* sec® tan® — azfsece tan®0 d — a? log | sec® + tan®| + ¢'

(@ > 0 and tan® > 0)

I =a? sec® tan® — 1 — a?log | sec® + tan® | + ¢' a = a? _[sece tan?0 dO)

21 = a2 secO tan® — a®log | sec® + tan® | + ¢'

2 2 {
L= secH \/secze—l — &= log | sec® + \/seczﬁ—l |+ 5
XX a2 ‘1 X ‘ c

aVa? 1 TIOg P + = 1|+ 5

—
Il Il

NIQN

2 2 _ 2 '
—x 2 42 _ a log x+yx>-a ‘_'_Q
2 2 -4 2
_x 2 2 _ad N 2‘ <y a
VX —a 5 log | x + yx™ —a + 5+ 5 log a
S N P ‘/ 2_42 (L’
VYT —a 5 log |x + yx"—a” | + ¢ 5

2
fdxz—az dx = %‘/xz—az - % log ‘x+ ‘/xz—az ‘ + ¢

(tan®

(la|

2
+ %loga

>

0)
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For example,

f‘/x2—25 dx=f‘/x2—52 dx
=%m—%log‘x+m‘+c
=%m-2—;log‘x+M‘+c

2 2

2
?2) _[ X +a® de = £yx*+a +a7log|x+ x?

2
+a
5 | + ¢

J.‘/x2+a2-1 dx
‘/x2+a2 _[1 dx — I(%‘/x2+a2 fl dx)dx
x\/x2+a2 —fzxiﬁx dx
xyx+d® _J% dx
x> +a
_ 2, 2 ((P+ad)-a’
it - [
=x‘/x2+a2 — j‘/x2+a2 dx+a2fﬁ
1 =x‘/x2+a2 — 1+ d?log |x + x2+a2|+c'
21=x\/x2+a2 + @ log |x + Y% +d?| + ¢

2
=3 x? +a? + L-log [ x + yx

2
f‘/x2+a2 a’x=%‘/x2+a2 + %log|x+ ‘/x2+a2| + ¢

This formula can also be obtained using substitution x = a tan® (a > 0).

For example, j\/x2+4 dx J\/x2+22 dx
2 2 2 2 2
=%‘/x +2 +2710g’x+‘/x +2 ‘+c
=%\/x2+4+210g‘x+\/x2+4’+c
3) f‘/az—xz dx = %‘/az—xz +"—22 sin_lﬁ + ¢
Proof : I = J\/az—xz -1 dx
= ‘/az—xz _[1 dx — f(%‘/az—xz J'l dx)dx

Proof : 1

2+az|+c

(@ > 0)

(a > 0)
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S e P R
x\/az—xz —I+a2sin_1( )+c’
x‘/az—xz + a2 sin”! (%) + ¢

= 2?2+ €t (&) 4 (
f\}a —x% dx Z%Va —x? +—szn —+c

_
[
Q |

21

N1}
Il
I
pa——

Remark : What difference will it make if a < 0 ?

For example,

f 9—x? dx =

|
—
@
[\S)
I\‘
=
S}
&

= 2yo-x2 + %sin_1 (%) + ¢
This formula can be proved using substitution x = a sin8 also.
@ U@ + f1@lde = ef() + ¢
Proof : 1 = [e& [f(x) + f'(x)] dx

= [efdx + [ f1(x)dx

= f [erdx — f(%f(x)]exdx)dx + [e - fix) dx

= f@) e — | f1(x) e dx + [f(x) e dx

= &' f(x) + ¢
For example,

€)) Je"secx (1 + tanx)dx = Je"(secx + sec x tan x) dx

_[ex [secx + %(secx)] dx

esecx + ¢
x—1 _ 1 1
?) fex(xz)dx—fex(x xz)a’x
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-

><|~

Jel

(3) Jx-e¥de=][(x— 1)+ 1]e dx

Lo
X

- o=+ Lex-1|ea
f[ dx ]

=e'x—1) +c

ax

Q) Ie"x-sin(bx + k) dx = ﬁ la sin(bx + k) — bcos(bx + k)] + ¢, a, b * 0

Proof : 1 Ieax°sin(bx + k) dx

= sin(bx + k) Jeax dx — f (% sin(bx + k) _[ ex dx) dx

ax eax
= sin(bx + k)& — J(b cos(bx + k)-T)dx

e . b
= - sin(bx + k) — chos(bx + k) e™ dx

= % sin(bx + k) — %[cos(bx + k)J.eax dx — J(% cos(bx + k) J e a’x) dx]

= % sin(bx + k) — %[cos(bx + k) % - f(—b sin(bx + k) %) dx]

ax 2
= 67 sin(bx + k) — % e cos(bx + k) — %

P ax . sin(bx + k) dx

— eax . b2 '
I = ? [a sin(bx + k) — b cos(bx + k)] — ?I +

b2 e“x . '
PrRry [a sin(bx + k) — b cos(bx + k)] + ¢

I+

(@ + b1 = e™ [asin(bx + k) — b cos(bx + k)] + a*c'

ax ZC'

I = ﬁ [a sin(bx + k) — b cos(bx + k)] + ¢, where ¢ = 2 112 @)

Now, we will express this result in another form.

> sin(bx + k) — cos(bx + k)] + ¢
\/a +b? [J J
Here a # 0, b # 0. Hence,

0< ‘A <1,0< ‘#

2
b )=1.

2
Now (,/a;ir b? ) + (,/az e
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So, there exists O € (0, 2T), such that

a b
cosOl = , SinOl = .
Ja® +b? Ja2 +b?

ax
I = ﬁ [sin(bx + k) cosO. — cos(bx + k) sinQl] + ¢
a” +

eax . a . _b
—— sin(bx + k — ) + ¢, where cosQl = T=——=, sinQl = .
a’ +b? ( ) Ja? +b? Ja? +b?

ax

ﬁ (asin(bx + k) — bcos(bx + k)) + ¢, a, b # 0

e - sin(bx + k) dx

e .
ey — sin(lbx + k — o) + ¢
a

—_a . ___b
where cosOl = ‘/m, sinolL = ,/m' a € (0, 2m)
2X

2
For example, _[ezx-sin 3x dx = 228T32 (2sin 3x — 3cos 3x) + ¢ = % (2sin 3x — 3cos 3x) + ¢
Another form for J’er - sin 3x dx.
Let cosOL = ==, sin0L = o=, so tan0, = 2
et cos i3 Sin 713 SO fan 5
= (a1 3 s
o = tan > o< ax< 5
: fe2x-sin3xdx=ez—xsin(3x—tan_1§)+c
oo JE B

ax

(6) Ie“x cos(bx + k) dx = ﬁ [a cos(bx + k) + bsin(bx + k)] + ¢, a*0,b #* 0

eax
= _2+b2 cos(bx + k — o) + ¢
a

—a .o _ b
where cosOl = W’ sinol = Jm a € (0, 2m).

Proof : I = Jeax cos(bx + k) dx

= cos(bx + k) _fe“x dx — J(% cos(bx + k) fe“x dx) dx

edx . X
= cos(bx + k) . - - j(—b sin(bx + k) . 7) dx

edx b .
= cos(bx + k) + " _[ e sin(bx + k) dx
= % cos(bx + k) + % [sin(bx + k) _[ e dx — f (% sin(bx + k) _[e“x dx) dx]
ax b . ax ax
= ea cos(bx + k) + “ [szn(bx + k). 67 - f(b cos(bx + k) . 67) dx]
e b : b?
= cos(bx + k) + 22 e sin(bx + k) — Z f e - cos(bx + k) dx
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b? ,
?I+c

e b .
I = — cos(bx + k) + g e - sin(bx + k) —

P+ Egp- & bx + k) + bsin(bx + k)] + ¢
Py P [a cos(bx ) sin(bx )] + ¢
(@ + b1 = ™ [acos(bx + k) + bsin(bx + k)] + a*c'

ax 2cv

a .
I = ﬁ [a cos(bx + k) + b sin(bx + k)] + ¢, where ¢ = m @)

Another Form :

a b
There exists O € (0, 27), such that cosOl = T=—, sinQl = T—=——=.
( ) Ja +b? Ja® +b?

ax
I = ﬁ [cos(bx + k)-cosOl + sin(bx + k)-sinQl] + ¢
a” +

e cos(bx + k — Q) + ¢
a” +

ax
je“x cos(bx + k) dx = ﬁ cos(bx + k — o) + ¢

a b
where cosOt = , sinQl =
Ja® +b? Ja® +b?
—X
e eos X gy = —€ - (= X 41X
Forexample.je coszdx 2( lcos2+2sm2)+c

e

—X
= 4e5 (—cos% + %sin %) + c

Another form for I e~ cos % dx.

—2 . 1
Here cosOl = f’ sinQl = f So tan = —%, % <A<KT

o I tan (2)

Je_x cos % dx =

= —% e *cos (% + tan”! %) +c

2.4 Tntegrals of the type : (1) [Jal +bx+c dxv @) [(Ax + B) Jal +bx+c dx

(1) If we express ax> + bx + c in the form of a perfect square, the integral can be obtained
using standard forms (1), (2), (3).

(2) We will find out two constants m, n such that
Ax + B = m(derivative of ax? + bx + ¢) + n

Ax+B=m(%(ax2+bx+c))+n

Ax + B = mQax + b) + n
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Comparing coefficient of x on both sides we get

m=2Aandn=B—mb
a

Now, J(Ax + B)\/axz +bx+c dx = J[m(Zax + b) + n] \/axz +bx+c dx
mJ(Zax+b) ‘/axz +bx+c dx+n_[\/ax2+bx+c dx

= mI1 + nI2

1
where 1; = _[(ax2 + bx + ¢)? (Qax + b)dx

1
= f(ax2+bx+c)2 %(ax2+bx+c)dx

1

L

(ax* + bx +¢)?

= T +c
s+1 1

3
2 2 2
E(ax + bx +c)° + ¢

and I, = j \/axz +bx+c dx

I, can be obtained using method (1).

Example 8 : Evaluate : Jx 1’x4 —25 dx.
Solution : I = fx 1/x4 —25 dx

Let x2 = 1. So 2x dx = dt i.e. xdx = %dt

I=fm-xdx

- JJE-sta
=%[§m—%mg|z+ 2_2|+ec
L2025 — Blog |1+ |2 25| +¢
— 2[4 05— Blog |2+ [t os|+e

2

:xT xt—25 — %log =2+ 1’;64_25)+c, as x2 > 0

Example 9 : Evaluate : j (x=3)(7T—x)dx. B<x<7)

Solution : I =J (x=3)(7-x) dx
= [ J1ox— 22 21 ax
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Now, 10x — x2 — 21 = —[x2 — 10x + 21]
= —[x2 — 10x + 25 — 4]

= —[x = 5)* — 4]
=4 — (x—5)?

I =,[‘/22—(x—5)2 dx
= x;S V22— (x—57% + %sin_l(x;5)+c
= x2—5 Jx-3)T-x) + 2sin_1(x2_5)+c

1+ sinx cosx
Example 10 : Evaluate : fex (—2) dx

CcoS X

. _ 1+ SinX cosx
Solution : I = jex o5 2e ) dx

SINX COSX
=feX( L_ 4 ‘ )dx
cos °X cos “x

= jex (sec*x + tan x) dx

d_
f ex (tan x + dx(tan x)) dx

= e tanx + ¢

1+ cosx

Ji-sinx X
Example 11 : Evaluate : fﬂ e 2dx, 0 <x< %

’1 —_
Solution : J sinx

1+ cosx

j ‘/cos2£+sm ——2smx cosx

2
2
e 2 dx
2cos? x

"COS—"—SHb—

2x
2cos >

X _ oin X
Jcos2 sin 3 x

e 2 dx

2c0s2%

Let —? =, —dx = 2dt. So dx = —2dt.

cost+sint
I = —J o, e (Qd)

2cos-t

sint
~ [ (o + ) et
cost cost

(since 0 < X
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= —j (sect + sect tant) e dt

f(sect + a7 (sec t)) el dt
= —sect-e + ¢

X
= —p 2. X X)) = X
e sec(2)+c (sec( 2) secz)

Example 12 : Evaluate : J & sin’x dx

Solution : I = f e sin’x dx

%jexdx - %Jex-cos2x dx

=Ll -] - 2x + 2sin2x)| +
=3 |2+ (cos2x Sin2x) c

e)C

X
=5 - % (cos2x + 2sin2x) + ¢

Example 13 : Evaluate : _[ 2% cos®x dx

Solution : I = _[ 2% cos?x dx
_ fzx(1+cos2x) dx
2
= %J.Zxdx + %J.Zxcos2x dx

= %J‘Z"dx + %J‘ex'loge2cos2x dx

1 X | x log, 2
T2 Tog.2 5 (log, 2)2 [(log,2) cos2x + 2sin2x)] + ¢
e e
2x—1 1 2x .
1= log,2 + 4+ (log,2)? [(log,2) cos2x + 2sin2x)] + ¢
e

Example 14 : Evaluate : J x—=5) %+ x dx

Solution : Here, we find m and »n such that,

x—5 m[%(x2+x)]+n

mQ2x +1)+n
x—=5 =2mx+m+n

Comparing coefficients of x and constant terms,
2m=1and m+n=-5

m 2andn 5 > >

—

_5-1 _
x—s5=2ox+ -4
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I =f(x—5)‘/x2+x dx
J[%(2x+l)—1—21] Va2 +x dx
%j(2x+ 1) ya?+x dx—%f\/xzﬂc dx

:%j(xz +x)%.% (x2 + x)dx — 171 fJ(x+%)2_(%)2 "

3
2

x>+ x X+ [
%—1—21 [# X% +x —%log‘(x+%)+ X% +x ‘+c

2
3
12402 - 1 M‘/Z 1 1 ‘/2 ]
3(x + x) 2[ 7] x“+x 8logx+2+ X"+ x +c

Exercise 2.2

Nl»—t

Integrate the following functions w.r.z. x considering them well defined over proper domains :

Lo Joo 2 2. J22+10
3. 523 4. Ja-za-22
7. cosx m 8. e*(log sinx + cotx)

1— sinx 1+ sin2x

9. e Tconx 10. T cosax ©
xet x*—x+1
1. =57 12, S
) (x“+ 1?2
1—Xx 2
13. ex(1+x2J 14. x\/1+x—x
15. Bx — 2)Wx2+x+1 16. 2x — 5)y2+3x—x>
_X
17. e sin 4x 18. ¢ % cos*x
19. 3% sin’x 20. e* sin3x sinx
%

2.5 Method of Partial Fractions

Now we shall study the method of integrating rational functions. If p(x) and ¢(x) are two
(x
polynomials, then _lq)( x)) , g(x) # 0 is called a rational algebraic function or a rational function

of x. We know how to simplify algebraic operations on rational functions.

| 5 1 5(x=2)+Lx—3) 6x —13
For example, +75 + 3—5 = x—3)(x—2)  (x—-3)(x—-2)

hink the oth _6x-13 . he f 5 1 5
Let us think the other way round. Can we put x—3x -2 in the form T7=—5 + T—5 7

The method of expressing a rational function as a sum of other rational functions in this way

is known as the method of partial fractions.
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6x—13 5

Expressing T =2 3 x-3 + xiz’ its integration will become very simple.

Let us try to understand this method :

p(x)
q(x)

(1) If the degree of p(x) < the degree of ¢(x), then is called a Proper Rational

Function.

5—3x 2x2 +3x+7 3x+2
X3 4+3x4+27 B _7x+2  xXP-6x?+11x—6

For example, are proper rational functions.

X
(2) If the degree of p(x) = the degree of g(x), then % is called an Improper Rational
Function.

X3 +1 xX2+x+1 x—6x2+10x-2

For example, S s
x2-2x+1 x>+3x+2 x> -5x+6

are improper rational functions.

X
If _‘Z(( x; is an improper rational function, we divide p(x) by g(x) so that p(x) = g(x) s(x) + r(x),

X
where r(x) = 0 or degree of r(x) is less then that of ¢(x). The improper rational function % is

expressed in the form s(x) + % where r(x) and s(x) are polynomials such that the degree of r(x)

r

X) . . .
(_x)) is a proper rational function or 0. For example, let us

is less than that of g(x) or r(x) = 0. Thus, 4

" 4x3 —x? +1
consider ——5———
x? -2

We should divide p(x) = 4x3 — x2 + 1 by g(x) = x> — 2.

4 —1

X2 =243 =2+ 1

4x3 — 8x
- +

—2 4+ 8x + 1

—x2 + 2
+ J—

8x — 1

Quotient s(x) = 4x — 1 and remainder r(x) = 8x — 1

N 4x3 — x? +1 8x —1
Thus, 25 —(4x—1)+x2_2.
. . . . Sx — 1 . . .
Here, the quotient 4x — 1 is a polynomial function and 2, IS a proper rational function. Now

we study the method of integrating a proper rational function.

p(x) . tional function. Th uti ; p(x)
q(x) 1S a proper rational Tunction. € resolution o q(x

Suppose into partial fraction depends

mainly upon the nature of the factors of ¢(x) as discussed below.
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Case 1 : Real, Linear and Non-repeated Factors :

Let g(x) have n real, linear and non-repeated factors x — O}, x — 0O,,..., x — O,. i.e.

g(x) = (x = O(x — 0h)..x — O). (a; # Q; for i # j)
p(x)
Then we can express g(x) 3
(x) A A A
Z(x) = x—locl + x—ixz + ...+ x_’&n , where A, A,,.., A, are constants. We can always

determine A, i = 1, 2,..., n uniquely and integrate function on the right hand side easily. Let us take
an example to understand this method.

2x —3
(X = D(x = 2)(x = 3)

Example 15 : Evaluate : f dx

2x —3
(X =D(x =2)(x-3)

Solution : I = J dx

We can see that given rational function is a proper rational function and in the denominator, we

have real, linear and non-repeated factors.

2x—3 A B C .
T hax-x-3 x-1 " x-2 1T x—3 ()

L

where A, B, C are constants. Multiplying both sides by (x — 1)(x — 2)(x — 3) we get
2x =3 =Ax—2)x—3)+Bx— Dx—3)+ Clx — I)(x — 2) (i)
Now we can find constants A, B, C by any one of the following three methods.

First Method :

Denominator of the rational function (x — 1)(x — 2)(x — 3) has three zeros 1, 2, 3.

Let x = 1, 2, 3 in equation (ii) by turn and we get the values of A, B, C.

1 gives 2(1) — 3 = A(—1)(—=2). Hence A = —%,

B(1)(—1). Hence B = —1.

X

x =2 gives 2(2) — 3

x = 3 gives 2(3) — 3 = C(2)(1). Hence C = %
Second Method :
2x—3 A B C .
We have =55 57=3 ~ -1t x—2 T -3 (i)

To find A, we select the factor x — 1 in the denominator of A and put that factor equal to zero

2x—3
(i.e. x — 1 = 0) and obtain the value of x (i.e. x = 1). Replace x by that value in m, obtained

2() -3

after removing x — 1 from L.H.S. Then A = T-a-3 — —%. Similarly to obtain the value of B, we
2x—3 2(2) -3

substitute x = 2 in m So B = @—(l;m = —1. To obtain value of C, we substitute x = 3

_ 2x —3 . 23)-3 4

L T ) R R I ) B

Thus, A = > B 1 and C 5
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Third Method :

From (ii) we have,
2x—=3)=Ax —2)x—=3)+ Bx — D(x —3) + C(x — D(x — 2)
2x — 3 =A@ — 5x + 6) + B(x? — 4x + 3) + C(x?2 — 3x + 2)
2x —3=(A+ B+ C)x* + (—5A — 4B — 3C)x + (6A + 3B + 20C)
Comparing the coefficients of x2 coefficients of x and constant terms on both sides we get,
A+B+C=0,-5A—-4B—-3C=2,6A+3B+2C=-3
Solving these equations, we get A = —%, B=—1and C = %
We can use any of the above three methods, whichever seems simple for a particular problem.

Now, substituting values of A, B and C in (i) we get,

1 3
D —2x—3  x-1 T x-—2 T 31=3

2x—3 _ 1 1 1 3 1
f(x—l)(x—Z)(x—3) dx ——Efx_l dx—fx_z dx + ij_e, dx.

=—2log|x—1|—log|x—2]+ Jlog|x—3|+c

Case 2 : Real, Linear Repeated and Non-repeated Factors :
If g(x) = (x — A (x — 0y) (x — Oy)..(x — O), then let

2O _ Ay A2 M L B B +(B_noc>
T (=
n

q(x) ~ X—0o T g tot x—ok X T X0,

Corresponding to non-repeated linear factors we assume as in case (1) and for each repeated
factor (x — Oc)k,, we assume partial fractions,

Al Ar As Ak
+ + ot ——,
R C e N (x -k

where A, A,, As,..., A, are constants. Let us
take an example to understand this method.

Example 16 : Evaluate : f —
(x—D%>x+2)

Solution : I = J+ /x
(x—D3(x+2)

Let X A B C @)

x—D2(x+2) X—1 + (x —1)? T
Multiplying both sides by (x — 1)2 (x + 2), we get
x=Ax — D(x +2) + B(x + 2) + C(x — 1)2

Now, x = 1 gives 1 = B(3). So B = %

x = —2 gives =2 = C(9). So C = —%

Comparing coefficient of x2. A + C = 0. So A = —C.

=l
A3
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Substituting values of A, B, C in expression (i),

X -2 4 1 _ 2
(x—D2(x+2) 9Xx=D 7 3x—1? 9(x +2)

—xdx R (R _2f(_u
x—D2x+2) 1T 3| -2 dx T 9) xygdx

_2 _ 1 x=n7
—910g|x 1|+3 —

N=1|¥)

%10g|x+2|+c

=5 log ‘ x+2 ‘_B(x—l) te

Case 3 : One Real Quadratic and Other Linear non-repeated factors :
If g(x) = (ax®> + bx + ¢) (x — o) (x — Oy)... (x — O, then let

p(x) __Ax+B A, A Ay
q(x) — ax*+bx+c + X — 0 + X — 0y Tt X -0,

where A, A,, As...., A, are constants to be determined. Let us take an example to understand

this method.
x dx
Example 17 : Evaluate : m
xdx
Solution : I = f m
X A Bx +C

t =
@Bx*P+2)(x—2) Xx—2 3x2+2

Multiplying by (3x2 + 2)(x — 2) on both the sides,
x=AGBx2 +2) + (Bx + O)(x — 2)
x = AGx2 + 2) + Bx(x — 2) + C(x — 2)
x =2 gives 2 = 14A. So A = 1.
Comparing coefficients of x2 on both sides,
3A+ B =0.SoB=-3A

Comparing coefficients of x on both sides,

C—2B=1.SoC=1+2B=1-—

] loN

:l
7

_ 1
C=7

1

x dx _ %dx N (%x+7)dx
3BxZ +2)(x—2) xX—2 3x2 42

1 (_dx , 1 (Bx—Dhdx
_7jx—2dx 7f 332 +2

3xdx dx
1
S n-LiS5=+1(F
7)) x=2 71 3x*+2 7] 3x°+2
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1 1 | ([ 6xdx ([ —dx
N 7jx—2 dx = HJ w2 T 7j W) + (27 O

7log|x 2| 1410g|3x +2|+7Jgtan (_)+c

V2

_1 Ca - L 2 g aBx 2>
7log|x 2| 1410g(3x +2)+7Jgtan ﬁ+casx_0
x* dx

Example 18 : Evaluate : f m

x° dx

Solution : I = Jm

Here all the indices of x are even. Write x2 = ¢ in the integrand. (It is not a substitution).

X t

2+ +4)  GHDI+4)

f __A B
Let TFna+a ~7+1 T 742

r=AGC+4+Br+1)

Taking 1 = —1, we get =1 = 3A. So A = —1.
Taking 1 = —4, we get —4 = —3B. So B = 1.
Substituting values of A and B in (i)
_1 4
t ——3 4 3
t+DI+4) ~ t+1 T t+4
2 1 4
_ 2 X _ 3 3
Now, #=x"thus, "o ) o = 21t 244
2
o1 (_dx 4 (_dx
- f<x2+1)<x2+4) dx =3 jx2+1 *3 fx2+4
=—% tan 1x+%><%tan_l(%)+c
=L 2 ol (X
1= 3tan x + 3tcm (2) + c

x2

Ot s W

Example 19 : Evaluate : J

.X2

Solution : I = fm

dx

Let x3 = £, So 3x2dx = dr. Hence x2 dx = %dt

IZLJL
3 @ +2)(t—5) "

| A B
Let 77 57=5 ~“7+2 t 7—5

1 =A@ —5)+ Bt +2)

t=—2 gives, 1 = —7A. So A = —%

t=5gives,l=7B.SoB=%
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-1
7

1 _
G+20—5 ~1T+2 t71

| |~1=

50
1 -1 L
S ()
S T [ |
= _ﬁfwz dr + ﬁjt—s dt

=L € —
=37 log |t +2]+ > log|t—5|+c¢

_ 1 =5
T 21 og‘x3+2‘+c
X+ x+1
Example 20 : Evaluate : J x_ 1 dx
) (X tx+l
Solution : I = J_(x—1)3 dx

Letx—1=1¢ dx = dt.

dt

2 +3t+3
=j—dt

- 14,3 . 3
f(t+t2+t3)dt

(1 - _
—ftdt+ 37 2de+3[r3dr

[ - j F+D2 4+t +D+1

=log|t|+3(_71)+3(j)+c

=10g|t|—%—%+c

2
3 3
—1 — 2+C

=10g|x—1|—x -

2
Xhx+l A B C

(x-1° peil (x —1)? * (x-1?3

This sum can also be done using partial fractions.

tan® + tan>0

Example 21 : Evaluate : f T 700

tan® + tan’0

Solution : I = f PR

tan® (1 + tan’0)
f 1+ tan’0

tan® - sec 0
- f R L

1+ tan®0
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Let tan® = . So sec?0 dO = dr

j tdt
I =
1+

tdt
B f (t+ DI —1+1)
t A Bt +C
G+DE>—t+1D)  T+1 +

PP —t+1

t=AE —t+DH+B+0O)@+ 1)

t=AZ—t+ 1)+ Bt + 1)+ Ct+ 1)
t = —1 gives —1 = 3A. So A = —1

3

Comparing the coefficients of /2 on both sides, we get A+ B = 0. So B = —A
. =1
<. B=3

Comparing the constant terms on both sides, we get A+ C = 0. So C = —A
s C=

1
3
t _ -3 + 3+3
t+DE>—t+1) r+1 P —t+1
S N [ T 1 r+1
I % t+—
3Jt+1 3Jt2—t+1
. 1 #d 1 2t +2
= — t+_
3jt+1 6Jt2—t+1
Qt—1)+3
ft-'_ldt f t2_t+1 dt

1 dt_ 1 @t-vdr 3(—dr
- 3ft+1+6j 2—1+1 el

—t+1
2t —1)dt dt
3) t+1 6] 2—t+1 2 2 2
(1=4 (%)
=—Tlog|r+ 1]+

log [2—t+ 1]+ 4 x

;=1

1 —1 2
(ﬁjtan [£J+c

2 2

2t —1
=—=1 + 11+ 1 2 _t+11+ 1( )_'_
og |t | og |t t | = tan 5 c

1 =—Llog [1an® + 1|+ 1t—1(2tL9_1)+
—§0g|an | ﬁan 7 c

%log | tan?® — tan® + 1| +
82
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11.

13.

Exercise 2.3

Integrate the following functions defined over a proper domain w.rt. x :

x> +4x—1
x—x

x3—6x2+10x—2

x2—5x+6

x2+1
2 2
(X2 +2)2x% + 1)

X2 +x+1
(x+D%*(x+2)

1
6e** +5¢* +1

I S
X+ +0

1
sin x — sin 2x

Miscellaneous Examples :

2
Example 22 : Evaluate : f(x + D]’fctz dx

Solution : I = f(x + 1)

|
-

2.
4.
6.
8.
10.
12.
14.
sk
x+2
) dx
x+2  x+2
—J(x+1) ~— XT3 dx
X+ D(x+2
( )( )dx
Vx> -4
X2 +3x+2
—— dx
Vx> —4
J(x2—4)+3x+6
X
Jx2—4

X
f x2_4dx+3j‘/xz—_4dx+6f

f 24 dx+%f(x2—4)_%(2x) dx+6j

X

2

2 4 2 3L
-4 —5log|x+ Jx*—4 [+ 5

3x+2

(X =Dx=2)(x—3)

x2

Qx>+ D% -1

X3

X2+ 2)(x* +5)

S5X

X+ D(x*+9)

sec’0

tan’0 — 4tan © + 3

)C2

x—D3x+0D

1

sin x(3 + 2cosx)

x> 2

dx

Jx2 -4

[ST N

4

=] |

df x < -2 )

(x > 2)

dx

Jx2 -4
+ 6log|x+"x2_4 | + ¢
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% 2_4 +4log|x+ ‘/x2—4|+3‘/x2—4+0

(%+3)m+410g|x+ 24| +c

1+ sinx) dx

Example 23 : Evaluate : J sinx (1+ cosx)

1+ sinx) dx
sinx (1+ cosx)

sinx (1+ cosx) 1+ cosx

Solution : I = f

dx _ dx

Let I =1, +1, wherel = fsinx(1+cosx)’ L= 1+ cosx

I = dx
1~ sinx (1+ cosx)
sinxdx
N j sin’x (14 cosx)

sinxdx
a f (1-cosx)(1+ cosx)’

Now, cosx = t gives sinx dx = —dt

I, = f——dt
1 A—1)(1+1)>

—1 _ _A B C
t 2
(1—0)(1+1)

STt g2
—1=A0+H2+B(I—0(1+5H+C1 -1
r=1 gives —1 = A(4). SoA=—%

t=—1 gives =1 = C(2). So C = —1

t = 0 gives (or any convenient value of 7 can be taken)

—-1=A+B+C

RIS
B=-1+4+1
B

-PI»—

-1 -1
4

2
T Gty

—1 -
= -
(1-Ha+n?* 1-1

-1 L I - 1 -

EN

e | 2 —
_Zog‘tH’ 26+1) €l
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cosx — 1

. _ 1 1
. II_ZIOg cosx + 1 ’+2(c0sx+1) + ¢
Now, I, = +dx= +dx=i sec? £ dx
> 2 1+ cosx 2c052§ 2 )
tan =
1] — 2
= = 1 + c
2 = 2
S L =tan% + ¢
I =1+1,
1 cosx — 1 1 X
S 1= Zlog cosx + 1 cosx+n T tan = t+c
=4 2l‘+++ X+
7 log tan > 4 cos? tan c
-1 X L gec2 X X
2log tan 5 ‘+4sec > titans +c
Second Method
X = 2x. L=
Let ran > 1, so sec” s 2dx dt
2
Hence dx = 24L  sinx = 2L and cosx = =2
1+t 1+£2 1412
B (1 + sinx) dx
I= sinx (1+ cosx)
1+—
_ 1+t _ 2dt
1t 1+12
1+t l+t
_ 1+t + 2t - 2dt
2t (1412 +1-1%)
+2t+t2
dt
_ 1 1
L |loglri+20+2
=3 ogltl+ t+7 + ¢
_ 1 1.2
=2 logltl+r+g1°+ ¢
-1 X x 4 1 2 X '
2log‘tan2 ‘+tan2 + oy tan” 5 t+c
:l X X l (seczl_l) '
Observe that | > log | tan S| Tans + 4 5 +c
=1 X X 4 1 21__
2log tan = +ta2+4sec2 + ¢’
-1 X X 4 1 2x
2log tan = +tc7m2 + g osecty +c

Thus, we can see that answers obtained by both the methods are same.

(¢ + ¢y =

<)
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Example 24 : Evaluate : f(log (logx) + 1 ) dx, x> 1

(log x)?

Solution : T = J(log (logx) + (loglx)z ) dx

Let logx = ¢ So x = €’

dx = el dt

I = f(logt+ %2) eldt
= f(logt+% - % + %2) e dt
[lfers -G - B
= f(logt+ %) eldr — J(% - %2) el dt

=el logt—e’% + ¢

X
log x

=x log (log x) — +c

N
Example 25 : Evaluate : j sin_x — cos Wx dx
sinWx + cos 'Wx

. sin~'Wx - cos "Wx
Solution : I = dx
sin~'Jx + cos Wx

B J sin~Wx - (%— sin~'Vx)

X

Il
—
[\)
23
S
N
bop)
|

I
2

% fsin_lw/; dx — jdx

Let I, = Jsin_lw/; dx

Let sin 'Wx = 0. Sox = sin®0, 0< 0 < %
dx = 2sin0 + cosO dO

S L= f 0 25inO cosO dO
= _[ 0 sin20 dO

= _9002s29 + %_[cos29 do

__0 sin20
= cos20 + 3

= —% (1 — 2sin?0) + %sine - cos9

(sin_lw/; + cos_lw/;

(\/;>0.So,0<9<%)
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11.

13.

15.

17.

19.

20.

= —L s Wx (1 —20) + LVx JT—

2

= —% sin Wx + xsin Wx + %‘/x_xz
fsin_lﬂdx - de

[+

I =

4
T
4
T

sin_lw/; + xsin_lw/; + %"x—xz] —x+c

Exercise

2

Integrate the following functions defined on proper domain w.rt. x :

2 1

x sin” 'x 2.
X —Sin x

1—cos x 4.
log (x + x? +4?) 6.

sin~'Wx

e 8.

log x —1

(log X)? 10.

x\/2ax— x2 12.

R S

COS X COS 2X 14.

Sin x

Sin 4x 16.

R S 18

sinx\/co.sg’x ’
1+ sin x

sin x (1+ cos x)

Select a proper option (a), (b), (¢) or (d) from

‘/1 + sin2x

N T x
1+cos2x €

1
log x

log (log x) +

x =23 X2+ x

1
sin x + sin 2x

cot 1 (1 — x + x%) 0<x<1

sec X
1+ cosec x

given options and write in the box given on

the right so that the statement becomes correct :

1) _[cos (logx) dx =
(a) % [cos (log x) + sin (log x)]
(©

2) Iexsinx cosx dx =

% [cos (log x) — sin (log x)]

X
£ _ _ —1
(a) > 5 €08 2x — tan'2)

2
e .. —1
(©) Wkl (2x + tan'2)

(b)
(d)

(d) 5\@

[

£ [cos (log x) + sin (log x)]

5 [sin (log x) — cos (log x)]

X
£ _ o _ —1
(b) Wik (2x — tan™'2)

2x

sin (2x + T — tan” 12)
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3) Jexsecx (1 + tanx) dx = ... + c ]
(a) e¥secx tanx (b) e tanx (¢) e*secx (d) —€*secx
(5+log x) dx -
“) f Gtlogn? +c ]
1 X e*
(a) Mgeﬁ (b) 5+ Tog, x (©) Tog,x+5 (@) Tog, x ¥
etan_lx 5 B
(5)f1+x2 (1 +x+ x%) dx = ...... +c ]
-1 etan_lx —1 x —1
(a) etan X (b) 1+x2 (C) x.etan X (d) T etan X
1+ sinx
(6) fex(1+cosx) dx = .. +c ]
X
(a) e*cotx (b) &* cot % (c) e tan % (d) e? - tan %
1+ xlogx
7 fex — | dx = ... +c ]
(a) ¢ logx (b) x-e&* (©) % log x (d) e logx
)] J‘(logx+%)e"dx= ...... + c ]
(a) & (logx + %) (b) &* (logx + i) (c) & (logx — %) (d) e* (logx — i)
X X
x—1
) f(xz)exdx= ...... + c ]
1 1 1 1
(@ 25 e () 1 e © —Le @ —% e
(10)f(x6+7x5+6x4+5x3+4x2+3x+l)exdx= ...... + ¢ ]
7 6 6 6 .
(a) 2 x'e (b)y X x'e (c) 2 ie (d X (xe)
i=1 i=1 i=0 i=0
(11) jtan_lx dx = ... + c ]
-1
(a) x tan”'x — % log |1 + x2| (b) x tan”'x + % log tla_'r_z xf

(c) x tan x + % log |x2 + 1|

(d) —

14 x?
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Summary

We have studied the following points in this chapter :
1. Rule of Integration by Parts :

If (1) fand g are differentiable on I = (a, ) and
(2) f' and g' are continuous on I, then _[ fx)-gx) de = f(x) glx) — J. f'(x) g(x) dx
If we take f(x) = u and g'(x) = v, then f'(x) = % and g(x) = J.v dx

Then the new form is _[uv dx = ufv dxh— J(%IV a’x) dx.

2. Standard Forms of Integration :

2

a) j1lx2—a2 dx = & x? —a? — L log |x + X —a’| +c
2

) J x2+a2dx=% x> +a? +aTlog|x+‘/x2+a2|+c

2
@) [ya*-# dx=§\/a2—x2 + 4 s 4 @ > 0)

@ [&UE +f@lde = &f(x) + ¢
eax
a? +b?

——— sin(bx + k ) +
sin(bx - C
‘/a2+b2
a

where cosQl = m, sinQL = ﬁ. o € (0, 21)

(5) [ e™-sin(bx + k) dx = [asin(bx + k) — bcos(bx + b)] + ¢ (@#0,b#0)

ax

(6) Ieax cos(bx + k) dx = ﬁ [a cos(bx + k) + b sin(bx + k)] + ¢ (@#0,b+#0)

eax
m cos(bx + k — Q) + ¢

a b
where cosOl = ‘/27 sinQl = . o e (0, 2m).
a’ +b? Ja? +b?
3. Integrals of the type : (1) j ‘/axz +bhx+c dx (2) J (Ax + B) ‘/axz +hx+c dx

4. Method of Partial Fractions.

INDEFINITE INTEGRATION 89



DEFINITE INTEGRATION

Calculus required continuity and continuity was supposed to require the infinitely little;
but nobody could discover what the infinitely little might be.
— Bertrand Russell

*

All great theorems were discovered after midnight.
— Adrian Mathesis

3.1 Introduction

We have already studied integration (antiderivation) as an operation inverse to differentiation.
From the historical point of view, the concept of integration originated earlier than the concept of
differentiation. Infact the concept of integration owes its origin to the problem of finding areas of plane
regions, surface areas and volumes of solid bodies etc. Firstly the definite integral was expressed
as a limit of a certain sum expressing the area of some region. The word integration has originated
from 'addition' and the verb 'to integrate’ means 'to merge'. Later on, link between apparently two
different concepts of differentiation and integration was established by well known mathematicians
Newton and Leibnitz in 17th century. This relation is known as fundamental theorem of integral
calculus and we will learn it in this chapter.

The calculations of area, volume are done using integration. In the 19th century, Cauchy and
Riemann developed the concept of Riemann integration.

Now in this chapter we shall understand the idea of definite integration as the limit of a
sum and how it is helpful to find out the area as well as how it can be linked with differentiation.

3.2 Definite Integral as the Limit of a Sum

You have studied in std. XI that restoring force acting on spring-mass system is given by

F = —kx, where k is force constant of the spring. If we consider only magnitude, we may consider
F
the force. As per definition of work, work done by the system at a particular moment is,

kx. If k = 10, then F = 10x. Here we would find the work done, if displacement occurs due to

w = Force acting at a particular moment X displacement due to force.

Now F = 10x shows that force changes with displacement. So, how would we find the work
done during the displacement of 10 units ?

As per a common estimate for work done during the displacement,
Initial force X displacement < w < final force X displacement

Let us calculate w for the above mentioned example. First displacement occurs in [0, 10]. In this
case for x = 10, force i1s maximum i.e. 100 units and for x = 0, it is minimum i.e. zero. So in this
interval, work w satisfies,

0X0<w<100X 10 wXd=0x0and w Xd=100 x 10)
For work done in interval [0, 10], 0 < w < 1000 )
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Now to get a better estimate of work (w), let us divide the interval [0, 10] into two congruent
subintervals i.e. [0, 5] and [5, 10]. Suppose in the interval [0, 5], the work done is wy, then since

maximum force is 50 units and minimum force is 0 unit in this interval, so for interval [0, 5], work

done w satisfies,
0<w <50X5
0 <w, £250
Similarly, if the work done in the second interval is w,, 250 < w, < 500
Total work done w = w, + w,

250 < wy + wy £ 750

250 < w < 750 (i)
Here it can be seen that result (ii) gives a better estimate than result (i). If the interval [0, 10] is
divided into three subintervals [0, %], [%, 2—39], 2—30, 10], work done in each interval would be as
follows :
Taking x = % in F = 10x, we get maximum work w = % X % = %
1000
0<w < o
. 1000 « . < 2000
Similarly 5 Sw S5,
2000 3000
Asw=w1+w2+w3,so,%ﬁw3%;0
3333 < w < 6662 (iii)

It is seen that result (iii) is still a better estimate than result (ii). Thus more and more divisions of

the intervals lead to better estimates of the work. If [0, 10] is divided into » equal intervals viz, [0, %],

[ 2} (2 2. [22-2. 10]

ith interval in this partition would satisfy [—10(ln_ D R 1—2’]

Taking x = 1—2l in F = 10x, we get maximum work w = 10 X % X % = 1(’)1020’
. . . . 1000 — 1 1
The work done in this subinterval would satisfy % Sw, < 1(’)1020’

n n
Total work will satisfy 1220 ‘21 i—1H<w< %‘21 i.
L= 1=

Here, the difference between the maximum and minimum values of work is

n n n
1000 % ;100 ¥ ;)= 1000 F - 1000, _ 1000
n i=1 n° j=1 n

i=1 n? n

As value of n increases, this decreases and the difference tends to zero. In other words

n n
lim 1000 3, fjm 1000 .21 (=1
1=

n—> oo n i=1 n— oo n2
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Since the value of w lies between these two, as per sandwich theorem, true value of w will

be the value of this limit.

n
w = lim @ > ;= lim 1000 (n(n2+1)).

n—oe N -1 n—oo N>

= lim 500 (1 + 5) = 500

Thus w = 500 which is the correct value of work done. Thus we have carried out integration in

10 10
the interval [0, 10] w.r.t. x, which is known as j fx)dx = J 10x dx.
0 0

Here we are using the concept of the limit of a sequence. If (S,) is a sequence and as n
increases indefinitely | S, — / | becomes arbitrarily small for a definite real number /, we say the

sequence is approching / as n tends to infinity and write lim S, = /. We had intuitively seen this
n— oo

concept in the introduction of e in semester III. We will not study this concept in detail.

b
Generally, to evaluate j f(x)dx, [a, b] is divided into n congruent sub-intervals. Each interval will
a

). Now [a, b] can be partitioned into [a, a + k], [a + h, a + 2h],...,

_(b—a
have length /& = ( —
[a + (n — DA, a + nh].

b—a
n

b=a 3 tw+ in

n i=1

n b
2 fla+ = DAl S [ f@dx <

b B n
and we can take J'f(x) dx = lim b—a ,Zlf(a + ih). From these concepts and
1=

n— oo n

a
understanding, this conclusion will be accepted as a definition.

Definition : Let f : [a, /] — R be a continuous function. For positive interger n, let

h = b—Ta. If we partition [a, b] into n sub-intervals of equal length, then the dividing points

are a, a + h, a + 2h,..., a + nh = b.

[ o o o < o
a a+h a+ 2h a+nh=>~
Figure 3.1
b—a & .
Let S, = — Z fla + ih)

i=1
Thus we get a sequence {S,} based on function f and partition of [a, b]. We assume that

for a continuous function, this sequence has a limit and this limit is called definite integral

b
of f over [a, b]. It is denoted by J [ (x) dx.

a

RN

b _ n
[reac = tm (229) 5 ra + iny @
a i=1

a is called the lower limit and b is called the upper limit of definite integration.

92 MATHEMATICS 12 - IV



n—1 b
.Zof(a + ih) is also equal to _[f(x) dx.
1 =
a
Above definition is called the definition of definite integral as the limit of a sum. The above

b—a
n

Also, we can prove that lim
n— oo

process of linking a function f with its definite integral is called evaluation of definite integral as a limit
of a sum.

b
Note : j f(x)dx can be defined for certain functions which may not be continuous. But at
a

present we will not discuss them.
Symbol : Integrand
Upper limit of integration — p d dx suggests
_[ f(x) dx < integration is carried out w.rt. Xx.

Lower limit of integration — d

Integration of f from a to b.
3.3 Some Important Results

n
M 1+2+3+.4+n =3 i="000
i=1
@) R+2 43R4 k2= 3 P IEEDORED
' c
i=1
z n2(n + 1)>2
() P+ +3+.+nd= 3 P=l
i=1
n _
@) at+ar+a?+.+arm”! =—a(:_11) r#+1)
(5) Let S, = sin(a + h) + sin(a + 2h) +...+ sin(a + nh), where h # 2nT. n € Z
To find this sum let us multiply both sides by 2sin % So, we have
2sin % .S, = [2sin(a + h) sing + 2sin (a + 2h) sin% + 2sin (a + 3h) sin% +

...+ 2sin(a + nh) sin %]

= cosa+ﬁ —cosa+% + cosa+ﬂ —cosa+i +
2 2 2 2
[cos(a + %) — cos(a + %)] +...+ [cos(a + nh — %) — cos(a + nh + %)]
2sin % .S, = [cos(a + %) — cos(a + nh + %)]
+L4)— +nh+L
s -l )zﬂ( i +4) (sin 2 # 0)

2
If h = 2nT, S, = nsinna

(6) LetS, = cos(a+ h)+ cos(a+ 2h) + cos(a + 3h) +...+ cos(a + nh), where h # 2nTt. n€ Z

To find this sum let us multiply both the sides by 2sin % So, we have
2sin % .S, = [ZCos(a + h) sin% + 2cos (a + 2h) sin% + 2cos (a + 3h) sin% +

...t 2cos(a + nh) sin %]
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= [sin(a + %) — sin(a + %)] + [sin(a

i) - sin(a + %)] +
a

+
2
[sin(a + %) — sin(a + %)] +...+ [sin( + nh + %) — sin(a + nh — %)]

2sin % .S, = [sin(a + nh + %) - sin(a + %)]

sin (a + nh +%)—sin (a +%)

L
2

S, = (sin 2 = 0)

28in
If h = 2nm, S,, = ncosna

3
Example 1 : Obtain j x dx as the limit of a sum.
1

Solution : Here, f(x) = x is continuous on [1, 3]. Divide [1, 3] into » congruent sub-intervals

Here, a =1, b = 3 and f(a + ih) = f(1 + ih) =1 + ih

According to the definition,

3 n
dex= lim A Y, f(a + ih)
1 n— oo i=1
2 n
= lim = X f(1 +ih)
n— oo i=1
2 n
= lim = Y (1+ih)
n—» oo i=1
2 n n
= lm = [ S1+4n 3 z']
n— oo i=1 i=1

- 1 2 2
= Ilim n[”+n

n— o

= tm [2+2(1+7)

n—> oo
=2+ 2(1 +0)
=4

2
Example 2 : Obtain J (3x%2 — 2x + 4)dx as the limit of a sum.

0
Solution : Here, f(x) = 3x2 — 2x + 4 is continuous on [0, 2]. Divide [0, 2] into »n congruent
sub-intervals and the length of each sub-interval is given by 4 = b —4
_2-0_ 2
h====u
=2
h=5

Here a = 0, b =2, f(x) = 3x2 — 2x + 4
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fla + ihy= (0 + ih)
= f(h
=3i2h* — 2ih + 4

According to the definition,

2 n
| Gx* —2x + 4)dx = lim h X f(a + ih)
0 n— o i=1
n
= lim 2 X G2R — 2ih + 4)
n—ee T j=1
2 L 1 n
= lim ;[3;122 2—2nY i+ X 1]
n—>ee i=1 i=1 4=1
= 2 [r.4 (nthH@2n+D)H _ , 2 nn+l
nh_r:lw n [3 2 I 2 nT + 4n]
- 1 1) _ 1
_nhfw[4(1+")(2+") 4(1+5)+ 8]
=41+ 0)2 + 0)—4(1 +0) + 8
=8—4+8
=12

1
Example 3 : Obtain j a* dx as the limit of a sum. (a > 0)
-1

Solution : Here, f(x) = &* is continuous on [—1, 1]. Divide [—1, 1] into » congruent

Here, a =—1,b =1, f(x) = a*
fla + ih)= f(—1 + ih)

— g tin

= a

|
IS}

fla + ih)= 94—

Asn —> oo, h — 0

1 n
Now, _[axdx= lim & Y, f(a + ih)

1 h—0 ;=1
n ih
= lim A z a__
h—0 ;=1 @

— lim & [d" + o + & +..+ ™"

h—0 d
— lim h [ah(a”h—l)]
h—0 a al —1
h, 2

= lim 1 =—— (nh = 2)
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1 ad’@® -1

- z ) log,a
= (aZa—l) log e
(a —é) log e

b
Example 4 : Obtain _[ sin x dx as the limit of a sum.
a
Solution : Here, f(x) = sin x is a continuous function on [a, b]. Divide [a, b] into n congruent

sub-intervals. Length of each sub-interval is 7 = b;a.

nh=5b—a, a+nh=>=5
Also f(a + ih)= sin(a + ih)
Asn — oo, h — 0.

b n
Now, I sinxdx = lim h X f(a + ih)
h—>0 i=1

a

n
= lim # X sin (a + ih)
h—>0 i=1

h]jmo h [sin(a + h) + sin(a + 2h) + sin(a + 3h) +...+ sin(a + nh)]
%

lim &

h—0 L

[cos(a+%)—cos (a+nh+%)]
2

28in

2

= lim (a + nh = b)

- h
h—0 sin=

h

2

cosa—cosb Lo .
= (as cosine is continuous)

= cosa — cosbh

Note : Since 7 — 0, we can have |h| < 21T < 2|k | T, k € Z — {0}.

cos(a+h)—cos(b+%)

Exercise 3.1

Obtain the following definite integrals as the limit of a sum :

2 4 3

1. | (x+ 3)dx 2. | (@2x — ldx 3. | @x? + Tydx
0 2 1
3 1 1

4 _[ (% + x)dx 5. _[ e’ dx 6. J e =3 dx
1 -1 0
5 log, 5 5

7. | 3% dx 8. | etax 9. [ (&5 — x)dx
1 log, 2 0
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log, 4

2 b
10. J a* dx 11. j (6x2 — 2x + 7)dx 12. J' cos x dx
logaZ 0 a
TC
b > 3
13. J sin x dx 14. _[ cos x dx 15. _[ x3 dx
0 0 1

3.4 Fundamental Principle of Definite Integration

From what we have learnt, we can definitely say that to obtain definite integral as the limit of a
sum is not so simple. In fact it is tedious. We will see that this task becomes very simple using

fundamental principle of definite integration.
The following principle is called fundamental principle of definite integration.

Principle : If function f is continuous on [a, b] and F is a differentiable function on

(a, b) such that Vx € (a, b), % [F(x)] = f(x), then

b
[ f@)dx = F(b) — F(a)

b
Here, F(x) is a primitive of f(x). F(b) — F(a) is expressed as [F(x)]a.

With the help of this result, we can obtain definite integral by taking difference of values of its
primitive at the end-points of given interval. Newton and Leibnitz independently obtained this result.
This principle establishes a relation between the process of differentiation and integration. This result

is accepted without proof.
Note : (1) Here Vx € (a, b), % [FCo)] = f(x).

So, f f(x)dx = F(x) + ¢, where ¢ is an arbitrary constant.

b
But [ f(x)dx = [F(x) + c]z

= [F(b) + c] — [F(a) + ¢]
= F(b) + ¢ — F(a) — ¢
= F(b) — F(a)

Thus, in definite integration arbitrary constant is eliminated and we get the definite value
of integral.

Definite integral is a finite definite real number. Hence the process of obtaining such an

integral is called definite integration.
b a
(2) If a > b, then we define | f(x)dx = —[ f(x)dx
a b
Also, we will accept that for a = b,

b a
[f&)dx = | f(x)dx =0
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b b
3) j fx)dx = I f (@ dt, where f is continuous on [a, b].

Let F(x) be a primitive of f(x). Then by fundamental principle of definite integration,

b

[ () dx = [F(x)]z = F(b) — F(a) and
b b

[ @ dr = [F()] = Fb) = F(a).

b b
Hence, I fx)dxe = J f@dt.

Thus, the value of definite integral does not depend upon variable with respect to which
integration is carried out.

Earlier in this chapter, we have learnt how to obtain value of definite integral as the limit of a
sum. Now we will see how easily we can obtain the value of definite integral using the fundamental
principle of definite integration.

Now, we will review examples 1 to 4 using the fundamental principle of definite integration.

3 3
o Jrac (£ (55 [543

? 2 _ [3x3 2x> 2 _ _
Q) (j)(sx —2x+4)dx—[T——2 +4x]0—[8—4+8]—12

1 x a1 . -
(3) | adx = [locgl7] 1 = Tog,a (@ —al= (a—%)logae.
_1 -

b b
4) j sinx dx = [—cos x]a = —[cos b — cosa]l = cosa — cos b
a

3.5 Working Rules of Definite Integration

(1) If functions f and g are continuous on [a, b], then
b b b
J U@ + gl de = [ fx) dx + [ g(x) dx.

Proof : Let F(x) and G(x) be primitives of f(x) and g(x) respectively on [a, b].
F(x) + G(x) is a primitive f(x) + g(x).

According to the fundamental principle of definite integration,

b
[ V@ + gw)] dx = [F(x) + G(X)]z

= [F(®) + G(b)] — [F(a) + G(a)]
[F(b) — F(a)] + [G(b) — G(a)]

b b
If(x)dx + jg(x)dx
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b b
(2) If f is continuous on [a, b] and k is a constant, then f kfx)dx = k j S (x) dx.

a a

Proof : Let F(x) be a primitive of f(x) on [a, b] and k is any constant,
kF(x) is a primitive of Af(x).

According to the fundamental principle of definite integration.

b b
| kf(x)dx [kF(x)]a

KF(b) — kF(a)
k[F(b) — F(a)]

b
kjf(x)dx

(3) If function f is continuous on [a, b] and a < ¢ < b, then

b c b
[f@de = | f@) de + [ f(x) dx.

Proof : Let F(x) be a primitive of f(x) over [a, b]. Then by the fundamental principle of definite

integration,

b
J Fedv = [F@), = F(b) = F
J 7@ dx = [FI° = F(e) — Fa)

b
[ f@)ds = [F1, = F(b) = F(o)

c b
Now, [ f(x)dx + [ f(x)dx = F(c) — F(a) + F(b) — F(c)

F(b) — F(@)

b
j fx) dx

b c b
Thus, if a < ¢ < b, then [ f(x)dx = [ f(x)dx + | f(x)dx.
a a c
The same result holds for any finite partition of [a, b]. For instance, if a < ¢ < d < b, then
b c d b
jf(x)dx = J' f(x)dx + Jf(x)dx + jf(x)dx.
a a c d

Even if ¢ is not in between a and b, and a < ¢ and f is continuous on [a, ¢], then also this result

is true. If a < b < ¢, then
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b c
jf(x)dx + If(x)dx
a b

Jf(x) dx

b c c

[ f@dx = [ f)dx — [f(x)dx

a a b

b c b

If(x)dx = _ff(x)dx + If(x)dx
i s
2 4

Example 5 : Evaluate : (1) J cos>x dx  (2) j 1—sin2x dx

0 0

Solution : (1) 1 =

I
2
0
s
2
J' cos3x +3cosx
= _dx
0

-4 §) =2
4 \3 3
i
4
2 1 = _[ 1—sin2x dx
0
s
4
= J Jsin2x+c052x—2sinxcosx dx
0
s
4
= _[ ‘/(cosx—sinx)2 dx
0
s
4
= [ lcosx — sinx| dx
0
s
4
= cos x — sinx) dx As, 0 <x < L; cosx > sinx
4
0
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= [sinx + cos x]

s
4
0

= (sm = + cos —) — (sin 0 + cos 0)

4

4

=(ﬁ+%)—(0+1)=%—1=ﬁ—1

Example 6 : Evaluate : (1) j — 1 @) j Syzc-:i i
X
0

Solution : (1) I

3

‘/xz +2x+3

3
J dx
0 x?2 +2x+3

. 1
B -(!. Ja+12+ W22

3
[log [x+ 1+ Jx+ 12+ (W2)> I]O

3
= [log 1+ 2 42x43 )] (x € (0, 3))
0
=log (4+ J9+6+3) — log (1 + v/3)
=log (44 3J2) = log (V3 + 1)
. 4432
- Og(ﬁﬂ)
2
Sx+2
1= T4 dx
0
2 2
- 2+4 J 2+4
0 0
2 2
:i
2..- x2+4 dx + 2 j 2+22
0 0
-5 2 1 x1?
=3 [log (x +4)] [tan 3]0
= 2 [log 8 — log 4] + [tan (1) —tan_l(O)]
_5 8 T o_
=3 log (3) +[F — 0]
_(5 T
—(2 log 2 +Z)
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sinx, 0<x<T
l+cosx, T<x<2T

o7
Example 7 : Evaluate : _[ f(x) dx, where f(x)

2T
Solution : (1) J' f)dx = | f(x)dx + I f(x)dx
0 b8
om
sin x dx + I (1 + cos x) dx
T

S —a3a O —3a

= [—cosx]g + [ +-sh1x]in

= —[cosTt — cos 0] + [(2TC + sin 2T0) — (T + sin T0)]
= —[=1 — 1] + [T + 0) — (T + 0)]
—24+TM=T+2

3.6 Method of Substitution for Definite Integration
We have learnt the method of substitution for indefinite integration. We have seen that if the
integrand is not in standard form, then the method of substitution is very useful to obtain certain

integrals.
We can use it in combination with the fundamental principle for definite integration. Let us see

the rule of substitution for definite integration.
Rule of substitution for definite integration :

Let f : [a, p] = R be a continuous function and g : [, B] —> [a, b] be increasing or
decreasing (monotonic) function. x = g(?) is continuous in [0, ] and differentiable in (o, P).
g'(t) is continuous in (0, B) and g'(®) #0, V¢ € (a, B). a = g() and b = g(P).

b B
Then, [ f(x) dx = [ f(g@) g'(0) dt
o

Let us understand this method by some illustrations.

9

n n
2 2
sin 2t
Example 8 : Evaluate : (1) I J. —dx J. —_—dt
2cos x + 4sin x sin t + cos [
1 0 0

9
Solution : (1) I = J —dx__
R

Letx =17 (t2>1), dc=2tdt
When, x =1, 7= 1sincex=rand 7> 1and ifx=9, 1=3 as x = 12

x = g(f) = 12 is increasing for £ > 1. It is continuous in [1, 3] and differentiable in (1, 3).
g'(®) =2t # 0 in (1, 3)

a=1,p=3
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H

— e

2J. i di
1
3
= 2flog (¢ + 1)],

= 2[log 4 — log 2]
=2log?2

dx

S T

Let tan £ = ¢, dx =

2

When, x =0, = tan 0 = 0 and when x =

LASIE]

dx

L]
.;ﬂo

1

2cos X+ 458in x

i t=tan£

2cos X +4sin x

[ JUN

dt
J 1= +ar

dt

dt

0

1 |

25 |08

e S
2J5 [log ‘ J5+1 ‘

o 1—12
2 4| =2

J 5—@?—4r+4)

W52 —(t-2)?

-2
5—(—2)

~log | 55

1 J5-1
ﬁlog(

Gl X o2

Wx=t=1ast>1)
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SIE

@) I:J' sin 2t it

sin’t + cos*t
0

Let sin’t = x, 2sint cost dt = dx. So sin2t dt = dx

When,t=0,x=0andwhent=%,x=1 (@ =10,PB =1
Y
2

sin 2t

b= —m——=d
J  sin't +cos™t
0
J

_ dx

— ) Pra-x?
0
:

B dx

T ) 2xr-o2x+d
0

[tan ' (2x — 1)](1)

tan V(1) — tan (1)

:E_(_E):E
4 4 2
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3.7 Method of Integration by Parts for Definite Integration

We have studied the method of integration by parts to obtain indefinite integral of product of two

functions. We can also use integration by parts for definite integration.
To use method of integration by parts in definite integration, we use following formula.

f(x), g(x), f'(x) and g'(x) all are continuous on [a, b].

b b b
| f) gy dx = [f(x) gl = | /') g(x)dx

b b
J f) gy dx = [£(b) gb) — f(a) g@] — | fi(x) gx)dx

Now, we will understand this method by some examples.

1

1 : o1 : xdx

. . —1 _smx - - -

Example 9 : Evaluate : (1) j x tan” 'x dx ?2) J. N dx 3) J- 1+ 252+ 22
0 0 (-x )2 0

1
Solution : (1) 1 = _[ x tan x dx

0

1

_(m.1_4)_ 1 X2+ —()
(4 2 0) ZJ- x2 41 dhx
0

|
EIE

1
1 —1
— = |x — fan x
! Ty

= % — % [(1 — tan ') — (0 — tan10)]

~+(-%)

|
o |q

0=
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@2 1=

P
sin_'x
T dx

(1-x%)2

1
\/J?
0

.- . 1
Let sin 'x =1, x = sint, dx = cost dt, x € [0, f],te

—

i
0, 2]

When, x = 0, ¢ = sin 10 = 0 and when x = ﬁ, t = sin~ 1

S
~la
—
Q
Il
N
g)
Il
NP
—

P
Sin_ X
— g dx

(1-x2)2

Il
) !—..sl‘.—

. T - cost dt

(1— sin’)?

t sec?t dt (cos t> 0 in [0, %])

O'—'-MF! o'—”;m

T

=[t-tant]* —
0

tan t dt

i i
=[t-tanf]* + [log |cost|]"
0 0

== r _ ) _
= (4 tan <, 0) + [log (cos 4) log (cos 0)]

_x A
= + log > log 1
- _ 1

= 2log2

1
xdx
o1 -] TEes
0

For x = 0, let x2 = 1, 2x dx = dt. Soxdx=%dt
When, x =0, 7= 0 and when x = 1, r = 1
1 1

J‘ xdx 1 J. dt

I = - a5 5 = = —_—

A+ x5H2+ x%) 2 T+ +2)
0 0
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1 A

B

Now let G2 = 7+1
1 =AG¢+2)+ B¢+ 1)
Ifr=-2,1=-B. SoB=-1

Ifer=—-1,1=A. SoA=1

1 1
T+DI+2)  1+1 T TF2

1

1
[ = ;J. —dr iJ.
2 T+ +2) 2
0 0

t+2

r+1 !

t+2 0

2 _ 1
3 log 2]
4

3

_ 1
=3 [log‘
-1
=3 [log
-1
=3 10g<
21
Example 10 : Evaluate : j sin ax « sin bx dx, a b e N
0
27
Solution : I = j sin ax * sin bx dx
0
Case 1 : a#b
27
I = % J 2sin ax - sin bx dx
0
27

= % I [cos(a — b)x — cos(a + b)x] dx

0

2T

2 a—>b a+b
=1
=Lo-0
I =0

Case 2 :a=0»
271
I = _[ sinax dx
0
21

_ J. (1—cz2)s2ax) e

0

_ 1 [sin(a—b)x B sin(a+b)x]
0

(@a#*band a+ b #*0asa b € N)

(Why ?)
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_ 1 [x _ Sin2ax
2 2a 0
_1 sindma
L|(om - sinna) — o - o)]
= %(21:) (Why sin 4Tta = 0 ?)
I =17
27
_f sinax-sinbx dx =0 if a#b
0
T if a=5b
Example 11 : For o0 > 0, if f(x + &) = f(x), Vx € R i.e. if f has period O, prove that
no. o 10w
| f&)dx =n | f(x)dx, where n € N and hence obtain [ |sinx]| dx.
0 0 0
no
Solution : 1 = j fx)dx, n € N
0
o 200 30 (k + DHa no
= j fx)dx + j fx)dx + _[ fx)dx +...+ _[ fx)dx +..+ J Sf(x) dx
0 o 200 ko (n—-1o

o
We shall prove that each of these integrals is equal to j f(x)dx

0
(k + Ha
Now let I, = [ f(x)dx [k =1, 2,.., (n — 1)]
ko
Let x = kOL + ¢, dx = dt
When x = k0, t=0and x = (k+ 1) 0O, 1 = X
o
I, = [ fkou + 0)dt
0
If & is a period of f, then kOl are periods of f. (k € N)
SO+ 1) = f(0)
o o
I, = jf(t)dt = _[f(x)dx
0 0
(k + DHa o
ie. [ fdx= | f(x)dx [k=1, 2, 3,.., n — 1]
ko 0
I =

Tf(x) dx + ‘O[cf(x) dx +...+ Tf(x) dx (n times)
0 0 0

n T Ff ) dx
0
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107
Now I = f | sin x| dx.

0
T
=10 _[ | sin x| dx (period of |sinx| is T)
0
T
=10j sin x dx (for 0 < x < W, sinx= 0)
0

T
= 10 [—cos x]
0

= —10 [cosTT — cos 0]
=—10(—-1—-1)
=—10(—=2)

=20

3
Example 12 : Evaluate _[ | 2x — 1] dx
-1

Solution:2x—120<:>x2%
|2x — 1| =(2x—1 xZ%
1 — 2x x<%
Now—1<%<3
3
I = [ |2x—1]dx
-1
L
2
= [ |2x—=1ldx+ | |2x = 1] dx
-1

W= —w

3 3
= [ Q—20dx+ | @x—1)dx
-1 i

1
5 3
=[x —x2]21 + [x2 —x]1

2

B R (e N O]
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Evaluate (1 to 35) :

1
[
Jirx-x

0

)
e YR

Exercise 3.2

Ei
2
1. tan’x dx 3. J. sinx dx
0
T
¥is ¥is Y
4 2 ¢
4. J. tan x dx 5. 1—cos?2x dx 6. j ‘/l—sian dx
0 0 %
V2 5 1
> * ox 2x +3
7. 2 _ x> dx 8. ) 52 n 9. sx2 41 dx
0 2 0
Z 1 9
sin*x dx J. dx
10. J. (1+cosx)2 dx 11. J‘ m 12. 1+\/;
0 0 0
¥
4 1 1
COSX dx —1
13. J. m dx 14. J. g 15. J' tan  'x dx
0 0 0
I 1
2 2 .
16. J. —dx 17. J. x2cos 2x dx 18. % dx
‘/12+4x—x2 J Ji-x
0 0 0
¥is s
2 4 e 1
dx —_— . —1 X
19. J. 3+ 28inx + cosx 20. J. 2 + 3cos’x 21. J s T+1 9
0 0 0
¥is
; 2
1—x cos X
22. J i 23. T+ S0 @ + st 1 sty
O o
i 2 I
sin x + cos x 1 2 )
24. J. T oosox dx 25. ) s dx 26. }[ cos 2x « log sin x dx
0 1 r
i ks
2 4 1 271
1 -
27. J. IT 2cosx 9 28. J. asin’x + scos?x 9% 29. _[ | cosx | dx
0 0 0
4 2x+8 1< x<£2
30. | f(x)dx, where f(x) = 6r 2<ax<4
1
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Sinx OSxS%

9
31. Jf(x)dx, where f(x) = 1 T<x<s
0 7 5<x<9
1 2
32. | |5x —3|dx 33. [ [x2+2x —3|dx
0 0
2n
34. j sinax cosbx dv Va b € 7Z — {0}
0
2n
3s. j sinmx cosnx dx Ym, n € N
0
k
36. If J d_zx =£, obtain k.
N xyxt—1 12

k
dx
37. If j s = %, then find .
0

TC
a 2 a+1
38. If J' Jx dx = 2a I sin3x dx, then obtain f x dx.
0 0 a

*

3.8 Some Useful Results about Definite Integration

a a
Theorem 3.1 : If f is continuous on [0, a], then jf(x)dx = Jf(a — X) dx
0 0

a
Proof : Let I = Jf(x) dx
0

Let x = a — t. So dx = —dlt
x = g(¢) is monotonic decreasing and continuous in [0, a].

Now, % = —1 is continuous on (0, a).

Also,x=0=t=aandx=a=1t=0.So0d=a, =0

0
1= [ fla— n=dn
0
=—[ fla—1dt
= ]zf(a — 1) dt
0
= ]lf(a — x) dx
0
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i.e. Tf(x)dx = (J%f(a — x) dx
0 0

Now to understand this theorem, let us take an example.

27
Evaluate : j cos
0

3x sindx dx

27
I = _[ cos3x sindx dx
0

2n
= J' cos3(2T — x) sind(2T — x) dx
0

2n
_[ (cos3x) (—sinx) dx
0

2%
= —_[ cos
0

1 =-1
21 =

3x sindx dx = —1

0
I =0

b b
Theorem 3.2 : If f is continuous over [a, b], then j' f(x) dx = _f fa+ b — x) dx

a a
b
Proof : Let I = I f(x) dx

a

Let x=a+ b — (. So dx = —dt

x = g(t) = a + b — t is decreasing and continuous in [a, b].

Also, % = —1 is continuous on (a, b).

Here, x=a = t=bandx=b =t=a Soo=hband B =a

I T fla+ b — t)(—di)
b

—Tﬂa+b—0w
b

Qe Q=

fla+b—1)de

fla+ b — x)dx

b b
i.e. j f(x) dx = J' fla+ b — x) dx

a a
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(See that in theorem 3.2, if @ = 0 and b is replaced by a, we get theorem 3.1)
Now, to understand this theorem, let us take an example.

2
Jx
Evaluate : —F dx
1 ,/3—x+s/;
2
Jx
I = — dx
?,‘b_x+J;
2
B i Ja+2)—x
T ) o 2om+firz—x dx
1
2
,/3—x d
= —— dx
. w/;+,/3—x
Adding (i) and (ii), we get
2
Jx+3-x
2= = — dx
1 w/;+,[3—x
2 2
=l 1ax=k =2-1=1
1
21=1
_ 1
I =3

Theorem 3.3 : If the function f is continuous over [0, 2a], then
2a a a
Jf dax =] fo) de + | fQa - x) dx
0 0 0
Proof : Here 0 < a < 2a

2a a 2a
[ fe) ax =] f) dv + [ f(x) dx
0 0 a

2a
Now, let I = _[ fx) dx
a

Let x = g(f) = 2a — t. So dx = —dit
dx _

x = g(¢) is decreasing in [a, 2a]. == = —1 is continuous in (a, 2a).

dt
Now, if x =a, t=aand if x =2a,t=0

0
I = | fQa — t)(—dr)
aO
=—[fQa —tadr
= | fa — t)dr
0
I = ]%f(2a — x)dx
0

@

@+b=1+2=3)

(i)

@

(@ =aand B =0)
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Substituting the value of I in (i), we get

2a a a
[ f) ax = {) F) dx + g fQa — x)dx
0
2a a
Corollary : If Vx € [0, 2a], f(2a — x) = f(x), then I fx) dx = ZI f(x) dx
0 0

2a
If Vx € [0, 2a], fQa — x) = —f(x), then [ f(x) dx = 0
0

2a a a
Proof : j f(x) dx = J fx) dx + J fQRa — x)dx i)
0 0 0

Now, taking f(2a — x) = f(x) in (i), we get

2a a a a
[ f@ de =] fx) dc+ [ f(x) dx = 2] f(x)dx
0 0 0 0

Now, if f(2a — x) = —f(x), we get

2a a a
[ feyax=1] fa)de — | fx)dx =0

i.e. Zflf(x) dx = zg f(x)dx, if f(RQa—x)=f(x)
i 0, iffRa-x)=—f(x)

X

as

in

(1) We will see in chapter 4 that the area enclosed by the curve y = f(x), lines

b
I f(x) dx |. With this reference we interpret the above theorems
a

= a, x = b and X-axis is

follows.
2) If f(2a — x) = f(x), then the graph of f(x) is symmetric about x = a as shown

figure 3.2. v
A A
2 a i i
| fx)ydx = g Jx) dx Jf(odx 2jaf(x)dxi

a X' s 0 o a o X
2a a © E E
[ feyde = 2] f(x) dx : :
0 0 . .
v : \:/
x=0 xX=a x =2a
Yl
Figure 3.2
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If f(2a — x) = —f(x), then the graph of f(x)

J@&) dx = —| f(x)dx Y

O =3
D[R —3a

f)dx + fx)dx =0

S —=a
DER—3A

T

I fexyax =0
0

w3

A
\4
>

Figure 3.3

Now, to understand this theorem, let us take an example.

271
Evaluate : j cos3x dx.
0

21
I = J' cos3x dx.
0

Let f(x) = cos3x. Then
fQRT — x) = cos’2M — x) = cosx = f(x)

2n b
J' cosxdx = 2 j cos3x dx (a=Tm7, fQa — x) = f(x)
0 0

Now, f(Tt — x) = cos) (T — x) = —cos3x = —f(x) (a = %, fQRa — x) = —f(x))

T
j cos3x dx = 0
0
27 T
Hence, _[ cos3x dx = 2 j cos3x dx =2 X 0=0
0 0

We have studied about even and odd functions. Let us recall them. Let f: A — R be a

real function of a real variable. Let Vx € A, —x € A.
G If f(—x) = f(x), Vx € A, then f is called an even function.

(i) If f(—x) = —f(x), Vx € A, then fis called an odd function.

2 3

For example cosx, secx, x= are even functions and sinx, tanx, x> are odd functions.

DEFINITE INTEGRATION 115



a a
Theorem 3.4 : If fis an even continuous function defined on [—a, a] J Jx) dx =2 f f(x) dx
—a 0

Proof : Here —a < 0 < a.

a 0 a
[ feoax= [ feoax + [ f() ax G)
—a —a 0

0
Let 1 j f(x) dx

—a

Let x = —t, dx = —dt

Also when x = —a, t = a and when x =0, r = 0
Here % = —1 is continuous and non-zero on (—a, 0)

—
Il

0
[ f=ix=an

0
—[ f(=0) dr

[ f=o dr
0

f(@) dt, as fis an even function.

S

I = [ f) dx
0

Substituting the value of I in (i), we get

[ 70 ax = [ fooyax + | £ ax
—a 0 0

2 | f(x)dx
0

Now, let us understand this by an example.

y = cos x is continuous even function in [—%, %]
b i
2 ’ T y14
J' cosx dx = [sin x| =sin=- —sin|[—=)=1+1=2
_ 2 2
_ 2

2
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I

2 | cosx dx = 2[sin x]7 = 2 [sin % —sin0] =2(1) =2
0

b
2

]

0

z fud

2
2

Thus, jn cosx dx = 2 I cosx dx
-z 0

a
Theorem 3.5 : If f is an odd continuous function on [—a, a], j' fx)dx = 0.
—a

Proof : Here —a < 0 < a.

a 0 a
f fx)dx = j ) de + j f(x) dx @)
—a —a 0

0
Let I = [ f(x)dx

Let x = —1, dx = —dt
Also, when x = —a, t = a and when x =0, t = 0

dx

Here di

= —1 is continuous and non-zero on (—a, 0)

0
_[ Ffx)dx

—a

Lol
I

0
[ f(=0) (=dn)

0
— [ f(=ndr

| f=ndt
0

a
- I f(® dt, since fis an odd function.
0

—J f(x) dx
0

Substituting the value of I in (i), we get,

a a a
f fx)dx = —J fx)dxe + _[ f(x) dx
—a 0 0
a
j f)de =0
—da
Now, let us understand this by an example.
y = sin x is an odd continuous function on [—%, %]
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I T
2 2
j sinx dx = [—cos x| o =— cos% — cos (—%)] = —[cos% — cos% =—(0—-0)=0
2
E
s
2
Hence [ sinx dx =0
_r
2
1 a a—x
Example 13 : Evaluate (i) _[ sindx cos*x dx (i) _[ T dx (a > 0)
-1 —a
1
Solution : (i) I = j sin3x cos*x dx
-1
Here f(x) = sin’x cos*x
f(=x) = sin3(—=x) cos*(—x)
= —sin’x - cos*x
= /()
f(x) = sin’x cos*x is an odd function on [—1, 1]
1
_[ sindx cos*x dx = 0
-1
<
.. a—x
g I = ] T dx
—a
q
a—-x_a—x
o atx X a—x &
—a
<
_ _a-x . 2 _ _
= P dx (Slncex<a, ‘/(a—x) =|x—a —a—x)
—a
(,1 a
a X
~ a’*—x* dv = J. a’> —x? e
—da —a
a a
I =adal 1 whereI—-'-;dxandI—J-#dx
- dh T 1 2 2 2 2 2
‘/a - X as—x
—a —a

Let f(x) = ﬁ and g(x) = ﬁ

Then f(—x) = Ja2 —1(—x)2 = ,/azl—xz = f(x) and

f(x) is an even function and g(x) is an odd function.

a
1
I =2J—dxandl =0
! 0\/a2—x2 2
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1
I =2a f— dx
) [i2 — 2
a
= 2a [sin_lﬁ]o
= 2qa [sin” 11 — sin”10]
= E
2a [ > ]
= aTt
s
. Xtanx .o 1 2 1 ? .
Example 14 : Evaluate (i) pprpp— dx  (ii) _[x (I —x)% dx (iii) I sin 2x log tan x dx
T
0 0 <
T
. . xtanx
Solution : (i) I = Secx T fanx dx
0
T
B X sin x y )
N 1+ sinx & ®
0
Replace x by T — x in (i)
&
B (T — X) Sin (t — X)
L= J 1+ sin(x — Xx) dx
0
&
_ (T —X) sin x
o 1+ sinx dx
0
IC T
T sin x X sinx
~ ) T+sinx dx — J. T+sinx &
0 0
T
sin x X
IZRJ.—H_sinxdx—I (by (i)
T
sin x
=T T+ sinx
0
T
1+ sinx —1
=T j Trsx - X
0

T
dx
th dx—TCJ- 1+ sinx
0 0
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T
T dx
Tlx]) — @ J‘ 1+ sinx
0

TT
2 dx
T TEJ‘ 14+ sinx
0

Now let, I} =

2dt 21

Let, tanXx = ¢, dx = =142 in [0, ]

Whenx=%,t=tan%=landwhenx=0,t=0.

S
J (A+1)
0

1
:4|:_ 1}
L+1 ],

A afd) -2

21 =2 — 21 = (T — 2)

1 =2 (@m-2)

(since f(2a — x) = f(T — x) = f(x))

T

atx=3,1—sinx =0

Multiplying and dividing I; by 1 — sinx, the calculation seems to become simpler but

1 1
(i) T = [xX(1 —x)?2 dx
0
Replace x by 1 — x.

(1—x2[1 -0 - x)]% dx

Ll
Il
O —

1
(1 —2x + x%) - x2 dx

I
QO — =

3 5

1 3 2
2 —2x2 +x?) dx

(x

Il
O — =

120
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3 3 741
= [%xZ — %xz + gxz]
0
=(2_4 4 2)- 16
B (3 5 1 7) 105
s
3
(i) I = _[ sin 2x log tan x dx @)
T
T T _ .- _
Replace x by st —x=5—xin (1)
o
3
I = _[ sznZ(% —x) log tan(ﬂ —x) dx
3
i
3
= I sin 2x log cot x dx (ii)
3
Adding (i) and (ii), we get,
s
3
21 = j sin 2x [log tan x + log cot x| dx
T
pIs
3
= J' sin 2x log (tan x - cot x) dx
t
s
3
= | sin2x-log 1 dx
o
6
21 =0
I1=0
Exercise 3.3
1. Evaluate :
1- a T
X X . 3
(6)) ] —az—xz dc (@a>1) (2 J. 24 o8 dx &) J- 1/5+x4 sindx dx
-1 -a -7
1 n I
[ 3—x 2 2
“@ log (3+x) dx S | sin®x dx 6) | cosx dx
121
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2. Evaluate :

T 2T
(€)) J' sin®x cos3x dx ?2) _[ sin®x cos*x dx
0 0

Prove the following (3 to 15)

n n
2 2
,/sinx il Jx 3
3. e =L 4. S L =L ne N) 5. J-—dx=—
JJcosx+Jsinx 4 .[ sin'x + cos"x o ) ! S-xdx 2
0 0
T
1 3 4 £COSX - 3 144\/_
6. (j)x(l—x)zdx=§ 7. | Tow o, gew =% 8 jx2(3—x)2dx— ==
0

1+ sin x
I 10.
1+ Jcotx 12

A ey |y

)
o —rla ope—— Ly
—

12. | log (1 + tanx) dx = % log 2 13.
I

14. J' x sindx dx = 2Tn 15.
0

Miscellaneous Examples :

Example 15 : Prove that SIx -)lfcosx

Sy Y

T
o
J. cosx+smx dx
0

Solution :
b
2 T
L _
(F-)
I = . - dx
J cos(;— )+sm( —x)
0
ki
2 b
e
- cos x +sinx X
0
s s
2 z 2
- cosx+smx J. cosx+smx dx
0 0

log (1+c0sx

)

3

[ 2
no g e

o.

T
x dx
¢ 11 J 1+ sinx
0
xsmyzc x=713_2
1+cos“x 4

sin’x
Sin x + cosx

dx = 5 log (V2 + 1)

dx = 23/‘5 log (V2 + 1)

@
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1

1

cos x + sinx Ax

1

cos x+simx dx — 1

n
f
0
T
2
ZE
a5
0
T
J2
0

2
ﬁ(ﬁ COSX + —= sinx
T
P
b1y 1
I= dx
a2 J (cos x cos T+ sin x sin %)
0
Fid
¢
b1y 1
= dx
a2 J cos (x - %)

0
il
2
T 3
= m{) sec(x—4) dx
s
T _z _I 2
=i _log sec | x 4) +tcm(x 4)‘ ]0
T T T T yis s
= m _log sec (3—7) + tan (?_T)‘ — log‘sec (—7) + tan (—T)H
=%:log sec%+tan%‘ —log‘sec%—tan%u
__7.c — —
—4ﬁ(log|ﬁ+l| 10g|a/5 1|)
n L2412+
T a2 log(ﬁ—l X Tr W2 > 1
- I 2
o5 log (2 + 1)
T
=Elog(ﬁ+1)
iy s
4 4 |
Example 16 : Prove that _f tan"x dx + j tan” ~ 2 x dx = 1.7 € N — {I}.
0 0
s s
4 4
Solution : 1 = j tan"x dx + j tan™ ~ %x dx
0 0
il
4
= j (tan”x + tan" ~ 2x) dx
0
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1
Example 17 : Evaluate : _[ cot {1 — x + x2) dx

Solution : I

tan" = %x (tan*x + 1) dx

s

4
=]

0

g
4
= j. tan” ~ 2x (sec*x) dx
0
I
I d
= I (tanx)" — 2 d—(tan x) dx
0 x
il
3 [(tanx)"_l]4
a n—1 |

n—1
= nl_l [(tan %) — (tan 0y" — !

n—1

0

cot'{(1 — x + x2) dx

S =

0<x<1
0<1—x<1

0 < x(1

—x) <1

0<x—x2<1
0<1—x+x2

!

—_

D —

S

Il
Q== O O

tan™! (ﬁ) dx
tan™! (Tll—x)) dx
tan™! (%) dx
(tan'x + tan” V(1 — x)) dx

1
tanx dx + J tan V(1 — x) dx
0

1
tanx dx + j tan (1 — (1 — x)) dx

0

(cot‘lx = tan™! i for x > 0)

0O<x<1,0<1-x<10<x1—x) <1
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1 1
_[ tanx dx + _[ tan~x dx

0 0

1
2 f tanx+ 1 dx
0

1
1
2 [xtan'x] — 2 J‘ 2 5> dx
0 1+ x
0

1

1 2x
=2 [x tan_lx]o - I 2 dx
0

1 1
=2 [x tan_lx]o — [log |x2 + 1 1,

=2 [tan "1 — 0] — [log (1 + 1) — log (0 + 1)]

=2 (%) — (log2 —log 1)

- _
5 log 2
T
2x (1+ sin x
Example 18 : Evaluate : J‘ (—z)dx
1+ cos *x
—TT
T
A 2x (1+ sin x
Solution : I = (—Z)dx
o 1+ cos“x
—Tt
T T
2% 2x sin x
— ) 1+cos?x dx + 1+ cos2x 9
-7 —TT

T T

2% 2x sin x
I =1, + 1, where I, = I+ cos2x dx and I, = L+ cos 2x 9
- -

2x 2x sin x
Let f(x) = T cos 2y and gx) = T 020

2(=X) —2x
Then f(—x) = T c05 2—x) ~ 1+cos’x — —/(x) and

2 (—X) sin (—Xx) 2x Sin x
&%) = Ticosi—x) T~ 1+cos’x _ 8%)

f(x) is an odd function and g(x) is an even function.
T

Il=0and12=2J.
0

2Xx Sin x
1+ cos *x
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T
=l

X sin x
12=4‘ L+ cos 2x dx @)
0
I
(Tt — X) sin (T — x)
=4~ 1+ cos? (L —x) dx
0
I
(T — Xx) sin x
:4~ +cosx
0
IC T
T sin X X sin x
=4 J 1+cos’x dx — 4 1+ cos 2x X
0 0
I
Sin x
I,=4m J Ticosx dx — 1, (Re (i)
0
I
Sin x
. 212=4TE. L+ cos °x dx
0

Let cosx = t, —sinx dx = dt, sinx dx = —dt. When x = 0, t = 1 and when x = T, r = —1

o —ar
L2, =4T [ TR
1
b _ar
=4n | T p
-1
1
= 4T [tan™ 1]
= 4T [tan (1) — tan~\(=1)]
— T T
“m (% + 2)
21, = 2m?
— 2
Now, I =1, + I,
1=0+m
I =m2
i

2
Example 19 : Prove that : j log sinx dx = —% log 2.
0

Solution : I = log sinx dx @)

O'—-NI?—I

Then, 1 = log sin (% - x) dx

o — |3
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log cos x dx

¥
2

I=|
0

Adding (i) and (ii) we get

L
2
]
0

yid
2

I
0
i
2
I
0
n
J
0

s
2
I
0

Iz
2
I
0

log sin 2x dx

I

2
2l = | log sinx dx + f log cos x dx

0

(log sin x + log cos x) dx

log (sin x - cos x) dx

28I X COS X
log | =™ ) dx

Sin2x
log( > )dx

I
2

log sin 2x dx — I log 2 dx
0

Let [} =

o — |3

b
2

21=Il—log2j dx
0

Now, I, = | log sin2x dx

O’——.NI?—I

Let 2x = ¢, we get a’x=%dt
Whenx=0,t=0andwhenx=%,t=TlZ.

— - 1
I,= ] log smt-idt

oS —a3a

log sin t dt

I
[\)|»—-
O —3a

log sint dt

l\)lr—
\S)
o — |3

I

(i)

(iii)

T 2
(log sin(m — 1) = log sint. So | log sint dt =2 | log sint dt)

0

0

DEFINITE INTEGRATION

127



log sin t dt

log sinx dx =1 (Definite integral does not depend upon variable)

s
2
]
0

I
2
J
0

So, from (iii) we get,

2I=I—%log2

=_I
I > log 2

Not for examination :

Infact log sinx dx is not a definite integral in usual sense. The function log sin x is

O'—.Nl:l

unbounded near end point 0 of [0, %] Such integrals are called improper integrals.

TT
7'[ L5
2

Actually lim J' log sinx dx = I log sin x dx.
t— 0+ 0

oo

J‘szx
0

It is improper integral of first kind. Integrals like dx are called improper integrals of

second kind.

If either function is unbounded in [a, ], a € R, b € R or interval is unbounded like (—oo, a),

(a, o0), (—oo, oo) the integral is an improper definite integral as against definite integral studied
in the chapter.

Sometimes regarding an improper integral as a definite integral would give incorrect results.

fﬂ

We could get P [log | x| ]3 = log3 — log2 = log%
-2

But % 1s unbounded at x = 0.

3 0
dx _ dx
=15+

dx
X
-2

S —Ww

lim j 4x 4 jim J dx
hH—>0- 5 1, — 0+ ty
does not exist.

T T
| sec’x dx = [tanx]0 =0 — 0 = 0 is incorrect.
0

sec is unbounded at x = %
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10.

12.

14.

16.

18.

Exercise 3

i
4
If I, = f tan”x dx, then prove that n (I, _ | + 1, ) =1
0
b a+b b
If f(x) = f(a + b — x), prove that f x f(x)dx = 5 f f(x) dx.
a a

T T
Prove that J x f(sinx) dx = % I f(sin x) dx and using this evaluate
0 0

X
1+ sinx

T T
(i) _[ x sin®x dx (i) _[ dx
0 0

n n 1
Prove that j fx) dx = 2 j f@+r—1)d
0 r=1

0
n+1 4
If _|' f(x) dx = n3, then find J' fx) dx,n e Z
n —4
T
2
Prove that : I log cosx dx = —% log 2
0
a 5 . 2q"+3
Prove that : J(; x“(a — x)"dx = CEDCERCEE)

Evaluate (8 to 17) :

T
log 2 4 4
X
—X
E'; xedx 9. a’ cos*x — b*sin*x
0
2 I
) 2
x°+1 o o 5
_!- P11 dx 11. ] ( 5 —X )cos2x dx
0
o o
4 2
in? ¥ cos x
sin’x
J‘ T+ sinx cosx 9% 13. T cosx + six. X
0 0
‘ 3
j log (1+1) 15 dx
1+¢2 ) X+
0 1
g
5 2 . 2
x> sinx )
j @x—ma+cosin) © 17. j | sinx — cosx | dx
0 0
3

Evaluate : f (x2 + x) dx as the limit of a sum.
1

(@a>b >0
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20. Prove that

4
19. Evaluate : ,[ (x + e2) dx as the limit of a sum.

0
ki
2
]
0
RS

log tanx dx = 0

T

2
21. Prove that J (2 log sinx — log sin 2x) dx = —% log 2

0

22. Select a proper option (a), (b), (c) or (d) from given options and write in the box given on
the right so that the statement becomes correct :

)

2)

&)

)

)

(6)

@)

®

b

3

[

/ 1+% ...... .
6

@ & (b) & © &
_e[ log x dx = ...... .
1
(a) 1 (b) e + 1 (c)e—1
h 1
J. Trcotx @ = e
0
(a) & (OR © Z
IfJ. 1+11x2 dx=%, then a = ...... .
0
@ % (b) & © 3

3
3x+1

J. 5 dx = ... .
X +9

0

@ I +10g2v2) () L +10g2V2) (©) L + logv2

1

_[ [1 —x|dx = ... .

-1

(a) —2 (b) 2 © 0

1
If [ 3x?> + 2x + k) dx = 0, then k = ...... )
0
(a) 1 (b) 2 (c) =2

a
If [ (3x?> 4+ 2x + 1)dx = 11, then a = ...... )
1

(@) 2 (b) 3 (c) =3

=

(d 0

d T

(d) 1

]

() L +1og2V2)

(d) 4

(d) 4

d 2
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0
9 | Ix|de= ... )
-1

(@) —% (b) 3 (© 1

(10) _}1 log (;Iﬁ) dx = oo .

(@)1 (b) O (c) 2

b1

3
(1) | cotx dx = ...... )
TT

4
@3ee(3) o3 © Frog L

2x+8 1<x<£2

k
(12)J fx) de =47, f(x) = { 6x 2<x<k’ then £ ...... .
1

(a) 4 (b) —4 © 2

(@ L 0 & ©Z

(a) log (%) (b) % log (%) (c) 2 log (17)

ﬁ 2
(15) [ y2-x" dx = ... .
0

(@ —L b (©) 0
2a f(x)dx
16 | T raa—n = =
(a) —a (b) a © <
a7 T sindx cosx dx = ... .
0
(@) T (b) - ©Z
k
(18)If [ (2x + 1) dx = 6, then k = ...... .
2
(a) 3 (b) 4 (c) —4
1
dx _ _
(19) {) o .
(a) log 2 (b) log 4 (c) log 3

) 2

(d) —2

(d) 2 log 3

(d) —2

) £

(d) log (17)

@z

@) %

(d0

(d) —2

(d) — log 2
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T
3 3+ 2\/_
(20)Ifj oo — dx = k log |5 |, then k = ....... ]
@) 3 (b) 3 © 7 d)
@
Summary
We have studied the following points in this chapter :
1. f:[a b] — R is a continuous function. Divide [, b] into n sub-intervals of equal length given
b-a b b—a i
= ; = lim — 7
by A - .Thenjf(x)dx o — izlf(a+zh).
a
2. Fundamental theorem of integral calculus : If the function f is continuous on [a, ] and F is a
differentiable in (a, b) such that
b
Vx € (a b), [F(x)] f(x), then _[ f(x)dx = F(b) — F(a)
a
b b
3. j fx)dx = j f (@) dt, i.e. definite integral is independent of variable.
a a
b a
4. [fx)dx = =] f(x)dx (a > b)
a b
b c b
5. If fis continuous on [a, b] and a < ¢ < b, then j'f(x) dx = j' f)dx + j f(x) dx.
a a @
a a
6. If fis continuous on [a, b], then _[ fx)dx = _[ fla — x)dx
0 0
b b
7. If fis continuous on [a, b], then j f(x) dx = _[ fla+ b —x)dx
a
2a a a
8. If fis continuous on [0, 2a], then j fx) dx = I fx) dx + I fQRa — x) dx
0 0 0
2a a
If f(2a — x) = f(x), Vx € [0, 2a], then f fx) dx = 2f f(x) dx
If f2a — x) = —f(x), Vx € [0, 2a], then j f(x) dx =
a a
9. If fis an even continuous function on [—a, «a], then ,[ fx)dx =2 _[ f(x) dx
—a 0
10. If fis an odd continuous function on [—a, a], then _[ f(x) dx = 0.
—a
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AN APPLICATION OF INTEGRALS

Music is the pleasure the human soul experiences from
counting without being aware that it is counting.
— Gottfried Wilhelm
.

There are no deep theorems - only theorems that we have not understood very well.
— Nicholas Goodman

4.1 Introduction
Integration and differentiation are basic operations of calculus having numerous applications in
science and engineering. Integrals appear in many practical applications.

If the archways of a building has triangular shape or semi-circular shape or rectangular shape and
we need to fix glass in the archways, then we can use formulae of elementary geometry to decide
how much glass material is needed. But
if the archways are in section of an
elliptic shape, then we have to resort
to integration to find out the quantity of

glass material needed. Figure 4.1

We need to know the area under a curve for this purpose. Before integration was developed,
one could only approximate the area. Method of approximation was known to the ancient Greeks.
A Greek mathematician Archimedes, worked-out good approximation to the area of a circle. Finding
the area of a region is one of the most fundamental applications of the definite integral. The concept
of integration was developed by Newton and Leibnitz.

4.2 Area Under Simple Curves

In the previous chapter, we have studied how to find the value of a definite integral as the limit
of a sum. Let us study how integration is useful to find the area enclosed by simple curves, area
between lines and arcs of circles, parabolas and ellipses. We shall also discuss how to find the area
between two curves.

We will assume following property of a continuous function defined on a closed interval :
A continuous function defined on a closed interval attains maximum value at some point of interval
as well as minimum value at some point of interval.

Case 1 : Curves which are Y
entirely above X-axis :

Let f be a continuous function
defined over [a, b]. Assume that

f(x) = 0 for all x € [a, b]. We want to

find the area A enclosed by the curve
y = f(x), the X-axis and the lines x = a

and x = b. (The coloured region in the
figure 4.2(a) and 4.2(b).)

A

>

Figure 4.2(a)
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We first divide the interval [a, b] into n
subintervals determined by the end-points
a = Xy, X1, X,..., X, = b. Since f(x) is continuous

on each subinterval [x x;l, i =1, 2,..., n, there

i—1
exists a point x;' € [x; _ |, x;] such that f(x;) is
minimum value of f(x) in this subinterval. Also,

there exists a point x* € [x x;] such that

i- 1
f(x;*) is maximum value of f(x) in this
subinterval. Let Axl. =x; — x; _ 1. We construct a
rectangle with f(x') as its height and
Axl. (i=1, 2,..., n) as its breadth. (as in the figure
4.3). The sum of the areas of these rectangles
is clearly less than the area A we are trying

to find.

e, S FE) A <A ()

i=1

n
This sum 2 f(x',) Ax; is called a
i=1

lower sum.

We construct a rectangle with f (xl-*) as
its height and Ax; = x;, —x;, _, (i =1, 2,..., n) as
its breadth. (as in the figure 4.4)

The sum of the areas of these rectangles
is clearly greater than the area A we are

trying to find.

ie., i &5 Ax, 2 A

i=1

n
This sum Y, f(xl.*) Axl. is called an upper sum.

i=1

Thus, from (i) and (ii) we have

2 f@) A, S AS ;1 f&) Ax,

i=1

N

Figure 4.2(b)

37
A
[ y=/x)
[~
) O a Xi-1 % b > X
v
Figure 4.3
Y
A
= =f(x)
] Rl
-0 a b > X
v
Figure 4.4
(ii)

The area is equal to the limit of the lower sum or of the upper sum as the number of subdivisions

tend to infinity and maximum of Ax; — 0 provided upper sums and lower sums tend to a common

limit and can be written as follows :
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A= lim X J&') Ax,‘ = lim X f(x,‘*)ij

n—e j=1 n—>o =1

b
As discussed in previous chapter, the above expression is j f(x) dx.
a

b
Thus, area A = j J(x) dx.

a

Case 2 : Curves which are entirely below the X-axis

If the curve under consideration lies A%
A

below the X-axis, then f(x) < 0 from 5
a

X = a to x = b as shown in figure 4.5. 2 > X

Then the sum defined in (i) and (ii) will

be negative but the area bounded by the

curve y = f(x), X-axis and the lines
x = a, x = b is positive. In this case we y=f{x)

take absolute value of the integral
b v
ie., |_[f(x) dx | as the area enclosed.

Figure 4.5
a

b
Thus, area A = |1| where | = Jf(x) dx.
a
Case 3 : Curves which intersect X-axis at one point :

Y
A

y =)

(¢, 0)

< b > X
O a
v
Figure 4.6

Let the graph of y = f(x) intersect X-axis at (c¢,0) only and a < ¢ < b. Let
f(x) 20 Vx € [a c], f(x) £ 0 Vx € [c, b]. Then the area of the region bounded by y = f(x),
x =a, x = b and X-axis is given by A= |1, |+ |1, |.

c b
where 1, = _[f(x) dx, 1, = jf(x) dx.
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we can have

Even if the curve intersects X-axis at finite number of points ¢, ¢,...., ¢

n?
Ck+1

n
I, = .[ f(x)dx and Area = 2, [1]. (¢g = a, ¢, . = b)
Cr k=0

As above,
(1) Let x = g(y) be continuous function of y over [¢, d] and g() = 0 or g() < 0, Vy € [c, d].
Then the area of the region bounded by x = g(y), y = ¢, y = d and Y-axis is A= | 1 |.

d d
where 1 = jxdy = j g(y) dy.
C C

Y Y
A A
y=d y=d
/V x =gy x =g “\\
S > X < 5" X
v v
Figure 4.7 Y
- y=d
(2) Let the graph of x g0
intersect Y-axis at only (0, ¢) and x = g

¢ < e < d. Then the area of the region
bounded by x = g(y), y = ¢, y = d and (0, e)
Y-axis is given by A= | I, [+ ] 1, |,

e
where 1, = J‘ gy)dy and
C

y=c
d < 0 > X
I, = dy. M
2 {g(y) 4 Figure 4.8
(3) If the curve and the region Y

bounded by the curve are symmetric
about X-axis and if one part of the area
is in upper semi-plane of X-axis and the

second one is in the lower semi-plane

N
of X-axis, then the total area of the 0& .
4

region will be two times the area in

the upper semi-plane. This method can

also be applied to calculate the area of

\

a region symmetric about Y-axis. Figure 4.9
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(4) If the curve and the region bounded by the curve are symmetric about both the axes, then

its area can be calculated by considering the area of the region in the first quadrant and multiplying

the same by four.

Y Y

A

A

v
b
A

0 /o_
\\

Figure 4.10

Region bounded by circle, ellipse are examples of this type.

Example 1 : Using integration, find the area of the region bounded by the line 2y = —x + 8, X-axis
and the lines x = 2 and x = 4.

Solution : Required area = ||, where
4
I = jydx
2 Y
A
T (=x
= -[ (T+4) dx
2 AN
. ©.4) D2, 3)
- [i+4x:| c@.2)
4 2
x=2
—(4)? —2)? x =4
= T T16| — ——*8 < > X
O] A20) B@O0) 8,0
v
=(—4+16)—(—1 + 8
1o —7 Figure4.11
=5

. Required area = 5

Area of trapezium ABCD

% (Distance between parallel sides)(Sum of lengths of parallel sides)

24 =2)3+2)=>5

Example 2 : Find the area of the region bounded by the curve y = 4 — x2, X-axis and the lines
x =0 and x = 2.

Solution : Here y = 4 — x2
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Y
A

x2 = —(y — 4) which represents a parabola.
Its vertex is (0, 4). Parabola opens downwards. 0, 4)
Required area A = ||, where

2 o\

IZ_[ydx L
0

2
[ @ =) ax
0

<
[4x _ x?} 2.0) l 0 2, 0)
_ 16
=8=-3=3

Figure 4.12
A= gu

wl’a‘\ wloo

Example 3 : Find the area of the region bounded by y = x> — 1, X-axis and y = 8.

Solution : Here the curve y = x2 — 1 is symmetric

Y
about Y-axis. So its area can be calculated by A
calculating the area enclosed by the arc in the first
quadrant and then multiplying the same by 2. K I =8
Now, y =22 — 1. So x2 = y — (=1) N "
This is a parabola whose vertex is (0, —1)
and it opens upwards. The limits of the region bounded =
by the curve in the first quadrant and Y-axis are < (_I’O)Q €0 »X
=0 and y = 8.
y y 1)
Area A = 2| 1] v
8 Figure 4.13
where 1 = J xdy
0
8
= I ,/y+1 dy (x > 0 in the first quadrant)
0
318
- 2 2
3 [()/ +1) ]0
2 3 52
-2 2 _ 1) - 52
B ((9) 1) 3
= =9(32) = 104
A=21]=2(2) -2
2 2
Example 4 : Find the area enclosed by the ellipse % + Z—Z = 1.

Solution : The ellipse is symmetrical about both X-axis and Y-axis.

Required area = 4 X Area OAB in the 1st quadrant

a
=4|I|,whereI=_[ydx
0
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In the first quadrant, y > 0

-b [>2 > B
Y= ava —x
a 4
I:J% a2 — 2 dx Figure 4.14
0
b [x[2" 5244 —lx]
a [2 a —x +T
2
=§[(%xo+%sm—11)—(o+0)]
b [ ] [£5] -5
a 2
Required area = 4 X === ﬂ:ab = Ttab

4
v

Remain : If we consider x2 + )2
102 for area of a circle.

=r2

in this question then we get well known formula

Exercise 4.1

Find the area bounded by the parabola y = x + 2, X-axis and the lines x = 1 and x = 2.
Find the area bounded by the parabola y = x> — 4, the X-axis and the lines x = —1 and x = 2.

,/x —1, the Y-axis and the lines y = 1 and

1.
2.
3. What is the area bounded by the parabola y = x2 and the lines x = —2 and x = 1 2
4. Find the area of the region bounded by the curve y =
y =5
5. Find the area bounded by the X-axis the parabola y = —x2 + 4.
6. Find the area bounded by the curve y = 9 — x2 and the X-axis.
7. Find the area enclosed by the circle x2 + 12 = 42,
8.

4.3 Area Between Two Curves

In this section, we will find the area of
the region bounded by a line and a circle,
a line and a parabola, a line and an ellipse,
a circle and a parabola, two circles etc.

Let us try to get intuitive idea of how
area between two intersecting curves may
be obtained. As discussed earlier, area of the
region bounded by y = fi(x), x = a, x = b

*k

Find the area of the region bounded by the parabola y = xZ and the line y = 4.

Y= (x)

A

Figure4.15
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b A
and X-axis is given by A = |1, | where I, = jfl(x) dx.
a y=A(x)
Here, I, =2 0 as we have assumed that fj(x) = 0.
(See figure 4.15)
As shown in figure 4.16 area of the region
bounded by y = f5,(x), x = a, x = b and X-axis is given < 4 > X
b v “
by A, = |1, where I, = sz(x) dx. Figure 4.16
a
Since f5,(x) 2 0 we have I, 2 0. Y
A
If two curves y = fi(x) and y = f5(x) intersect —f(x
1 )

each other at only two points for which their
x-coordinates are a and b (a # b), then the area

enclosed by them is given by
A = [T]

b b < 0O > X
where 1 =1, — I, = _[fl(x) dx — _[fz(x) dx Figure 4.17
a a
b Y
= [ (/) — fox) dx 1
“ d
If two curves x = g,(y) and x = g,(y) intersect x=2.()
1
each other at only two points for which their _
x_gz(y)
y-coordinates are ¢ and d (¢ # d) then the area
enclosed by them is given by A = |1].
¢
d
where 1= | (g,0) — 2,0)) dy. “0 "X
c v
Here we have assumed that g,(y) = 0, g,(») = 0. Figure4.18
Y
A
y=£(x) y=£(x)
< O » X

Figure 4.19

If the curves intersect once within the region being considered then as shown in the figure 4.19,

the interval of integration will have to be split up. Suppose we wish to find the area between the curves
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y = f1i(x) and y = f5(x) and the lines x = a and x = b. Suppose that the curves intersect each other at

some point ¢ between a and b then A = [I, | + |1, |.

c b
where 1, = [ (fi(x) — ) dx, 1, = [ (f;(x) = fo(x)) dx

2
Example 5 : Find the smaller of the two areas enclosed between the ellipse % +

e X 4 Y
11nea+b 1.

Solution : The given line is % +

|<
I
—_

0) .

RN
»
I

and the ellipse is &5 + Zz I (i) B(0, b)

Clearly, the line intersects the ellipse at

2

2]—2 = 1 and the

A(a, 0) and B(0, b). The required area is X'« 5 x > X
shown as in the figure 4.20 as coloured region. \ ‘/A\(; 0)

For the ellipse y = %"az — x2 (First quadrant)
v

Now, area of AAOB = %OA . OB Y
Figure 4.20

= Lab (iii)

Also, area enclosed by the ellipse in the first quadrant is

a a b
Jydx = | o a’ — x? dx
0 0
- Q[i 2_ 2 4 4y li]a
al?2 a X 0
] [a sin~1 1] = —TCZ (iv)
By (iii) and (iv)
Required area = ‘n%b - %ab‘ = ’ (E—Z)ab‘ = (71:—42)ab as T > 2.
Second Method : Required area = ||
where | = J (fi(x) — £,(x)) dx, where f,(x) = % a®—x% and fy(x) = b (1 — ﬁ)
a
- [[2 _Xx
B g
—[e(2 [ 2+ i) _ ( _ _)]
[a (2 + L sin~ P b(x .
2
=[2(0 + & sin! 1) - b(a— %)] — (0)
= Rab _ ab
4 2
141
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_ (m—2)ab
4

Required area = sT > 2.

‘ (n—2)ab‘ _ (m-2)ab
4 4 a

Example 6 : Using integration, find the area of the region bounded by the circle x2 + 2 = 4, line
x — 3 = 0 and X-axis in the first quadrant.

Solution : Here the given curves are x2 + 32 = 4 and x — y/3 = 0.

Substitute y = % inx2+ )2 =4

Y
A
X + X - 4
3
P 1
4x2 =12 (ﬁa )
=+
x=%3 A, Ay
In the first quadrant x = /3 and so y = = = X< > X
q 3 y=5 -1 0 M(/3,0)/A20)
In the first quadrant the point of
intersection of the line and the circle
is P(y/3, 1).
PM L X-axis and M({/3, 0) is the v
Y
foot of the perpendicular.
Figure4.21

Now, area of the sector OPA.
= area of AOPM + Area of the region bounded by the circle x2 + 2 = 4, X-axis and the
lines x = /3 and x = 2.
Required area = A| + A,
A, = Area of AOPM

= 2OM X PM
-1 x1=4 0)
Ay = 1]
2 2
where I = [ ydx = [ J4_ 2 dx (v > 0 in the first quadrant)
J3 J3

3
_|lmn _ Bl _ 3 ..
Ay =|E-B=2- 8 @

[%>1as7t>3andJ§<2so%<1.80,%—£>0]

2
n_J3
3 2

Required area = % + %
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Second Method : Required area A = ||

1
where 1= | (2,() — g,(") dy. where g,(v) = 4,2 and g,(») = V3

=)

_[x 2 4 4 11_£]1
[2 4—y +2sm > 2y20
_ 3 —11l_ 3 _,.m_m1
Sotasin 5 -5 =28=3

Required area = %

y= % means y = mx, where m = tan® = ﬁ and O = mZPOM.
So mZPOM = £

:lz :l. .E:E
Area of sector ol 0 5 4 - g

We may feel that it is easy to find area using geometry than using calculus. But we have to use

integration to derive formula %rze for area of a sector.

Example 7 : Find the area of the region bounded by the parabola y = x2 and the rays y = | x|.

Solution : Consider the curves y = x2 @) Y
A
and y = | x | (i)
The two curves intersect where x% = | x |

[xPP=1x]|=0 «Z=1xP
[x|(lx|—1)=0
x=0orx==1

Forx=0,y=0

Forx=x1,y=1

Hence, the two curves intersect at

the points (—1, 1), (0, 0) and (1, 1).
We have to find area of the region enclosed between given curves and is shown as coloured

Figure 4.22

region in the figure 4.22.
As both the curves are symmetrical about Y-axis,
required area A = 2(area of the region in the first quadrant)

1
=2|1| where I = J(fl(x) — /(%)) dx, where fi(x) = | x| and f,(x) = x2
0

I = [ (x| — x?) dx

(x — x2) dx (x| = xin [0, 1])

O — O~
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Required area A =2 X

1
3

1
6

Example 8 : Find the area of the region bounded by the circle x2 + y2 = % and the parabola x2 = 4y.

Solution : Given circle has equation x2 + y? = T @)
and parabola has equation x2 = 4y (i)
The two curves intersect at points where 4y = % —y? (each x?)

16y = 9 — 4y? v

492 4+ 16y —9 =10 4

2y —DH2y+9) =0 B

r-for-3 c(-2.4) AV

But y € 0, (Why ?) therefore the two

A
v
o

curves intersect when y = =

[\o) (=
O

x2=4y=4><%=

x=iﬁ

The two curves intersect at (—\/5 l) and (\/5 l).

> 2 > 2
Since both the curves are symmetrical about Y-axis, v
required area = 2(Area of region OABO) Figure 4.23
=211
2 2
where I = | (£,(x) — fo(x)) dx, where f,(x) = ‘/%—xz and fy(x) = <-.
0
2
= J' ’ x_
0 4
' V2
_[x 2 122 X
=5 + sin~ 3 E]
I > 0
_[+2 [o_ 9 . 1(242) _ 2z
SNz 2 T ogsin 3 12 ]
2,90 .-1(22) _ 2
T + 3 Sin 3 T
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Required area A =2 [% + %sin_1 (%)]

2,0 -—1(&)

Tt

Example 9 : Using integration, find the area of the triangular region whose vertices are (4, 1), (6, 6)
and (8, 4).
Solution : Let A(4, 1), B(6, 6) and C(8, 4) be the vertices of a triangle ABC. (See figure 4.24)

Y
A
B(6, 6)
Y C8,4)
A@, 1) 5 :
< : ' > X
(0] L M N
v
Figure 4.24
. < y—1  x—4
The equation of AB is T—7 = c—7
y=1=2@x-4
1 =35,
y—1 =X 10
y = %x -9
S d Nd

Similarly, the equation of BC is y = —x + 12 and the equation of AC is y = %x -2

Let L, M, N be the feet of perpendiculars from A, B, C to X-axis respectively.

Now, area of AABC = area of region ALMB + area of region BMNC — area of region ALNC.
= |I1| + |Iz| - |I3|

6

= !‘(%x— 9)dx + i(—x + 12)dx‘— ijj(%x— 2)a’x
[[ -0 +‘[_x; s |- [[22 - 2]
- [(%(36) - 54)— (%(16) - 36)] | + | [(—6—24 + 96) - (—376 + 72)”

- | [(%(64) - 16) - (%(16) - 8)”
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=9+ 16)|+|(64—54)| — |8+ 2)|
=7+ 10—10

Required area = 7

Area of the triangle A = ; |D|
4 1 1
where D =[6 6 1
8 4 1
= 4(2) — 1(=2) + 1(—24) =—14
A=2|-14|=7

Example 10 : Find the area of the region bounded by the circle x2 + y2 — 2ax = 0 and the

parabola y2 = ax, a > 0 in the first quadrant.

Solution : The equation x2 + 2 — 2ax = 0 can

Y
A
be written as (x — a)2 + y? = a? which represents
a circle whose centre is (a, 0) and radius is a. A, @)
y2 = ax is a parabola whose vertex is (0, 0)
and its axis is X-axis.
Substituting y? = ax in x2 + y% — 2ax =0,
< o > X
x2 + ax — 2ax =0 o (a, 0)
¥2—ax =0
xx —a)=0 B(a, —a)
x=0orx=a
Since y? = ax, M )
Figure 4.25

y=0ory==%a
Both the curves intersect at O(0, 0), A(a, a) and B(a, —a)

x2 + 3% = 2ax gives y = ‘/2ax—x2 , V2 = ax gives y = Jax (as y =2 0)

Required area = |1 |

where T = [ (£,(0) — £()) dv. where £(x) = J2ax— 22 and /@) = Jax.
0
<‘/2ax—x - JE) dx (First quadrant)
(‘/az—(x—a) - \/;\/;) dx
() amar + Lo (54 - ]
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- [_% Ja -a% - %2 sin ! (—1)]

2 3w —8
I =_%a2+M=( )az

4 12

i M-8 ,
Required area = B a

Example 11 : Find the area of the region bounded by the curves y =x2 + 2, y =x, x = 3 and x = 0.
Solution : Here y = x2 + 2
x2 =y — 2, which is a parabola whose vertex is (0, 2) and it opens upwards.

Let us draw a graph of the region bounded by the curves y = x2 + 2, y =x, x = 3 and x = 0.

Required area A = |1 | Y
A
3
where | = I(fl(x) — H(x)) dx, A
0

where f((x) = x2 + 2 and Hx) = x.

3
=J(x2+2—x)a’x

0
3,3)

_ (2 _ x_2]3 ©,2) G,

[ 5 T 2x 7 1o
_ 9 x=0 =3

O v
_ 21
- v
A = % Figure 4.26

Example 12 : Find the area of the region bounded by the curves y =4 — x2, x = 0, x = 3 and X-axis.
Solution : Here y = 4 — x2

Sox2=4-—y Y
A

x2 = —(y — 4), which is the equation
of a parabola. Tts vertex is (0, 4) and opens (0,4)
downwards. To find its point of intersection
with X-axis, let us take y = 0.

4—x= 3.0)

R o @0

A
v
>~

The points of intersection of the

curve with X-axis are (2, 0) and (=2, 0).

Here, the limits of the region bounded

by the curve and the X-axis are x = 0 and S’

v
x = 3. The curve intersects X-axis at (2, 0)

between (0, 0) and (3, 0). Figure 4.27
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So, A= |1+ ||

2 3
where Il=fydx, 12=Iydx
0 2
: 2 21? 8 _ 16
h=£(4—xﬁh=kx—340=8—§=§-
; 2 2717 8
5=£(4—x)ﬁ=[%w—?42=U2—%—«8—§)
=373 3
i = |16 Il =16 4, 7 _-23
Requ1redareaA—|3|+| 3| 3 T 3 3

Example 13 : Find the area bounded by the curve y = cosx between x = 0 and x = 2T.
Solution :
Y

A

A

Figure 4.28

From the figure 4.28, the required area = area of the region OABO + area of the region BCDB
+ area of the region DEFD

T 3T
o 2 2n
Required area = J.cosx dx| + _[ cosx dx| + _[ cosx dx
0 E 3T
2 2
b 3m
= | [sin x] >+ [sin x]T + | [sin x]21t
0 i an
2 2

=0+ [T =D+ ][O =D

1+2+1=4

Example 14 : Determine the area of the region enclosed by y = sinx, y = cosx, x = % and the

Y-axis.

Solution : First let us draw the graph of the region.
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A A

y = cosx y =sinx

=
Il
NI

©, 1)

A

T 3
4

v v

Figure 4.29

Now, from the figure it is clearly seen that we have a situation where we will need to evaluate
two integrals to get the area. The point of intersection of y = sinx and y = cosx will be where

sinx = cosx in [0, E].

This gives x = % (Why ?)
The required area A = [1;] + |1, |
s
4
where 1, = f(]rl(x) — /(X)) dx, where f|(x) = cosx and f,(x) = sinx.
0
iy
4
= J(cosx — sinx) dx
0
s
= [sinx + cosx]*
0
= L L fr— = J— 3
[(./5+./§) (0+1)] J2 -1 @)
I
2
I, = T{(fl(x) — () dx
n
i
2
= I (cosx — sinx) dx
T
o
= [sinx + cosx] ’
o
4
= — (L + L
[ +0) (./5 + ./5)]
=1-42 <0 (i)
|Iz| = \/5 -1
From (i) and (ii) required area A = [I;| + [, | = J2 —1+42 -1 =2(‘/5 -1
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Exercise 4.2

Find the area of the region enclosed by parabola 4y = 3x2 and the line 2y = 3x + 12.

Find the area of the region bounded by curves y = 2x — x2 and the line y = —x.

Find the area of the region bounded by the curves f(x) = cosTtx and X-axis where x € [0, 2].
Find the area of the region bounded by the curves f(x) = 4 — x2 and g(x) = xZ — 4.

N AW N -

Find the area of the region bounded by the curves y = x, y = 1 and y = XTZ lying in the
first quadrant.
6. Find the area of the region enclosed by the curves y = x2 + 5x and y = 3 — x% and bounded by
x=—2and x = 0.
Find the area bounded by the curves y = x2, y = 2 — x and above the line y = 1.
Determine the area of the region bounded by y = 2x2 + 10 and y = 4x + 16.
9. Using integration, find the area of the triangular region whose sides lie along the lines y = 2x + 1,
y=3x+1 and x = 4.
10. Using integration, find the area of the triangular region formed by (—1, 1), (0, 5) and (3, 2).
11. Find the area of the region in the first quadrant enclosed by the X-axis, the line y = x and the
circle x2 + )2 = 32.
12. Find the area of the region bounded by y = 5 — x% x = 2, x = 3 and X-axis.
Region Represented by Inequalities :
Consider {(x, ») | 0 <y < x2}.
As shown in the figure 4.30, if we consider any point P(x, y) on AB, then y 20 and y < x2,
So if B is any point on the parabola and A is on X-axis such that AB L X-axis then any point
P(x, y) € AB will satisfy 0 < y < 2.
Now, consider {(x, ) | 0 <y <x% 0<y<x+2, x>0}

Y Y
A A
.
\
s B
P(x, »)
<t > X ;
O A (=2,0) O R A R
v v
Figure 4.30 Figure 4.31

As shown in the figure 4.31, if we consider any point P(x, ¥) on RS, then y = 0, y < x2 and

v < x + 2. Similarly for any point on R'S' also conditions satisfied.

All such points P form a set satisfying given conditions. The region represented by the given
set is coloured in the figure 4.31.
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Miscellaneous Examples :
Example 15 : Find the area of the region : {(x, ) |0 <y <x2 0<y<x+2, 0<x <3}
Solution : Let us first sketch the region whose area is to be found out.

We have 0 < y < x2 >i)
0<y<x+2 (i)
0<x<3 (i)

Draw the curve y = x2, a parabola with origin as vertex.

The line y = x + 2 intersects the parabola y = x2, X

where x + 2 = x2

2 _ 9 =
x> —x—2=0 , /'

x=2)x+1)=0 Yo PQ,4) QG3.5)
x=2,—1
Forx=2,y=4and forx=—1,y =1 0,2) x=3
The points of intersection of y = x2 and M(=1, )
y=Xx + 2 are P(2, 4) and M(—1, l).. | < /_2’0) 5 TR > X
Since 0 < x < 3 the above region is as y=x+2

v

shown as coloured region OPQRSO in figure
Figure 4.32

4.32.
The required area A = area of region OPSO + area of the region SPQRS
The area of the region OPSO is bounded by the curve y = x2, x = 0, x = 2 and X-axis.
The area of the region SPQRS is bounded by y = x + 2, x = 2, x = 3 and X-axis.

T +j@+2ﬁh
[l [se]
5-0)+(5+e)-c+9

:4—
6

Required area

Example 16 : Find the area of the region enclosed by two circles x2 + »2 = 1 and
x—D2+y2=1.

Solution : Here, x2 + 32 = 1

For points of intersection, 1 — x2 =1 — (x — 1)2

=2 == +2x—1

=
Il
l\)l»—i

=+ 3

-2

<
I
+
—_
|
=
&)
Il
+
._
.J;|.~
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_,/5)

. . . 3
Hence the circles intersect at the points A(%,§) and B(%,T .

A

Figure 4.33
Required area = area of the region OACBO.
Since both the circles are symmetric about X-axis, the required area,
= 2(area of the region OACDO)
= 2[area of the region OADO + area of the region DACD)
The area of the region OADO is bounded by the circle (x — 1) + )2 = 1
1

e, ¥y = J1—¢ x—1)2 (first quadrant), x = 0, x = > and X-axis, while the area of the region

DACD is bounded by the circle x2 + 32 = 1. ie. y = J1— 2, x = %, x = 1 and X-axis.

The required area is sum of the two areas. (Why not | I, | + |1,]| ?)

1
J1-(x—1)2dx + J 1= dx]
7

1
. L 1
=24 = Do + einT e - 1)]; +2 [g‘/l_)ﬂ + Lsin lx]%

=2 %(—%)g + %sin_l(—%) -0 — %sin_l(—l)] +

Required area = 2

S =

2 [0 + %sin_1 1—1. ﬁ — lsin_ll]

4 2 2 2
2 E-gry)e(E-£-8)
(F g s[5 F

Second Method :

Required area = | I |,
L
2
L= [ (@ —god
B
2
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where gl(y)=‘/1_y2 and g,(») = 1 — J1—? (Why ?)
L
2
NP
_3
2
L
2
=2J (2‘/1_y2 - 1) dy
0
L
2
[ (=7 -9
0
[y v
42 2 L L —1, _ Y]2
4_2 1—y= t5siny 2]0
4B [1o3 f LB 4B
_4_T 4 + 2Sln 7 T:I
_4f3 .11 n_ﬁ]: [g_./?
4_T > T X3 T 23— 5
Required area = 2 (ﬂ — ﬁ)
3 4
From figure 4.34, OM = 1 AM=§ Y
Therefore mZAOM = ? \A‘( ;?)
A A,
Area of sector OAC = %(1)2 % = %
_ 1l By 1_ 43
AreaofAAOM—2><2><2 =
_x_ 3 o) M C(10) > X
= 6 8 !
Similarly, A, = £ — &3 |
- T _ 3 T _ 3
Required area= [(F T) (F T)] !
— 2T _ J3 Figure 4.34
3 2

Exercise 4

1. Find the area of the region bounded by the curve y =

x2 — x — 6 and the X-axis.

2. Find the area of the region bounded by the Y-axis, the line y = 3 and the curve y = xZ + 2 in

the first quadrant.

3. Calculate the area bounded by the curve y = (x — 1)(x — 2) and the X-axis.

4. Find the area of the region bounded by the circle x2 + 2 = 3, line x — y/3 = 0 and the X-axis

in the first quadrant.

5. Determine the area enclosed between the two curves y* =

x+ 1and y2 = —x + I.
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10.
11.
12.
13.

14.

15.
16.
17.

Find the area bounded by the curve x2 = 4y and the line x = 4y — 2.

Find the area lying in the first quadrant enclosed by X-axis, the circle x2 + )2 = 8x and
parabola y? = 4x.

Find the area of the region bounded by the line y = 3x + 2, the X-axis and the lines x = —1
and x = 1.

Prove that the curves y2 = 4x and x* = 4y divide the area of the square bounded by x = 0,
x =4,y =4 and y = 0 into three congruent parts.

Find the area of the region {(x, ) |0 Sy <x2+1,0<y<x+1,0<x<2}.
Find the area of the region bounded by the circles x2 + y? = 4 and x% + )2 = 4x.
Find the area of the region enclosed by y* = 8x and x + y = 0.

Using integration, find the area of the region bounded by the curve |x| + |y ]| = 1.

Using integration, find the area of the given region : {(x, ) ‘ lx — 1<y < J5- 421
Find the area of the region enclosed by the parabola 32 = x and the line x + y = 2.

Find the area of the region bounded by y =x2 + 1, y =x, x = 0 and y = 2.

Select a proper option (a), (b), (c) or (d) from given options and write in the box given on

the right so that the statement becomes correct :

(1) The area enclosed by y = x, y = 1, y = 3 and the Y-axis is ...... . ]
(a) 2 (b) 3 (c) 4 @ 2

(2) The area enclosed by the curve y = 2x — x2 and the X-axis is ...... . ]
OF (b) 2 ©) 8 d %

(3) The area enclosed by y = cosx, —% <x < % and the X-axis is ...... . ]
(@1 (b) 4 (© 2 (d 7

(4) The area bounded by the curve y = sinx, T < x < 270 and the X-axis is ...... . ]
(@ m (b) 2 (c) 2 (do

(5) The area enclosed by y = x2, the X-axis and the line x = 4 is divided into two
congruent halves by the line x = a. The value of a is ...... . ]
(a) 2 OFE (© 25 (d) 4

(6) The area of the region bounded by the lines x = 2y + 3, y = 1, y = —1 and Y-axis

is ... . ]

(a) 4 (b) 2 (©) 6 () 8
(7) The area bounded by the parabola y? = 4ax and its latus rectum is ...... ) ]
4.0 8.2 16 2 32 2
(a) 3a (b) 34 (©) 3 d (d) 5 a
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(8) Area bounded by the curve y = 2x2, the X-axis and the line x = 1 is ...... . ]
(@) 2 (b) 1 © 1 @
(9) The area bounded by the curve y = x|x|, X-axis and the lines x = —1 and x = 1
is ... ]
1 2 4
(a) 0 ® + © 2 () %
(10) The area bounded by the curves y = cosx, y = sinx, Y-axis and 0 < x < % 1S e ]
@22 -1 V2 -1 © V2 +1 @ V2
(11) Area bounded by the line y = 3 — x and the X-axis on the interval [0, 3] is ...... ) ]
@ 2 (b) 4 © 5 @ 4
(12) Area bounded by the curves y = xZ and x = 32 is ..... ]
1 1 1
@ + (b) 4 © & @ 1
(13) Area bounded by the curve y = sinx bounded by x = 0 and x = 2T is ...... . ]
(@) 1 (b) 2 (© 3 (d) 4
(14) The area bounded by the curve y = 3 cosx, 0 < x < %, y=01is ... . ]
3 1
(@) 3 (b 1 (© 2 OF
(15) The area under the curve y = cos?x between x = 0 and x = T is ...... . ]
(a) T (b) % (c) 21 d) 2
(16) The area under the curve y = 2Jx bounded by the lines x = 0 and x = 1
is ... ]
4 2 8
(@) 4 (b 2 © 1 OF:
(17) The area bounded by y = 2x — x% and X-axis is ...... ) ]
1 2 4
(@ % (b 2 © 1 () %
(18) The area bounded by the curve y = 3x, X-axis and the lines x = 1, x = 3 is ...... o
(a) 3 (b) 6 (c) 12 (d) 36
(19) The area bounded by the curve y = |x — 5|, X-axis and the lines x = =1
is ... . ]
@ 2 (b) Z (© 9 (d) s
(20) The area of the region between the curve y> = 4x and the line x = 3 is ..... . ]
(@) 443 (b) 843 (©) 16v3 ()53
@
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Summary

We have studied the following points in this chapter :
1.

The area A of the region bounded by the curve y = f(x), X-axis and the lines x = a, x = b

b
is given by A = |1|, where I = [ f(x) dx.

a

The area A of the region bounded by the curve x = g(y), Y-axis and the lines y = ¢, y =d is

d
given by A = | 1|, where | = J gy) dy.

©

If the graph of y = f(x) intersects X-axis at (¢, 0) only and a < ¢ < b, then the area of the
region bounded by y = f(x), x = a, x = b and X-axis is given by A = | I, | + | I, |, where

c b
I, = Jf(x) de, 1, = jf(x) dx.
a c
If the two curves y = f|(x) and y = f,(x) intersect each other at only two points for x = a and

b
x = b (a # b), then the area enclosed by them is given by A =| 1|, where | = J' (f1(x) — /(%)) dx.

a

If the two curves x = g,(y) and x = g,(y) intersect each other at only two points for y = ¢ and

d
y =d (¢ #d), then the area enclosed by them is given by A= | I |, where | = J (g0 —2,(») dy.

@

seems to be straight. Our earth is a big sphere and that’s why it appears
to be flat.”

BHASKARACHARYA

He was born in a village of Mysore district.
He was the first to give that any number divided by 0 gives infinity.
He has written a lot about zero, surds, permutation and combination.

He wrote, “The hundredth part of the circumference of a circle

He gave the formulae like sin(A + B) = sinA - cosB £ cosA - sinB
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DIFFERENTIAL EQUATIONS

Mathematics is the art of giving the same name to different things.
— Jules Henri

5.1 Introduction
If y is a function of x, then we denote it as y = f(x). Here x is called an independent variable

and y is called a dependent variable. We have already learnt various methods to find @ or f'(x).

dx
Also we know how to find f using indefinite integration when we are given an equation like
f'(x) = g(x) (Primitive) i.e. % = g(x)
Here the equation %’ = g(x) contains the variable x and derivative of y w.r.. x. This type of an

equation is known as a differential equation. We will give a formal definition later.

Differential equations play an important role in the solution of problems of Physics, Chemistry,
Biology, Engineering etc. Here we will study the basic concepts of differential equations, the
solution of a first order - first degree differential equation and also simple applications of differential
equations.

If the function y = f(x) is a differentiable function of x, then its first order derivative

is denoted by %, Yp» Y or f'(x). If f'(x) is also a differentiable function of x, then the second order
2
derivative of the function y = f(x) is denoted by %, Yy, ¥" or f"(x). Similarly we may get third

order, fourth order derivatives of the function y = f(x) etc. In general nth order derivative of the

d"y
s Y Y 0r fO). Here, y, = 420, _ ).

function y = f(x) is denoted by the symbols

5.2 Differential Equation

An equation containing an independent variable and a dependent variable and the

derivatives of the dependent variable with respect to the independent variable is called an
ordinary differential equation.

If x is an independent variable, y is a dependent variable depending upon x i.e. y = f(x)

dy d*y d’y

or G(x, y) = 0 and the derivatives of y w.r.t. x are ) W’ e

. then the functional equation

dy d’y dly d"y
dx, dxz b dx3 9°°°9 dxn

F (x, P ) = 0 is called an ordinary differential equation (Derivatives

must occur in this equation)
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. dy . d*y
For instance, (1) —— + y cosx = sinx 2) —= = 2x
1) Z+y @ =3
2
o2 ) 4y
3) dx+y X 4) 2y xdx+ 1+(x
3 3
d’y d dy V12 d?
2 Y _ ay _ y
(5) 2x (dxzj + 5y = 2y (6) [1+(dx)] -5
@ J J
dx y _ y | _
(7) e™ + T ky (8) log dx| kx

5.3 Order and Degree of a Differential Equation

Order of the highest order derivative of the dependent variable with respect to the
independent variable occurring in a given differential equation is called the order of
differential equation.

1) d_y + ycosx = sinx

dx
The order of the highest order derivative is 1. So it is a differential equation of order 1.
d’y . dy _
2) 2 e +xa—ex

The order of the highest order derivative is 2. So it is a differential equation of order 2.

a’y2
3) (a) + 6y +x=0.

The order of the highest order derivative is 1. So it is a differential equation of order 1.

6
@) d4y—6(d—y) — 4y = 0.

dx? dx

The order of the highest order derivative is 4. So it is a differential equation of order 4.

d’y _ [dy
() <5 = | F+s.

The order of the highest order derivative is 2. So it is a differential equation of order 2.

Degree of a Differential Equation :

When a differential equation is in a polynomial form in derivatives, the highest power of
the highest order derivative occurring in the differential equation is called the degree of
the differential equation.

Obviously to obtain the degree of a differential equation, we should make the equation
free from radicals and fractional powers.

The degree of a differential equation is a positive integer.

dy \’ .
(1) (EJ + 2y = sinx.
In this equation the highest power of the highest order derivative is 2. So the degree of the
differential equation is 2.
@) f;cf +7(jx—y)4 — 4y =0
In this equation the highest power of the highest order derivative is 1. So its degree is 1.
(Why not 4?)
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2
-y Y a
3 x=y—+ 1+(dx)

Convert this equation in a polynomial form in derivatives.

2
d
We get, 02 — 1)(%) - 2xy%+x2— 1=0

In this equation, the power of highest order derivative is 2. So the differential equation has degree 2.

To determine the degree, the differential equation has to be expressed in a polynomial
form. If the differential equation cannot be expressed in a polynomial form in the derivatives, the
degree of the differential equation is not defined.

For example,

d
€)) x% + sin (d_z) = 0 is a given differential equation. Its order is 1 and degree is not

defined because the equation is not in a polynomial form in derivatives.

2 d
2) %y _ lo 2 + y, the order of the equation is 2 and the degree is not defined because

we cannot express this equation in a polynomial form in derivatives.

Example 1 : Obtain the order and degree (if possible) of the following differential equation :

Py | (dyY _ 5 d’y _ 5 dy Y
W G (F] v el BV

dy b 4

- d
SRET SERL @ L3 ($] oo

ayY
5) T | T sy + 3x
°y
= and its power is 1.

Solution : (1) The highest order derivative is
The differential equation has order 3 and degree 1.
2

d’y _ sy (dy

?2) el 1+ =

To make it radical free, we cube both the sides.

3
d? 2
g ——
dx dx

This differential equation has order 2 and degree 3.

(3) The highest order derivatives is Zx_y Hence the differential equation has order 1. But we can

not express the differential equation in a polynomial form in derivatives. So the degree

is not defined.

2
(4) The highest order derivative is y and its power is 1, so the differential equation has order

dx*
2 and degree 1.
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2
(5) The highest order derivative is ay and its power is 3, so the differential equation has order

dx’

2 and degree 3.

Exercise 5.1

Obtain the order and degree (if possible) of the following differential equations :

d’y | dy _ dy V _
1. dx2+ 2. x+(aj =Ji+y
2
3. dxz sm(%)+y=0 4. dx:x
d3y d?y N B d?y dy
5. (KJ [de] + xlogy =0 6. F J;
7. (g) =0 8. ( ) ( j
3
9. Ziz = 3sin 3x 10. x(f;g) +y(ix—y)5—5y=0
%
5.4 Formation of a Differential Equation
Now let us try to understand a family of curves. Consider the equation x2 + y2 = 72 @)
and assign different values to r.
If » = 1, then x2+y2=1 X
If » =2, then x2+3)2=4
If =3, then x2+)2=9
If » = 4, then x2 + )2 =16
From the above equations, it is clear that equation =1
(i) represents a family of concentric circles having < \ > X
center at origin and having different radii. y
Now we are interested to find the differential
equation which is satisfied by each member of the
family irrespective of radius. The above equation
has one arbitrary constant. i.e. ». We should find an ¥+ y? =16
equation which is free from 7. v
2 Figure 5.1

Differentiate x2 + y% = 2 w.rt. x

dy _
So 2x+2ya—0
dy _
dx_o

This is the required differential equation satisfied by all the members of the family of concentric

x+y

circles x2 + 2 = 72 and note that it does not contain arbitrary constant 7.
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Example 2 : Obtain the differential equation of the family of parabolas having vertex at origin and
having Y-axis as axis.

Solution : We know that the equation of the family of parabolas having vertex at origin and axis
along positive direction of Y-axis is x2 = 4by.

Let S(0, ) be the focus of one of these Y

parabolas where b is an arbitrary constant.
Now differentiating both the sides of the
equation x2 = 4by w.rt. x we get, '
2x = 4b Zx—y
3 X
2xy = 4by%
But 4by = x2
d d
24 _ 24 =
X" == 2xy or X P 2xy =0 !
Figure 5.2
X lex_y =2 ¢ x # 0)

This is the differential equation of the given family of parabolas.

If x = 0, then y = 0, since x2 = 4by.

(0, 0) also satisfies x % =y

Example 3 : Obtain the differential equation of family of all the parallel lines represented by
y = 2x + ¢ having slope 2. (c is an arbitrary constant).
Solution : y =2x + ¢ is the given equation of line A
where ¢ is an arbitrary constant.

For distinct values of ¢ we get different lines. All
the lines are parallel to each other.

So, y = 2x + ¢, (c abitrary constant) is a family
of parallel lines. //

Now we shall find an equation not containing the

< > X
arbitrary constant and which is satisfied by all such //

members of the family of parallel lines.

Hence differentiating y = 2x + ¢ with respect

to x.
dy _
i
4
This equation not containing arbitrary constant Figure 5.3

represents the differential equation of family of lines.

Example 4 : Obtain the differential equation of the family of curves y = a sin(x + b), (a and b are
arbitrary constants).
Solution : y = a sin(x + b) is a given family curves.

Differentiating w.r:t. x, Zx—y = acos(x + b)
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Again differentiating w.r 1. x,

2
% = —asin(x + b)
d*y d*y

—_— = — or —= 4+ y = 0 is the differential equation representing the given family.
e Y e Yy q p g g y

From examples 2 and 3, we can say that the differential equation of a family of curves having one
arbitray constant is of order one. From example 4, we can say that the differential equation of a family
of curves having two arbitrary constants is of order two. From these examples let us understand the
formation of a differential equation as under.

@

(b)

If the family of curves has only one arbitrary constant ¢, then it can be represented by
the equation f(x, y, ¢) = 0. Differentiating above equation w.rt. x, we get a new
functional relation showing relation among x, ), )' and c¢. Let this functional relation be
gx ¥ ¥, ) =0

Now eliminating ¢ from the equations f(x, ¥, ¢) = 0 and g(x, », )', ¢) = 0, we get an equation
F(x, ¥, V') = 0 representing differential equation of the family f(x, ), ¢) = 0.

If the family of curves has two arbitrary constants c¢; and c¢,, then it can be represented
by the equation f(x, ), ¢, ¢,) = 0.

Differentiating w.z:z. x, we get a new functional relation showing relation among x, y, ', ¢,
and c,. Let this functional relation be the equation g(x, y, )'. c¢;, ¢,) = 0 relating
X, ¥, ¥, ¢; and ¢,. But both arbitrary constants ¢; and ¢, can not be eliminated from only
these two equations. Differentiating equation g(x, 3, ', ¢, ¢;) = 0 again w.rt. x,

the equation A(x, y, ), y", ¢;, ¢,) = 0 is obtained relating x, y, y', »", ¢; and c,.
Now eliminating arbitrary constants ¢; and ¢, from f(x, 3, ¢;, ¢;) = 0 and g(x, », )", ¢}, ¢;) =0

and A(x, y, ), V", ¢, ¢;) = 0 we get an equation F(x, y, )", »") = 0 which represents
the differential equation of given family f(x, y, ¢y, ¢,) = 0.

In short differentiating n times, the functional relation f(x, y, ¢, ¢,,..., ¢,) = 0 containing

n arbitrary constants, we get (n + 1) equations including given equation.

Eliminating ¢, ¢,,..., ¢,; we get the differential equation of the given family. Remember

that, if the number of arbitrary constants is 7z, then the order of the differential equation
so obtained is also n.

Example 5 : Obtain the differential equation representing the family of ellipses having focii

on X-axis or Y-axis and centre at the origin.

Solution : We have the equation, Y

2

2
2—2+Z—2=1where,aandb

are arbitrary constant. (a # b) (i)

family of ellipses. > X < \ y > X
Differentiating equation (i) w.rt. x,
2x 2y dy
We get ? + ? T =0

4/

This equation represents a ﬁ
N

N

dy _  p?

ya —?x (ii)

0
=7

Figure 5.4(a)

v

Figure 5.4(b)
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Differentiating both the sides of equation (ii) w.rt. x,

2 2
dy) d’y B>
We get, [ = | +y—=-L

Multiply by x on both sides

2 2
d d 2

dx dx* a
2 2
. dy _ dy o
. [dx) t Xy dé Y (using (ii))
2 2
dy d’y dy _
x(ﬁ) T e TV a T

This is the required differential equation representing the family of ellipses.

There are two arbitrary constants. So we have differentiated twice. The differential
equation is of order 2.

Example 6 : Find the differential equation of the family of circles having centre on X-axis and
radius 1 unit.

Solution : A

|
?

N WGP S

v
Figure 5.4

Here the centres of the circles in the family are on X-axis. Let the centre of a circle
be (a, 0), (¢ € R) and let these circles have radius 1.
. The equation of this family of circles is
x—a’+)y>=1 @)
Differentiating w.r:¢. x,

2(x—a)+2y§x—y=0

(= a)+y 2 -
=)=y (i)

To remove the arbitrary constant a, substitute the value of (x — @) in equation (i),
dy )2 b}
(Cr &)+

2 d_y 2 2 _ — . . . . . . .
b% ( e +y 1 = 0 is the differential equation of the given family of circles.

There is only one arbitrary constant. So we have differentiated only once. We get first
order differential equation.
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5.5 Solution of a Differential Equation

The solution of a differential equation is a function y = f(x) or functions obtained from
functional relation f(x, y) = 0 which independent of derivatives and shows relation between

variables and satisfies the given differential equation along with all its derivatives.

If for a function y = f(x), defined on some interval, there exist derivatives of f upto
order n and if the function f and its derivatives together satisfy the given differential
equation, then this function y = f(x) is called a solution of given differential equation.

In order that a function y = f(x) is a solution of a given differential equation it is necessary
that some conditions regarding domain and continuity of functions are satisfied. In other
words if solution of a differential equation can be obtained, we discuss how to obtain the
solution under some favourable conditions. We will not discuss the existence of a solution of
a differentiable equation. We will study some methods to obtain the solution, when it exists

and we will not mention the conditions or circumstances under which the solution exists.

Solution of a differential equation :

& _

e 2. (Example 3) because y = 2x + ¢, satisfies the differential

y = 2x + c is a solution of

. dy
equation i 2.

Let us see another example.
2
y = sinx, x € R is a solution of the differential equation 22 y=0

dx*
because differentiating y = sinx w.rt. x, % = cosx

d’y .

= —sinx = —
dx’ g
d’y

+y=0
T

. . d?
Now y = cosx, x € R is also a solution of Y 4+ y=0.
dx’

Here y = cosx

Differentiating w.rt. x

Zx_y = —sinx

d2

dxz = —cosx = —y
dzy

o Y0

From the above examples, we say that in general there can be more than one solution of a
differential equation.
General and Particular Solution :

The general solution of a differential equation is a function y = f(x, ¢, ¢;5..., ¢,) Or

S ys ¢y Cy9eees ¢,) = 0 with arbitrary constants whose number is equal to the order of
the differential equation.
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In general, there are n arbitrary constants in the solution of the differential equation

dy d’y d"y) —o.

F(x, 2 5, W,..., "

This solution is denoted by G(x, y, ¢, ¢;5..., ¢,) = 0 where ¢, ¢,...., ¢, are arbitrary constants.

If we can find definite values of the arbitrary constants occurring in the general solution
of the differential equation under some conditions on the given variables x, y and derivaties
dy d*y
E, ?,u
constants is called a particular solution and the given conditions are called initial conditions
or boundary conditions.

. etc, then the solution of the differential equation with definite values of arbitrary

If a solution other than general solution of a differential equation cannot be obtained
as a particular solution from the general solution, then such a solution of the differential
equation is called a singular solution.

Example 7 : Verify that the function y = A cosx + B sinx, where A and B are arbitrary constants,
2

Y
e +y=0.

is a general solution of the differential equation

Solution : Here y = A cosx + B sinx is the given function.
Differentiating both sides of the equation w.rt. x,
dy _

we get, i —A sinx + B cosx
2
ng = —A cosx — B sinx
d*y
e = —(A cosx + B sinx)
dzy -
dx*
d*y
dx’ tr=0

Therefore, the given function y = A cosx + B sinx is the general solution of the given differential
2

equation d_xg + y =0, because there are two arbitrary constants in this solution of the differential equation.

2
d
Example 8 : Verify that y = cx + % is a solution of the differential equation y Zx—y =X (d—ij + 1,

where ¢ is an arbitrary constant.

Solution : Here y = ¢cx + % (c is an arbitrary constant)

Differentiating w.r:t. x, flx_y =c
. _dy . . _ 1
Substituting ¢ = 7o I the equation y = cx + e

dx
dy dy 2
o) - (F]

Therefore, the function cx + % is a solution of the given differential equation.

d
we get, y = (d—zjx+[d—ly]
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Example 9 : Verify y = cx* is a solution of the differential equation x;lx—y — 4y = 0, where ¢ is

an arbitrary constant.
Solution : Here given relation is y = cx* (i)

Differentiating (i) w.rt. x,

we get Zx_y = 4ex3 (i)
X D _ 4y = x(4ex3) — 4ex?
dx
= 4ext — 4ext
=0
_ 4 . dy _
Hence, y = cx* is a solution of x yri 4y = 0.
Example 10 : Verify that y = ax + a? (a is an arbitrary constant) is the general solution of the

2
d d
differential equation (Ey) + x (_dic)) = y. Find a particular solution, when a = 3. Also show that

a singular solution of this differential equation is x2 + 4y = 0.

Solution : Here y = ax + a? (a is an arbitrary constant)

Substituting a = % in y = ax + a%, we get the given differential equation
2 2
_ Ay () (4 dy
e () -(R) %

Because of presence of one arbitary constant y = ax + a2 is the general solution of

aY L (L)
dx + x dx | =V
Now substitute a = 3 in the general solution.

We get y = 3x + 9, which is a particular solution of the given differential equation.

Now consider x2 + 4y = 0

4y = —x?
dy _
4dx_ 2x
@y _ _x
dx 2

&

T in the given differential equation, we get,

Substituting this value of

2
d d 2 2
(Ey) +x (d—i’) =X +x (—%) = — < =y, which shows that x> + 4y = 0 satisfies given

differential equation.
Thus x2 + 4y = 0 satisfies the given differential equation. This is a solution of the differential
equation. But this solution cannot be obtained by substituting any value of a in the general solution.
Hence this solution is a singular solution of the differential equation.

General solution represents a family of lines. A singular solution x> + 4y = 0 represents

a parabola.
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10.

11.

12.

5.6

any interval). If we let F(x, y) =

Exercise 5.2

Find the differential equation of all the circles which touch the coordinate axes in the first
quadrant.

Obtain the differential equation representing family of lines y = mx + ¢ (m and c¢ are
arbitrary constant)

Form the differential equation representing family of curves y2 = m(a®> — x%) (m and a are
arbitrary constants).

Find the differential equation of the family of all the circles touching X-axis at the origin.

&

e + 2xy = 4x3 has the solution y = 2(x2 — 1) + ce‘xz, where

Show that the differential equation

c is an arbitrary constant.

2
d
Verify that y2 = 4b(x + b) is a solution of the differential equation y [l - (_y] ] = 2x B

dx dx
_ . . . . . .5 d%y dy _
Prove y = a cos(log x) + b sin(log x) is a solution of the differential equation x e +x I +y=0,
where a and b are arbitrary constants.
. . . . o d 2y dy . _ 1
Verify that differential equation (1 — x )W X T 0 has solution y = a cos™'x + b. (where

a and b are arbitrary constants.)

Find the differential equation of the following family of curves, where a and b are arbitrary

constants :

2 2
(1)§+%=1 (2)%+Z—2=1 (3)(y—b)2=4(x—a) (4) y=(ax+%)
(5) y = ax’ 6)y=eX(a+bx) (7)) =ab®— x?)

2
Verify that y = S5sindx is a solution of the differential equation Z’,xz + 16y = 0.

Show that Ax2 + By? = 1 is the general solution of the differential equation

x [y f;z + (Zx_y)z] =y (%) (A, B are arbitrary constants)
a : : Y o 2dy
Show that y = - + b is a solution of e + i 0.
*

Solution of Differential Equation of First Order and First Degree :

A first order and first degree differential equation is represented by @D F(x, ), x € 1 (I1is

dx
—f(x,y)
g(x,y)

f(x, y)dx + g(x, y)dy = 0 is also another form of first order and first degree differential equation.

The first order and first degree differential equation may not be always solvable but we will discuss

particular forms of these equations which have a general solution.
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Now we shall discuss some methods to solve a first order and first degree differential equation.

(1) Method of Variables Separable : In the differential equation f(x, y)dx + g(x, y)dy = 0
of first order and first degree, if f(x, y) is a function p(x) of x only and g(x, y) is a function

q(») of y only, then the general form of first order and first degree differential equation is

px)dx + q(y)dy = 0. Such an equation is said to be in variable-separable form.

Now J px)dx + j q(¥)dy = ¢ (c is an arbitrary constant) is the general solution.

In the general solution of a differential equation, we can take arbitrary constant in a
form according to our convenience.

Example 11 : Solve the differential equation, x(1 + y*)dx — y(1 + x2)dy = 0.

Solution : Here x(1 + y?)dx = y(1 + x3)dy

1+xx2 dx 1+y 7 dy (Variables Separable form)

2x 2y
2 = y:
1+ & 1+ y? 4

Integrating on both the sides,

2X 2y
d =J da
J1+x2 x 1+ y? Y

log |1+ x2| =log| 1+ y?| + log ¢ (Instead of c, let log ¢ be the arbitrary constant, ¢ > 0)

1+ x2
log(mj=logc (c > 0) A+x2>0,1+y?>0

1+ x2
1+ y?
(A +x2)=c(+)?

This is the general solution and ¢ is an arbitrary positive constant.
dy _

=cC

Example 12 : Solve the differential equation (¢* + ™) o eX — e
. -~ dy _
Solution : Here (&* + ¢ x)a =ef —e?
et —e*
dy = m dx (Variables Separable)

Integrating on both the sides,

PRI
jdy N Jex+e_x d

y=log|et+ e+ ¢

which is the required general solution of the given equation.

We may write y = log (¢ + ™) + cas e + e > 0.
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Example 13 : Find the particular solution of the differential equation P y tanx given that y = 1

dx
when x = 0. (y # 0)

Solution : Zx—y = y tanx
ia’y = tanx dx @)
Integrating on both sides of equation (i),

1
we get, | — dy = | tanx dx
g f T =]

log |y| = log | secx | + log | ¢ | (log | ¢ | arbitrary constant)
log |y| = log | ¢ sec x|
y = c secx (i)

This is the general solution.
Substituting y = 1 and x = 0 in equation (ii), we get value of arbitrary constant ¢ which gives
a particular solution
1 = secO-c
I1=1-¢
c=1
y = sec x is the required particular solution.

Sometimes if y is a function of x, we express it as y = yp(x). Thus if y(x) = x2,
(1) =1, (2) = 4 etc. Find y(2) means find y(x), when x = 2. In this example we can say }(0) = 1.

Example 14 : Solve the differential equation fbc_y =¥~V + x2 eV

Solution : Here we have % ="V 4+ x2 e

dy _ e | x2
dx e’ + e’
dy _ e+ x?
dx ev

eddy = (¥ + x2) dx
Integrating on both the sides,
jeya’y = j(ex + x2) dx

3
e =e + x? +c (c arbitrary constant)

is the general solution of the given differential equation.
. LAy 2
Example 15 : Solve : e x +y
Solution : This differential equation cannot be expressed in the form p(x)dx + q(y)dy = 0.
So at first sight this differential equation does not seem to be of variables separable form. But we
can transform it into that form.

dy _ 2
Here e x + )

Substitute x + y = z in the equation.
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L

dx dx
& _dr
dx  dx
So the equation will become
dz - 2
dx 1=z
dz _ 2
dx 1 +z
Lz = dx (Variables Separable form)
1+z

Integrating on both the sides

deT = J. dx
1+z
tan~lz =x + ¢ (¢ arbitrary constant)

tan~'(x + y) = x + c is the general solution.

Example 16 : Solve cos(x — y)dy = dx

Solution : Here Zx_y = m ()
Substituting x — y = ¢, (ii)
LoD _ar
dx  dx
d
ay =1 - % (iii)
From (i), (ii) and (iii)
1 — 4L -
dx  cost
|- =L
cost dx
cost—1
cost  dx
—(—cost) _ dt
cost T dx
cost
—dx = T cost 9t

Integrating on both the sides,

cos t 1+ cost
—J.dx = Jl X dt

—cost 1+ cost

2
cost+cos’t
—_[dx= f— dt

sin® t
—J.dx = jcosect - cott dt + Jcotzt dt

—Idx = fcosect «cott dt + j(coseczt —1) dt
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—cosectl — cott —

—x + ¢

—x + ¢ = —cosec(x — y) — cot(x —y) — (x — )

cosec(x —y) + cot(x —y) + c =y

Exercise 5.3

1. Solve the following differential equations. Also find particular solution where initial
conditions are given :

(1) x@ + Ddy = @2+ 1)dx 2) (1 +edy =@ + 1)erdx

dy _ _ dy _ C ) sec?
3) e tanx tamy 4) T y tanx y secox
(5) (@ + Dcosx dx + & sinx dy =0 6) Zlix_y = (1 + x3)(1 +y?)

_ dy _ 2 _

(7) ylogydex —xdy=20 (8)a——4xy;y(0)—1
(9) xdy=@2x2+ Ddx (x#0); (1) =1 (10) xy cdiz =y+2; ¥2)=0
(11)d—y=2ex 3 9(0) = + (12)xd—y+cot =0; WJ2)==L
(13)e® =x+1; p0)=3,x>—1 (14)sin(%) =a whenx=0,y=1, (a € R)
(15 o Y tanx, y(0) = 1 (16) x + 1) T xe*

2. Solve the following differential equations :

dy . dy (x=y)+3 dy=
1) T = sin(x + y) 2) I 20—y s 3 x+y+ 1)_dx 1
Doty 2 dy _ o
@ F=¢ 5) G+ L =a

*k

5.7 Homogeneous Differential Equations :

Let f(x, ¥) = 3x2 + 2xy + 1?2
-2 (34 2(%) + (%)2)
ool
S y) =220 (%)
y

Here we have expressed f(x, y) in the form of x? @ [;) If a two variable function f(x, y) can

be written as f(x, y) = x" ¢ (%) form, then the function f(x, y) is called a homogeneous

function of degree n.

DIFFERENTIAL EQUATIONS 171



Now let us see a method to solve a differential equation of first order and first degree.

In place of x and y substitute Ax and Ay respectively in f(x, y). (where A # 0 is constant)
We get, f(Ax, Ay) = 3(Ax)* + 2(A)(Ay) + (Ay)?

= 3A%x2 + 2A2 xy + szz

=M (3x2 + 2xy +)?)

= AMf(x, y)

Here we have expressed the relation in the form f(Ax, Ay) = A”f(x, y). Such a function f(x, y)
is called a homogeneous function of degree n and A is a non-zero constant.

f(x, ) = tanx + tany. This type of function cannot be written in the form f(x, y) = x" ¢ (%)
So it is not a homogeneous function.
Homogeneous Differential Equation : If in a differential equation f(x, y) dx + g(x, y) dy =0,

f(x, y) and g(x, y) are homogeneous functions with same degree, then this differential
equation is called homogeneous differential equation.

o (%) type of functions are always homogeneous.

Solution of homogeneous Differential Equation :

Let the homogeneous differential equation f(x, y)dx + g(x, y)dy = 0 be in the form of
dy y
*-o3)

Let%=v,soy=vx

Differentiating w.r.z. x’,

zilx_y =v+x %

PEE =00 (Zx—y=¢(%)=¢(v))
x % =o(m)—v

ﬁ - % (Variables Separable form)

Integrating on both the sides, we get,
—dv__ _ (1
[sor= = [ &
dv
fm=log|x|+c x # 0)

This is the general solution of a homogeneous differential equation and c is an arbitrary constant.

dy Yy
2

Example 17 : Solve T .
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Letl=v
X

y =X
dy _ dv
So, e V+xa’x
v _ 2
v+xdx V=V
av _ _ ’)
X I 2v +v9)
dv__ _ _ dx
2V +v? X

1 -1 =— 1
5 log |v[— 3 log [v + 2] log [x| + 5 log [c]|

log|v|—log|v+2]|=—2log|x]|+ log|c|

o 755 |-t &
log | 37 | = toe | 7
xZy = c¢(2x + y)

This is the general solution.

dy _

Example 18 : Solve x2 e x2 + xy + )%

dy _ x2+xy+y2

(i)
(iii)

(using (i), (ii) and (iii))

(Variables Separable form)

(Integrating both the sides)

(c is an arbitrary constant)

Solution : T =
dy _ y Y2 .
T 1+ " + (x @)
y _ _ ..
Let < v, SO y = VX (i)
dy _ dv
oV + x dx (iii)
From equations (i), (ii) and (iii),
v + x dv _ 1 +v+2
dx
dv _ 2
X dx 1 +v
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dv _ _ dx (x # 0) (Variables Separable form)

14?2 X

Integrating both the sides, we get,

f 12dv=fldx
1+v X
Ty

1

tan =log | x| + log | c| (¢ arbitrary constant)

tan"'v = log | xc |

tan™! (%) = log | xc | is the general solution of the given differential equation.

Example 19 : Solve x sin (%) ;lx_y +x — ysin (%) = 0. Find the particular solution, if the initial
condition is (1) = %
ion : (2] 24— a2 =
Solution : Here x sin (x) e + x — ysin (x)
- (y)
y sin [;] X

Qo
dx X sin [X]
X

2 sin(l) -1
X X

dy .

sin| =

X
l = .o
Let " (ii)

So, y = vx

dy _ dv
I v+ x dx (iii)

From equations (i), (ii) and (iii),

dv ysin v —1

vtx o= T siny
v+xﬂ =y — =L
dx sin v
dv 1
X == =—-——
dx sinv
sinv dv = _dx

Integrating both the sides,

J sinv dv = —fﬂ
X

—cosv=—log |x| — log | c|
cos(%) =log |x| + log | c|

cos% = log | cx | (iv)

This is the general solution.
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I

Now we are given (1) = 5

i,e. when x = 1 and y = %

So, from equation (iv),

n _
cos = log | c|
log|c| =0
el =1

cos (%) = log | x| (x # 0) is the required particular solution.

Example 20 : Solve [x sin? | 2] — y] dx + x dy = 0. Find the particular solution, if the initial
X

condition is (1) = %

Solution : Here [x sin? (%) - y] de+ xdy =0

dy _y _ .2) .
T " sin " (i)
Let % =V,s0y=wx (ii)
dy _ dv
i + x dx (iii)

From equations (i), (ii) and (iii) we get

v+xﬂ = v — sin®v
dx
dv _ _ 2
X Ix sin<y
L= dx .
—— dv = (Variables Separable form)
Sin°y b

Integrating both the sides

fcoseczv dv = — J‘% dx

—cotv=—log|x| —log|c]|
y C . .
cot (;) = log | cx | which is general solution.

Now we are given y(1) = % iie. whenx =1y = %

7t=
cot log | c|
log|c|=1

el =e
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cot%=log|ex|=log|x|+loge x %0

=log|x|+1

This is the required particular solution.

Example 21 : Solve 2xy + y% — 2x2 Zx—y = 0. Also find the particular solution for y(1) = 2.

Solution : Here 2xy + y% — ZxZZx—y =0

d_y1(x)

dx X + 2 (x) (®
A .

Let = =v (i)
y =
dy _ dv
i + x dx (i)

From equations (i), (ii) and (iii)

dv _ )
v+ x de Y + >
dv _ 1
X >V
v% dv = % (Variables Separable form)

Integrating both the sides,
L o[l
2| v = [ L dx

—l=log|x|+c

<

IS

— == log | x| + ¢ is the general solution.

y
Now p(1)=2. Soifx=1,y=2

_2:
> log |1]|+ ¢

c=-1
2x _ —
Y log |[x| —1
_ 2X
Y= Tologixl x#0, x £ e

Exercise 5.4

1. Solve the following differential equations :

(1) 2 +x)dy = (x> + )?) dx
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5.8

2 nL)y = (vsind — RAWNCS
2) (x cos < +ysmx)y y sin < xcosx)x

dx
dy _ (X))
A) xa y+xs1n(;)—0
X X d
Y dx = y 2 (X)) L = sin(2
4) yeYdx=xeY+y)dy 3) xsm(x)dx ysm(x)+x
(6) +2e§ﬂ=2xe% @) R2E =22 4y
y Ve dy dx 24 y
5 + X\ o, y _
(8) (1+e)dx+e(1—y)dy—0 © xZ=x+y
Y
(10) y dx +x log (%) dy = 2x dy (11) (xe~* % +y)dx = xdy
dy [ y(x+y) _ dy _ y
(12) F +55 0 (13) & =2 +tan(x)
Find the particular solution of the given differential equations under given initial
condition :
= d
(1) 2 +yDde+xpdy=0; y1)=1 (2) xex —y+ xay =0; y(e) =0
d—y — l l = - = 2 — 2 =] . —
3) e P + cosec . 0; (1) =10 “4) (x 2y9)ydx + 2xy dy = 0; y(1) =1
(5) 2xy +y* — 2x2§x—y =0; y(1) =2 6) 2+ 3xy+yH)dx —x2dy =0; (1) =0

Linear Differential Equation :

If P(x) and Q(x) are functions of variable x, then the differential equation flx_y + P(x) y = Q(x)

is called a Linear Differential Equation.

For example, (1) 2% + xy = cosx  P(x) = x, Q) = cosx
@) L2 Py = =L Q) = e
3) xix—y + 2y = x3 P(x) = 2, Q) = »?
@ Ly=x PO = 1, QW) = ¥

Method of solving a linear differential equation :

Let Zx—y + P(x) y = Q(x) be a given linear differential equation.

If we multiply both the sides by e [P a we get Zx_y e J P ds +ye ['P@as. P(x) = Q(x) ej P(x) dx
% e ] PO dx] = Qqx) el PO v
Integrating w.r.t. x, we get

yel P = [1Q00) o P 47 ax
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Here the linear differential equation is multiplied on both the sides by

eI Px)dx to make it easily integrable. So ej P()dx js called an Integrating Factor - LF.

The first order linear differential equation is % + P(x)y = Q(x).

If we multiply both the sides by /4(x), a function of x, we get

d .
hx) S5+ h(x) POy = h(x)Q() 0
Choose a function A(x) in such a way that A(x)Q(x) becomes a derivative of y A(x).

1) 2+ ) Py = Ly

M) 2+ B POy = A 2+ )
M) - Py = )
h(x) - P(x) = H(x)

h'(x)
h(x)

Integrating both the sides with respect to x,
. 1 '
2, jP(x)dx = JW H(x) dx

c [P@)dx = log | () |
h(x) = eI e ek

P(x) =

In the equation (i) substitute the value of A(x),

eJ P(x) dx % + e-[ P(x) dx Px)y = eJ IRE) 22 Q)
L e aryy = ol P ax g

eJ P(x) dx y = J-eJ P(x) dx Q(x) dx.
In this way we get the solution of a linear differential equation.

The function A(x) = eI P() dx js an Integrating Factor.

4
dx

Solution : The given differential equation is linear.

+ % = x2. The given linear differential equation of the type L2 + P(x) y = Q(x).

Example 22 : Solve T

Here P(x) = %, Qx) = x2
LF. = ol Pwax

= dx

We can take I.F. as x because if we multiply both sides of the differential equation by x, then
there will no change.

Multiply by x on both the sides.
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xe—y+y=x

3

d - .3
x (xy X

xy = .[x3a’x

4
xy = xT +c (c is an arbitrary constant)

This is the general solution of the given differential equation.

Example 23 : Solve flx_y + ysecx = tanx.

Solution : D + ysecx = tanx.

dx

This is a linear differential equation.

Here, P(x) = sec x, Q(x) = tan x
LF. = o Pwax

[ seex dx

e

= o log |secx + tanx |

= |secx + tanx|

We can take I.F. = secx + tanx

Multiply both the sides of given equation by L.F., we get,

(secx + tanx)% + secx (secx + tanx)y = tanx (secx + tan x)

d
dx

y(secx + tanx) = Itanx(secx + tan x) dx

[y (secx + tan x)] = tan x (sec x + tan x)

y(secx + tanx) = jsecx tan x dx + Jtanzx dx

y(secx + tanx) = jsecx tan x dx + j(seczx — 1) dx

y(secx + tanx) = secx + tanx — x+ ¢ (c is an arbitrary constant)

is the general solution.

Example 24 : Solve Zx—y =y tanx + &*

Solution : % =y tanx + €' is a linear differential equation in the form

Here P(x) = —tan x and Q(x) = ¢*
Now, LF. = eJ P(x) dx

_[—tanx dx
= e

= ¢ —log |secx]|
= o log |cosx|

= |cos x|

We can take I.F. = cos x

L+ Py = Q).
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General solution of this linear equation is,

y cosx = '[e"cosx dx

(yeI P dx — jQ(x) o P(x)dxdx)

y cosx = % (cos x + sinx) + c is the general solution. (c arbitrary constant)

Example 25 : Solve % + % = log x

Solution : This is a linear differential equation in the form il + P(x)y = Q(x).

Here P(x) = % and Q(x) = log x

e_[ P(x) dx

[+ ax

:ex

LF.

= e log|[x]
=X
We can take LF. = x
According to the general solution,

yel Par = JQ(X).eI P(x) dv gy

yx = jx log x dx
yx = log x jx dx — J(% (log x) Jx dx) dx

- X[l X2
yx = log x 5 jxX 2dx

2
yx=x710gx—%x2+c

This is the general solution.

Exercise 5.5

Solve the following differential equations :

. 2

o + 2y = sinx 2.
3. «x % =x+y 4.
s. ay =x+y 6.
7. Zx—y + 8y = 5% 8.
9. (I +y¥dx = (tan"ly — x)dy 10.
11. sin’x Zx_y + y = cotx 12.
*

dx
(c is an arbitrary constant)
xix—y —y=00+x)e™
d 2xy
Ey T+ 41
dy 2y _
dx + X e

dy
2 — 452 =
(1 + x9) ; + 2xy — 4x

dy

xlogxdx

+y=%logx,x>0

ydx—(x+22)dy =0
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5.9 Applications of differention Equations :

As we know the study of differential equations began in order to solve the problems that
originated from different branches of mathematics, physics, biological sciences etc.
(1) Physics (RL circuit) : Let us consider RL
circuit. This circuit contains resistor (R) and Inductor ILI
(L). So it is known as RL circuit. At £ = 0, the switch | | 0 ——
is closed and current does not pass throuch the circuit.

When switch is on, the current passes through

the circuit. As per the electricity law, when voltage A
O
across a resistor of resistance R is equal to Ri, t—:) + \E -
the voltage across an inductor is given by L ﬂ, )
dt Figure 5.5
where i is the current.
Example 26 : The equation of electromotive force (e.m.f) is E = Ri + L %, where R is resistance,

L is the self inductance and i is electric current. Find the equation relating time (7) and electric

current (7).

Solution : The given equation can be written as L di _p _ g

dt
1 g _ 1
E_Rl di = T dr
E_—};i di = % dt (Variable Separable form)

Now integrating both the sides,

—R . R

log(E—Ri)=it+logc

L
(E-Ri) _

t

—R
. T !
E — Ri = ce
: T !
Ri=E — ce
_R,
ce
R

i= % - is the required equation.

Another Method :

Given equation is L % =E —Ri
di { R,_E
dr TLIT T
- . . . . JRa 2
This is a linear differential equation. L.LF. = e =e
Ry Rep o Ry
Multiplying both the sides by LF., et d—; + et Ti=T el

R R

i ft':E rt
a’t(e i) L€
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Integrating both the sides w.r.t. 1,

R, e &
Lt .- |E L
e i JLe dt
R
eL

R E
=t —_
el =L % — % (—% arbitrary constant)
R R
L, E 1'_c
e i=ge A
E_ ¢, 1!
= L= _ C L
=% <€
This is the general solution. v
(2) Application in Geometry : A y = f(x)
y = f(x) is a given curve.
If y = f(x) is differentiable at (x,, ) \
then, slope of the tangent at the point (x,,,
p g point (xg, vp) PCxps )
o (Y
is given by m = | 7~ (500 70)
(1) The equation of the tangent to the o G
curve at point (x,, is < —— — X
point (xg. o) P M S\
Sub tangent
( dyj normal
Y7 Yo 7 Lax (xp- Yo) (¥ = x) Figure 5.6
(2) The equation of the normal to the curve at point (x,, y,) is
__(ax ay
Y __(dy)(xod’o) (= xo) (dxioj

Let M(x,, 0) be the foot of perpendicular from P(x,, y,) on the X-axis. Suppose tangent at P
intersects X-axis at T, then TM is called the subtangent.

Yo

(&)
o (X0, Y0)

Suppose the normal at P intersects X-axis at G, then MG is called the subnormal.

a
Yo dx (xoa J’o)

Example 27 : The slope of the tangent to the curve at any point is reciprocal of the y-coordinate of

Length of subtangent TM =

Length of subnormal MG =

that point (y # 0) and the curve passes through (—1, 2). Find the equation of the curve.

Solution : Let P(x, y) be any point on the curve.

Slope of the tangent to the curve at the point P(x, y) is Zx_y

But the slope of the tangent to the curve at point P(x, y) = i
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3

dy _ 1
de
ydy = dx
Integrating both the sides,
J ydy = _[ dx
2
y? =x+ % (c is an arbitrary constant)
V2 =2x+ec,

It passes through (—1, 2)
4=-2+c
c=6
% = 2x + 6 is the equation of the curve.
Exponential Growth :
Let p(7) be a quantity which increases with time 7. Suppose at time ¢ = 0, p(1) = p,,.
So the rate of increase of the quantity is proportional to the given quantity p(7).

. d p)
1.e. T p

dpt) _
7 k@ (k>0

1 d p@)

PO —ar ¥

Integrating both the sides, we get

dpt) _

log p(¢¥) = kt + log ¢
log p(t) — log ¢ = kt

log% = kt

p(t) = cek!, where ¢ is an arbitrary constant.

Suppose at 1 = 0, p(1) = p,.
Then p(0) = ce’

¢ =p0)

P = p(0yet
Using this solution, we can find the growth of quantity p(¢) at any time ¢.

Example 28 : The population of a city increases at the rate of 2 % per year. How many years

will it take to double the population ?
Solution : Let the p, be the population at present and after 7 years suppose it will be p().
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Now population increases at the rate of 2 %.

dp _ 2
SO, E—mp

dp
f7=%jdt

logp=%t+logc

p = ce>

Att =0, p=p,

So py = ce

¢ =py
4

Now if the population doubles, then p = 2p,,.
1

2p0 = Do es0 !

— 1
log 2 = ik
t = 50log,2 = 34.65 = 35 years
(4) Exponential Decay :
Let m(t) be the mass of a product which decreases with time 7.

The rate of decrease is proportional to the given mass m.

dm _
So, —— = —km k>0

Using the above method, we can find the decay.

Example 29 : A certain radioactive material has a half life of 2000 years. (This is called half life
period of the substance.) Find the time required for a given amount to become one tenth of its
original mass.

Solution : Let initial mass of the material be m, grams.

If the mass of the material is m grams after time 7, then from the rate of decay we have,

dm _ _

i — k > 0)
dn — g gy

m

J.d—’;f:_[—kdt

log m = —kt + log ¢
m = ce ¥

Now when 7 = 0, m = m,
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m = mye M @)

At £ = 2000 years, m = %

&~k 2000

—k2000 = —log 2

_ log2
2000

Now at some time ¢, m will be My

10°
From equation (i),

nmy _ —kt
10 moe

—kt = €L
kt = log 0

—kt = —log 10

kt = log 10

1 _ 2000
=% log 10 = Tog, 2

- log 10 = 6644 years
(5) Newton's Law of Cooling :

The rate of change of temperature of a body is proportional to the difference between the
temperature of the body itself and that of the surroundings.

Let S be the constant temperature of surroundings. Let T be the temperature of the

body at any time ¢. Then,
dT

ar = (T—=09)
dar _ _ T—S5S k> 0i
dt k( ) ( is a constant)

1
T_s dI = —kdt
Integrating both the sides,
log | T—S|=—kt + log c

T-S
Cc

= —kt

log

T—S=ce™
Example 30 : The temperature of a body in a room is 80° F. After five minutes the temperature

of the body becomes 60° F. After another 5 minutes the temperature becomes 50° F. What is the

temperature of surroundings ?
Solution : Let T be the temperature of the body at any time ¢.
Let S be the constant temperature of the surroundings. (i.e. room temperature)

Then by Newton's law of cooling.

ar . -
o = (T—=9
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ar - —k(T — S) (k > 0 is a constant as temperature decreases in time interval)
dT
T-s -~ T
dT
f T = |k
log (T —S)=—kt + ¢ 0]

Now at 1 =0, T = 80° F
log (80 — S) =¢
From equation (i), we get
log (T — S) = —kt + log (80 — S)
Alsoatt=5,T=60°F
log (60 — S) = =5k + log (80 — S) (i)
Also at r =10, T = 50° F
log (50 — S) = —10k + log (80 — S) (i)

From equations (ii) and (iii), we get
1 S0-S)y_ _, _ 1 0-S
slog(30-s )= %= 15 log 305
60 —S 50-S
2log {3o_s ) = log | 30—s

(55) - (=)
80— S 80-S
(60 — S)2 = (80 — S)(50 — S)
3600 — 120S + S? = 4000 — 130S + S?
10S = 400
S =40°F
Hence, temperature of the room is 40° F.

Example 31 : Saptesh has a fixed deposit of ¥ 10,000 in a bank. Principal amount increases

continuously at the rate of 7 % per year. In how many years will it get doubled ?
Solution : Let P be the amount at any time .
According to the given conditions,

de _ 7P

dr 100

dp _ 7 .
<= = 1% dt (Variables Separable form)
Integrating both the sides,

dp _ (2
?—fmd’
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L
100

log P = t+ log ¢

7t

P = ce'®

Attr=0, P =% 10000

10000 = ce®
¢ = 10000
It
P = 10000 ¢'® @)

Let ¢ be the time to double the investment.
After time ¢, P =2 X principal

=2 X 10000

=13 20000

From equation (i),
7t

20000 = 10000 ¢'®

2 = elOO
=7
log,2 100 °
100

1=== log,2 which is approximately 9.9 years.

Exercise 5.6

If the X intercept of the tangent to a curve at any point is four times its y-coordinate, then find
the equation of the curve.

In an experiment of culture of bacteria in a laboratory, the rate of increase of bacteria is
proportional to the number of bacteria present at that time. If in one hour the number of
bacteria gets doubled, then

(1) What is the number of bacteria at the end of 4 hours ?

(2) If the number of bacteria is 24,000 at the end of 3 hours. Find the number of bacteria in
the beginning.

2y

A curve passes through (3, —4). Slope of tangent at any point (x, y) is - Find the equation of

the curve.

The increase in the principal amount kept at the compound interest in a bank is proportional to

the product of the principal amount and annual rate of interest.

(1) Annual rate of interest in a bank is 5 %. How many years will it take to double the principal
amount ?

(2) At what annual rate of interest, the principal amount will double in 10 years ?

Rate of decay of a radioactive body is proportional to its mass present at that time. After

a decay of one year the mass of the body is 100 grams and after two years it is 80 grams.
Find the initial mass of the body.
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6. If the length of the subnormal of a curve is constant and if it passes through the origin, then
find its equation.

7. Find the equation of the curve passing through the point (1, 2), given that at any point (x, y) on
the curve, if the product of the slope of its tangent and y-coordinate of the point is equal to the
x-coordinate of the point.

Exercise 5
1.  Verify that the function y = cx + % is the general solution of the differential equation,
_ dy dx . .
y=Xx ( dx) + a (d_y (¢ is an arbitrary constant).
2. Show that the solution of the differential equation Zx_y =1+ x2+x+y% »0)=0is
2
= x—
y = tan (x + 5 )
2

3. Show that y = ¢ + ax + b is a solution of the differential equation e* dxz —1=0.

4.  Verify that the function y = ae? + be ™™ is a solution of the differential equation
d*y d
il i

5. Find the differential equation for the family of the curves represented by y2 = a(h + x)(b — x).
(a, b arbitrary constant)

6. Solve :

dy .
1) i cos (x +y) + sin(x + y)

dy axy 1
) dx + X2+1 (P +1)?

X X
3) 2yeYdx + (y —2xe¥Y) dy =0
@ wP =y
(5) o =)dv+2ydy=0 =1
(6) coszxd—y + vy = tanx
dx

7. Select a proper option (a), (b), (¢c) or (d) from given options and write in the box given

on the right so that the statement becomes correct :
(1) The order of a differential equation whose general solution is y = Asinx + Bcosx is ......
(A, B are arbitrary constants.) ]
(a) 4 (b) 2 ©) 0 (d)3
2y Y (dyY :
(2) The order and degree of I + 2 +y =0 are ...... respectively. ]
(a) 3,2 (b) 2,3 (c) 3, not defined 2,3
188 MATHEMATICS 12 - IV



(3) ¥ +y = = has degree ...... ) ]
y

(a) 1 (b) 2 (c) not defined d) —1
. . . dy x+y .

4) The differential tion — = — 1S ... .

“) e differential equation — . ]
(a) of variable separable form (b) homogeneous
(c) linear (d) of second order

3.3

3) flx, y) = xx Ty is a homogeneous function of degree ...... ) ]

(a) 1 (b) 2 ()3 (d) not defined
. . . . . ody _ 1 .

(6) An integrating factor of differential equation o Tivis vi2 is ...... . ]
(a) e (b)y ¥ty +2 (c) e (d) log |x+y+ 2]

(7) The differential equation of the family of rectangular hyperbolas is ...... . ]
@y, =0 ®)xy+y, =0 ©w=x dxy, +y=0

. . . dy 2 dz)’ .

(8) The order and the degree of the differential equation e + x o + xy = sinx, are ......
respectively. ]
(@ 1,1 (b) 2, 1 (c) 3,2 (d) 2, not defined

(9) Which of the following function is a solution of the differential equation

2
dy dy
—_ — x = =09

( dx) x——t+y 09 ]
(@) y = 4x b)yy=4 c)y=2x2+4 dy=2x—14

(10) Solution of the differential equation x Zx_y +y=0is ... ) ]
(a) eV = ¢ (b) y = cx () x =c¢cy d) ey =c¢

(11) The solution of the differential equation % + 27)] = 0 with y(1) = 1 is given by ...... ]

1 1 1

(@ y=-— ®y="3 ©x =73 @ ¥ =5

(12) The number of arbitrary constants in the general solution of differential equation of second
order is ...... ]
(a) 1 (b) 0 (©) 2 (d) 4

(13) The number of arbitrary constants in the particular solution of a differential equation of
fourth order is ...... ]
(a) 4 (b) 2 (© 1 (o

(14) The differential equation filx—y = ¢* 1V has solution ...... . ]
(@) e+ eV =c (b) e+ & =c¢ )e*+e=c de*X+e?V=c
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1.

2
. . . dy Y P d’y ) .

(15) The degree of the differential equation 1+(Ej = x| 2 )0 e ) ]

(@) 3 (b) 2 (c) 6 (d 1
(16) The solution of the differential equation 2x Ellx_y —»y = 0; »(1) = 2 represents ...... . ]

(a) straight line (b) parabola (c) circle (d) ellipse

@
Summary

We have studied the following points in this chapter :

An equation involving independent variable (x), dependent variable () and derivatives of the

dependent variable w.z.¢. independent variable is known as a differential equation.

. Order of the highest order derivative occuring in the given differential equation is called the

order of the differential equation.

. If the differential equation is in a polynomial form in derivatives, then the highest power of the

highest order derivative occurring in the differential equation is called the degree of the equation.

. Solution of a differential equation of order » is a function which satisfies the differential

equation. The solution which contain » arbitrary constants is called the general solution

and the solution free from all arbitrary constants is called a particular solution.

. Variables separable method is used to solve the differential equation in which variables can be

separated completely.

Y
. If a two variable function f(x, y) can be written as f(x, y) = x" 0 (7) form, then the

function f(x, y) is called homogeneous function having degree .

d
. P(x) and Q(x) are functions of variable x, then the differential equation —1 + P(x)y = Q(x) is

d
called linear differential equation.

. Applications of differential equations.
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VECTOR ALGEBRA

Mathematics knows no races or geographic boundaries;
for mathematics, the cultural world is one country.

— Jules Henri

6.1 Introduction

In everyday conversation, when we talk of a quantity, we generally discuss a scalar quantity
which has only magnitude. If we say that we drove through a distance of 50 km, we talk about the
distance travelled. Here we do not bother in which direction we have travelled. 50 km is a scalar
quantity. Now, if we drive towards our home, then simply to say driving 50 km is not enough, but we
have to say that we should drive 50 km South to reach our home. This information provides not
just magnitude but also the direction of the quantity. This quantity is a vector quantity.

The latin word vector means ‘Carrier’. Vector ‘carries’ magnitude as the distance between two
points (i.e. distance between initial point and terminal point) and also the direction from the first point
to the last point (i.e. from initial point to terminal point). Most of the basic algebraic operations like
addition, subtraction, multiplication and division are reflected equally well in vector-operations as
addition, subtraction and multiplication by a scalar. Vector addition also follows the algebraic properties
of R like commutativity, associativity.

Vector is a very important concept in the study of Physics. Many physical quantities like velocity,
acceleration, force acting on an object etc. are described by vectors. Many physical quantities do
not represent distance but are still represented by vectors and so it helps a lot to understand the
concepts of Physics.

Generally, gravity, electrostatic force, magnetic force, electromagnetic force or mechanical force
are studied in physics. Physicists had found by scientific experiments that these forces in general
conditions act in a linear (vector) way and their resultant forces are also the result of the addition
of vectors, e.g. Coulomb's law of electrostatics. So vector space and its algebraic operations etc
are developed to study these forces.

Vectors are denoted by small arrow (—) or bar (—) sign above the letter or bold letters in print form.
In Mathematics, Physics and Engineering, we frequently come across scalar quantities such as
length, distance, speed, time, mass etc and also vector quantities like, displacement, velocity,
acceleration, force, weight etc.

We have already studied in std. XI about vector space RZ as well as R3 and some operations on
vectors like addition of vectors, multiplication of a vector by a scalar and their properties, magnitude
of a vector, a unit vector etc. These concepts are needed for further study. So in this chapter,
we shall summarise them and consolidate by solving some examples.

6.2 Vector as an Element of a Vector Space

R2={(x ) |x€ R ye R}

R3={(x,y,2)|x € R,y € R, z€ R}

The sets R and R3 under operations of addition and multiplication by a scalar given on page 192
are called vector spaces over R.

The elements of R2 and R3 as vector space are denoted by X, y, z etc. X, y, z are called

vectors. Elements of R are called scalars.
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Equality of Vectors :

(xp Y1 zl) = (xz, Voo zz) X =XV T and 1 = 2
Addition of Vectors :

(s Yps 29 F (5 125 Zp) = (X + x5, ¥y F 9y, 2 T 25)

Multiplication of a Vector by a Scalar :
k(xy, ¥y 27) = (kxy, kyy, kzy), Yk € R

Properties of Addition of Elements of R3 and Multiplication by a Scalar

(1) Closure property : Vx, y € R3, ¥ + y € R3

(2) Commutative law of addition : x + y =y + Xx; VX, y € R3

(3) Associative law of addition : (x + y) +z7 =X +(y + 7); VX, y,z € R3

(4) Existence of additive identity : There exists a vector () € R3 such that
T+0=0+x=x,Vx € R3, () is called zero vector or null-vector. ) = (0, 0, 0)

(5) Existence of additive inverse : For every x € R3, there exists a vector, —x € R3
such that ¥ + (—X) = (—X) + x = (. This vector —x is called additive inverse vector
of X or negation of Xx.

(6) Vk € Rand ¥ € R3, kx € R3.

(7) Vk € R, k(x + y) = kx + ky; Vx,y € R3

8) Vk,I € R, (k+ Dx =kx + Ix; VX € R3

9) VI, k € R, (kDX = k(Ix); VX € R3

(10)1x = ¥, Vx € R3

The above rules are also true for the elements of R2.

Some Basic Concepts
Magnitude of a Vector : If X = (x;, x,, X3), then magnitude of X, denoted by | x | is defined

as | x | = \/xlz+x%+x32- If X = (x, x;), then | X | = \’x12+x%-

For example, if x = (1, 2, =2), then | X | = ‘/(1)2 +(2)2 +(=2)* = 3.

Some obvious results : (x € RZ or R3)

® [x]1=0

2 |IX|=0%=0

) kx| =1k|| x| k€R

Unit Vector : If | x | = 1, then X is called a unit vector. A unit vector is denoted by x.

, — 1 —1 1 — — . .
For example, if X = (ﬁ, E, f), then | X | = 1 and hence X is a unit vector.

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) are unit vectors in the positive direction of X-axis,
Y-axis and Z-axis respectively.
6.3 Direction of vectors

Let X and y be non-zero vectors of RZ or R and k¥ € R.

If i) x =ky, k>0, then x and
(ii) x = ky, k < 0, then X and

y are vectors having same direction.
y are vectors having opposite directions.
(iii)x # ky, for any k£ € R, then x and y are vectors having different directions.
If directions of non-zero vectors X and y are same or opposite, they are called collinear
vectors.

*. If X = ky then and only then X and y are collinear. (X # (0, y # 0)
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Notation : Let X = (x;, X,, X3). Direction of x is denoted by <x;, x,, x3> and direction

opposite, to the direction of X is denoted by —<x;, x,, x3>.
It follows from the definition that,
() <xq5 X5, X3> = <kxy, kx,y, kx3>, if kK > 0.
(i) —<xq, X5, X3> = <kxy, kxy, kx>, if k < 0.
We also denote direction of X as (kx, kx,, kx3), k € R — {0}
We accept the following theorems without proving them.
Theorem 6.1 : Non-zero vectors x and y are equal if and only if [ X | =]y | and X and

y have the same direction.

Theorem 6.2 : If X # () then there is a unique unit vector in the direction of x.

Unit Vector in the Direction of a Given Vector : If X is any non-zero vector, then

|_

| X is a unit vector in the direction of X and it is denoted by X.

X
— kx . . — .
Y = 1%» k¥ > 0 has same direction as x and has magnitude k.
y = _|§)|C ,k > 0 is in direction opposite to the direction of X and has magnitude k.

Example 1 : Find the vector of magnitude 10 in the direction opposite to the direction of
x = (3, 0, —4).

Solution : | X | = ‘/9+0+16 =5

The vector of magnitude 10 in the direction opposite to the direction of X is
=10 —
X1
Right Hand Thumb Rule : Let O be a fixed
point in space and take three mutually perpendicular

==0(3,0,~4) = (=6, 0, 8).
Z

lines through O. These are taken as X-axis, Y-axis and
Z-axis. Normally, X-axis and Y-axis are so arranged
that they are in a horizontal plane. Z-axis is ¢ P(x}, X5, X3)

perpendicular to both X-axis and Y-axis. The positive
directions of these axes follow the Right Hand

Thumb rule, that is, if you curl the fingers of your
right hand around the Z-axis in the direction of

I
2

to the positive Y-axis, then your thumb points in the

counter clockwise < rotation from the positive X-axis

positive direction of positive Z-axis. X
6.4 Position Vector Figure 6.1

Let X = (x1, x5, x3) € R3 be a vector and a point P in space having coordinates (X1, Xy, X3).
The directed line-segment OP with initial point O and terminal point P is called the position vector

%
of the point P and it is denoted as OP. Thus the position vector of P is X = (x|, x,, x3), i.e.

— —
OP = (x, x,, x3). If the position vector of a point is X, then OP = X is the the geometrical

representation of the vector.
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If A(x;, x5, x3) and B(y, ¥,, ¥3) are two distinct points in R3, the vector joining the points

9
A and B with initial point A is AB .

Theorem 6.3 : (1) Every vector of R? can be uniquely expressed as linear combination

of / and }
Proof : Suppose X = (x, x,) € R2. v
Then X = (x, x,) = (x4, 0) + (0, x,) T
=x,(1, 0) + x,(0, 1)
1,\ o 2 (x5 %)
= xli + XyJ _ .
~ . X Xy J
Thus, X is a linear combination of { and j.
~ O ~ >' > X

Now, suppose x can be expressed as a linear X1
combination of i and j as X = pi + ¢J also.

Then (x, x,) = X = pi + qJA'

= p(1, 0) + q(0, 1) N
~ P 0+ 0. 9) Figure 6.2
=@ 9 '

x, =pand x, = g¢q
pi + qf and xlf + xzf are same.
Thus x = xlf + xzf is a unique linear combination of / and j.
(2) Every vector in R? can be uniquely expressed as a linear combination of {, j and k.
Proof : Suppose X = (x|, x5, X3) € R3.
Then X = (xq, x5, x3) = (x1, 0, 0) + (0, x5, 0) + (0, 0, x3)
x1(1, 0, 0) + x,(0, 1, 0) + x5(0, 0, 1)

= xlf + xzj + x312
If X =pi + qf + rk, then we can prove x; = p, X, = ¢ and x; = r as before.

Thus, x = xlf + xzf + x3lg is unique linear combination of i, f and k.

Geometric Representation : P

9
Let OP = (xq, xp, x3).
Let L be the foot of perpendicular from €0, 0, x3) MO, %, x3)

P to XY plane (figure 6.3). So L(xy, x,, 0).
- - .~ N(xl’ O’X”}) P(xp"z,’@)
Then IP = OC = x3k. Similarly, M and N are the
feet of perpendiculars from P to YZ and ZX plane
respectively. So M(0, x,, x3) and N(x;, 0, x3)
- > . - o . \4
and so MP = OA = x;i and NP = OB = x,/. O B(0, x,, 0)
O N N L(xy, x5, 0
OA, OB, OC are bound vectors corresponding to Alx1,0.0) G 0)
X
e T Figure 6.3

free vectors MP, NP, IP respectively.
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[The coordinates of A, B and C are A(x, 0, 0), B(0, x,, 0) and C(0, 0, x3).]
- > > o - >
Now, OL OA + AL OA+OB—x11+x21 (OB = AL)
[The coordinates of L are (x;, x,, 0). Similarly coordinates of M and N are (0, x,, x;) and
(x, 0, x3) respectively.]

-> > S
OP = OL + 1P —xlz +x2] + x3k The form OP = xlz +x21 + x3k of a vector is also

called component form. Here x;, x, and x5 are the scalar components of OP, while xlz . Xy ] and

x3I€ are the vector components of OP.

(1) Distance of P(x;, x,, x3) from XY plane is PL = |[x3|. Similarly, distance of P
from YZ plane = PM = | x| and distance from ZX plane = PN = |x, |.

(2) Distance of P(x;, x5, x3) from X-axis = AP = " x%+x%- Similarly distance from
Y-axis = BP = ‘/ x3 +x{ and distance from Z-axis = CP = /2 4 3.

(3) Distance of P(x|, x,, x3) from origin = OP = " X + x5 + x5 -
6.5 Triangle Law of Vector Addition

A particle is displaced from A to B and the displacement

%
is represented by AB and the displacement from B to C is c
%
represented by BC as shown in figure 6.4. The displacement of
%
the particle from A to C is given by the vector AC. The result
— —> - '
AC = AB + BC is called the Triangle Law of Vector
Addition. A B
Let A, B, C have position vectors @, b and ¢ respectively. Figure 6.4
e - I
AB + BC =(b —a)+(c —b)
_ _ —>
=c¢c —a = AC
Y Y Y
i Q
/.
Q -
- 2
/b B “ I
= a P a
< > X < X
O _E O X 9
?\
\6\ :
—-2a
y R
Figure 6.5 Figure 6.6 Figure 6.7

If @ and b are two non-zero vectors, then the operations of addition and subtraction of

vectors a and b in R2 are shown in figure 6.5. Figures 6.6 and 6.7 illustrate scalar multiplication

. —> _ > _ —> _
of vector in RZ. Here OP = @, OQ = 2a and OR = —2a.

VECTOR ALGEBRA 195



Parallelogram Law for Vector Addition :

—> _ —> — o
Let OA = a and OB = p be two distinct vectors.

We construct parallelogram OACB (figure 6.8). The
vector along the diagonal from their common initial
%

point OC represents the sum of vectors @ and b . Thus
— — — _ '
OC = OA + OB. This law is known as the

parallelogram law for vector addition. Figure 6.8
= =5 S S S = —
[Note : |OA + OB = OA + AC = OC (OB = AC)

e
OC = OA + OB

Properties of Vector Addition (Geometrically) :

Property 1 : For any two vectors X and y, x +y =y + X (Commutative property)

— —
Let AB = X and AD = y. We complete the parallelogram ABCD.

. % — % —
Obviously, BC =y and DC = X (By theorem 6.1)

Now, applying triangle law for AABC,

s T
we get AB + BC = AC =x + Yy

-
Al

@

A =
- -
Similarly, for AADC, AD + DC

Thus, x +y = y + X. Figure 6.9

Property 2 : For vectors X, y, z, (x + y)+zZ =x +(y + 2) (Associative property)

(a) Figure 6.10

% — % — % — . . .o, .
Let AB = X, BC =y, CD = 7. Using triangle law of addition,

From figure 6.10(a)

From AABC,

- S >
AB + BC = AC

_ —
x +y = AC.

From AACD,
N
AC + CD = AD
_ _ _ —
(x +y)+ 7z =AD.

Thus, (x + y) + 7

From figure 6.10(b)

From ABCD,

- S o
BC + CD = BD

_ _ —>

y +z = BD.
From AABD,

- = =

AB + BD = AD

_ _ _ —

x +(y +z)= AD.
=x +((y +32).
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Example 2 : Find the vector having initial point (3, 2, —1) and terminal point (4, —2, 0) and its magnitude.

6.6

X1

two

_)
Solution : A(3, 2, —1) is the initial point and B(4, —2, 0) is the terminal point of AB .

%
AB = Position vector of B — Position vector of A

=@4,-2,0—@G3,2,—1)
=(1,—4,1)

- -
Magnitude of AB = | AB | = ‘/(1)2 +(=4)2 +(1)?

AB = /18
=342

Exercise 6.1

Find the magnitude of the following vectors :

(1) 2,3,V3) @30 —4k @) i+] -4k

Find the unit vector in the direction of 2f — 2 + k.

Find the vector of magnitude 2417 in the direction of (3, =2, —2).

Find the vector of magnitude 20 in the direction opposite to the direction of vector
—3f +243) - 2k.

For vectors X =3i +4) — 5k and ¥ = 27 + J, find the unit vector in the direction of ¥ + 2.
Find the scalar and vector components of the vector with initial point (=2, 1, 0) and terminal
point (1, =5, 7).

If the position vector of a point P is (4, 5, —3), then find the distance of P, (i) from ZX plane (ii)
from Y-axis and (iii) from the origin.

Inner Product of Vectors in R? and R3

If X = (x;, x,) and y = (vy» y,) are vectors in R2, their inner product is defined as
+ Xx,y, and is denoted by X - y.

Similarly, for ¥ = (x;, x5, X3) and ¥ = (yy, 5, y3) in R3, X -V = xp; + x50, + x3p3.
Here, X and Y are vectors, but X - ¥ is not a vector, it is a real number. Thus inner product of

vectors is a scalar, so the inner product is also called Scalar Product. This operation is

known as Scalar Multiplication. Since notation for inner product is a dot (.) between the two

vectors, so inner product is also called Dot Product of Vectors.

Difference between scalar product and product by a scalar.

product by a scalar with a vector is a vector quantity.

vector quantity.

Scalar product is performed between two vectors and the result is a scalar quantity and

If x =(2,3,—1)and y = (—1, 4, —2), then scalar product of X and y is
X+y =—2+4+ 12+ 2 = 12 is a scalar quantity.
While product of X = (2, 3, —1) with a scalar, say 2 is 2x = 2(2, 3, —1) = (4, 6, —2) is a
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Properties of Inner Product :

Suppose X = (x, X5, X3), y = (V1> Y9, ¥3) and T = (z;, z,, z3) are vectors in R3 and k € R.

1 x-

X -

2) x-
3) T-
@ x-

S x-

=l

=l

¥20and X-X =0<& X = 0.

X = (Xp, Xy, X3)+ (X, Xy, X3)
=x24+x2+x220 (Property of R)
=0<:>x1=x2=x3=0<:>726

Y=|xPasx ¥ =x2+x2+x2=|%P

y=y-%x

(ky) = (kX)-y = k(X V)

O+z7)=x-y +x-2

(Y +2)=(x), xp X)Wy + 2z vy o2y ¥yt 2y)

=x ;T x1z1 + X0, + X5z) + x3y5 + X323 (Distributive law in R)
= (v T Xy + x3v3) + (X2 + x5z + x323)

=X.Yy +X-2

These properties are also valid for the vectors in R2.

Example 3 : Find X -+ ¥, where x = (1, 2, —1), ¥ = (=3, 4, —2).

Solution :

X-y =(1,2,-1)- (3,4, -2)
=—3+8+2
=7

Example 4 : If X =5 + 4] — 3k and ¥ =2i — ] + 2k, then find (X + 2Y)- (2% — V).

Solution :

T 42y =i +4)] —3k)+ 2271 — ] +2k)
=5/ +4] — 3k +4F5 —2] + 4k

=9/ +2] + k

or T+2Y =(5,4,-3)+22,—1,2) =G, 4, -3+ @, —2,4)=0,2,1)

2% — Y =25 + 4] —3k)— Qi — ] +2k)

=10{ +8] — 6k —2i +j — 2k

=8 +9] — 8k

or2x —y =2(5,4,-3)—(2,—1,2) =(10,8, —6) + (-2, 1, —2) = (8, 9, —8)
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Now, (X +2Y) QX — ¥) =9 +2j + k)-(8 +9] — 8k)
=09,2,1)-(8,9, —8)
=72+ 18— 8
=82
Outer Product of Vectors in R3 :
If x = (xp5 X5, x3) and y = (15> Y35 ¥3) are vectors in R3, their outer product is denoted

by X X ¥ and defined as

XXy = 1y X35 X3) X (V15 V25 V3)

. )

= ()3 = X3¥p, X3y T X3 Xy T Xp¥y)
Here, ¥ and y are vectors and their outer product X X Yy is also a vector. So outer product
is also called Vector Product. The operation of obtaining outer product is known as Vector
Multiplication. Since the notation for outer product is a cross (X) between the two vectors, outer

product is also called Cross Product.

X X3

Y2 )3

X1 X3

Y13

A1 X2

Yy »

9 9

Properties of Outer Product :

(1) X Xy==-y XX (Interchange of rows in a determinant)

2)
3) TXKY)=(kT) XY =k
)=
X

XxX=0 (Two identical rows in a determinant)

=|

~~
=|

X
4 XX +7)=X Xy +xXx7Z

5) xx0=0

Difference Between Inner and Outer Product of Vectors :

x=0

(1) Inner product is a scalar quantity, while outer product is a vector quantity.
(2) Inner product is defined in RZ as well as in R3, while outer product is not defined in RZ.

(3) Inner product is commutative, while outer product is not commutative.

[Note : |[¥-% = |X[% but ¥ X X = 0.

Example 5 : Find X X y, where X = (1,3, —2)and y = (-2, 1, 5)

)

=(15+2,-5—-4.,1+6)=017,—-1,7)

1 -2
-2 5

1 3
-2 1

3 =2
1 5

b

>

Solution : X X y =(

Example 6 : If x =27 + ] —3kand y =37 —2] + k, find | ¥ X ¥ |.
Solution : ¥ = (2, 1, =3), ¥y = (3, =2, 1)

_ 1 -3
XXy = ,

-2 1
=(1—6,—(2+9), =4 —3) = (=5, —11, =7)

X X V| = ,/25+121+49 = J195
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Box Product and Vector Triple Product :

If ¥, Y and 7 are vectors in R3, the product X - (Y x Z7) is called the box product of X,
Yy and 7, it is denoted by [Xx Y Z].
Let X = (x}, X5, X3), ¥ = (V|, ¥5. ¥3) and Z = (24, Z5, z3). Then
X (Y X Z) = (g X, X3) 1 (073 = V37 =023 = V32 V12 — 7))

[x ¥ 2] = x0nz3 = ¥325) — %23 — y3z)) + x30012, = ¥p7))

X1 Xp X3
[x ¥ Z]=|N Y2 ¥3
i1 2 Z3

Properties of Box Product :

M [x Yy zZI=1y 7z xI=1Iz x Y]
Xy X X3
Proof : [x Y Z]=|N Y2 ¥3
q 22 3
M Y2
=—|x X x3 Ry,)
1 2 3
M Y2
=la 2 3 R,3)
X1 X2 X3
=[y 7 X]

Similarly, we can prove that [x Yy zZ]=[z x Y]

2 [x ¥ Y]=0, [x ¥y X]=0, [x ¥ Y]=0

@) mx ¥y Z]=m[x Y Z [x my Z]=m[x Y Z; [x Y mZ]=m|x Yy Z];meR
@ [x Yy 01=0

(1) If the vectors are changed in cyclic order, the box product remains unchanged.

(2) Interchange of any two vectors in [x Yy Z] results in mere interchange of

two rows in the determinant. So the value of the box product will be additive inverse, i.e.

[x ¥ z]=-[y * 7]

The product X X (¥ X Zz) is called the vector triple product.
It can be proved that ¥ X (¥ X 7)=(x-2)Y — (x * Y)Z.

Similarly (¥ X y) X 7 = (7 - %)Y — (T * Y)X.

We shall prove the following result :

XX () XxZ2)=F-2)y - (x-Y)Z

Proof : Let X = (x{, x5, X3), y = 01> Yo ¥3)s 7 = (215 29, 23)

Then X X (¥ X 7) = (x> X9, X3) X (VaZ3 — V325, V32| — V123, V122 — VoZ))
= (P]: D l’3)a say
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Now, py = x, (125 = »p71) — %3032 — 123)
= 1 00z + x373) = 2000, + x3p3)
=y (X127 + x5z + x323) — z;(x1y; + xp¥, + x3v3) (Adding and subtracting x,y,z,)
=»nE-7) —5(x-Y)
Similarly p, = yy(X +27) — z,(x * ¥) and py = y3(x *Z) — z3(x * ¥)
TX(O XD = (@ T — @ Nz T-TW — (T Vzp T3y — (T V)z)
=(x- E)(Vla Vo5 y3) —(x- y)(zl, 25, Z3)
=x-2)y -z
Example 7 : Find [x ¥ z],ifx =(1,2,0), Yy =@G,—1,2),z =(, 1, 1).

1 2 O
Solution : [x ¥ Zz] =1[3 -1 2
1 1 1

=1(=3)—2(1)+ 0
=-5
Example 8 : Find X X (¥ X 7),ifx =(1,2,3), Yy =(2,3,5).,z = (1, =1, —1).
Solution : Method 1 :X-7 = (1,2,3)-(1,—1,—-1)=1—-2—3=—4
Ty = (1,2,3)-(2,3,5)=2+6+15=23
XX(YXZ)=(Xx-2)y —(x-Y)Z
=—4(2, 3, 5) — 23(1, =1, —=1)
= (=8, —12, —20) + (=23, 23, 23)
= (=31, 11, 3)
Method 2 : y = (2, 3, 5) and
7 =(,—1,-1)
XZ=(=3+5 —(-2-5),-=2-3)=(@2,7 -5
x = (1, 2, 3) and
Yy X7 =@ 17 -5
T X(Y XZ)=(=10 =21, —(=5—6), 7 — 4) = (=31, 11, 3)
Example 9 : VX, ¥, 7 € R3, prove that, [(X + Y) X (Y + D] (X +2)=2[x ¥ 7]
Solution : LHS. =[(x + Y) X (Y + 2)]- (X + 2)
=[XXY+XXZT+YXYy+yXZ7]-(x +7)

<

S[AXY+IXZTHYXZ](X+7I) & =0

S~

Xy
SEXY)XAGEXY)THEXD X HEXD) T AHO XD XA XD)-T
=[x ¥y XI+[x ¥V Zl+[x T X]1+[x T Z1+[Y T XI+[y Z Z]
=0+[x¥ ¥ T]+0+0+[X ¥V Z]+0 (v z =[x ¥y zD
=2[x ¥ Z]=RHS
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6.7

Exercise 6.2

Find the vector or scalar as required :

2,3, H)-2,—-1,4) 2. (1,-1,2) X(2,3, 1)
2,-1,-2)X 4, 1, 8) 4. 1(2,1,3) X (0,4, —4)|

|3, —4,—-1)-(1, 2, -2)| 6. (1,1,2) X [(1,2, 1) X (2,1, 1)]
(1,0, D-[(1, 1, 0) X (1, 0, =1)] 8. (2,3,4)-[(1, 1, 1) X (3, 4, 5)]

[(1,5 1) X (2,—1,2)] X4, 1, -3) 10. |[(2,3,4)-(—4, 3, =2)] (1, —1, 2) |

Lagrange's Identity
If x;, x5, X3, V15 ¥, 3 € R, then
ey + Xy + x3)? + ey — 00+ (s~ xp)? + (s — )’ =
2+ 52+ x3) 2 + 02+ ph) (Verify )
This identity is known as Lagrange's identity.
If we take X = (x;, x,, x3) and y = (71> ¥9» ¥3), then vector form of Lagrange's identity is
TP+ X x Y=Y~
because X+ y = Xy T Xy + X393, X X y = (Y3 — X395, —(X1V3 — X3¥7), XV — Xo0q)
|2 =x2+x2+x2and | Y 2 =y72+ 3,2+

Example 10 : If X and Y are unit vectors and X + y = 0, then prove that X X Y is a unit vector.

Solution : X and Y are unit vectors.
|X|=1=1]Y]

Using Lagrange's identity,
XX YP+H|XT-YP=[TP|Y
X X V240 = (1))
¥ Xy |=1

X X Y is a unit vector.

Cauchy-Schwartz Inequality :

For any two vectors ¥ and ¥ of RZ or R3, [X-YV | < |X ||V |
This inequality is known as Cauchy - Schwartz inequality.

In R3, according to the Lagrange's identity,

XX YP+H|T-YP=|TP|V
(X YP<S|XPIYP (1xxYP*z0
|-V <[X[]Y]

For R%, let X = (x;, x,) and ¥ = (¥}, ¥,)

So, XYy = Xy + x5y,
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Now, (x;y; + x2y2)2 + (x, — xz)’1)2 = (xl2 + x22) . (yl2 + y22) (Verify !)
|x1y1 + X0 |2 < (3512 + x22) : ()’12 + yzz) ((xpy — x2y1)2 = 0)
|- VPP <|x2|Y|?and hence | XY | < |X]||Y |

Second Proof : This is valid for R and R3.

Ifx=0ory =0,then x-Yy=0and |[X||Y]|=0

So [Xx:Y|=|X||Y]
Let x # (0 and Yy # 0
Suppose |[Xx|=1and |y | = 1.
Now, (x = ¥)*(x —¥) =20
XX —=2Xx-y+yV:y =20
|x2=2x-Y+ Y220
2-2%:y2>0 (x|I=1yl=1
Hence, x -y < 1
Similarly, (x + Y)-(x + ¥)=0
IXP+2x-Y+|YP =0

2+2x-y 20
—1<x-y
Thus, -1 <x-y <1
Xy [<1
XY [ <XV (x|=1=1YD @
Finally, let ¥ # 0 and ¥ # 0,50 |T|#0, | | # 0
S S _ 5
Let u |;|,v—|§|.Then|u|—l—|v|
So by (i), |[u -V |=<|ul|]V]
SR N P e I O o T
IR ||y||‘|x| Sl

Xy [ <Xy
For non-zero vectors x and Yy,
if Xy =|x||Y]| then
[ Ix=Y ]2 =@x—Y)-((x—=Y)
=2|XP=2%7 + | Y]

=A2IXP=2% |V [+ |TP x-y =Xy
=@x| =1y
. y _
Taking I=H (x|#0)
| tx —=V[2=0
x =y
y = (x @t >0
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X and Y are in the same direction.

IfX:Y =—X||Y]|,then ((X—=Y )>=@X|+ |Y)?
LB
Now taking 7= —157 , we get
=Y =0
5 i t < 0)

X and Y are in the opposite direction.
<. In Cauchy-Schwartz inequality, if |X:-Y | = |X||Y |, for non-zero vectors
X and y, then X and Y are in the same or in the opposite direction.
Triangle Inequality :
For vectors X, ¥ in RZas wellas in R3, [ + YV | < | X |+ |V |

Proof : [T+ Y2 =GF+Y):(x+Y)

=Xx+x-y+yYy-x+y-y
= TP +2%-Y + |V ]? Xy =Y'%
S|ITP+H2|x-Y | +|YP Va € R, a < |a))
SIXP+2(X[|Y]+]|Y]P (Cauchy-Schwartz Inequality)
ST +1Y D
X+ V] S|X|+]Y]| Y
Geometric Interpretation : 1
Let P(X) and Q(Y) be two distinct points. In
figure 6_.11, EI(E{Q is a parallelogram whge Q(Y) R(T+7)
sides OP and QQ represent two vectors OP
and (7(3 respectively. By the parallelogram law
of vector addition,
(7i>+0_(>2=(71>1 - SP(X) |
In AOPR, OP + PR > OR v Figure 6.11
OP + OQ > OR (Opposite sides of a parallelogram are congruent)
(X +[Y [>T+ Y] Y

N

If O, P, Q are collinear and O—P—Q or
O—Q—P (See figure 6.12),
then OP + OQ = OR

FI+IT =T +7 ®

Also, if O—P—Q or O—Q-—P is not the case

and O, P, Q are collinear, then OP + OQ > OR. P 3
Thus |X |+ |Y|>|x + V|
X+ YISIX[+]Y] <0 > X
Inall cases | x + Y | < |X |+ Y| v Figure 6.12
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6.8 Collinear and Coplanar Vectors

We know that, if X # 0, Yy # 0 and if X = kY, k # 0 then X and Y have same or opposite
directions. If two vectors have same or opposite directions, then they are called collinear
vectors. Free vectors equivalent to the same bound vector or a non-zero multiple of it
are conventionally called parallel vectors. If the bound vectors are not collinear, their
directions are different. Hence either two bound vectors are collinear or have different

directions. They can not be parallel.
Theorem 6.4 : Non-zero vectors x = (x;, X,) and y = 1> yy) of R2 are collinear if and
only if x;y, — x,y; = 0.
Proof : ¥ and Y are collinear = X = ky, k€ R— {0}, X #0,.Y # 0
= (x1, xp) = k(yy, 1)
Xp = kv Xy =k
X1y = Xy T kv, — kv = 0
Conversely, let x;y, — x5y, = 0
X2 T XN
Let y, #0,y, #0

XX
Then o v k, say.

If k=0, then x; =0, x, = 0. So ¥ = 0, But ¥ # 0. So k # 0.
X = (x. X)) = (kyy, kyy) = k(. ¥y) = kY. k € R — {0}
If y, = 0 or y, = 0, (both cannot be zero as Y #0),
let for definiteness y, = 0, y; # 0
Xy, =0
Xy, =0 (1 = X09)
X, =0asy #0

Let % =k
(xp x2) = (kyl, 0) = (kyl, kJ’2) (Vz =0)

Again k=0 = x,=0,x,=0.S0 ¥ = 0, But ¥ # 0.

X =ky, k€ R — {0}

If x;y, — x,y; = 0, then for k € R — {0}, X = kY and hence X and y are collinear.

M |x-Y|=|x||Y| ifand only if x =ky, k€ R— {0}, X #0, Y # 0
Proof : Let x = ky, k€ R — {0}

Y| =YY | = kYY)

[kl 1y -y |

| X
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= |kl |V

=kl 1YY

= kY ||V

=Xy
Conversely, let |[x Y | =|X||Y |

Now, vector form of Lagrange's identity is

ITXYP+|x-YP=|xP|Y]

[T XY[PF=0 XY =1x11YD
XXY=0
We can prove that x = ky ke R — {0}. (See exercise 6)

Thus |[X+Y | < |X||Y |if and only if X # kY, forany k€ R— {0}, X #0, Y # 0
@ |[T+75|=|%|+|7|,ifandonly if T =kY, k>0, X#0,5 # 0
i.e. x and ¥ have the same direction.

Proof : Let X = ky, k > 0.

X+ Y[=[G(Y)+Y |[=|G+DY| =[k+1]]Y]
=Gk+ D[] (k >0
=klyl+1Y]|
=|kllYyl+1Y]| (k>0
=lky |+ 1Y
=|x|+1V|
Conversely, let |x + Y | =|X |+ | |

X+ YP=(X|+|YV]?
FX+Y)E+N=|XP+2X||V|+]|TVP
|7|2+2f'§+|§|2=|f|2+2|f||§|+|§|2

Xy =[x||Y]

From the equality in Cauchy-Schwartz inequality, X = ky, k > 0.

X and y are in the same direction.

Theorem 6.5 : Non-zero vectors x and Y of R3 are collinear if and only if X X y = 0.
Proof : Since, X and y are collinear X = ky, k€ R— {0}, X #0, Y # 0
XXY =Ky XY)=Ky X¥)=k0 =0
Conversely, let X X ¥ = 0.
X - Y| =|x||Y] (Lagrange's identity)
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Cauchy Schwarz inequality gives ¥ = kY, k € R — {0} as X # 0.

X, Y are collinear.
Coplanar Vectors : Let X, Y and z be vectors of R3. If we can find o, B, Y € R with at

least one of them non-zero, such that ax + By + yz = 0, then X, ¥ and 7 are said to be

coplanar vectors.

If X, ¥, 7 are not coplanar, they are called non-coplanar or linearly independent

vectors. Thus if X, ¥ and 7 are non-coplanar vectors, then

ax + By +y2=0=>0a=0,p =0and y = 0.

Theorem 6.6 : Distinct non-zero vectors x, y, z of R3 are coplanar if and only if
[x ¥y Zz]=0.
Proof : Suppose X, ¥, z are coplanar.
We can find o, 3, Y with at least one non-zero in R such that X + BY + yz = 0.

Let us assume that ¥ # 0
S
F 7 =@ x5 T =@ xD[(2)7 +(2)7]

- Ex T (L)r +Ex T (2)7

Y Y
= (=2) (& x i)-f)+(§) (T X))
=0+0=0
[Xx ¥y z1 =0

Conversely, suppose [x Yy z]= 0.
X(y Xz)=0
If Y X T =0, then ¥ and 7 are collinear.
Yy =kT, k#0
0X + 1y —kz =0
Comparing it with X + BY + Y2 =0, =0, B =1and Y= —k# 0
X, ¥, z are coplanar.
Now suppose ¥ X 7 # 0.
At least one of the numbers y,z, — y,z{, ¥,23 — y32, and y,z3 — y3z; is non-zero.

Assume that y;z, — y,z; # 0

Now, we will prove ¥ — a0y — Bz = 0 for some ¢, B € R (i)
Consider the equations Oy, + le —x; =0 (ii)
o, + Bz, —x, =0 (iii)

and O3 + Pz; —x3=0 (iv)
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Since yz, — y,z; # 0, we can solve (ii) and (iii) to find O and B and these Ol and [3 satisty (iv)

as[x ¥y 2] = 0.
We can find o, B € R such that oy + Bz = x.
Here 1IX — oy — Bz =0
Also 1 # 0.
X — oy — BZ = 0 with at least one coefficient 1 # 0.
Thus, X, ¥, 7 are coplanar.
Example 11 : Prove that (=1, 0, —1), (0, —1, 1) and (-1, 1, 0) are non-coplanar and that every
¥ € R3 can be written as X = o(—1, 0, —1) + B0, —1, 1) + (=1, 1, 0) for some real
numbers O, 3 and Y.

-1 0 -1
Solution : [0 =1 1|=—-1(-)4+0—1(-1)=2#0
-1 1 0

Vectors (—1, 0, —1), (0, —1, 1) and (—1, 1, 0) are non-coplanar.
Now, let X = o(—1, 0, =1) + B(0, =1, 1) + Y(—I, 1, 0) for some ., B, Y € R,
where X = (x, x5, x3).
(xla -xzz x3) = (_a - ’Ya _B + ’Ya _a + B)
—0—Y=x, PH+y=x, —0+P=x;
Solving them, we get
x1+x2+X3’ B _ x?,_.xl_.& , Y= .&"‘.;3_)(—1

o= —

2 2
To-AT2TE 0, -+ BDTR (0, -1,y + 2EHTX 1,1, 0)
Example 12 : Give one example of vectors X and y such that |[Xx -y | < |X || |.
Solution : Let, X = (1, —1,2)and ¥ = (2, 1, —2) (choose X # kY)
T y=2-1—4=—
|x-y|=3 U]
X1y =V6-4o
=3J6 (ii)

From results (i) and (ii), we have | X - Y | <|X || Y |, since 3 < 36.
Example 13 : Whenis| X + Y |=| X | +| Y | ? Verify your answer by giving one example of X and y .
Solution : If X and Y are in the same direction, then | X +Y | = |X |+ |V |.

Let ¥ =(1,—1, ) and ¥ = (2, =2, 2)

Here, x = %i, % > 0, so x and y are in the same direction.
Now, T+75 =3, =3, 3)
T+ | =31 —1, 1) =343
[X+5 =343 )
IX1=v3.17 =23
T +1Y =43 +243 =33
Hence, | X+ Y | =|X |+ |V |
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6.9 Angle Between Two Non-zero Vectors Z

]|
S

If two non-zero vectors in R3 are given,
then the measure of the angle between
their corresponding bound vectors is

defined as the measure of the angle
between the given vectors.

—> —> _
Let OA and OB be the corresponding

bound vectors of 7 and b respectively. The

v
<

measure of the angle between g and b is the o)

measure of the angle between 074 and (?B

Let X and ¥ be two non-zero vectors. X Figure 6.13

(1) If x =ky, k> 0, then X and ¥ have the same directions and so the measure of the
angle between them is defined to be 0.

(2) If X =ky, k <0, then X and Y have opposite directions and so the measure of the
angle between them is defined to be .

(3) Now, suppose that X and y have different directions. So by Cauchy-Schwartz inequality,
XY <IX[[¥]

=X YI<X-Yy <|X||Y] (x|<a©e —a<x<a
=.5
X1yl
There is a unique o0 € (0, ) such that,
Xy
cos™! — L =
X1yl

The number o is defined to be the measure of the angle between X and Y. It is

N
denoted by o = (x, ).

Xy

VAN — —
-— — — —1 . — -
Thus (x, y) = cos =3 if x #0, Yy #0.

Also, if [X Y |=|X||Y |, then Xy =|X||Y]|orx+Y = —|X||Y | The directions of
X and Yy are same or opposite respectively. Hence respective measure of the angle between
X and ¥ is 0 or Tt.

Let us justify.

If X and Y have same direction, then X = kY, k > 0.

¥y  k»-y _kGy-y o kyP
Now =157 = T’y iyl =~ TRy 1 1y~ %y P ! *k > 0)
Xy
cos™! leyl =cos11=0
If ¥ and Y have opposite directions, then x = ky, k<0.
Xy _kyn-y _kG-y o kiyE
Now =75 = Ty iy 1 = TRy 1151~ k158~ ! k < 0)
-1 Xy o -1 _
cos EiE cos ' (—1)=m
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Thus, for all non-zero vectors x and Y, there exists o € [0, ] such that,

Nyl Y

=|

_/\— —
o= (x, ¥)=cos !

=l

N

Geometrical Interpretation : Our definition Q(7) P(T)
of the measure of the angle between two _
vectors is quite consistent with our understanding (v) lof/Rtw)
of the measure of the angle in geometry.

Suppose, position vectors of P and Q are 0 X
% and Y respectively, where ¥ # 0, ¥ # 0.

Let == = 7 and L - v be unit vectors in

x| 1y

the direction of X and Yy respectively. 4

(y’/\y) - (E,AV) Figure 6.14

Suppose u and v are the position vectors of R and S respectively. R and S are the points on

the unit circle, so for some O and [3 with 0 < o, B < 27, we would have u = (cosQl, sinQl) and
v = (cosP, sinP).
. . % % . . .
Now if the radian measure of the angle formed by the rays OR and OS is 0, then it is clear
that, @ = o — B or B — 0.
Yy _
Hnyl
(cosOL, sinQl) - (cosB, sinB)
cost cosB + sinOl sinﬁ
cos(0L — [3) or cos(B — Q)
_N=
= cos0O 0V<O0<mo< G, V) <mn
"y
1yl

— —
Thus, the measure of angle © formed by OP and OQ, as we understand from geometry is same

=l

=I

_ N
Now, cos (x, Y) |

=1

0= (Y,/\§) = cos~!

=

as (I,/\§).

Orthogonal Vectors : If X # 0, ¥ # 0 and (E,AY) = %, then X and y are said to be
orthogonal or perpendicular to each other. Perpendicularity of X and y denoted by X L y. We say
X is perpendicular to y.

Necessary and sufficient condition for two non-zero vectors to be perpendicular to
each other :

Let ¥ and ¥ be two non-zero vectors.

- A
Tly ea =%

_N= T
& cos(x, y)=c0s7
X-y
X1yl
S Xy =0

Thus X and Y are orthogonal if and only if X -y = 0.
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— - - — N _
Theorem 6.7 : If X, Yy € R3, Y #0, Y # 0 and (X, y) = O, then

1) Xy =|x||Y]| cosa
2) |EX§|=|E| |§|sinoc

B ¥xLGExy),y LExy)

Proof : (1) By definition of the measure of the angle between two vectors, O = cos™ ! I;.I 3
cosQL = |)xi||y§|
XY =|X||Y| coso
(2) By Lagrange's identity,
IXXY P+ XY =3PV
[TXYP2 = |XP|YP— XY
=IXPIYP =TT cos’a
=|XP|Y > — cos’o)
= | X2 |y |? sina
X XY | =|X]||Y| sinQ (sinot = 0 as 0 < o < M)

(3) Let X = (xq, X5, x3) and ¥ = (¥}, V5, ¥3)
o2 X3
Now, X (X XY¥) =[xy x x3[ =0
y1roy2 ¥3
x LGxYy)
Similarly, ¥ -+ (x Xy) =0.So y L (x XY).

X
X

=1
~<I

Thus, (X X ) is a vector orthogonal to both X and Y. And so * I | are unit vectors

=
el

orthogonal to both X and y.

zZ

Geometrical Interpretation of x X y o

When the positive X-axis is rotated in
anticlockwise direction to the positive Y-axis,
a right handed screw would advance in
positive direction of Z-axis as shown in figure
6.15.

Figure 6.15
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N

{
\ﬂ Y

Y
X
Figure 6.16
— = - A
As |x XYy |=|x||Y|sin0, 0= (x, y)
So, XXy =|X||Y | sinO A, where 7 is the unit vector in the direction of X X y.
PMC(X xy)
Direction of ¥ X ¥ can be determined by
using right hand thumb rule i.e. if we keep
fingers of our right hand in the direction of x A \\
and turning the fingers towards Y, then the @\\ /7
direction shown by the thumb of the right :
hand is the direction of X X y.
A(X) B(y)

Figure 6.17

Example 14 : Find the measure of the angle between the vectors (1, —1, 2) and (2, —1, 1).

Solution : Let, x = (1, =1, 2)and ¥y = (2, —1, 1)

xX-y
X1yl

A
Now, cos(x, y) =

4,-1,2)-2, -1 D 2+1+2

T iti+a favi+1 T Joe

=3
6
A—
(. F) =cos™' 3
Example 15 : If the measure of the angle between the vectors 3i + ] and af + V3] is %,

find a.
Solution : Let, X = ﬁf + ]A = (1/5, I)and y = ai + 1/5} = (a, \/5)
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. —N= s
It is given that (x, y) = 5

AN
cos(x, y) = COS%
Xy :
Xyl 2 U
Now X5 = (V3. D@, V3) = Ba+ V3, [T|= B3+l =2 |V ]=Ja2+3
J3a +43

2,/a2 +3
SBa+n=J23 (ii)

3@ +2a+ 1) =a*+3

NIH

(using (i)

2a% + 6a = 0
2a(a + 3) =0
a=0 or a=-3

a = —3 does not satisfy (ii) as \/5(—2) = J12 =243
For a = 0, \/g(a+ 1) = ‘/3, ‘/a2+ = J§ Hence a = 0.

Example 16 : If [ X |=]Y | =1 and (7,/\§) = 0, then prove that | X — YcosO | = sin®
Solution : | X — YcosO |2 =|X |2 — 2X - YcosO + | YcosO |?
=1 —2cos0-cosO + | Y |? cos?0 (x| =1
(cos9 chcl.lél = cosO = Yly)
=1 — 2cos?0 + cos?0 gy|=1
=1 — cos?0
= sin’0
| X — YcosO| = sinO 0O<0 <

Example 17 : If ¥ ={ + aj +3k and ¥y =2{ — ] + 5k are orthogonal, find a.
Solution : Here X = (1, a, 3), Yy = (2, —1, 5)
xly ©x-y=0
S 2—a+15=0
S a=17
s a=17
Example 18 : Find unit vectors orthogonal to both (1, 2, 3) and (2, —1, 4).
Solution : X = (1, 2, 3),
Yy =2, —1,4)

IXY=(L2-5and |T XY |=J121+4+25 = V150 = 546

XXy 12 -1
i i + =+ (2=
Unit vectors orthogonal to the given vectors are | =% ( V6’ 56’ ./E)
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6.10 Projection of a Vector

If 7 and 5 are non-zero vectors and they are not orthogonal to each other, then

projection of a on b is defined as the vector (

—> -
Let PR = a and PQ = b have the same
initial point P. Also S is the foot of perpendicular

> —> L
from R to PQ. Then we assert that PS = Proj R

(as shown in figure 6.18)

— %— -
Letc =PS,c # 0 (Why ?)
— -> o> o>
Then SR = a — ¢ since PS +

SR=PR =a

a-b

b 1

P

the

j b and is denoted by Proj 55.

R

N

Sl

|
|

ol

ol
]
S

Figure 6.18

¢ and b are in the same or in the opposite directions.

=kb, ke R — {0}

ol

cb =kb b =k|b |?

la -
Magnitude of projection vector is PS =

a-b

1b

b P

|];|= =

@bl

b1

= is called the component of Z along b and is denoted by Comp I;E .

If two vectors of R3 are given, then

we can think as above by taking corresponding
two bound vectors.
- — .03 .
If AB and PQ are two vectors in R, then if
%
we take equal vector as AC with initial point A,
ﬁ

then we have the same result. Projection of AB on

— —
PQ is the vector AC.

//IB

i > 1C

| |

| |

| |

| |

| |

| |

L 1 >
P Q

Figure 6.19
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Area of a Triangle :

—> — - _
In AABC AB =¢,BC =a,CA =bp.
Area of AABC = %bc sinA

_ 1,7 -
=35 |b X ¢
— A_
(b, ©)=T — A and sin(Tt — A) = sinA Figure 6.20
Thus, area of AABC = 1|5 x z|=112 xp| =117 x 7|
This formula can be applied in R3 only.
Area of AABC is also given by
A = %bc ‘ll—coszA
=Lz -
- L5117
A =L BRER-1b ER
This formula can be applied in R2 as well as in R3.
Area of a Parallelogram :
[JOACB is a parallelogram with B(b) C(@+b)
- —>
OA =a and OB = b.
BM L OA.
BM = OBsin® = | b | sin0.,
Area of []™ OACB = OA - BM & -
= || | b|sinoi 00 M > Aa)
Area of []J" OACB = |a X b_l Figure 6.21
Area of (J” ABCD = 1 |% x ¥
— - _
if AC =X, BD =Y. P €
Let M be the point of intersection of the
diagonals, then
M
A o _ 1S
AM = > x and BM =2y
Area of []™ ABCD = 4(Area of AABM) A B
- —> Figure 6.22
= 41| AM X BM |) e
Area of (1™ ABCD = 2|2 X x 27| = 5|% x V|
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Example 19 : Find projection, component and magnitude of projection of 2 + j + k on

—47 — 2] + 4k.

Solution : Here @ = (2, 1, 1), b = (=4, =2, 4)

Gh =—8—2+4=—6and |b| = 16+4+16 ¢

(@b~
Pr0J5a=(52Jb=3—g(—4,—2,4)=%(4,2,—4)=%(2,1,—2)

Magnitude of Proj Zc_l =—==

Volume of a Parallelopiped :

A parallelopiped is a solid consisting of
six faces which are parallelograms.

Suppose a, b, ¢ are non-coplanar axb

vectors in R3,
(@Xb)-c#0

AV
Let the position vector of O be 0. /

—> _ = - _ -
OA = a, OC = p represent vectors a and b

respectively.
Here, [[]OABC is a parallelogram.

Area of []™OABC = |a X b |

]
N
>

— —> .
Also a X b (i.e. OM) is perpendicular Figure 6.23
to 2 and b both.

Height of parallelopiped OABC — B'C'O'A' = Magnitude of projection of ¢ on @ X b
(i.,e. OM)
Ic-(@xb)l
|@ xb |
Volume of parallelopiped = Area of base X height
Ic-(@xb)l
1@ xb |

Volume of parallelopiped = |[c @ b ]| = |z b <]

Let us note that @, b, ¢ are the vectors denoting three consecutive edges of the
parallelopiped.

%
Example 20 : Find the volume of the parallelopiped three of whose edges are OA = (2, 1, 1),
— —
OB =(@3,—1,1), OC= (-1, 1, —1).
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Solution : Here, a = (2, 1, 1), b = 3,1, 1),c =C1,1,-1)

2 1 1
@b c]1=|3 -1 1|=20—-1(-2)+12)=4
-1 1 -1

Volume of parallelopiped = |[z b T]|=|4]|=4
6.11 Direction cosines, Direction Angles and Direction Ratios of a Vector

We know that i = a, o, 0), j = (0, 1, 0) and lg = (0, 0, 1) are unit vectors of R3 in the
positive directions of X-axis, Y-axis and Z-axis respectively. If X = (x, x,, x3) is a non-zero
vector of R3> and makes angles of measures o, B and y with the positive directions of
X-axis, Y-axis and Z-axis respectively, then o, B and Y are called the direction angles of

X and cosQl, cosP, cosy are called the direction cosines of X.

As O is the measure of the angle between x and i, we have,

-_—

Xl (X1, X5, X3) = (1,0, 0) X
cosQL = "= 7, = -
X 17| ,/x12+x§+x32-1 ‘/x12+x22+x32
. . —'x2
Similarly, cosp = 7—=—>—= and cosy = T5—>—.
Xi + X5 + X3 AT+ X X3

If we take / = cosOl, m = cosP, n = cosY

X X X
then (/, m, n) = (cosQ., cosB, cosY) = ( L = : )

b 2
Jx12+x22+x32 \/x12+x§+x32 fo+x22+x32

_ L A
=T O X, X3) =7 = X
2 2 2
X{+ X5 + X3
Now, 2 + m? + n? = cos?o. + c0s2[3 + cosz'y =7 5. 2 =1
X{+ x5 + X3
X A
Also (cosOl, cosP, cosy) = x| — *
. . e — X — 1
.. (cosdl, cospP, cosy) is the unit vector in direction of X as 7— = kx, where kK = 7=— > 0.
[x1 Ix1

If X = (x5, x5, x3), X # 0 and m # 0, then let mx = (mx,;, mx,, mx;). The components
of mx, namely, mx;, mx, and mx; are called direction ratios (or direction numbers) of Xx.
Direction ratios of kx are m(kx;), m(kx,), m(kx;) (m # 0, k # 0). Direction numbers of

x and mXx are same. For m > 0, X, mx have same direction cosines. For m < 0, direction

— — e . . — 1.4
cosines of x and mXx are additive inverses. Also, the direction angles of X are O = cos 1 =0
X X
— -1 =2 — -1 =3
= cos = = cos =.
B xi Y K
mx_ _mx__ _mx_ X >0
mx| — Imlxl — mlxl — 1xI-™M
If m > 0, direction cosines of x and mx are same.
And if m < 0, |m| = —m. Hence direction cosines of x and mx are additive inverses.
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Example 21 : Find direction cosines and direction angles of 2i - j+ k.

Solution : Since x = (\/_ -1, 1), |x]|= ‘/2+1+1 =2

. . — 1
If o, B and 7y are the direction angles of X, then cosOl = % € osP = ——, cosy = %
=% B=7 —cos | L =2 =I
o=, B=m— cos > 3 and Y 3
irecti . X 1 _1 1 irecti L 2n iy
Direction cosines of X are 52 and direction angles are T3 and 3
Example 22 : If a vector X makes angles with measure %, ZTE with X-axis and Y-axis respectively,

then find the measure of the angle made by X with Z-axis.

Solution : Let X make angles with measures O, 3 and Y with X-axis, Y-axis and Z-axis
respectively. Then cos?0l + cos?f} + cos*y = 1. Here Ol = %, B= ZTE
coszg + cosz%t + cos*y =1

1 + - +cos2”Y—1

-

= 1
cos?y =1 — > =3

cosy = £

N

’Y=%or
Miscellaneous Examples
Example 23 : If [ ¥ |=2,|Y|=4,|Z|=1land X +Y +7 =0.find XYy +Y-7 +7-X.
Solution : | X + Y + Z 2= |XP+ | Y2+ |ZP+2%x-Y +2Y-7 +27-%.
0=44+164+14+2x-Yy+Y -2 +7-X)

_21
R

Xy +y-z+z7-x=
Example 24 : If A(1, 1, 1), B(0, 2, 5), C(—3, 3, 2) and D(—1, 1, —6) are four points in R3, find the
— — —> —
measure of the angle between AB and CD. What can you conclude about AB and CD?
— —
Solution : AB =(0,2,5 —(1,1,1)=(=1,1,4)and CD =(—1, 1, —6) — (-3, 3, 2) = (2, =2, —8)

— —
IAB| = (1+1+16 =3v2 and |CD| = Ja+4+64 =62

- =

S A AB * CD 2-2-32 36 .

cos(AB, CD) = = = == = —
( ) AnlIch! 3W2xed2 T 36

—> A—>
(AB, CD)=Tm
— —
As the angle between AB and CD has measure T, they are in opposite directions.

- > _ — —
Also, AB X CD = 0, so AB and CD are collinear.
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% % 9 % . . . . .
CD = —2AB . Hence AB and CD are collinear and in opposite directions.

Example 25 : Express X = 3/ — j + 2k as a sum of two vectors @ and b such that @ is
parallel to ¥ and b is perpendicular to vector ¥, where y =2i — k.
Solution : @ is parallel to y.

Soa =my,me R — {0}

a =2mi —mk =Q2m, 0, —m)

GB—2m,—1,2+m)-2,0,—-1)=0
6 —4dm—2—m=0

m=3
F-8i-4iandb -(3-22)i -+ -27 -]+

aabla—|alP—bm X a))

—

a
0+ 1|alPkm X a)
=|a (kb xa)

Example 27 : For non-zero vectors a, bandC,ifaXb =¢,b X =a, then prove that | EI =1.

Solution : b X ¢ =@

[b ©bl=a-b

a-b =0 )
Now, b X ¢ =a

b X(@Xb)=a C=axb)

b-bla—b-ay =a

b ?a =a (using (i)

(b PP-1a=0
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Since @ # 0, |b 2 =1 ox =

<l
U
Q
Il
=
=)
=
=
Il
<l
N’

b | =1

Example 28 : A(1, 1, 2), B2, 3, 5), C(1, 3, 4) and D(0, 1, 1) are the vertices of a parallelogram
ABCD. Find its area.

Solution : Method 1 : Adjacent sides of []”ABCD are
%
AB =(2,3,5—(1,1,2)=(1,2, 3) and
_)
BC =(1,3,4)—(2,3,5=(1,0,-1)

- -
Area = |AB X BC| =[(—2 —0, (=1 +3), 0 + 2)|

= I (=2,-2,2) I

- Jivaa
=243

P —>

Method 2 : Vector along the diagonal AC is AC = (0, 2, 2) and
R —>

Vector along the diagonal BD is BD = (=2, —2, —4).

-> -
AC X BD = (-8 + 4, —(0 + 4), 0 + 4)

= (—4, —4, 4)
- >

Area = - | AC X BD |

| (-4, -4, 4) |

,/16 +16+16
J3

Example 29 : If o, 3, Y are the direction angles of X, prove that sin’0t + sin’} + sin®>y = 2. Also
find the value of cos20t + cos2[3 + cos2Yy.

N |—

[\

Solution : O, B, 'y are the direction angles of x.
cos?0l + cos’P + cos?y =1
1 —sin?0L + 1 — sin’B + 1 — sin?y =1
sin?oL + sin?P + sin®y = 2

Again, cos?0l + cos’} + cos*y =1

1+ cos20 1+cos2B | 1+cos2y
P e

3 + cos20L + cos2f3 + cos2y =2
cos20. + cos2P + cos2y = —1

Example 30 : Find a unit vector in XY-plane perpendicular to 4/ — 3] + 2k.

Solution : Let the required vector in XY-plane be (a, b, 0) and it is perpendicular to (4, —3, 2).
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Example 31 : @ is a unit vector and » = (3, 0, —4). The measure of the angle between them is Z.

—

Sl S o

(ar b9 0).(49 _35 2) =0
4a —3b =0

a=2

Now, (a, b, 0) is a unit vector.

a2+ bpr=1

Required vector is + %(3, 4, 0).
T
6

If the diagonals of the parallelogram are (32 + b ) and (@ + 3b ), then obtain the area of the
parallelogram.

Solution : Area of parallelogram =%|(35 + l;) X (a +3l7)|
=L 3@ xa)y+b xXa+%a xXb)+3(b Xb)
=1 1-@Xb)+9%a@ Xb)|=4]axb|
— - — - —A_
Now, |a X b | = |al|b]| sin(a, b)
= (1) (J9+16) (sinZE)
= (3)
=3
2

Area=4><%=10

Exercise 6

Ifx=(1,2,3), Yy =@,—1,3)and 7 =3, 2, 1), show that x X (¥ X ) # (X X ¥) X Z.
Prove that [x + Y Y +7Z Z +X]=2[x Y Z]

Does X -y =X -7 imply ¥y = 7? Why ?

Does X Xy =x Xz imply ¥y = 7? Why ?
IfX-Yy=X-Zand X Xy =X XZ and X # 0, then prove that ¥ = 7.

Find a, b, c if a(1, 3, 2) + b(1, =5, 6) + (2, 1, =2) = (4, 10, =8).

If ma =nb,m,n € N, then prove that 7 - b =|a ||b|. If m, n € Z — {0}, what can be said ?

Prove that X X (Y X Z)+ ¥ X (Z X X))+ 7 X (X X y)=0.
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10.

11.
12.

13.
14.
15.

16.
17.
18.

19.

20.
21.

22.
23.
24.

25.
26.

27.

28.
29.
30.

31.
32.

33.

34.
35.
36.

Find direction angles and direction cosines of the following vectors :
1) (1,0,=1) @) Jj+k (3)5i+12] + 84k.

A\ — —
If (x, y) = O then prove that sin% = % | x — y|, where Xx and y are unit vectors.

Find unit vectors in R2 orthogonal to (5, —12).
If X, ¥, 7 are non-coplanar, then prove that x + ¥, Y + 7 and 7 + X are non-coplanar.
Prove that (@ — Proj 55 ) is orthogonal to b .

Prove that (1, 2, 3) and (2, 1, 3) are not collinear.
Prove that (1, 2, 3), (2, 3, 5) and (5, 8, 13) are coplanar.

If the angle between (a, 2) and (a, —2) has measure %, find a.
Prove that ai + 3f + 2k cannot be orthogonal to —ai + j —2k.
Find|@ X b |,if|a|=4,]|b|=5and (a-b)=—6.

If (a, 1, 1), (1, b, 1) and (1, 1, ¢) are coplanar, prove that 1—1a + 1—1b + 1_10 = 1.

aXDb =aXxXc,a#0,b #cC,then show that b = ¢ + ka, k € R

If a is orthogonal to both b and ¢ and @, b, ¢ are unit vectors and (l: ,AE) = %, show
that 7 =+ 2(b X °).

Prove that [(@ X b) X (@ X ¢)|*d =(@-d)a b <)

Prove by using vectors that sin(0t + ) = sinQ. cosP + cosOt sinf3.

Find the area of the triangle whose verticies are (4, —3, 1), (2, —4, 5), (1, —1, 0).

Find the projection of 4 i + j+3koni—j+k and its magnitude.

Find the projection of (a, b, ¢) on Y-axis and its magnitude.

—> -> -
If A3, 2, —4), B(4, 3, —4), C(3, 3, 3) and D(4, 2, —3), find projection of AD on AB X AC.
a _ b _ ¢
Use vectors to prove TN B e for AABC.

Obtain cosine formula for a triangle by using vectors.
Express 2i + 3j + k as a sum of two vectors out of which one vector is perpendicular
to2i — 4]A' + k and another is parallel to 27 — 4} + k.

Find unit vector in R3 which makes an angle of measure % with { and perpendicular to k.

If the sum of two unit vectors is a unit vector, show that the magnitude of their difference
is V3.

Ifa =(,1,1)and ¢ = (0, 1, —1) are two given vectors, find b such that @ X p = ¢ and
a-b =3.

Find the volume of parallelopiped whose edges are (;)A =3, 1,4), (7;3 =(1,2,3), (;)C =2, 1,5).
Prove that if ¥ X y = 0, then X =ky , k€ R— {0}, X # 0, y # 0

Select a proper option (a), (b), (¢) or (d) from given options and write in the box given
on the right so that the statement becomes correct :

(1) If X = (=2, 1, —2), then a unit vector in the direction of X is ...... ]

@GS 0L ) 0653

222
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2 ... is not a unit vector. (O # %, ne 7) ]
(a) (cosOL, sinQL) (b) (—cosO., —sin®) (c) (—cos2, sin2A) (d) (cos20., sinQl)

3) ¥ Xy =(7,2,-3),then y X X = ... ]
(@) (7,2, =3) (b) (3.2, 7) (©) (=7, -2, 3) (d) 3, =2, -7)

@ [Xx|=1yI=LX Ly |¥x+7[=.. ]
@ V3 (b) ¥2 (©) 1 ()0

(5) If x =3y,then x X j = ..... ]
@ 3157 (b) 3% © 0 @ 315y

6) x=(2,3),y =(5 —2)are ...... vectors. ]
(a) collinear (b) non-collinear (c) same directional (d) of opposite direction

(7) If x =(a, 4, 2a) and ¥y = (2a, —1, a) are perpendicular to each other, then a = ...... N
(a) 2 (b) 1 (c) 4 (d) any real number

(8) (a, 1, =2), (1, 1, 3), (8, 5, 0) are coplanar then a = ...... ) ]
(@) =5 (b) 5 (c) =2 (d) 2

9 Ifx=@G,1,0,5 =(2,2,3),z =(1,2,1)and x L (y + kzZ), then k= ...... ]
(a) 8 (b) 4 © 3 G

(1) If x =(1,2,4), y =(=1, =2, k), k# —4, then | X -y | ...... ERIEAE ]
(a) < (b) > (© = (d) 2

(1) x =(—1,4,-2), y =(—4, 16, =8), then | x + y | ...... [X |+ 1]y ]
(a) = (b) > (c) 2 (d) =

(12) (3, 6, —9) and ...... have same direction ratios. ]
(@) (1, 2, 3) (b) (T, 27, 3TT) (©) (=1, =2, 3) (d (1, 2,0)

(13)If @ = (=3, 1, 0) and b = (1, =1, —1), then Compzb = ...... . ]

4 J3 =4 _3

@ 75 (®) = ©) o (d) -~

(14) The area of the parallelogram whose diagonals are J+kand i+ K is ... . ]
(@) £ (b) 3 © 3 @ V3

(15) Magnitude of the projection of (—1, 2, —1) on { is ...... ) ]

1 1

@ T b —7= © 1 (d) -1

(16) a is a non-zero vector, then number of unit vectors collinear with a is ....... . ]
(a) 1 (b) 2 () 3 (d) infinitely many.

(17) The area of the parallelogram whose adjacent sides are i + kand i + ] is ... .
(@) 3 b V3 © 3 @ L

(18) If X and Y are non-collinear, non-zero vectors, then number of unit vectors orthogonal
to both X and y is ...... . ]
(a) 2 (b) 4 (c) none (d) infinitely many.
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(19) If O is the measure of the angle between vectors X and Yy such that X -y 2> 0, then

...... ]
@0<0<Tm (b)%SGSTE (c)OSGS% (d)o<e<§

(20) The unit vector in the direction of sum of the vectors (1, 1, 1), (2, —1, —1) and (0, 2, 6)
is ... ) ]
@-73.2.6 (1) 356.26  (©36.-26 (@ 33.2.6

(21) The expression ...... is meaningless. ]
@@a-(b xT) @O @-b)c (©a x(b-c) (dax(p xXc)

22 If x = i - j + lg, Y =4; + 3} + 4k and 7 =1 +a} + bk are coplanar and
|7 | = V3, then ...... ]
@a=1,b==1 (bya=1,b=x1 ()a=-1,b=*1 (da==x1,b=1

(23) If A3, —1), B(2, 3) and C(5, 1), then mZLA = ...... . ]
(a) cos™! ﬁ (b) T — cos™! ﬁ (c) sin~! ﬁ (d) %

Q24 If|x-Y|=cosO, then |x X Y| = ... ) ]
(a) * sinOL (b) sino. (c) —sinOL (d) sin*o

25 If x-y =0, then ¥ X (¥ X ¥) = ... , where | X | = 1. ]
(@) x Xy (b) x (c) =¥ (d)y xXXx

°
Summary

We have studied the following points in this chapter :
1. RZ={(x,y) |x€ R,y € Ry and R3 = {(x, , 2) | x € R, y € R, z € R} are vector
spaces over R.

2. Properties of vector space were listed.

3. Magnitude of a Vector : If X = (x|, x,, x3), then magnitude of X is | X | = fx? + x3 + x5 -

= (1, 0, 0), } = (0, 1, 0), k= (0, 0, 1) are unit vectors in the positive direction of X-axis,
Y-axis and Z-axis respectively. If X = (x,, x,), then | X | = 1’x12+x%' In R, { = (1, 0),

(0, 1).

4. Direction of vectors : Let x # 0, y # 0

J

If (i) x =ky, k>0, then Xx and y are vectors having same direction.

(i) x = ky, k<0, then ¥ and y are vectors having opposite directions.

(iii)x # ky, for any £k € R, then X and y are vectors having different directions.
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10.

11.

12.

13.

14.
15.
16.

17.

18.
19.

Non-zero vectors x and y are equal if and only if [ x| =]y | and X and y have the same

direction.

— - 1 . . . . . — .. ~
If X # (, then Tx] X 1s a unit vector in the direction of X and it is denoted by x.

. If A(x;, x5, x3) and B(yy, ¥,, y3) are two distinct points in R3, then

%
AB = (y; — Xy, ¥y = X3, ¥3 — X3)

- P(xp, x5, x3) € R3, then

(i) Distance of P from XY-plane = |x5|. from YZ-plane = | x; | and from ZX-plane = |x,|.
(i) Distance of P from X-axis = 1/ X5+ x5 -

(iii) Distance of P from origin = ‘/ XL+ x5+ x5

Triangle law of vector addition : If A, B and C are non-collinear points, then

e
AB + BC = AC.

Inner Product : If X = (x, x5, x3) and y = (V1> Y2 ¥3), then inner product of X and y is

XY =xy txp, + x5 If X = (x), X)), Y = (¥, ¥,), then X - ¥ = x,3; + x,0,.
Properties of inner product were studied.

Outer Product : If X = (x;, x,, x;) and y = (V1> Y5> ¥3), then outer product of X and y
Xy X3 X1 X3 X1 X

isx Xy = .
Y2 Y3 yi 3 yi »

Properties of outer product were studied.
Box Product : If X = (x;, x5, x3), y = (1> ¥2» ¥3) and 7 = (zq, z,, z3), then box product

B B

of X, ¥y and 7 is
X1 X2 X3
(Y XZ)=[x ¥y z]=|Nn »2 »n
1 2 23

Properties of box product were studied.

Vector Triple Product : If X, ¥, 7 € R3, then vector triple product of X, y and 7 is

YXOXZ)=(Ex-2)y —(X-Y)7.

Lagrange's Identity : (x - Y)? + |[X X Y > = |X ] |V |

Cauchy-Schwartz Inequality : |x -y | < |X || |

Triangle Inequality : |[Xx + ¥ | < |X |+ | Y |

Measure of the angle between two non-zero vecotrs : (Y,/\y) = cos ! |§|'|;|

fx.-y=0&x 1Yy

Projection of a Vector : If 7 and b are non-zero vectors and they are not orthogonal, then

_ a-b)\ —
the projection of a on b is Proj 1;5 = (WJ b.
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20.

21.

2P5c

23.

24.

25"

26.

_ a-b
Component of @ on b is Comp 55 =5

@b
b1

Magnitude of Proj 55 =

- _ - —
Area of AABC : If @ = BC, b = CA, ¢ = AB, then

area of AABC %|Z><E|
=1 JbPIER -1b 2P

Area of a Parallelogram : Area of []” ABCD

- -
| AB X BC |

e e
2| AC x BD|
Volume of a Parallelopiped : If @, b and ¢ are the edges of a parallelopiped, then volume

of parallelopiped = | [@ b Z]].

Collinear Vectors : Non-zero vectors X = (x;, x,) and ¥ = (¥, »,) are collinear if and
only if x;y, — x5y, =0.

Non-zero vectors x and y of R3 are collinear if and only if x X Yy =0.

Coplanar Vectors : If X, ¥ and 7 are the vectors of R3 and we can find 0, 3, Y € R with

at least one of them non-zero, such that Otx + B? + Yz = 0, then X, ¥ and 7 are said to

be coplanar vectors.
The vectors which are not coplanar are said to be non-coplanar or linearly independent
vectors.

Distinct non-zero vectors X, y, z of R3 are coplanar if and only if [x Y Z]=0.

Direction cosines, Direction Angles and Direction Ratios of a Vector : If X = (x;, x,, x3)
is a non-zero vector of R? and makes angles of measures O, [3 and Yy with the positive
directions of X-axis, Y-axis and Z-axis respectively, then 0., 3 and Y are called the direction

angles of X and cosQL, cosB, cos?Y are called the direction cosines of Xx.

~

Y'i xl

Xy d X3
Here, cosOl = HIE T cosB = > >, and cosY = 5 "
1 X + X3 X + X + X3 X + X5 + X3

For m # 0, mx,, mx,, mx; are called direction ratios of Xx.
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THREE DIMENSIONAL GEOMETRY

To divide a cube into two other cubes, a fourth power or in general any power
whatever into two powers of the same denomination above the second is
impossible, and I have assuredly found an admirable proof of this,
but the margin is too narrow to contain it.
— Pierre de Fermat

7.1 Introduction

We have studied plane geometry in standard IX and X and studied the same concepts in the
light of coordinate geometry in standard X and XI. Now in the semester II, we studied about the
vector space which was explained with the concept of three dimensional coordinate system in R3 and
vectors in R3. Now, question arises whether we can study a line, a plane, a square, a triangle,
a sphere,... in R3? The answer is yes. Vectors can help us to study such concepts. In this chapter, we
shall study about the equations of a line and a plane in space.

Before we study lines in space, let us be clear about some differences in plane geometry and three
dimensional geometry. Given two lines in a plane, there are three possibilities : (1) lines are parallel,
(2) lines are coincident and (3) lines intersect in unique

point. These can be very easily seen by drawing lines on a \M
paper, but when we think of two lines in R3, basically there are N

two possibilities : They are in the same plane or there is no plane
containing these two lines. If they are in the same plane, they are

called coplanar and for them, there are three possibilities as el
discussed above. If two lines are not in the same plane, they are :
called non-coplanar or skew. I] T
In figure 7.1, we see that line L is in the plane of floor and < /
line M is in the plane of ceiling. These lines L and M are in different Figure 7.1
parallel planes and there is no plane containing them. Hence these N
lines are skew lines or non-coplanar lines. Such a possibility M
cannot be observed in plane geometry. Observing carefully one 1
can imagine that L 1. N and M L N but L and N as well as M i 7 .
and N are not intersecting each other. This is not observed in Y
the plane geometry.
Figure 7.2 is a picture of three mutually perpendicular lines -
in space. This is not possible in plane geometry. Figure 7.2

7.2 Direction of a line

We know about the direction of a vector. If A and B are two distinct points of a line L in R3,

- —> NPT o > = o - =
AB and BA have opposite directions. If direction of AB is [, then direction of BA is —7 . Both

— <>
+ [ are called directions of AB. (i.e. line L)
Thus, when we talk about I as the direction of a line L, we mean to say that direction of any

non-zero vector on L can be [ or — /.
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Note : | (1) Lines in space will be denoted by letters L, M, N,...
(2) A line in space can uniquely be determined if

(i) it passes through a given point and has the direction of a non-zero vector 1. (or —7)
written briefly as ‘direction 7
(ii) it passes through two distinct points.

7.3 Equation of a line passing through A(a) and having the same direction as a non-zero

vector 7

Let L be the line passing through A(a) and having direction 1.
Let P(r ) be any point on the line L and P # A.

S
7

. . - . = -
Direction of AP is [ or —1 .

—> —
AP = kI, k€ R— {0}. (k#0 as P # A)

Q|

r —

Q|

-kl
T =a+ki
Also, if k=0, then r = a

i.e. P=A and A is also on L.

For every point P(7 ) on L, Y

T =a+kl, ke R
Conversely, if P(r) is any point in e
then (i) if kK = 0 then ~

and (ii) if k # 0, then » # a and r — a = k[, where k # 0

— —
=k

space such that » =g + k1 for some k € R, Figure 7.3
r

=g or P=A.

AP

% . . - . . . - .

. AP has the same direction as [ or direction opposite to that of /. But A € L (given).

So P € L.
Thus, (7r)e L& 7 =a +kl., ke R

The vector equation of line L is r = a + kT, k € R

Vector equation of a line gives the position vector of any point on the line.
The equation does not depend upon the choice of a. If b el leth=a-+ k17

Then b +kl =a + k| +kl

Q|

+k + R
=a+1l, t€ R

(b +kIl |ke R} ={a +kl |ke R}

Parametric Equations of a Line :
Suppose a line L has direction 7= (1, 15, I3) and passes through a= (x;, ¥y, zp)- Let P(r)e L.
Suppose r = (x, y, z). Also a = (x;, ¥y, z7) and 1 = (I, b, Iy).
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T =a+kl, ke R

(¥ 2) =@y, z) H kU, b ), k€ R

x=x1+kl1
y =y, + ki, k € R
z =1z + ki

These equations are called the parametric equations of line L passing through (x;, y;, z;) and
having direction (/,, /,, /3) and k is the parameter.
Cartesian Equation (Symmetric Form) :

If we eliminate the parameter & from above equations, we get

A y_—Jy =z . . e
T - = A L= A L (=k) provided I, # 0, I, # 0, I; # 0 (using (i) (i)

This is called the symmetric form of the Cartesian equations of line L.

If [, =0 and [, # 0, 5 # 0, then (i) gives

Y= N 2= 2

X = xl, Lz = 13

[Here actually x — x; = 4/, and as /; = 0, so x — x; = 0, i.e. x = x.]

—x _Y=» _zZ-a ,_
Conii S A

. . X
This can also be written as

T~ does not mean that denominator is zero. This is only a symbolic form. ]

[Here,

It simply means x = x; + 0k, y = y; + kl,, z = z; + kij

X=x,y =yt kb z=z + ki

Similarly, we can write the equation if any of /;, /5, /5 is zero (of course not for /| = [, = I3 = 0).

If 11 = 12 = 0 in equation (i) then x = X, Y= and z is arbitrary.

_ — 77—z — —
This can be written symbolically as = 0x1 =2 Oyl = Tl =k(3#0as | #0)

Agian 0 in denominator does not mean division by zero. It simply means x — x; = 0 or x = x; and
Yy =»
If /,, 1,, I are direction cosines of a line L passing through A(x,, y;, z{), then the

. XX - z2—2
equation of L is 3 L2 lz)ﬁ =7 -, where [ RD A 2=

Example 1 : Find the equation of the line passing through A(2, 1, —4) and having direction (1, —1, 2),

in the vector form and also in the symmetric form.
Solution : Here, @ = (2, 1, —=4) and [ = (1, —1, 2).

The vector equation of the line L, T =a+ kT, k € R gives,
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T =2, 1,4 +k(1,-1,2), ke R

This is the vector equation of the line.

X—x
Symmetric Form : Symmetric form of the equation of line is 3 - =

-2 —1 +4 . . . . .
d =2 =2z is the equation of the line in symmetric form.

1 -1 2
7.4 Equation of a line passing through two distinct points
Suppose a line L passes through A(a) and B(b), A # B. 7

— >
Let P(r ) be a point on AB and P # A.
- > . . —> —>
P(r) € AB <& directions of AP and AB
are same or opposite. A(@)
- o
<& AP =kAB , k€ R— {0}
(k#0as P#A)
ST —a=kb —a)

ST =a+kb —a) o

&7 =(—ka+kb,ke R— {0}

- YN _Z7%
L L
N
B(G) P
>Y
Figure 7.4

— - _ <~ X
Also, k=0<& r = a and A(a) € AB

> — _ —
The vector equation of AB is r = (1 — k)a + kb, k € R

or 7 =a+kb —a), ke R

Taking k =1—t,r =1 —-1A—-8)a +1A—-0pb, t € R
=fa +0—0b=0>b +Ha — b).
[Compare : In Rz,x=tx2+(1 —Ox, y =1y, + (1 — 0yl

Thus roles of @ and b can be interchanged or you can choose any pair of distinct points of L,

to get its equation.
Parametric Form :
Suppose a = xp Yy 2s b = (X5, ¥y, 25)s ro= x, y, 2).
7 =a + kb — a), ke R gives,
Xy 2=, vy, z) Fh(xy, = x5,y =V, 2 —2), k€ R
X—x; = k(xy —x)), y—y =k, =y, z =2z = k(zy — z))
x =x; + k(xy, — x))
Y=y T k(v — ) k € R

>
are the parametric equations of AB, k is a parameter.

Symmetric Form :
Eliminating parameter £ from above equations, we get

X=X _ Y= _ Z—%

Xo — X =N L~

(@
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2 XX Y~ N

[Compare : In R Nox o )ﬁ]

This is the symmetric form of the Cartesian equation of AB.
Here, also if x; = x,, then we get

x—x1 _ y_yl o Z_Zl

0 Y= 0N L%

. - 2—-2
which can be understood as x = x, ;;2 _);1 i le .

[Here denominator of x — x; is not zero, it only means x = x;. The form is only symbolic.]

5"

Example 2 : Write vector form of the line 3 5

3
. Sy .o Xx=3 _ Y75 _z—0
Solution : Line is = = % =

. 2.0)and T =(=3, 2,2) = (6. 5. 4)

Here, a = (3

The vector form of the equation of the lineis » = a + kI, k € R

T =(3.2.0)+k-654.keR

Example 3 : Convert the equation of the line r = (5, =2, 4) + k(0, —4, 3), k € R in the Cartesian
form.
Solution : Here, a = (5, =2, 4) = (xy, ¥, z;) and 1 = 0, =4, 3) =}, L, Iy)

X—XxX Y= ZTZ

Cartesian form of the equation of line is e A
_5=0, X2 _z2-4 -
x—5=0, — 7] 3 ¢ =0

Example 4 : Find the equation of the line passing through the points (2, 2, —3) and (1, 3, 5).
Solution : The equation of the line pasing through a and bisr =a+kb—a) ke R
Here @ = (2,2, —3)and b =(1,3,5), b —a = (-1, 1, 8).

T =@,2,3)+k(-1,1,8), ke R

Cartesian form of the equation of the line L is I = =
7.5 Collinear Points

Let A(a), B(l; ), C(¢) be distinct points in R3.
A, B, C are collinear & C € AHB

& ¢ =a + kb — a), for some k € R,

(AHB has equation r = g + k(l; — a),k €R)
&S —a=kb — a)

. A, B, C are collinear < (¢ — a) X (l; - a)=0

Thus, (¢ — a) X (b — a) = 0 is necessary and sufficient condition for A(a), B(b), C(¢)

to be collinear.
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There is a theorem also stating the necessary and sufficient condition for collinearity. This
theorem is stated below and we accept it without proof.

Theorem 7.1 : If A(a), B(l;), C(c) are three distinct points in space, then a necessary
and sufficient condition for A, B, C to be collinear is that there exist three non-zero

real numbers /, m, n such that / + m +n =0 and la + mb + nc 0

0.
We obtain a necessary condition for collinearity of three points.
A, B, C are collinear = (¢ — a) X (E —a)=0
= (¢ Xb)—(@Xxb)y—(c Xa)+(@xa)=0
Alsoa Xa=0and ¢ Xb=—b X ¢
= @Xb)+b X c)+(c Xa)=0
= @Xb)-c +(b X<)c+(c Xa)yc=0
=[ap c]=0
[@a b c] =0 is a necessary condition for A(a), B(l; ), C(¢) to be collinear. However as
a following examples show that it is not a sufficient condition.

We also note that [a b ¢] # 0 = A, B, C are non-collinear as contrapositive of above

statement, but [a » ¢ ] = 0 does not guarantee any conclusion. Following examples will clear this.

For example : Consider A(1, 2, 0), B(—4, 1, 9) and C(2, 4, 0).

Leta =(1,2,0), p =(—4, 1,9 and ¢ = (2, 4, 0)
1 20

[ab cl=|-4 1 9| =1(-36)—2(-18)+0=0
2 40

Now, ¢ —a =(1,2,0)
b —a=(5-1,9)
(¢ —a)yx((® —a)=(18,-9,9#0
A, B, C are non-collinear, though [¢ 3 ¢]=0
We shall take one simple example, let 5 = (0, 0, 0), » = (1, 2, 3), ¢ = 2, 3, 4).
Then[a b ¢c]=0
But (¢ —a)x( —a)=7¢c Xb #0
a, b, ¢ are not collinear.
Example 5 : Prove that (—1, 2, 5), (-2, 4, 2) and (1, —2, 11) are collinear.
Solution : Method 1 : @ = (=1, 2,5), b =(=2,4,2), ¢ = (1, =2, 11)
c —a =(2,—4, 6)and
b —a=(-12-3)
(c —a)x((b —a)=(0,0,0=0

The given points are collinear.
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Method 2 : First of all, we shall find the equation of the line passing through two points
A(a) = (-1, 2, 5) and B(b) = (=2, 4, 2).

Equation ofAHB is 7 =a + k(l; —a), ke R
T =(1,2,5+k-1,2,-3), k€ R
Now we shall prove that the third point C(¢ ) = (1, =2, 11) is on this line.
Let, if possible T =Tc = (1, =2, 11) lie on g
We must have (1, =2, 11) = (=1 — k, 2 + 2k, 5 — 3k) for some k € R.
We must have 1 = —1 — k, =2 =2 + 2k, 11 = 5 — 3k for some k € R.
= —2 satisfies all the three equations. So C('¢ ) lie on AHB

A, B, C are collinear.

7.6 The Measure of the Angle Between Two Lines in Space
Suppose r = a + kT, k€ Rand 7 =b + ki, k € R are two lines in space.

i If 1= m or 7= —m then T x 7 = 0. Then the measure of the angle between the
lines is defined to be zero. Since direction of lines are same, they are coincident
or parallel.

(ii) If T Lo oie [ -m = 0, then the lines are mutually perpendicular. Then the

measure of angle between the lines is defined to be I,

2

Gii) If [ # *wm and 7 -wm # 0 ie. lines are neither perpendicular nor parallel or

coincident. We define the measure of the acute angle between 7 and 7 as the
measure of the angle between the lines.

If o is the measure of angle between the lines, then

|l -m | -
cosoL = E 0 < a< >

Il 1
which also holds good for oo = 0 and %

[ Note : | For ot = 0, 7 -m| = [1]| .

T Xm=0

Il <<k
T S %s g

Thus, cosO. =
7.7 Condition for intersection of two distinct lines
Theorem 7.2 : If two distinct lines r = a + kT, ke€Rand 7 =b + km, kK € R intersect
in a point, then (¢ — l;)-(T X m) = 0.
Proof : Suppose two distinct lines T =a + kT, ke Rand 7 = b + km, kK € R

intersect at C('c ).

?=E+k17=lj+k2ﬁ,forsomek1,k2€ R
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(@ —=Db)- (I Xm)=(yim — k1) (1 X7w) =kymm - (I X ) —kjl (I X7m)
=0—-0=0

@—-0b)-(Il Xm)=0

If the lines intersect in a point, then (a — b )-(7 Xm)=20

This condition is necessary but it is not sufficient. Why ?

fa = pp 2 b = (g ¥ys )y | = Uy by I3), @ = (my, my, ms), then the condition
(a — l;) . (7 X m) = 0 is transformed into

Xp—=X2 V1= Y2 34—
ll 12 l3 =90
my m ms

This is the Cartesian form of the condition, when two lines intersect.

Example 6 : Find the measure of the angle between the lines x;Z = 2 2_1 = ZJ1r3 and

x+2 _ y—4 _ z-3

4 1 8

Solution : Line L has equations x;Z = y2—1 = Z-1+3 and M has equations XIZ = yI4 = Z;3
7T =22 andm =4, 1, 8)
If o is measure of the angle between the given lines, then (0 <a =< %)
Ll 1842481 e
oSO = T T ST T 3973
o = cos 1%
Example 7 : If the lines XS5 X0 272 g X = XT3 2 2HL g perpendicular to each

7 k 1 1 2 3
other, find k.
Solution : Here, { = (7, k, 1) and 7 = (1, 2, 3)
As the lines are perpendicular, 1T-m=0
7+2k+3=0
2k =—10
k=-5
Example 8 : Find the Cartesian equation of the line which passes through the point (2, —4, 5) and is
parallel to the line r = (=3, 4, 8) + k(3, 5, 6), k € R.
Solution : Here lines are parallel, so the direction of both the lines should be same.
Direction of required line is 7= (3, 5, 6) = (I}, I, I3) and it passes through the

point (2, —4, 5) = (x;, 1, zp)-

234 MATHEMATICS 12 - IV



(2, —4, 5) does not lie on T o= (—3,4,8) + k3,5, 6), ke R

as (2, =4, 5) = (=3, 4, 8) + k(3, 5, 6) for some k € R

= (5, =8, —3) = k(3, 5, 6)

But 5 = 3k, —8 = 5k, —3 = 6k is not true for any £ € R.

The equation of the line parallel to the given line and passing through (x,, y; z) is
X—x _ Y=n  z2-2%

L L L
a 3_ z2_ Y :4 = Z;5 is the equation of the line passing through (2, —4, 5) and parallel

to given line.

Condition for coplanar and non-coplanar lines :

Theorem 7.3 : A necessary condition for lines T =a+ kT, keRand 7 =) + km, k € R,
to be coplanar is that (a — 5) . (7 X m)=0.
Proof : If the two distinct lines L and M are coplanar, then either they intersect or they are parallel.
If they intersect, then by theorem 7.2, (a — b)- (7 X m)=0.

If they are parallel, then [ X 77 = 0. So (@ — b)-(1 X m) = 0.

Thus, if the lines are coplanar, then (a — b ). (7 X m)=0.
Is this condition sufficient also ?

Non-coplanar or skew lines : If there is no plane that contains both the lines L and M,
then L and M are called non-coplanar or skew lines.

From theorem 7.3, it is clear that (a — b)-(/ X m) # 0 = lines r = a + k/ and
T =b + km are skew lines.

-3 _y+2 z+1
4 -1 -1

z+
3

[SV]

Example 9 : Examine whether the lines L : = and M : & =

,y=—1 are
coplanar or not.

Solution : M can be taken as = = =—— =

3 -1 2
@—-b)- (I xm)=|4 -1 -1
2 0 3
= 3(=3) + 1(14) + 2(2)
=9+ 14+4=9

Hence L and M are non-coplanar or skew.
7.8 Perpendicular distance of a point from a line

Suppose r = a + k1 is the equation of a line L passing through A(a) and having direction
7 and P(7) is any point in R3.

If P € L, then perpendicular distance between P and L is zero.

If P& L, Pand L determine unique plane TT.

— A—>
Let M be the foot of perpendicular in the plane T from P to line L and (/, AP) = O,
let M # A.
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where 0 < O < %

. . P(p
PM = Perpendicular distance from P to L. (p)
= AP sinQ
= =
AP Il [ Isinot — —
=——— (I #0)
71
- — @ O L
IAP X [ | —> N— A(Q) M
- T=— (@=@P, 1)
_ Figure 7.5
B I(p—a)X 1l
a 17|
(p—a)x 11 - . -1
Thus, PM = ——=——or |[(p — a) X [| (l:ﬁ)
Second proof :
- -
> AP /|
AM = | Proj_AP | = =
l l
Now, PM2 = AP? — AM?
— —2
[AP - 1]
=AP2—_—2
L1
=2 -2 > —2
B TAPI 111 —1AP- [ |
Vs
—> -2
AP X [ |
PM2 = T (Lagrange's identity)
l
- = =
AP X [ | l(p—a)X1I _ — ~
PM = ———— = =|(p —a)x1]

171 171

If P lies on perpendicular to A, both the proofs fail, but the result is true.

Example 10 : Find the perpendicular distance of the point (1, 2, —4) from the line X3 _y-3_z#3

2 3 6
Solution : Here, point P(1, 2, —4) and A(a) = (3, 3, —5), 7= 2, 3, 6)
%
AP =(1 —3,2—3,—4+5)=(=2,—1, 1) and
7 =(2,3,6)
-
AP X [ = (-9, 14, —4)
[1]= J4+9+36 =7
RN —

. . . . TAPX I (9,14, —4)]

Perpendicular distance of P from the given line = _I_I -
l
‘/81 +196 + 16 @
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Perpendicular distance between two parallel lines :

LetL: 7 =a +kl, ke Rand M : r =b + ki, k € R be two parallel lines in R3.

Since L || M, they determine unique

A(a)
plane. L
The distance between L and M is
the perpendicular distance between
A(a) and M (or between B(b) and L).
: : ¢ ] M
Distance between L and M is B (5) N
— _ —_ —
IABX 11 (b —a) X1 Figure 7.6
7 171
Example 11 : Find the distance between the lines L : xg4 = y_—|2-1 = z;Z and

M: 7 =(@2,3, 1)+ k(3,2 —6), ke R
Solution : Here, a = (4, —1, 2); 7= (3, =2, 6), b = 2,3, —-1); m =3, 2, —6)
If possible, let A(a) € M.
Then (4, —1, 2) = (2, 3, —1) + k(=3, 2, —6) for some k € R
(2, =4, 3) = k(—3, 2, —6) for some kK € R
2 =3k, —4 =2k, 3 = —6k
This is not possible for any £ € R as first equation gives k£ = —% and this k£ does not satisfy

other two equations.

A(@) € M
Also [ =—m

I Xm=—mXm=0
Now [ X 7 =0 and A(a) € M

Given lines are parallel.

a —b =(2,—4,3)and
T =@, -2, 6)
(@—b)X 1 =(—18,-3,8).,[1|=Jo+4+36 =7

(@ -b)X1I
17

_ P2 +9+64 _ J397

7 7

Perpendicular distance between given lines =
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Perpendicular distance between two skew lines :

Let L : r

5+k7, k € RandM:7=17+kﬁ, k € R be skew lines of R3.

As L and M are skew lines, (@ — b)-(I X m) # 0 (Theorem 7.3)
We shall assume that for skew

. : . Ala) L
lines L and M, there exist points P € L

e
and Q € M such that PQ L L and

>
PQ L M.
—> — —
PQ-1 =0,PQ-m =0
—> — - M
Direction cosines of PQ and [ X m are same. B(b)
— .. - —> Figure 7.7
Now, PQ = projection of AB on PQ.
—> |(3—E)-(7><E)|] [7)(71]
PQ = 1l Xm I Xm |
b (b -a)-(l Xm)l
Q= 1L Xm
Also. PO — b —a il xmlcos o
so, PQ= B
- _ - - N =
=1|1b —a] |cosO| where & = (b — a), (I X m))
PQ<|b —a| (| cosoL| < 1)

Distance PQ is less than or equal to the distance between any pair of points on L and M.

PQ is the shortest distance between L and M.

(b —a) (I Xm)]
1l Xm

Thus, PQ = is the perpendicular distance or the shortest distance

between L and M.

&
PQ and L are intersecting lines, so there is

a plane TU containing them. [J PANQ is a rectangle
in the plane Tt.

o “ )
AN and PQ are parallel lines.

& >
If the measure of the angle between PQ and AB

>
is O, then the measure of the angle between AB and

AN is O.. Now, in the plane containing AN and AB,
AN = ABcosQ,, because in AANB,

mZANB = %

(. AN L Q—N and AN L @, so AN is perpendicular to the plane containing Q—N and @.)
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PQ = AN = | ABcos |

% = T — — — —
_ lAB- I xml _b—a)-(Uxm)l

[l xm| 17 x m |

Example 12 : Find the shortest distance between the lines » = (1, 1, 0) + (2, —1, 1), k € R and
T =@, 1, =)+ k3, -5, 2), k€ R.
Solution : Here, a = (1, 1, 0); 1 = (2, —1, 1) and b = 2,1, -1):;m =(@G, -5, 2)
b —a=(,0,-1)

1 0 -1
b —-—a)- (Il xXm) =2 -1 1
3 -5 2

13) — 1(=7) =10 # 0

Given lines are skew lines.

T =2, -1,
m = (@3, —5,2)
T Xm =G, -1 -7

|7><m|=,/9+1+4 =J39. G —a)- (I Xm)=3+0+7=10

. . o (b —a)-(IXm)| 1
The shortest distance between given lines = T | = o

7.9 To determine the nature of pair of lines of R3

LetL:7=5+k7,k€R B 1§(c7) [

4
\
.

M:7=Z+kﬁ, k € R be two lines

If 7 X 7 =0, then L and M are parallel

N

or coincident. B(h) m

Suppose L || M Figure 7.8

Here, AB and I are non-collinear vectors.

—> — — _ — —

AB X I =((b —a)X |l #0

e SV > - .

Conversely if AB X [ =(b —a) X | # 0, then AB and [ are non-collinear.

L | M, if L and M have same directions and (b — @) X [ # 0.
But, if (l: —a) X 1= 0, then L is not parallel to M, so L and M are coincident.
Hence if [ X 7 = 0, (l; —a) X 1= 0, lines are coincident.
If 1 Xm= 0, (l; —a) X T 0, lines are parallel.

If two lines of R3 are given, then we want to determine whether they are parallel or
intersecting or coincident or skew. We can decide by the following flow-chart, based on the entire
previous discussion.
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(bh—a)X1#0 (b—a)x1=0 (b —a)- (I Xm)#0 (b —a) (I Xm)=0

L and M are L and M are L and M are L and M are
parallel coincident skew intersecting

Example 13 : Identify the nature (i.e. skew, parallel, coincident and intersecting) of the following lines :

xX-7 _ 'y _ Z+6

1 2 2

(1) 7 =2, -5, 1)+ k@3, 2, 6), k€ R and
22 - —Zand T =(LL-)+k1.-6.2). k€ R
(1, =2, =3) + k(—=1, 1, =2), k€ Rand 7 = (4, =2, —1) + k(1, 2, =2), k € R
4 T=C+ni+0—-0j+(2—-20k.t€ Randx=4+k y=—k z=—4—2k ke R
Solution : (1) Here, @ = (2, =5, 1), [ = (3, 2, 6)
b =(7,0,—6); m = (1,2, 2)
—a=(.5 -7
Xm=(804)#0and (b —a) (I Xm)=(5,5,—7)-(=8, 0, 4)
=—40 — 28 = —68 # 0

(2)
3 T

~] &I

The given lines are skew lines.

.X—Z_y—3_1
— = — =
7 3 1

(2) The equation of the first line is
=(2.3,0: 1 =<k =3, 1>=<1, -6 2>
(1, 1, =) m = (1, =6, 2)
Now [ X7 =(0,0,0)=0and (b —a) X m = (=1, =2, =1) X (1, =6, 2) = (=10, 1, 8) # 0
Lines are parallel.
3) a=(,-2,-3); [ =(—1,1,-2)
b= -2 —1):m=(,2 -2)
(b —a)=(.0,2)
Now [ Xm =@, -4, -3)#0and (b —a)-(l Xm)=(3,0,2)(@2, —4, —3)
=6+0—-6=0
The lines are intersecting.
@) a=@G,1,-2); 1 =(, -1, -2)
b =40 —4):;m =(,—1,-2)
b —a)=(1,-1,-2)
Now [ X7 =(0,0,0)=0and (b —a)x [ =(1,—1,=2)X(1,=1,-2)=0

The lines are coincident.
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Exercise 7.1

1. Find the vector and Cartesian equation of the line passing through (2, —1, 3) and having direction
27 —3] +4k.

2. Find the equation of the line passing through the points (2, 3, —9) and (4, 3, —5) in symmetric and
in vector form.

3. Are the points (0, 1, 1), (0, 4, 4) and (2, 0, 1) collinear ? Why ?

4. Find the direction cosines of the line x = 4z + 3, y =2 — 3z,

5. Find the vector and Cartesian equation of the line passing through (1, —2, 1) and perpendicular

y+6 _ 32—9

to the 1inesx+3=2y=—12zand%= > -

6. Prove that the lines L : XTH = y_—12 ,z+1=0and M : {(4 + 2k, 0, —1 + 3k) | kK € R} intersect
each other. Also find the point of their intersection.
7. Find the measure of the angle between the lines T o= (1, 2, 1) + k&2, 3, —1), k € R and
x—1 _ y—2 _
7 5 ? 3.
8. Show that the line through the points (2, 1, —1) and (=2, 3, 4) is perpendicular to the line through
the points (9, 7, 8) and (11, 6, 10).

9. Identify whether the following lines are parallel, intersecting, skew or coincident :

(1) 7 =(,2 -3)+ kB3, =2, 1), k € R and x2—1 — 3=y _z75

2 —1
xX—=5 _ y—3 _ z+2 X—2 _3—y _ z+2
2) — ) 7 and — - 2
@ x=2—= = Tland {2 1+3k2+k|ke R}
4) xgz = y;3 = Z;1 andx=14+2,y=tz=4+5,1€ R.
) X—4 _y+2 _z—-1 o x—1 _ y+2 _ z-2
1 -2 3 -2 4 -6
10. Show that x_l_y+l_z-l and x+2 _y_1_zHl are skew lines. Find the shortest

3 2 5 4 3 -2
distance between them.

11. Find the perpendicular distance of (=5, 3, 4) from the line x_-ié-‘z =2 5_6 = ng.

12. Find the perpendicular distance between the lines x =3 — 2k, y =k, z =3 — k, k € R and
x=2k—3,y=2—k z=T7T+k ke R.

7.10 Plane
Let us recall the postulates of plane we studied in earlier class.
(1) Three distinct non-collinear points determine unique plane.
(2) There is a unique plane containing two parallel lines.
(3) There is a unique plane containing two intersecting lines.
Plane passing through three distinct non-collinear points :
Suppose A(a), B(l; ), C(c¢ ) are three distinct non-collinear points of R3.

A, B, C determine unique plane TT.

Let P(r ) be any point of the plane T and let P # A.
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- > -
AP, AB, AC are coplanar.

is a linear combination of AB and AC.

> —
= mAB + nAC, where m, n € R and m? + n? # 0.

“lElEl

—a=mb —a)+n(c —a)

If 7 =d and A(a) € T, then m = n = 0.

T =a+mb—-a)+n(c —a),mneR )
Conversely, if P(r ) satisfies

7—Z=m(5—5)+n(?—5),m,ne R, m?+n2#0

— — —
then AP = m(AB ) + n(AC)
L2 =2 = P(7)
i.e. AP is in the plane of AB and AC.
Aisin 7. So P € T. B(b)
Ifm=n=0,then r =a ie. P=A € T.
Thus, P(7) € T if and only if 7 satisfies (i).
The plane T determined by A(a), B(; ). C(0)
C('c) has equation A@) > o

r=a+mb —a)+n(c —a) mnéeR Figure 7.9

Now, r = (1 —m—n)5+ml7+n? if P(r) e m.
Letl—m—n=1[1ie.l+m+n=1
7=lZ+ml;+n?,wherel, mne€ Rand /I +m+n = 1.
This is the vector equation of the plane containing three distinct non-collinear points
A(a), B(b) and C(¢).
Parametric equations of a plane :
Let P(x, ), z), be any point of the plane passing through non-collinear points A(x;, y;, z;),
B(xy, vy z5) and C(x3, y3 z3).
T =la+mb +nc,
x ¥z = l(xl, Yy zp + mlxy v, zp) + n(x3, V3 z3)
S x = Ixp + omx, + onxg
y =1, + my, + ny;
z=1Ilzy + mz, + nz; wherel,m n € Rand/+m+n=1
are the parametric equations of the plane through A, B, C and /, m, n are the parameters.

Other forms :
If A(a), B(b), C(¢) are three non-collinear distinct points, they determine a unique plane Tt.

— - o> -
P(r)e m < AP, AB, AC are coplanar P #A)
& (7 —a), (b —a), (¢ — a) are coplanar P #A)

ST -a) b —a)yx(c —a)=0 (i)

Also, if 7 = @, then ¥ — a = 0.
(r —a)- [ —a)X(c —a)=0, VP(r)e &
Thus, the vector equation of the plane through distinct non-collinear points A, B, C is

(F —a) b —a)yX(c —a) =0
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Cartesian form (Scalar form) :

Let 7 = (-x; B2 Z)a Z = (x]: Y Z])a E = (x25 Yo ZZ)’ ? = (x3’ V3 Z3)

The equation (r — a)- [(b_ — a) x (¢ — a)] = 0 becomes,

X=X Y=y =z
Xp=xp -y -ul =0
X3—X Ya— )V 373
This is the Cartesian equation or scalar form of the equation of the plane passing
through (x;, y;, z7)s (X3, ¥y 2p) and (x3, y3, 2Z3)
Condition for four distinct points of R3 to be coplanar :
Let A(xy, ¥y, 21)» B(xy ¥y 25), C(x3, ¥3, 23), D(x4 ¥4 z4) be points of R3.
A, B, C, D are coplanar < D lies on the plane determined by A, B, C
X=X Y=y =7
< D(xy, yy zy) satisfies |x; —x1 y»—y 2—7z| =0
A3=X Y3—Nn BT
X4 =X Ya—)V1 4773
S |2 X Y2V 273 =0
X3—X Y3—y 3%
Thus A(xy, yys 29)s B(xy ¥y 25)s C(x3, ¥3, 23), D(xy vy z4) are coplanar if and only if
X=X MYV L2714
X3=X Y3=V1 B[ =0
X4 =X Y4a— )1 4—1
Example 14 : Find the equation of the plane passing through A(—6, 0, 7), B(1, 2, 2) and
C(3, —5, —4), if possible.

Solution : Let us examine if A, B, C are collinear or not.

6 0 7
1 2 2|==6Q)+7(-11)=—-89#0
3 -5 -4

A, B, C are non-collinear.

There is a unique plane passing through A, B, C.
Cartesian equation of the plane passing through A, B, C is
X=X Y-y zZ—7

X=X y2-y 2-uf =0

X3—X Y3—Y 3%

x+6 y-0 z-7
1+6 2-0 2-7|=0
3+6 -5-0 —-4-7

x+6 y z-7
7 2 =51=0
9 -5 -11
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(x+6)(—47) — y(=32)+ (z—T7)(=53)=0

—47x — 282 + 32y — 53z + 371 =0

—47x + 32y — 532+ 89 =0

47x — 32y + 53z — 89 = 0 is the equation of the plane passing through A, B and C.

Example 15 : Does a unique plane pass through A(4, —2, —1), B(5, 0, —3) and C(3, —4, 1)? If so,
find its equation.
Solution : Let us examine if A, B, C are collinear or not.

4 -2 -1
5 0 -3|=4(-12) + 2(14) — 1(=20)
3 -4 1

= —48 +28 +20 =10

This is not enough to confirm that given points are
collinear. So let us verify using the condition whether

(¢ —a)X (b —a)=0 is true or not.
©c —a=(1-22)

b—a =(0,2-2)=—c —a)

(? _ E) x (l; _ E) _ 6 Figure 7.10

A, B, C are collinear.

A, B, C do not determine a unique plane.

Example 16 : Show that the points A(1, 0, 2), B(—1, 2, 0), C(2, 3, 11) and D(1, —3, —4) are coplanar.

X=X Y=Y 2% -2 2 2
Solution : |x3—x; y3—y; z—z| =1 3 9 |=-209) —2(-6)—2(-3)
Xg— X1 Y4— Y Z4—3 0 -3 -6

=—18+124+6=0
A, B, C, D are coplanar points.

7.11 Intercepts of a Plane
If a plane T intersects three coordinate axes at points A(a, 0, 0), B(0, b, 0) and
C(0, 0, ¢), then a, b, c are called the X-intercept, the Y-intercept and the Z-intercept of the plane
TC respectively.
If the plane 7T does not intersect X-axis, then X-intercept of the plane 7T is said to be
undefined and similarly for intersection of the plane with Y-axis or Z-axis also.
Equation of a plane making intercepts a, b, ¢ on the coordinate axes :
Suppose intercepts made by a the plane V4
T on X-axis, Y-axis and Z-axis are respectively
a, b and c. (where a # 0, b # 0, ¢ # 0). C(0,0, o)
A(a, 0, 0), B(0, b, 0) and C(0, 0, ¢)
are points on the plane T.
Obviously, A, B, C are non-collinear.
(Why ?) o B(0, b, 0)
Parametric equations of the plane T
through A, B, C are X A(a, 0, 0)

Figure 7.11
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x=lx1+mx2+nx3=la

y=by+my, + ny;=mb ; where [, m, n€ R, [+ m+n=1

Since [ +m +n =1, % + % + % = 1 is the equation of the plane having intercepts
a, b and c. (abc # 0)

Another Method :
Using cartesian form of the equation of the plane passing through A(a, 0, 0), B(0, b, 0),
x—a y—-0 z-0
C(0, 0, ¢), we get [0—a b—-0 0-0 = 0 as the equation of the plane through A, B and C.
O-a 0-0 c¢-0
xX—a y z
-a b 0[=0
-a 0 ¢
(x — a)bc — y(—ac) + z(ab) = 0
bex — abc + acy + abz = 0
bcx + acy + abz = abc

ﬁ + % + % = 1 is the equation of the plane having intercepts a, b, c. (abc % 0)

Example 17 : Find the equation of the plane making X-intercept 4, Y-intercept —6 and Z-intercept 3.
Solution : Here a = 4, b = —6, ¢ = 3 is given.

The equation of the plane is f + % + % =1

X 4 Y 4z
T TS T3 I
3x — 2y + 4z = 12 is the equation of the plane having X-intercept 4, Y-intercept —6 and
Z-intercept 3.

Example 18 : Find the intercepts made by the plane 2x — 3y + 5z = 15 on the coordinate axes.

Solution : The equation of the given plane is 2x — 3y + 5z = 15

Z’g + _ls + % =1 (dividing both the sides by 15)

2

Com . . . X l Z _ . _ 15 . _
paring with the equation p + 5 + 5 1, X-intercept 5 Y-intercept 5,

Z-intercept = 3.
Example 19 : Find the intercepts made by the plane 3y + 2z = 12 on the coordinate axes.
Solution : The equation of plane is 3y + 2z = 12

Y4z =
Tte 1

S

Comparing with % + + % =1, X-intercept is undefined, Y-intercept = 4 and

Z-intercept = 6.

THREE DIMENSIONAL GEOMETRY 245



Another Method :
The equation of the plane is 3y + 2z = 12.

It intersects X-axis where y = 0 = z.
But then 0 + 0 = 12
This is not true.
3y + 2z = 12 does not intersect X-axis.
It has no X-intercept.
To find Y-intercept, let x = 0 = z.
3y =12
y=4
Y-intercept is 4.
To find Z-intercept, let x =y = 0.
2z =12
z=26
Z-intercept is 6.

> I

7.12 Normal to a plane

There exists a line which is
perpendicular to every line in the plane. It

is called a normal to the plane. Usually, P

normal is denoted by n or n, 1y, 135
Figure 7.12

S|

Vector equation of the plane passing through A(a) and having normal

Let the plane passing through A(a) and

having normal 7 be Tt.

n
Let P(7 ) be any point in the plane Tt.
— —> -
P(r)e€ M,P#A = AP € TT P(r)

9
= AP L 7
o _
= AP -7 =0 Al
T

=(r —a)- 7=0
If P=A, then r = a so (7 — a)- 7 = 0 holds good. Figure 7.13
VP(rye m,(r —a)- n=0
cr L - - -
Conversely, if P(r ) is any point in space such that (r — a)- 7 = 0, then AP L 7.
AsAe T, Pe T
Thus, P(r)e ® < (r —a)-7 =0

S r.m=a-nm
7 -7 = a-7u is the vector equation of the plane passing through A(a) and having
normal 77.
Let a -7 = d
7 -n = a-un becomes r -7 = d
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Cartesian form :

Let r =(x, » 2, 17 =(a b c¢)and a = Yy 29
7 -7 = d becomes (x, y, z)+(a, b, ¢) =d where d = a -7 = ax; + by, + cz,.
ax + by + cz=d, a> + b2 + ¢ # 0 as 7 # 0 is the equation of the plane having

normal n = (a, b, ¢)

The ordered triplet formed by the coefficient of x, ), z in the equation of a plane
represents the normal 7 of the plane.

Example 20 : Find the equation of the plane passing through (4, 5, —1) having normal 3 { — j+ k.
Solution : Here @ = (4, 5, —1), w = (3, —1, 1)
The equation of the plane 7 -7 = a -7 gives (x, », 2)- (3, =1, ) =4, 5, =1)- (3, =1, 1)
3x—y+z=12—-5—-1=6
3x — y + z = 6 is the equation of the plane passing through (4, 5, —1) and having normal
37— + k.
Example 21 : Find the normal and the vector equation of the plane 2x — z + 1 = 0.
Solution : Cartesian equation of plane is 2x —z + 1 = 0.
Normal n = (2, 0, —1) (see note)
Vector equation 7 -7 =dis2x —z+1=(2,0,=1)+(x, y, 2) + 1 =0
The vector equation is r -(2, 0, —=1) + 1 =0
7.13 Equation of the plane using normal through the origin
Let N(7) be the foot of perpendicular
from origin to the plane TT.
Let ON = p
|n|=p.
Let «, B, Y be the direction angles of 7.

P(r)

Direction cosines of 7 are cosQl, cosP, cosy. N(77)
Unit vector in the direction of 7 (i.e. i) is

o n n
n=T15 = ; = (cos, cosB, cosY) 0 N Y

n = (pcosQ, pcosB, pcosY)

Let P(r ) be any point of the plane Tt.
_ X Figure 7.14
Here a = n = (pcosQ, pcosB, pcos?)

The equation of the plane + -7 = a -7 becomes

(x, ¥, z)+(pcosQ, pcosB, pcosY) = P> @ a-n =n-n=|n]=p?
xcosO, + ycosP + zcosy = p is the equation of a plane having O, [3, Y as the direction
angles of the normal and p, the length of the normal.

If the equation of the plane is ax + by + ¢z = d, then to convert such an equation
into the form of xcosO + ycosP + zcosY = p, we divide the given equation by | 77 |. That is

_C_ d_
ml %= 1l

_a_ b
m Xt iyt
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If d > 0, then let n = (a, b, ¢) so that 4 _ p 1s positive.

7|

— ) .,
ﬁ = (L =2 é) =i = (cosO, cosﬁ, cosY) and T = p

If d < 0, then let 7 = (—a, —b, —c) so that |_7d| = p is positive.
—ax — by — cz = —d
d

n_(za =b =c\ _ —a _
1 = ( REIE |ﬁ|) = (cos0, cosP, cosy) and T = p.

Example 22 : Find the direction cosines and the length of the perpendicular drawn from the
origin to the plane 2x — 3y + 6z + 14 = 0.

Solution : The plane Tt has the equation 2x — 3y + 6z = —14 (given) @)
We shall represent the equation in the form % x + % + % z= %
Here d = —14 < 0.
The equation can be written as —2x + 3y — 6z = 14, so that d > 0.
Let w = (2,3, —-6), |n|~= ,/4+9+36 =17.
—d _ _
P=T = % = 2, (cosQ, cosB, cosY) = (TZ’ % 76)
Thus, the length of perpendicular from origin is 2 and direction cosines of the normal are
=2 3 =6
77 77

Intersection of a Line and a plane :
Let the equation r = a + ki, ke R represent a line and the equation r -7 = d represents
a plane. (7 # 0)
Consider the intersection of the line 7 = @ + k[ and the plane 7 -7 =d. (7 0,7 #0)
Suppose | = (I, b, L), @ = (a, b, ), @ = (X}, V1> 2))-
If the point 71 =a + k17 for some k; € R of the line is also on the plane, then

7
k(I -7)=d—a-n @)
Now,

ay 1If 7 .-m=0andd—a-7 # 0, then (i) is impossible.
If /-7 =0 and ax; + by, + cz; # d, then the line and the plane do not intersect.

We say that the line is parallel to the plane.
2) If 7.7=0andalsod —a-7 = 0, then (i) is satisfied for every k; € R.
In this case, every point of the line is in the plane.

Thus, if ax; + by, + cz; = d and N

-n = 0 then the line lies in the plane.
— d—a-n
(3) If [ -n # 0, then we get a unique value of k; by k; = 7 So in this case, exactly
one point of the line is on the plane. i.e. the line intersects the plane in exactly one
point.
7.14 Measure of the Angle between two planes
The measure of the angle of between two planes is defined to be the measure of the angle
between their normals.
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Figure 7.15 Figure 7.16

Since we take angle between two lines (normals) to be the acute angle between the lines, the
angle between the planes is an acute angle.

Figure 7.16 shows that the measure of the angle between two normals 7, and 7, is O,

i.e. (ﬁl’

/\ﬁz) = 9 = mZCOD,

but mZLCOA = % so mZDOA = % - 0.

Again, 77, is a normal of T,, so m£BOD =

Let

)

2)

&)

I
2

mZAOB = 0, the angle between two planes.
T,

7-ﬁl=d1and
7'52:7

-, = d, be the equations of given planes.

The measure of the angle between the planes 7, and T, is I

L o ey =0

For distinct planes T, and T, we define T, is
parallel to T, if they do not intersect. In this case

- _ - _ = n
ny — ny)—n.
| T, & ayx 7,=0
The measure of the angle between T, and T,
- Figure 7.17

is zero & X n, = 0.
Let O be the measure of the angle between the planes T, and T,, so that 0 < 0 < %
1ny -m |
17 117y |
— Inml

I 1m, |
which also holds true for © = 0 and % (Verify !)
Ifm :ax+by+cz=d and T, : a,x + b,y + ¢,z = d, are given planes, then

COSG =

0 = cos

ny = (a, by, ¢y) and 7y = (ay, by, c,).
la,a, +bb, + cc, |

\/a12+b12+c12 ‘/a§+b22+c22

-1

0 = cos

Example 23 : Find the measure of the angle between the planes 2x — y + z + 6 = 0 and
x+y+2z—3=0.
Solution : T, :2x —y+z+6=0.Son; =2, -1, 1)

T, :x+y+22—3=0.S0n,=(,1,2)
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Now, 7y - 7, = 2(1) + (=11 + 1(2) = 3

Iﬁlh=J4+1+1==Jg,Iﬁzl=,h+1+4::J€

0 = cos™! lEl.r_I—al = cos ! > _ cos”!
17, 1175, | Jo Vo

w3

1
2

The measure of the angle between given planes is L.

3
7.15 Equation of the plane passing through two parallel lines

Let7=5+k7, k € R and

7 =b +kl, k€ R be two parallel lines.
They determine unique plane T.
Also,b & {r |7 =a +ki,ke R}

E¢E+k7,foranyk€R

I;—ZikT,foranykE R

(b—a)X 1 #0
_ _ _ Figure 7.18

Soletw=(b —a)X [.Then 7w # 0
We assert that the equation of the required plane T is (r — a)-7 = 0.
ie. (r —a)-[(b—a)x 11=0
Now, we shall show that this plane Tt contains both of the given lines.
For 7 =a + ki

(F —a)-[(b—a)X 1]1=G(l)-[(b—a)x 1]=0

Every point of line 7 = a + k1 is in the plane (v —a)-m = 0.

The plane T contains the line r = a + ki,ke R
Similarly, for 7 = b + kil

(F —a) [b—a)x [1=@( +kl —a)-[(b —a)X 1]

= —a)- (b —a)X [1+ kIl -[(b —a)X 1]
=0

The line 7 = b + k[ is a subset of the plane (r — a)- [(l; —a) X 7] = 0.

Hence, (¥ — a) - [(I; —a) x 7] = ( is the equation of plane containing given parallel lines.
Cartesian form :

Let a = (x1, Yy 2ps b = (x5, ¥y zp) and [ = (I, L, [3).
The Cartesian form of the equation of the plane containing two parallel lines is

X=X Y=y 2=z

X=x -y -u|=0

h b l

250 MATHEMATICS 12 - IV



-3 y—3 Z—35

Example 24 : Show that lines L : e = = and M : £ =2~ = TZ are parallel and

3 ) 2 6 3
find the equation of the plane containing them.

Solution : Here, [ = (3, —4, 2), m = (6, —8, 4). So, [ X m = 0.

L=MorL]| M

Also, for (3, 3, 5) and % = 3_;85 = % is not true. So (3, 3, 5) € M.

3.3, L,(3,3,55¢ M
L#M
Hence L || M
Now, @ =(3,3,5), b =(0, 5, 2) and 7= 3, —4, 2).
x—3 y-3
The equation of the plane containing L and M is [0—-3 5-3

3 -4 2

x—3 y-3 z-5

(x=3)8) —(=3)B) +(z—5)6) =0
—8x+24—-3y+9+6z—30=0
8x + 3y — 6z = 3 is the equation of the plane passing through given parallel lines.

7.16 Equation of the plane containing two intersecting lines

let »r =a +kl, ke R and

7 =b + km, k€ R be two intersecting lines.
They determine unique plane TT.

Also, | Xm #0and (@ —b)-(1 X m)=0.

(Why ?)
) — _ T
Taking w = | X m, we have n # 0.
_ _ Figure 7.19
(r — a)-n = 0 represents a plane Tt.
ie. (r —a)- (7 X m) = 0 is the equation of a plane Tt. (as 7 # 0)

Now, we shall show that plane TU contains given lines.
For r =a + k?,
(7 —a)-(I Xxm)y=0k1)-(I Xm)=0

Every point of r = a + k1 is in the plane (r — a)- (7 X m)=0.
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Similarly, for

(7 —a)-(I Xm) =0 +km —a)-(I Xm)

= —a)-(I Xm)+&n)-(I Xm) (b — a)-(I x m)=0)

Every point of r = b + km is in the plane (r — Z)-(T X m)=0.

Hence, (r — a)- (7 X m) = 0 is the equation of a plane containing given intersecting
lines.
Cartesian form :
Let r = x, v 2), a= xp, Yy 2ps 7 = b, 13) and m = (my, m,, my).
The Cartesian form of the equation of the plane containing two intersecting lines is
X=X Y=y 23—
A b h

m my m3

(1) In the formula (r — 5)-(7 X m) = 0, we can also use b in place of a
ie. (r —b)- (7 X m) = 0 is also the equation of plane containing two intersecting lines.

(2) To get the equation of the plane we need three non-collinear points. So A(a) and B(E ) are
two given points of the plane. The third point C can be any point of the given lines (which can be
obtained by taking £k € R — {0} in any of the given equations.)

Example 25 : Prove that L : x2—1 = y;Z = 223 and M : x;4 = T_l = z are coplanar and find

the equation of the plane containing them.
Solution : Here, @ = (1, 2, 3), [ = (2, 3, 4) and
b =4 1,0, m =(5,2,1).
T Xm=(518—-1)20and b —a =3, -1, =3)
b —a)-(I Xm)=0G,—1,-3)-(=5, 18, —11)=—15— 18 + 33 =0

L and M are intersecting lines and so coplanar.

The equation of the plane containing [. and M is

X=X Y=y 271
4 ) L =0
m my m3
x—1 y-2 z-3
2 3 4 | _ 0
5 2 1

x=—DES) =@ —=2)=18) +(=z—=3)—-11)=0
—5x+5+ 18y —36—-11z+33 =0
5x — 18y + 11z — 2 = 0 is the equation of the required plane.
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Another Method : A(1, 2, 3), B(4, 1, 0) are given.

Taking k& = 1 in the equation » = (1, 2, 3) + k(2, 3, 4), k € R of line L, we get C(3, 5, 7)

as a point on line L.

Obviously, A, B, C are not collinear as =7 —=56+51 #0.

W B~ =
N = N
N O W

x—1 y-2 z-3
So the equation of the required plane through A, B, Cis [4—-1 1-2 0-3|=0
3—-1 5-2 7-3

x—1 y-2 z-3

x=—DO)—@—2)A8) + (= —3)11) =0
5x—5—18+36+ 11z—33 =0
Sx— 18y +11z—2=0

Note : | Similar approach can also be taken for finding the equation of the plane containing two

parallel lines.

7.17 Perpendicular distance from a point outside a plane to the plane
Let T: 7 -7 = d be the equation of a given plane and P(P) be a given point, P & T.

If M(m) is the foot of the perpendicular from P(P) to the plane T, then we need to
find the distance PM. 2 P(7)

—>
Direction of MP and 5 are same.

s — —
The equation of MP is r = p + kn, k € R

f
AsM(m)emsom=7a+klﬁ, |
for some k; € R — {0} M M)
Also, M(m) € W. Som -n =d
Soo(P+kp)-n=d

k1|ﬁ|2=d_ p-n

- - Figure 7.20
d—p-n =
% — - — - —
Now, PM = |PM |=|m — P| C-m=p + Kkn)
=lknl=1kl|n]
ld—p-nl _ Ip-n—dl
PM =77 xInl=""77

Cartesian form :
Let P(x,, ;. z;) be the given point and ax + by + cz = d be the given plane.
P =@y 2 7=1(ab o
lax; + by, + czy —d |

Ja* +b? + ¢?

Perpendicular distance from P to Tt =
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Also, if the equation of the plane is taken as ax + by + cz + d = 0, the perpendicular distance

lax; + by, +cz; +d | .
,/a2 S (replacing d by —d in r -7 = d)

(1) The foot of perpendicular from the point P(P) to the plane 7 -7 = d is M()
I 4_p-n
where m = p + kin, k| = 7 P

lax; + by, + c|
(2) Compare with 2, .2 . the perpendicular distance of (x;, y,) from ax + by + ¢ = 0.
‘/a +b 11

Example 26 : Find the perpendicular distance from point (=1, 2, —2) to the plane
3x — 4y + 2z + 44 = 0.
Solution : p = (=1, 2, =2) and T : 3x — 4y + 2z = —44 are given. So d = —44.

lax; + by, + ¢z, —d |

Perpendicular distance from P to plane Tt = Ja2 D25 2
[3(—1) — 4(2) + 2(—2) + 44 | 29
- V3P + (=42 +22 =T~ V¥
Distance between two parallel planes : 7w

N

Suppose 0, : r -n =dyand T, : r - = d,

are two parallel planes. —
_ / uA(a) —|/
The perpendicular distance of any point A(a) T

in T, to the plane T, is the distance between two

parallel planes.

A(a) € T. Hence a -7 = d, - Bl 2
Perpendicular distance of A(a) from

— == la-n—d,| |d—d,| Figure 7.21
ren = OB TR T T

Example 27 : Find the distance between the planes 2x — 2y —z+ 4 =0and 4y + 2z —4x + 1 =0.

Solution : 70, : 2x — 2y —z+4 =0 }: T, :4x —4y —2z=-8

T, :4y+2z2—-—4x+1=0 T :dx —4y—2z=1
n=4, -4 -2),d =-8d,=1
ld,—d, |
Inl

[—8 — 11|

V42 + (-4)? + (-2)?

Perpendicular distance between the given planes =

6 2

By using above formula, we can obtain the formula for the shortest distance between two skew

lines.

Let7=E+k7,k€ Rand 7 = b +k%,k€ R be two skew lines. So (E—Z).(TXE)iO
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First of all, let P (@a+k, [ ) for some ky€ R

be any point on L and Q (b+k; m ) for some
k; € R be any point on M.

— _ — —
PQ =0b —a+ km— kyl
>
Now, if PQ is perpendicular to both L and M, then
(b—a+km— ki) 1 =0

and (l; _E+ klz_ k27)-ﬁ =0
(7-%) kl - |7|2 k2 :(E - E)-T
Im 2 k= (l-m) ky =@ —b) -m
As, lines are skew lines, so

(Lem) (Lem) =112 |m

Figure 7.22

—- — 2 _ .
| Tem | "= 1T m?

——|Txml|*=0
) . > H
There exist unique k; € Rand k, € R, such that PQ L L and PQ L M

But directions of L and M are [ and m respectively.

<~ — _
*. Direction of PQ is I X m.

The plane (7 — @)-(/ X m) = 0 passes through L. Since (@ + kI — a)-(I X m) =0
Similarly (r — b)- (7 X m)=0 passes through M.
.Direction of 1% is I xm and it is perpendicular to both the planes.
ldy—d, |
T Ixml
la.(Ixm)—b.(Ixm)l
I xml
I(a—b)(Ixm)l
1 Ixml

7.18 Angle between a line and a plane L

Suppose r = a + ki is the equation of a
given line and 7 - 77 = d is the equation of a given —0 fA(a)
plane. Suppose the line intersects the plane at P 1=

and is not perpendicular to the plane. M is the foot

of the perpendicular from A(a ) on the plane. Then
ZAPM is called the angle between the given line o

and the given plane. /

LetmLAPM=oc,o<oc<% /

— A
Ioa=(1m //
1771

T o_ o Figure 7.23
""s(z O‘) 717l

S|

S|
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is the measure of the angle between the line and the plane.

x-1 _ y-3 _ z+1

> > : and the plane

Example 28 : Find the measure of the angle between the line
T (2,2, -1 =1.
Solution :Here [ = (2,2, 1), 7 = (-2, 2, —1)
T =2(=2)+22) + 1(=1)=—1

[11= 22422412 =3, |7] = J(-2)2 +22 +(-1)2 =3

The measure of the angle between the given line and the plane

I
)
~.
S

7.19 Intersection of two planes

Letm,: r -ny=d, and T, : 7-n2
Wy XA, #%0
Suppose A(a) is a point of intersection
of T, and T,.
A(a) € T, and A(a) € T,.
The equations of T, and T, are

vy =di=a-m

(r—a)-n; =0

Figure 7.24

Similarly (7—5)-ﬁz=0

If P(7) is on both T, and T,, then (r —a) L 7, and (r — @) L 7,, P # A.

T —a =kin, X1, ke R— {0}

7T —a=kn, ke R— {0} (7 =7y X 7y
If k= 0,then P=A. So r =a + ku, k € R.

Thus, if P(r ) € T, N M, then r =a + ki, k € R.
This is the equation of a line.

Every point of T; M T, is on the line T =a +kun, ke R.
Conversely, if P(7 ) is on the line » = a + kiz, k € R, then
(r—a)-ny=hkn-n,=k(i, X ny)-1, =0
and (r —a)-my, = km -7y = k(T| X 7y) -7, =0

Thus, P(r) € T, N T,.
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Hence, Ty M T, is the line given by the equation 7 =a + kn, k € R where 7 = ny X 1y

Thus two planes r - ny = d; and - ny = d, intersect in the line T =a+ k(ny X 1,)

k € R provided n; X n, # 0.
Equation of a plane passing through the intersection of two planes :
Suppose a;x + by + ¢;z + d; = 0 and ayx + b,y + ¢,z + d, = 0 are two intersecting
planes.
The equation of any plane passing through their line of intersection is
lapx + by + ciz+d) + mayx + by +cyz +dy)) =0, 2 +m?> =0
Conversely, any plane whose equation can be expressed in the form,
lax + by + cjz +d) + mayx + by + ¢,z +dy) =0, 2+ m? # 0 will certainly
contain the line of intersection of the two given planes.
We shall assume both these statements without proof.

Here 2 + m? # 0 means atleast one of /, m is non-zero.
If / = 0, then m # 0 and hence the required plane is ayx + b,y + ¢,z + d, = 0.
If / # 0, then the required plane is not a,x + b,y + ¢,z + d, = 0.

lax + by + ¢z +d)) + m(a,x + by + ¢,z + d,) = 0 becomes

a1x+b1y+clz+d1+%(a2x+b2y+czz+d2)=0

Let%=7&

If a,x + b,y + ¢,z + d, = 0 is not the required plane, then
the equation of the required plane is

a1x+b1y+clz+d1+X(a2x+b2y+czz+d2)=0,7\,6 R

Example 29 : Find the equation of the plane passing through the intersection of the planes
2x+3y+z—1=0and x +y—z— 7 =0 and also passing through the point (1, 2, 3). Also obtain
the equation of the line of intersection of these planes.

Solution :For (1,2,3), x+y—z—7=1+4+2-3-7=-7%#0

(1, 2, 3) is not in the plane x + y —z — 7 = 0.

x +y—z—7 =0 is not the required plane.
Suppose the required plane has equation 2x + 3y +z— 1+ A (x+y—z—7)=0 @)
It passes through (1, 2, 3)

246+3—-—1+Ml+2—-3—-7)=0

—7h=-10

7\,2%. Substitute }\,:% in (i).
2x+3y+z—1+%(x+y—z—7)=0

14 + 21y + 7z — 7+ 10x + 10y — 10z — 70 = 0
24x + 31y — 3z =77 =0
The direction of the line of intersection is n = n| X n, = (2, 3, 1) X (1, I, —=1) = (=4, 3, —1).
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Let us take z = 0 in both the equations of planes.

We get 2x + 3y =1and x +y = 7.

Solving these equations we get x = 20, y = —13.

A point of intersection is A(20, —13, 0)

The equation of the required line r = a + ki, kK € R gives,

(20, —13, 0) + k(—4, 3, —=1), k € R

r

To find a common point of two planes, we can take any one of x, y, z as known
number so that the other two can be uniquely determined.

Exercise 7.2

Find the unit normal to the plane 4x — 2y +z — 7 = 0.

2. If possible, find the vector and Cartesian equation of the plane passing through (1, 1, —1),
(2, =1, —=3) and (3, 0, 1).

3. Find the equation of the plane parallel to 2x — 3y — 5z + 1 = 0 and passing through (1, 2, —3).

4. Find the equation of the plane passing through (5, —1, 2) and perpendicular to the line which
passes through (—2, 1, 1) and (0, 5, 1). Also find the intercepts made by this plane on the
co-ordinate axes.

5. Find the equation of the plane passing through (2, 0, 1) and containing the line
T =(1,4,=1) + k2, =3, 3), k € R.

6. Show that the points (2, 7, 3), (—10, —10, 2), (=3, 3, 2) and (0, —2, 4) are coplanar. Also find the
equation of the plane passing through them.

7. Obtain the equation of the plane which passes through (3, 4, —5) and (1, 2, 3) and parallel to
Z-axis.

8. Find the measure of the angle between the planes 2x + y —z—1=0and x —y — 2z + 7 = 0.

9. Find the measure of the angle between the line x;2 = 2 __32 = = ;1 and the plane
2x+y—3z+4=0.

10. Find the perpendicular distance to the plane 3x + 2y — 5z — 13 = 0 from the point (5, 3, 4).

11. Find the perpendicular distance between the planes 12x — 6y + 4z — 21 = 0 and
6x —3y+2z—1=0.

12. Find the equation of the plane passing through A(1, 3, 5) and perpendicular to AP, where P is
(G,=2, 1)

13. Find the equation of the plane passing through the point (1, 1, —1) and containing the line
T =2, —4, —6) + k(1, 8, =3), k € R.

14. Find the equation of the plane passing through the intersecting lines xiH = 3—1y = Z—;S and
x+1 _ y—3 _ z+5

3 1 2
*
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Miscellaneous Examples

Example 30 : If a line makes angles of measures O, [3, A O with the four diagonals of a cube,

prove that cos20t + cos23 + cos2y + c0s20 = —%. 7

Solution : Assume that each side of the cube is
of unit length. Then the vertices can be taken as C(0,0,1) L(O,L,1)

shown in the figure 7.25.
) — M(1.,0,1) P(1,1,1)
The four diagonals of the cube are QP = (1, 1, 1),
- —> —
AL =(C1,1, 1), BM =(1,—1, 1), CN = (1, 1, —1).
Suppose the line has direction cosines [, m, n.
So P+ m?+n?=1. 0(0,0,0) B(0,1,0) Y
If o, B, Y and O are the measure_;)f th_e) angﬂis ALO.0) N(1,1,0)
made by the line with the diagonals OP, AL, BM X
% .
and CN respectively, then Figure 7.25
_Hl+m+nl _I=l+m+nl _l-m+n d 5 - 1l+m—nl
cosOl = _./5 s cosB = —./5 , cosY = _./5 and cosO = _,/5

Now, cos20 + cos23 + cos2Y + cos20 = 2cos?0 — 1 + 2cos’B — 1 + 2cos®>Y — 1 + 2cos?d — 1
= 2(cos?0L + cos*P + cos*Y + cos?0) — 4
=2 [+ m+m?+ (=l +m+n?+
(—m+n?+A+m—n?—4
[4(2 + m? + n?)] — 4

2
3
%—4 @+ m+n?=1)

—_4

3
Image of a point in the line (plane) : If M is the foot of perpendicular from A to a line (plane)
and B is the point such that M is the mid-point of AB, then B is called the image of A in the line (plane).
-6 _ y—7 _T7-2

3 2 2

Example 31 : Find the image of A(1, 2, 3) in the line L : a

3 2 ’

Solution : The line has equation s = = "3

Here @ = (6,7, 7), [ =(3,2,—2). Let M be the ? A(12,3)
foot of perpendicular from A(1, 2, 3) to L.

M e L. So M is (6 + 3k, 7 + 2k, 7 — 2k) for
some k € R.

= m|

AM =(6+3k 7+2k 7—2k)—(1,2,3) v
=(5+ 3k, 5+ 2k 4 — 2k)

%

AM L L

- —

AM -1 =0

(5+3k 5+2k4—-2k-3.2,—2)=0 B

15+9% +10+4k—8+ 4k =0 Figure 7.26
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176+ 17 =0
k=—1
The foot of perpendicular is M(6 + 3k, 7 + 2k, 7 — 2k) = M(3, 5, 9).

If B(x, , z) is the image of A in the given line, then M is the mid-point of AB.

(3. 5.9) = ( x;—l, y-2|-2’ Z-2|-3)

x=5y=8z=15
The image of A is B(5, 8, 15).

Example 32 : The direction numbers /, m, n of two lines satisfy / + m + n = 0 and P—m?+n2=0.

Find the measure of the angle between the lines.
Solution : Here / + m + n =0
m=—l—n
Also 2 — m? + n2=0
P—(=l—n?+n*=0
P—12—=2n—n?+n*=
In=20
[I=0o0rn=20
As [, m, n are the direction numbers, (/, m, n) # (0, 0, 0)
If /=0, then n = —m
Direction numbers are (0, m, —m)
If =20, then [ = —m
Direction numbers are (—m, m, 0)
If & is the measure of the angle between the two lines, then

10, m,—m) - (—m, m, 0) |

cosoL = Vam? - om?
e
T oam?l 2
=X
o 3
. . . . . x-4 _ y—5 _ z-—3
Example 33 : Find the point of intersection of the line = = and the plane

2 2 1
x +y+z—2=0. Also find the distance between this point and the point (8, 9, 5).

Solution : Here @ = (4, 5, 3), [ = (2, 2, 1).

Let P be the point of intersection. So P is on the given line.
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Pis (5 + 2k 3 + k, 4 + 2k) for some kK € R, P is also on the plane
x+y+z—2=0.

44+2k+5+2k+3+k—-—2=0

Sk=-10

k=-2

The point of intersection is (4 + 2(—2), 5 + 2(=2), 3 + (=2)) = (0, 1, 1)
The distance between P(0, 1, 1) and Q(8, 9, 5) is given by

PQ = ‘/(8—0)2+(9—1)2+(5—1)2 = J64+64+16 = V144 =12
Example 34 : Find the equation of the plane passing through (2, 2, —2) and (=2, —2, 2) and
perpendicular to the plane 2x — 3y +z — 7 = 0.
Solution : Let the equation of the required plane be ax + by + cz + d = 0.
If 77 is normal to this plane, then 7w = (a, b, ¢).
Since this plane is perpendicular to 2x — 3y +z — 7 = 0.
n-(2,-3,1)=0 @)
Also A(2, 2, —2) and B(—2, —2, 2) lie in the plane.
—> —>
AB lies in the plane. AB = (—4, —4, 4)
ne(—4,—4,4)=0
Sonc(—L-1,1)=0 (i)
From (i) and (ii), 7w = (2, =3, 1) X (=1, =1, 1)
n=(2,-3,-5o0orn=(2,3,5)
Since the plane passes through (2, 2, —2) its equation is given by r -7 = a - 7.
T (2,35 =(2,2 -2)-(2,35)
2x+3y+5z2=4+6—-10=0
The equation of the required plane is 2x + 3y + 5z = 0.
Example 35 : Find the foot of the perpendicular from P(9, 6, —2) to the plane passing through
the point A(4, 5, 2), B(2, 3, —1) and C(6, —1, —1). Also find the perpendicular distance from P
to this plane.

¢ P(9,6,-2
Solution : The equation of the plane is ¢ )
x—4 y-5 z-2
2-4 3-5 -1-2|=0 T
6-4 —1-5 —1-2 * 61D
oM
x—4 y-5 z-2
D 2 3|=0 e A(452) ® B23.-1)
2 -6 -3 )
Figure 7.27

x—=DH12) =@ —=5)(12) + (z —=2)(16) =0
3x—H+3(v—5—-4z—-2)=0
3x + 3y — 4z — 19 = 0 is the equation of plane through A, B and C.
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Let M be the foot of perpendicular from the P(9, 6, —2) to the plane T : 3x + 3y — 4z — 19 = 0.
Here, n = (3, 3, —4)

Equation of Pel\jl isr =p+ kn, k€ R
T =0,6,—2)+ k3,3, —4), ke R
M is (9 + 3k, 6 + 3k, —2 — 4k) for some £k € R
Now, M € T
39 + 3k) +3(6 + 3k), —4(—2—-4k)—19=0
27+ 9% + 18 +9% + 8+ 16k— 19 =0
34k = =34
k=—1
The foot of the perpendicular is M(9 + 3(—1), 6 + 3(—1), =2 — 4(—1))
M is (6, 3, 2)

Perpendicular distance PM = ‘/(9 —6)2+(6-3)% +(=2-2)2

B CEY TS
e
Example 36 : Show that (i) The line r = (1, 2, =3) + k(4, =3, 2), k € R is parallel to the plane
3x + 2y — 3z = 5. (ii) The plane 2x — 3y + 4z = 0 contains the line r = (1, =2, =2) + k(1, 2, 1),
ke R

Solution : (i) Here, the equation of the line L is T o= (1, 2, =3) + k(4, =3, 2), k € R and
the plane T has equation 3x + 2y — 3z = 5.

A(a)=(1,2,-3), [ =@, -3,2)and 7 = (3, 2, —3)
Now,T-ﬁ=4(3)—3(2)+2(—3)= 12—-6—-6=0

7 L7 SoLis parallel to Tt or Tt contains L.
Alsoa -nw=(1,2,-3)-3,2,-3)=3+4+9=16#0

The line is parallel to the plane.

(ii) Here, the equation of the line L is T o= (1, =2, =2) + k(1, 2, 1), k € R and the equation
of the plane T is 2x — 3y + 4z = 0.

A(a) = (1, =2, —-2), 1= (1,2, 1)and v = (2, =3, 4)
NOW,T-ﬁ:1(2)+2(—3)+1(4)22—6+4=0

7 L7 SoLis parallel to Tt or T contains L.

a-n=(0,-2,-2)-2,-3,4)=2+6—-8=0

The plane Tt contains the line L.
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10.

11.

12.

13.

14.

15.

Exercise 7

Find the foot of perpendicular from P(1, 0, 3) to the line passing through the points A(4, 7, 1) and
>
B(5, 9, —1). Also find the equation of perpendicular line AB through P and perpendicular

. —

distance from P to AB.

Find the measure of the angle between two lines, if their direction cosines I, m, n satisfy
I+m+n=0and m?+ n* = 2

) -1 - -1
Prove that the lmesx=2,yT= le amdx=yT zt+1

are skew. Find the shortest

distance between them.

. . . . . +3 5— 1- +3 -5 -1
Find the point of intersection of the lines x2 = 1y = 12 and x2 = y3 = Zl .

Also find the measure of the angle between them.
Find the equation of the line passing through (1, 2, 3) and perpendicular to both the lines

— _1 — + —_
xX—=3 _ Yy _z+1ndx5:y8_z5

T 2 o and =3 T 5

Find the equation of the line equally inclined to the co-ordinate axes and passing through
(3. =2, 4.

Find the point of intersection of the line x2—1 = 2—3y = ZIS and the plane 2x + 4y — z = 1.

Also find the measure of the angle between them.

Find the equation of the plane parallel to X-axis and whose Y and Z-intercepts are 2 and 3
respectively.

Find the image of (1, 5, 1) in the plane x — 2y +z + 5 = 0.

Find the foot of perpendicular from (0, 2, —2) to the plane 2x — 3y + 4z — 44 = 0, the equation

of this perpendicular and the perpendicular distance between the point and the plane.

Find the equation of the plane through the line of intersection of the planes 2x + 3y —z —4 =0
and x + y + z — 2 = 0 and through the point (1, 2, 2). Also find the equation of the line of

intersection of these planes.

If the centroid of the triangle formed by the intersection of a plane with the coordinate axes is

(2, 1, —1), find the equation of this plane.

xX-1_ y+2 _ z+4 X—7 _y+6 _ z+8
2 3 7— and — T 2

Prove that the lines intersect each other. Find the

equation of the plane containing them.
Find the equation of the plane whose intercepts are equal to half of the intercepts of the plane

3x + 4y — 6z = 12.

Find the equation of the perpendicular bisector plane of the line-segment joining the points
(1, 2, =3) and (=3, 6, 4).
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16.

Select a proper option (a), (b), (¢) or (d) from given options and write in the box given
on the right so that the statement becomes correct :

(1) The equation of the line passing through origin with direction angles 2&, & L jg . ]
q 37473
Y x Y Y __ - _
(a) x 5 F (b) = ~5 ¢ () x 5 z (d) x 5 C
(2) Line passing through (3, 4, 5) and (4, 5, 6) has direction cosines ...... ]
0 S S I
@1, 1.1 MBS O F T @non
X _ Y _z X—2 _ y+1 _3—z )
(3) Lines 5 - =% and — - —— are ... lines. ]
(a) parallel (b) perpendicular
(¢) coincident (d) intersecting in an acute angle
(4) Line through origin and parallel to Y-axis is ...... ]
X =Y =z x =Y -z x =Y =z x =YY -z
@T=5790 ®)T=T7% ©T =571 T=1T=9

(5) The measure of the angle between the linesx =k + 1, y=2k—1,z=2k+ 3, k€ R and

x—1 _ y+1 _ z—1 .
= - — is ... ]
=1 4 -14 1 A5 s
(a) sin 3 (b) cos 5 (c) sin 3 (d) 5
(6) A normal to the plane x = 2 is... ]
(a) (0, 1, 1) (b) (2,0, 2) (c) (1, 0, 0) (d) (0, 1, 0)
(7) Direction of the line perpendicular to the plane 3x — 4y + 7z = 2 and passing through
1,2, 4)is ... . ]
(@) (3,4, 7) (b) (4, =6, 3) (©) (3.4, -7 (d) (=12, 4)
(8) Perpendicular distance of origin from the plane r - (12, —4, 3) = 65 is ...... ]
(a) 65 (b) 5 (©) =5 @ =
(9) Plane 2x + 3y + 6z — 15 = 0 makes angle of measure ...... with X-axis. ]
2
(a) cos™! # (b) sin_I% (©) sin_lﬁ (d) tan_l%
(10) Perpendicular distance between the planes 2x — y + 2z = 1 and 4x — 2y + 4z = 1
is ... ) ]
(@ 3 (b) 3 © ¢ () 6
(11) The plane passing through the points (1, 1, 1), (1, —1, 1) and (=1, 3, —5) will pass through
2, k, 4) for ... ) ]
(a) no value of & (b) two values of &
(c) any value of k& (d) unique &
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(12) If the foot of the perpendicular from the origin to a plane is (a, b, ¢), the equation of the

plane is ...... ) ]
@ax +bytcz=a+b+c (b) ax + by + cz = abc
(c)%+%+%=1 d) ax + by + cz = a*> + b% + 2

&>
(13) Equation of the line L passing through A(—2, 2, 3) and perpendicular to AB is ...... where

coordinates of B are (13, =3, 13). ]
X=2 _ y+2 _ z+3 X+2 _ y—=2 _ z-3
(@) = 3 2 (b) = 3 2
xX+2 _ y—2 _ z-3 x-2 _ y+t2 _ z+3
©) =3 s 10 (@) =3 s 10
(14) If XI4 = y1—2 =Z;k lies in the plane 2x — 4y + z = 7, then k = ...... ) ]
(a) 7 (b) 6 (c) =7 (d) any value of &
(15) Perpendicular distance of (2, —3, 6) from 3x — 6y + 2z + 10 = 0 is ...... ) ]
13 46 10
(@ = (b) == (c) 7 (d) =
(16) Line passing through (2, =3, 1) and (3, —4, —5) intersects ZX-plane at ...... . ]
@) (=1, 0, 13) (b) (=1, 0, 19) © (£, 0,=2) @, -1, 13
ines r = , —3, + ,a, d), k e and r = , 2, + ,—a, a), k € are
17) If li 2, 3,7 k(2 5), k € R and 1,2, 3 k(3 ke R
perpendicular to each other, then a ...... . ]
(a) 2 (b) —6 ()1 (d -1
@
Summary

We have studied the following points in this chapter :
1. Vector equation of the line pasing through A(z) and having the direction of a

non-zero vector [ is r = a + kT, k € R

Parametric equations :

x = x; + ki
y =y + Kk, ke R
z =z + kly
X—X = Z=%
Cartesian equations (symmetric form) : 3 L_ 2 A A _ A .
= B=Z%
If /; =0 and /, # 0 and /5 # 0, then equation is x = x,, u A L A 1,

L. 3=
we can write 1t as

0 bL
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2. Equation of a line passing through two distinct points A(a) and B(l; ) :
Vector equation : r =a + k(b — a), k € R
Parametric equations :
X = x; + k(xy) — x)
y=y t k(v =) ke R
z=2z; + k(zy — z¢)
Symmetric Form :

X—X _ Y= _ T3

Xo — X Y2—=0 =2

3. Collinear points : A(a), B(b), C(¢) are collinear if and only if (¢ — a) X (b — a) = 0.
4. If A(a), B(E), C(c) are collinear, [a b c]=0. But [a b c] = 0 does not assure that
points are collinear.
5. The measure of the angle between two lines : r = a + kT, ke Rand 7 = b + km,
k € R are two distinct lines. If O is the measure of angle between the lines,
1l -ml

then cosot= =——:0< o < &L
I/ 1lml 2

Lines are perpendicular if and only if T.m=
6. If two distinct lines r = a + kT, ke Rand 7 = b + km , k € R intersect in a point,
then (@ — b)-(1l X m)=0, [ X m # 0.
X=X M=)V -3

It can also be stated as b ) L =0,
my nmy mg

where a = xp Yy 2ps b = (X5, Y9, 25)s 1= (I, b, ) and m = (my, m,, my).
7. Non-coplanar or skew lines : For two distinct lines r = a + kT, k € R and

T =b + km, k € R, if (¢ — 5)'(7 X m) # 0, then they are non-coplanar or

skew lines.
: : R = =, P -a)x1l
8. Perpendicular distance of a point P(p) from a line r =a + kl, k€ R is —
9. Perpendicular distance between two parallel lines r = a + ki, k € R and
- - - Wb -a) X1
r =b +kl,kER1sT
10.Perpendicular (shortest) distance between two skew lines r = a + kT, k € R

(b —a)-(l Xm)l
1l Xm

and 7 =b + km, k € R is

11. Vector equation of the plane passing through three distinct non-collinear points A(a), B(l: )
andC(?)is7=lE+ml7+n?,wherel, mné€ Rand I+ m+n=1.
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Parametric Form :
x=lx1+mx2+nx3
y = ly1 + my, + ny,
z = lzy + mzy + nz4 where /, m, n € Rand /+ m + n =1 and
the points are A(x;, y;, z1), B(xy, ¥y, z;) and C(x3, y3, z3).

X=X Y=y 2I-Z
Cartesian Form : (*2—X1 Y2=Y1 22 —%| =0
X3—X Y3a—y 3%
12.Four distinct points A(x, ¥y, zy), B(xy, ¥y 25), C(x3 y3 z3) and C(xy, y, z,) are coplanar
D= N 4
if and only if [¥3 =X Y3—=VY1 Z3—Z%| =0.
X4 =X Y4a—)V1 Z4—Z3

13. Equation of the plane making intercepts @, b and ¢ on X-axis, Y-axis and Z-axis respectively is

x4 Y Lz -
a+b+c 1 (abc # 0).

14. Equation of the plane passing through A(a) and having normal 7 :
Vector equation : r -7 = a -7

Cartesian form : If 7 = (x, y, z), 7 = (a, b, ¢), then the equation is ax + by + cz=d,(d=1a - )
15. Equation of the plane using normal through the origin : Let N(n) be the foot of
perpendicular from the origin and |7 | = p. Then the equation of the plane is

xcosO + ycosP + zcosy = p where cosQl, cosP, cosY are the direction cosines of 7.

16. Measure of the angle between the planes 7 - ny=d; and T - ny=dy:If 0 is the measure
f th 1 h h e — M 5 < e < It
of the angle between them, then cos —lﬁl”%l,o_ s 5
Planes are perpendicular if and only if 7’| -7, = 0.

17.Equation of the plane passing through two parallel lines » = a + kI, k € R and
T =b+kl, ke Ris(7¥ —a)-[(b —a)x []=0.
Cartesian form :
X=X y—N <=7
X=x 2=y 2-u|=0
L 3 L
where @ = (x, ¥, z))s b = (X, ¥y, 2p) and [ = (I}, L, I3).
18. Equation of the plane passing through two intersecting lines r = a + kT, k € R and
T =b+km., ke Ris(7 —a)-(I Xm)=0.

Cartesian form :

X=X Y—Y1 22—
b b L

my ny ng

=0, where @ = (x, v, z)). | =}, b, I3) and 7 = (my, m,, ms).
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15-7—dl

19. Perpendicular distance from a point P(P) to the plane 7 -7 = d is |

Cartesian form :
lax; + by, + cz; —d |
Ja2 + b2+ ¢?

where equation of the plane is ax + by + ¢z = d and point P is (x|, y;, z)).
20. Perpendicular distance between two parallel planes T, : Tewm = d, and T, : Ten = d,

Idl_d2|

1S =
7|

21.If the measure of the angle between the line ¥ = a + k/, k € R and the plane 7 -7 =d
) . -7l -
iSO, then X =sin ' == ;:0< O < —=.
71| 2

22.Intersection of two planes T, : T - n, =d and T, : 7 5 n, = d, is a line given by the

equation r = a + ki, k € R where 7 = 7| X 7,.

23.Equation of a plane passing through the intersection of two planes a;x + by + c;z+d; =0
and a,x + by +cyz +dy =0isax + by +ciz+d + 7u(a2x+b2y+czz+d2)=0.

Mahavira

Mahavira was a 9th-century Indian mathematician from Gulbarga who asserted that the
square root of a negative number did not exist. He gave the sum of a series whose terms
are squares of an arithmetical progression and empirical rules for area and perimeter of an
ellipse. He was patronised by the great Rashtrakuta king Amoghavarsha. Mahavira was the
author of Ganit Saar Sangraha. He separated Astrology from Mathematics. He expounded
on the same subjects on which Aryabhata and Brahmagupta contended, but he expressed
them more clearly. He is highly respected among Indian Mathematicians, because of his
establishment of terminology for concepts such as equilateral, and isosceles triangle;
rhombus; circle and semicircle. Mahavira’s eminence spread in all South India and his books
proved inspirational to other Mathematicians in Southern India.
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ANSWERS

12.
17.

11.

12.

14.

15.
21.

Exercise 1.1

ner? +h?
15 em3/sec 2. 27k 3. Ter th) 4. 4 cm?/sec 5. 3 cm?/sec
3 Jr2 +n?

(1) 27T cm3/sec (2) 36T cm?/sec 7. 80T cm?/sec
(1) 1 em?/sec (2) 1 eml/sec  (3) 0.5 cm/sec 9. 4 cmlsec 10. ﬁ cmisec 11. % 21.42

T 615 13. 2 m/min 14. 0.1 cm/sec 15. 0.25 m?/sec 16. %‘/; m/sec

1270 cm?/sec 18. —36 units/sec 19. (1, 1), (=1, —1) 20. (1, 2)

Exercise 1.2

(1) Increasing on R (2) Decreasing on R (3) Increasing on (1, o), Decreasing on (—oo, 1)

(4) Increasing on (—00, %), Decreasing on (%, 00) (5) Increasing on R

(6) Decreasing on (—oo, —1) and (0, 2), Increasing on (—1, 0) and (2, <o)

(7) Increasing on (0, %) and Decreasing on (%, Tl:)

(8) Decreasing on (—eo, —2) and (—1, o), Increasing on (=2, —1)

(9) Strictly increasing on (1, 3), (3, o0); Strictly decreasing on (—oo, —1), (—1, 1)

(10) Decreasing (11) Increasing (12) Decreasing

Decreasing in (—eo, =2) and (1, 3); Increasing in (=2, 1) and in (3, o°)
Increasing in (21m, (4k + 1)%) and ((4k + 3L, 2k + 2)n), ke 7
Decreasing in ((4k + 1)%, 2k + l)ﬂ:) and ((2k + )T, (4k + 3)%), ke Z
Decreasing in (O, %), Increasing in (%, %)

— 1
a<-2 16.a€ [0, 3)

(1) Increasing in (—oo, —=2) and (6, =°); Decreasing in (=2, 6)

(2) Increasing in (1, o), Decreasing in (—oo, 1)
(3) Increasing in (—00, %), (2, o) and Decreasing in (%, 2)

(4) Increasing in (—oo, 1) and (3, o) Decreasing in (1, 3)

(5) Increasing on Rt (6) Increasing on R
(7) Increasing in (%, %)’ Decreasing in (O, %) and (%, n)

(8) Increasing in ((2k — 1), 2km), Decreasing in (2km, (2k + 1)), k€ Z

(9) Increasing in (0, o), Decreasing in (—oo, 0)
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11.

13.

15.

19.

22.

23.

25.

11.

16.

21.

(10) Decreasing in (—oo, —2), Increasing in (=2, o0)

(11) Increasing in (—1, o), Decreasing in (—oo, —1)
(12) Increasing in (—oo, —2) and (0, o), Decreasing in (=2, 0)

(13) Increasing in (0, e2), Decreasing in (e2, o)

(14) Increasing in (%, oo), Decreasing in (0, %)

Exercise 1.3

%—b—zl=1 2. yy; = 2a(x + x)) 3. 17 4. —1 S5.y=4x+1 6.2x +4y =9

My=1 @@m+Z 1) nez-{0 1Z.x+y=42
(1)y=0at(0,0) (2)y=2xat(l,2)and (=1, —=2) 14.a=2b=—7

a=5b=—4 16. xcos% — ysin% =a Gcos% — 2asin% 18. (—1, —=2)

4

4 3
a=2,b=-1  20.x+ y=6, horizontal at (0, 0), (23, 23), vertical at (0, 0), (2

2 4
3 53
b

2')
) Sx+4+16=0 (2)x—2y+9=0 @)x—p=0

4 9%x—2y—5=0 (5)9x + 13y —40 =0

(LD, (=L, =) 24 ()ian '3 (2)an™'2 at 2, 1) and (2, ~1)

x+2w=@k+1DE kez 20.x+y=3x+y+1=0 28a=-2b=-3 c=3

Exercise 1.4

13 323 1023
50 ©F 0.6083 2. 0.9999 3. Tog OF 2.9907 4. 25¢ Of 3.9961 5. 19.975

3y VAR 4L,
200125 7.8 + K g8 4 L 9 &=+ L 10. 46062

1.0004343 12. 2.003125 13. % cm? 14. 4102 Ar 15. 0.5 %

_*/56“ %  17.1.12  18. 4.05 19. 60 cm®  20. 5.184T cm?

Exercise 1.5
Local minimum at x = %,f(%) = %; Local maximum at x = 3, f(3) = 14
Local minimum at x = —/3, F&W3) = f(=3)=—-9
Local minimum at x = /3
Local maximum at x = 0, f(O)y=20

No extreme value. f is increasing on R
Local minimum at x = 2n + )T, f(2n + 1)T) = -2
Local maximum at x = 2nTt, f(2nT) = 2
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10.

11.

12.

13.

14.

15.

16.

22.
24.
25.

1
4
s5.
8

10.

Local and global minimum at x =0, f(0) =0

1
e
0
1
e
0

Local and global maximum at x = 1, f(1) =

Global minimum at x = 0, 1) =
Local and global maximum at x = e, f(e) =

Global minimum at x = 1, fay =
Local and global maximum at x = 0, f(0) =4

Global minimum at x = 4, fEH =0
Global minimum (1) = %; Global maximum f'(2) = %;fis T. No local minimum or local maximum.

Local and global maximum at x = %, f(%) =2

Local and global minimum at x T f (
Local and global maximum at x = H—n, f (T) = ﬁ
Local and global minimum at x = 7%, f (

Local maximum at x = %, f (%) = %

32
Local and global minimum at x = 2, f(2) =61
Global maximum at x = 0, f(0) =125
. _ T 5m ) _ (3 =
Local and global maximum at x = A f ( 4) f ( T ) 1
ini -3t In M) _ (Im) =
Local and global minimum at x = Ao f( = ) f( I ) 1

Local and global minimum at x = 2, f(@2) =175
Global maximum at x = 3, f@3) = 89

Length (/) = =27 m, Breadth (b)) = =7 m  18.8,8  19.x =10,y = 25

Minimum distance 10 for P(4, 3) and Maximum distance 20 for Q(—4, —3)
Length = Breadth = 2 m, Height = 1 m, Minimum surface = 12 m?
a=0,b=—1,c=2  26.25 cm?

Exercise 1

5 .
23 cmlsec 2. 15 ml/sec 3. =3 cm/min

Increasing in (—eo, —2) and (3, o0), Decreasing in (-2, 3)
(1) (1, 3), (3, )  (2) (oo, —=1), (=1, 1) 7. Increasing in (=2, o), Decreasing in (—oo, —2)

Decreasing in (—oo, 0) and (2, o), Increasing in (0, 2)

ﬁ + % =] 11. % at (0, 0), tan_I% at (4a, 4a) 13. (-1, 2), (1, =2)
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15.
16.

17.

18.

19.

20.

27.

29.

Global minimum at x = 0, f(0) =0

Local minimum at x = 1, f(1) =3

Increasing in (—%, %), Decreasing in (%, %) and (—%, —%)
Local minimum f (%) = _“Tn + \/5 , Local maximum f (%) = 4R _ \/3

Increasing in (0, %), Decreasing in (é, 1).

4
i =3 (é) =3
Local maximum at x e VAt 7]

Critical numbers 0, 4 and 6. Increasing in (0, 4) and Decreasing in (4, 6).

S
Local and global maximum at x = 4, f(4) = 23, Global minimum at x = 0 and 6, f(0) = 7(6) = 0

ini - I 1
Local and global minimum at x = i f ( 4) >

Global maximum at x = 0, %,f(o) :f(%) =1

11
3

W) tan ' @) tan 'L 3) tan 'L (@) tan! ESULE, (4aJ3'b% 4a%bJ3') and & at (0, 0)
11 2 2 2 2 > 2 B
2(a3 +b3)
(5) tan™! 1% (6) tan_lé at (1, 1) and (1, —1) and touch each other at (0, 0)

1 ® @ @ G @@ G 6 @D 6 @ @ © B (b 9 d 10) (b
(11 (@ (12) (¢) (13) (b) (14) (d) (15) (d) (16) (b) (17) (b) (18) (a) (19) (¢) (20) (d)
21 (@) (22) (¢) (23) (@) 24 (¢) (25) (d) (26) (@ (27) (¢) (28) (a) (29) (b) (30) (©)
(1) (b)) (32) (b) (33) (b) (34) (d) (35) (d) (36) (©) (37) (a) (38) (a) (39) (b) (40) ()
(41) (d) (42) (b) (43) (b) (44) (a) (45) (a) (46) (a) (47) (a) (48) (b) (49) (a) (50) (b)
(51) (b) (52) (a) (53) (b) (54) (a) (55) (b)

Exercise 2.1

X3 1.3 (3+5x) ) 5
1. 3 log x g X +c 2. 5 sin Tx + %9 cosTx + ¢
—1 — , 2 a2 _ 2 2
3. xcos 'x 1—-x% tc 4. e [3 9x+27]+c
3
5. x? tan 1x — %[x2 —log(1 +xH)] +¢ 6. x cosec”lx + log |x + ‘/xz -1 ‘ +c
7. %[sin (log x) — cos (logx)] + ¢ 8. % [secx tanx + log ‘ tan (%"'%) H +c
2
9. —x cot% + 2 log ’ sin %‘ +c 10. _XT cosx? + %sinx2 + c
11. 2xtan 'x — log (1 + x2) + ¢ 12. —% (x cosec’x + cotx) + ¢
13. %(x sinx + cosx) + %(x sin3x + %cos 3x) + c 14. %(x” sin x" + cos x") + ¢
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15.

17.

10.

12.

14.

15.

16.

17.

19.

20.

(x )logx—x+ +c
_sin"'x +10g‘ 1—‘/1—x2 |+c
X X
Exercise 2.2
2 4+ 2gin X 4 ¢
9—x 2 3

V2[2 245 +ilog\x+,/x2+5 |+
T Y52 -3 = 5 log| Vx4 523 [+

4x+3
= Ja-3x-2x% +

_ 4x+3
4l sin ! (—) + c
1632 Ja1

log x
x+1

16. —

+log(x+1)+c

18. 2(Vx = Ji—x sin'Wx) + ¢

%[2)6;'1 ‘/m — 8 log ‘ 2x + 1 + "4x2+4x—15 H +c

11 -6 el

3[2 8—x0 + 4sin 2‘/5]+c 7.

e’ log sinx + ¢ 9.
2

£ tanx + ¢ 11.
X

= +c 13.
x> +1

—1 (1+x—x2)2+ (zx—l)‘/lﬂ 2 +—sm
72x +1
—exrh g )\/x +x+1 —

3
2+ x4+ 1)2

3
—% Q2+ 3x —xH)?2 —

X
o (sin 4x — 2cos 4x) + ¢ 18.

3 3 )
21083 2+ (log 32 ((log 3) cos 2x + 2sin2x) + ¢

2 2
% (sin 2x + cos 2x) — % (cos 4x + 2 sin4x) + ¢

2x -3 .
5 \/2+3x—x2 _%Sl”

Exercise 2.3

X (x—1)>

x+n2 | ¢

log

%10g|x—1|—810g|x—2|+1—2110g|x—3|+c

xTz—x—Zlog|x—2|+log|x—3|+c

sin x

1 sin x
5 "4_sin2x + 2Sin P + c
—excot% + ¢
xX—2
elxyz] te

X
€ -+ ¢
1+ x

(zf/g_l) +c

élog‘x+%+‘/x2+x+1 ‘+c

| (2x—3) +
J17 ¢
X

6172 (—cos2x + 4sin2x) + ¢

_X
— * +
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xX—1

1 —
4. 3o lan 1(\/5)c)+%log x+1|+c

Bl L, -1
5. 3\/ztan (,/Ej+3./5t‘m (ﬁx)+c
6. %log(x2+5)—%log(x2+2)+c
7. —2log [x+ 1| — o7 +3log|x+ 2|+ ¢

1 1 —
8. —Elog|x+1|+zlog(x2+9)+%tan1(%)+c
9. x+2log|2ef+ 1| —3log|3e"+ 1| +¢

1 tan® —3
10. Elog Tanb—1 c

1 1 1
11.Elog|x+l|—m—zlog(x2+l)+c

1 1 — 1] = 3 — 1
12. 5 log|x+ 1|+ 5 log|x — 1| Ix -0 20— 12 +c
13. —% log|1—cosx|—%log|1+cosx|+%log|1—200sx|+c
14. %log|1—c0sx|—%log|1+cosx|+%log|3+2603x|+c

Exercise 2

X iy 4+ L T _ L — 2y X o5y — L 2

1. 5 sin x+3 1—x 9(1 x9)?2 +c 2. 5 cos x — S f1—x + c
1+ v sinx _
3. —xcotX +c¢ 4. Liog | /——=| — tan ! (Vsinx) + ¢
2 2 08 1—Vsinx ¢ )
5. x10g|x+‘/x2+a2|—‘/x2+a2+c 6. (x+a)tan_1‘/%—\/ax + ¢
7. 2\/;—2 1—x sin_l\/;+c 8. %ex secx + ¢
9. lofgcx +c 10. xlog (logx) + ¢
3 _
s, alx—a 30 .4 X—a
11. —%(2ax—x2)2 + ax=a) > ) 2ax—x* + & sin 1( p )+c
3

12, 2 (2 +x)2 = Qx + 1)fx2 4 x +%log‘x+%+‘/x2+x‘+c

1 sinx — 1 1 V2 sinx —1
13. D) log m JE 10 ﬁsmx+1 + C
14. %10g|1—cosx|+%log|1+cosx|—%log|200sx+1|+c

1 sinx —1| _ _1 »/Esinx—ll
15. 8log Sinx + 1 42 log ﬁsinx+1|+c
16. xtan 'x + xtan™ ' (1 —x)+%log|x2—2x+2|+tan_1(x—1)—%log @2+ 1) +c
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17.

18.

19.

+ tan_l (Jcosx) +c

2 Lo cosx + 1
Jcosx 2 Jeosx —

1 1+ sinx 1

1 log 1— sinx 2(1+ sinx)

1 X 1 22X X
2log‘tan2‘+4sec > tuns +c

200 () (@ 2 ) B @@ @ ) (© 6G) © () (@ @ @ © (b (10) (b)
(11) (a)
Exercise 3.1
A 38
1. 8 2. 10 3. % 4. X
5. e—e¢! 6. %(e2 —eh 7. 6 logse 8.3
9. -3 10. 2 log e 11. 26 12. sinb — sina
13. 2 14. 1 15. 20
Exercise 3.2
5
1 2 _t T 1
1. 1.2 2. (1-%) 3. E 4. L log2
5. V2 6. V2 — 1 7. L 8.1 log6
1 3 -1 _ T _T_
9. §log6+ < ran Js 10.2 -2 1. 55
12. 6 — 4 log 2 13. & 14. tan"le — L 15. & — 7 log2
ud _n 1_ 4fBm -11
16. Z 17. -2 18. 1 = 19. an”! 5
L -1 /2 n _ n _ 1 32
20. G5 tan ‘/Z 21. L — 22. L — 23. Liog ()
17— 1 Lige 8 1 _m 41
24. 2(J5 1+ 4 log (W2 + 1) 25. L log 26. ;log2 — £ + &
= -1( 1 2
27. F tan (_5) 28. = tan Jg) 29. 4 30. 47
445_T 13
31. t+5 -1 3. 2 33. 4 34. 0
1 9
35. 0 36. 2 37. 1 38. 2
Exercise 3.3
L. M0 0 AHo WHo (L ©2
2. )0 (20
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Exercise 3

2
T _ 1.4 _ 1 a+b
3. = 2) T 5. —64 8. 2(1 log2) 9. b log —7
A 13 L 3 T _ 1 T 2 2
10. ;5 tan ;) 11. 0 12. o3 > log > 13. <73 log2 14. 5 log2 15. 5t log (3)

16. & 17.22 = 1) 18, & 1. 15;‘38
22. () © 2 @ 3 @@ © G @ 6 b ) © B (@ O (b 10) (b

(11 (@ (12) (@) (13) (b) (14) (b) (15) (d) (16) (b) (17) (d) (18) (a) (19) (b) (20) (©)

Exercise 4.1

136 32 2 32
4. 3 S. 3 6. 36 7. a 8. 3

[a—y
wla
N
O
W
w

Exercise 4.2

L2722 3.i .8 532 62 7L g8 95 10.L

14n 12, 2 5 —2)

Exercise 4

1. 1—25 2.
8T _ 32 smo_ 1 9 4
1. 8¢ 23 12, : 132 121 152 163

3.

W

T g
4. vy 5.3 6.

] N=)

4 13 23
7. 3(8 + 3m) 8. 3 10. r

=

17.. (1) © @ @ G © @ (b)) G © 6 © ) (b)) @ d O (© 10) (b
(11) (a) (12) (b) (13) (d) (14) (a) (15) (b) (16) (d) (17) (d) (18) (c¢) (19) (a) (20) (b)

Exercise 5.1

1. Sr. No. Order Degree

1 2 1

2 1 4

3 2 Undefined
4 1 1

5 3 2

6 2 2

7 1 2

8 3 2

9 2 1

10 2 3
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Exercise 5.2

d)2

dy
dx

d’y _ o
2. dx2_0 3. T ( )
dy

1. (x—y)z[(%)2+ 1]=(x+y

2

=0 (Z)x(

@) X%y, +xpp =y =0 (5 x— =3y

d
2 2y &Y
4. (x y)dx 2xy

d
))=yzx—y 02k (%) =0

d2
© ;=4 =) D TE e[ 2] -y

dx* dx

Exercise 5.3

1. (1) 27+ 32=3x2+6log |x| + ¢
(3) siny = ccosx
(5) (& + 1V)sinx =c
(7) x=clogy
(9) y=x%+ logx
(11) 4e* + L =38
y
(13)y=x+ Dlog(x+1) —x+3
(15)y = secx
2. (1) tan(x +y) —sec(x +y)=x+c

3B) x+y+2ec=e"1

X+
3 y—atan_l( ay) =c

2) &=+ )+ e

4) log|y|=log|secx|—tanx+c
(6) tan y =x+ = +c

(8) 7 =2x2 + 1

(10) 8¢ = x(y + 2)?

(12) xsecy = 2

(14) y =sinla-x + 1

ex
(16) y=x+1+c

2) c(x—y+2)=e—x
@) c@E@tr+1n=¢

Exercise 5.4

-2
1. (1) x—yp)2=cxe *

2 -
(3) xtan " c
5 —cos% = logx + ¢
2y +x
NYTX o2
@) Ly —x cx
X
(9) ex =xc

X
(11) —e * = log xc

(13) sin % = xc

A
(2) sec p xyc
4 e’ =y+ec
6) 2e =10g;
8 ye? +x=c¢
Y _ 1) =
(10) y(log; 1)=¢

(12) yx2 =c(y + 2x)
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2. (1) x2@2+ 2% =3 (2) e x =logx
2, 2
3) e x =X 4) xex* =e
|2 y
5) x=e 7 6) ¥ty =x
Exercise 5.5
1. y= % [2sin x — cos x] + ce 2 2. y=-——e* ¥+ cx
3. l=logx+c 4. y2=x+c
x 1+ x
5. y+x+1=ce 6. wr=e@G@r—2x+2)+c
7. y=—% e 4 e 8. (1 +x2)y=4—’3‘3+c
9. xelan 'y = gtan”ly (tanly — 1) + ¢ 10. ylogx = —% (1 +log x) + ¢
11. y = (cotx + 1) + cet> 12. % =2y +c
Exercise 5.6
_X
1. y=ce 4 2. 16 times, 3000
3. xr=—2y 4. 14 years, 6.9 %
5. my=125¢ 6.  y2 = 2kx, (k is arbitrary constant)
7. y2—x2=3
Exercise S
d?y dy 2 dy
5. Xy == +x[aj =V
xty 2 2 -1
6. (1) 1+ tan > = ce* 2) yx=+ 1D)"=tan 'x +c
= c
(3) 2¢” =log ?|’ y#0 @4 X*E*P—-2%)=c
(5) x*+y?=2x 6) y=tanx— 1+ cetanx
7. 1) (b)) 2) @ () (b @ () S (b 6 © ) (© @ (b O (@ 10) (8
(11 (b) (12) (¢) (13) (d) (14) (a) (15) (a) (16) (b)
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11.

25.

30.

36.

Exercise 6.1

M4 25 332 2. 2i-27+
(6, —4, —4) 4. 127 —8J3] + 8k

5

R
110 110 110
Scalar components are 3, —6, 7; Vector components are 3 i, —6}', Tk

G5 @i)5 (ii) 5v2

Exercise 6.2

5 2. (-7, 3, 5) 3. (—6, —24, 6) 4. 843
3 6. (=5, 5, 0) 7. =2 8. 0
(1,—11,11) 10. 7J6

Exercise 6

T ©m 3n. L =1 n T on., L L
(1) Ta ?5 Ta ﬁa Oa JE (2) 2 4> 4907 ﬁa JE

—1_1. —112. —-18. 1 12. 84
(3) cos cos ;€os oS T70 g5 %5

(2 i) or (—2 —i) 16. £ 243 18. 2491 24, 16

13° 13 13 13 5
@ -2.2.2¥3  26.bf: (6] 27. (% 2. £
E L+ (Z 4L -enn 3 (FEEo0 3322 3410

1 ® @ @ G © @ O® G © © b 7 G 6 d 9 (@ 10) (@
(11D (@ (12) (¢) (13) () (14) (a) (15) (c) (16) (b) (17) (b) (18) (a) (19) (¢) (20) (d)
21 (© 22) (d) 23) (@ 24 (b) (25 (o)

Exercise 7.1

xX-2 _ y+1 _ z-3

2 -3 4

r

2, —1,3)+ k2, -3, 4), k€ R;

xX=2 Z+9

5 =T,y—3=0;7=(2,3,—9)+k(2,0,4),k€R
Non-collinear 4, A 3 L

V26~ J26 7 V26
- 11 C3x-D) _ 2y+2) _ z-1
F=(, =2, D+ k(33 1) ke R - — .
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10.

12.

11.

14.
16.

(4,0, —1) 7. cos! Slﬁ 9. (1) Skew (2) Parallel (3) Skew (4) Intersecting (5) Parallel

(A 1 BT g, [UE

J1038 3

Exercise 7.2

ﬁm,—z, ) 2.7-(2,2,-1)=52x+2y—z=5 3.2x—3y—5z=11

x+2y—3=0; 3,%,n0tdeﬁned 5.6x —y—5z=17 6. 13x — 7y —37z+ 134 =0

_ - i S . A2 19
x—y+1=0 8. 3 9. sin (Jﬁ) 10. /38 11. o
0

2x — Sy — 4z + 33 = 13. 55x — 2y + 13z = 40 4. x—y—z—1=0

Exercise 7

L) F-o)+k78). ke Ri VI3 2L 3.# 4.(=3,5 1), &

33 3 3 > 2
x—1 _ y—2 _ z-3 x—3 _ y+t2 _ z+4 _ -1 12

T - 7 6. 1 0 : 7. (3, —1, 1); sin 7600
ZrzZ=1 92,32 10.(4 —46);%=2"2=2%2. 5/

2 3 2 -3 4
4x+7y—5z—8=o;x;2=_l3=§ 12.x4+2y—2z=6 13.2x+ 16y — 13z —22=0

3x+4y—6z=6 15. 8x — 8y — 14z = —47
®H © @ © G @@ b &5 @ © © @ © @ b O @ 10) (©
(11) () (12) (d) (13) (b) (14) (a) (15) (b) (16) (b) (17) (d)
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TERMINOLOGY

(In Gujarati)

Approximate Value
Box Product
Coincident

Collinear Vectors
Component

Coplanar Vectors
Coplanar

Definite Integration
Degree

Dependent Variable
Differential Equation
Direction Angles
Direction Cosines
Direction of Line
Direction Ratios
Error

Free Vector

Global

Having same Direction
Homogeneous
Improper Rational Function
Independent Variable
Initial Condition

Inner Product
Integrating Factor (L.F.)
Integration by Parts
Linear Combination

Linear Differential Equation

Lower Limit

Monotonic

2UA HEL
RELRTER

Auldl

auw, Aulzal

ues

auddla alzal
AHAdl

[Rad Asan
ylRu

vadell ad

[Qsa uuls2e
(Esviu

(2551208

vl [Bau
(sopRunz (25 dvasil)
A

Ysd ulea

alus

aulza

auyf

wAd AR (A8
KA A

w3lMs Ad

vid: JLRIr
ASRUSIRS AU
B39l AsAR

Yt AW

Y [Asa uHlsw

SRR (1))

A5l
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Normal

Opposite Direction

Order

Outer Product of Vectors
Parallelopiped

Particular Solution
Perpendicular Bisector Plane
Projection Vector

Proper Rational Function
Rate

Scalar Product

Singular Solution

Skew Lines

Strictly Decreasing Function
Strictly Increasing Function
Subnormal

Subtangent

Symmetric Form

Tangent

Triangle Inequality

Upper Limit

Variable Separable

Vector Product

Vector Triple Produc t

Vector

e (YT

[a3s (B

sl

alzan eldopq
AUIAR 5
[alare B34

daolgauer s unda

uau Alza
BRI AN [@Q8
£

L TRITETEY
BRAMA G3A
[Qumadla Juui
Y ued (A8
Y aud [Qta
val@eo
AA/ANS

AMd 2a3u
s

Gisuella xamdl
Geaflu
Qi a4
ulea apeusz
alead G
alza
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