SEAL

GUJCET-E-2015

Test Booklet Code

B

This booklet contains 48 pages.

DO NOT open this Test Booklet until you are asked to do so.

Important Instructions:

- 1) This test consists 120 questions of Physics, Chemistry and Biology. Each question carries 1 mark. For each correct response the candidate will get 1 mark. For each incorrect response 1/4 mark will be deducted. Maximum marks is 120.
- 2) This Test is of 3 hours duration.
- 3) Use Black Ball Point Pen only for writing particulars on OMR Answer Sheet and marking answers by darkening the circle 4.
- 4) Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must handover the Answer Sheet to the Invigilator in the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 6) The CODE for this Booklet is **B**. Make sure that the CODE printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7) The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet.
- 8) Do not write your Seat No. anywhere else, except in the specified space in the Test Booklet / Answer Sheet.
- 9) Use of White fluid for correction is not permissible on the Answer Sheet.
- 10) Each candidate must show on demand his / her Admission Card to the Invigilator.
- 11) No candidate, without special permission of the Superintendent or Invigilator, should leave his / her seat.
- 12) Use of Manual Calculator is permissible.
- 13) The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet (Patrak 01). Cases where a candidate has **not** signed the Attendance Sheet (Patrak 01) be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 14) The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 15) No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 16) The candidates will write the Correct Test Booklet Code as given in the Test Booklet / Answer Sheet in the Attendance Sheet. (Patrak 01)

PHYSICS

1) A current of $\frac{25}{\pi}$ Hz frequency is passing through an A.C. circuit having
series combination of $R = 100 \Omega$ and $L = 2 H$, the phase difference between
voltage and current is
$(C) 30^{\circ} \bigcirc 2$ $(D) 90^{\circ} \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$
82 US (C) 30 (D) 90 2XTX2
(A) lags behind the voltage by π in phase
(C) leads the voltage by $\frac{\pi}{2}$ in phase (D) lags behind the voltage by $\frac{\pi}{2}$ in phase $ \frac{\pi}{2} = \frac{\pi}{2}$
(C) leads the voltage by π in phase
(D) lags behind the voltage by $\frac{\pi}{2}$ in phase 22141.412
3) An alternating voltage given as $V = 100\sqrt{2} \sin 100t$ volt is applied to a
capacitor of 1 μ F. The current reading of the ammeter will be equal to mA.
(A), 80 (A)
$\frac{\overline{(A), 80}}{(C) 40} = \frac{12100}{12100} = \frac{1200}{1000} = $
2000
4) The distance of the closest approach of an alpha particle fired at a nucleus
with kinetic energy K is r_0 . The distance of the closest approach when the α particle is fired at the same nucleus with kinetic energy 2K will be
(A) $2r_0$ (B) $4r_0$
(D) $\frac{r_0}{4}$
(Space for Rough Work)
R. C.
χ
202 K2 K2 K9
301
2022
Ka of Ko Tool
2 K 2
GUJCET-E-2015
BOOKLET B [3] (P.T.O.)

	٠.	9)
Ñ	DV	ec Til
40	60 X	10

A change of 0.04 V takes place between the base and the emitter when an input signal is connected to the CE transistor amplifier. As a result, 20 µA change take place in the base current and a change of 2 mA takes place in the collector current. Find the input resistance and A.C. current gain.

(A) $1k\Omega$, 200 SEC (B) $1k\Omega$, 100 $\Delta T_B = 20 \times 10^{-6}$. (C) $2k\Omega$, 200 $B^2 = \Delta T_B = 0$ (D) $2k\Omega$, 100 $\Delta T_2 = 2\times 10^{-3}$. (B) 2×10^{-3} .

10) A plane polarized light is incident normally on a tourmaline plate. Its \vec{E} vectors make an angle of 60° with the optic axis of the plate. Find the percentage difference between initial and final intensities.

- (A) 90%
- **(B)** 50% (D) 25%

Light of wave length \(\hat{\lambda} \) is incident on slit of width d. The resulting diffract ion pattern is observed on a screen placed at distance D. The linear width of central maximum is equal to width of the slit, then D =

- (A) d
 (C) $\frac{d}{\lambda}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$

(B) $\frac{2\lambda^2}{d}$ $\frac{1}{2} \frac{2}{4} \frac{10}{4}$ $\frac{2}{2\lambda}$ $\frac{2}{2\lambda} \frac{2}{2\lambda}$

12)	In a N-P-N transistor about 10^{10} electrons enter the emitter in $2\mu s$, when it is connected to a battery. Then $I_E = \mu A$.
4	(A) 1600 (B) 400 (C) 800 $1c^{2}$ $3c^{2}$ $2 \times 10^{16} \times 1.6 \times 10^{16}$
	(C) 800 2×10^{-6}
	(D) 200 $(600 \times 10^{10})^{3}$ $(600 \times 10^{10})^{3}$ $(600 \times 10^{10})^{3}$ $(600 \times 10^{10})^{3}$
	The effective length of a magnet is 31.4 cm and its pole strength is 0.8 Am. The magnetic moment, if it is bent in the form of a semicircle is Am ² .
14) E	(A) 0.12 (B) 1.2 (C) 0.16 (D) 1.6 (C) 2 P Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
<u>(</u> (A) neither attract nor repel each other attract each other c) lean towards each other
(I ——	(Space for Rough Work)

GUJCET-E-2015 BOOKLET B

18)	= ,	ed by shorting both the input terminals	or a NOK
	gate. (A) NAND	(P) NOT	i m.
	(C) AND	(D) OR	
· 19)	An optical fiber can offer	a band width of	
• • • •	(A) 250 MHz	(B) 100 GHz	
	(C) 750 MHz	(D) 100 MHz	
20)	To transmit a signal of 3 K	Hz frequency, the minimum length of	antenna is
	km (A) 75	t . 08	3,000
	(A) 75	(108 U) 25 1×10	5 4
	(C) 50 E	Hz frequency, the infinition longer of $\frac{108}{3\times10^{120}}$ (D) $\frac{25}{20}$ 1×10^{8}	
21)	27 identical drops of mer	cury are charged simultaneously with	the same
,	potential of 10 Volt. Assu	ming the drop to be spherical, if all the to form one large drop, then its poten	ne charged tial wil l be
	Volt.	* * * * * * * * * * * * * * * * * * *	,
	(Â) 10	(B) 40 (D) 90	N _N - 3
	(C) 160	(D) 90	:
			195
22)		moved from a neutral metal plate thro	
	process, the charge on it be (A) 10^{-19} C	+1.6 C	0000 Jan
	(C) 10^{19} C	(D) -1.6 C	
· _	(Space	e for Rough Work)	
			1

23)	One moving electron when con its kinetic energy and potential	nes closer to other stati	onary electron, then
	(A) decreases, decreases	(B) increases,	
	(C) decreases, increases	(D) increases,	decreases
10/20	Š	Safte a St	CO TO
24)	An inclined plane of length 5.60 r is placed in an uniform electric f	n making an angle of 45	with the horizontal
T QU	and charge 10 ⁻² C is allowed to sl	de down from rest posi	tion from maximum
10	height of slope. If the co-efficie	nt of friction is 0.1, th	e time taken by the
and the same of th	particle to reach the bottom is	AR	NEORIO 209
at I	(A) 1s (C) 2s C2 By Go.	$\chi^{1/2}(B)$ 1.41 s	30961
and.	(C) 2s C2 Bygo	(D) None of the	ese us
25	262	AF 2013	F281Q
$\binom{25}{2}$	Charges 1 µc are placed at each		of a square of side 2 ·
	$2\sqrt{2}$ m. The potential at the p		f the diagonals is
***	$(K = 9 \times 10^9 \text{ SI unit})$	· · · · · · · · · · · · · · · · · · ·	
	(A) 18×10°V LOX KCY	$\frac{\text{(B)} 1800 \text{ V}}{5}$	
	(A) $18 \times 10^3 \text{ V}$ (C) $18\sqrt{2} \times 10^3 \text{ V}$ 25°	(D) None of the	se
		4×9×109x	(1×10)
26)	A point charge q is situated at a c	listance r on axis from	one end of a thin
· · · · · · · · · · · · · · · · · · ·	conducting rod of length L having	a charge Q[Uniformly	y distributed along
	ts length]. The magnitude of elec	tric force between the	two is
	A) KQq	(B) $\frac{KQq}{2}$	36×10°
	r(r+L)	r^2	515
	KQq	2KQ	
	C) $\frac{1}{r(r-1)}$	(D) $\frac{2\lambda Q}{r(r+L)}$	
	(Space for R	ough Work)	State of the state
	\. <u>1</u>	<i>G</i>	

27)				tron move v			and 2v r	espective	ly, the	
,		$\sqrt{2}:1$		· h	(B)	2:1		PAT)	4	>
	(C)	1:1		SON	(D)		, ' 6	Jon Con	hora	
28)	de -	Broglie w	ave length	of atom at	TK abs	olute te	mpérati	ırë will be	B	
		j*************************************				/ h		212	200	J
	(A)	$\sqrt{2mKT}$		· · · · · · · · · · · · · · · · · · ·	(197)	$\sqrt{3mK}$	\overline{r}	2	MAN	
	(C)	$\frac{\sqrt{2mKT}}{h}$		* * * * * * * * * * * * * * * * * * * *	(D)	$\frac{h}{mKT}$		21	2	
v "				2. 4		1 :		٠.,		
29)		wave lei h will be	igth of ligh	it is 4000A					1	
•		25000 ·		· 1	(B)	2500	2	12 00	Tion,	45
	(C) ₁₂	250			(D) .	25	1	×10,	100° 1 100° 1 25 10°3	
30)	The f	reguencie	s of X ravs	, γrays and	Illira v	violet ra	VXI(S X	V n a	
. 20)	and r		P	, , rays and	D		•		10	
	(A)	p > q, q <	(r	·	(B)	p > q, q	$\gamma > r$	(0)	io Unhighs	Ŋ
	(C)	p < q, q <	(<i>r</i>		<i>J</i> D07 .	p < q, q	7>r	10 × ×	WILR	
31)	Photo	ns having	energy le	V and 2.5						
		g work fu	the state of the black	0.5 eV. The			*		1.25.44.4.4.4.	
•		1:3			(B) 2	2:1	1-0	3.5	- ·	
	(C) 3	3:1.			(D) 1	1:2	2.5	-01		
		4	(Space	e for Rou	gh W	ork)	. .	,		
					4	Jyr Jyr	nava P	20	Y	
	,				67	" N6	nado	. 1		
						\	max	12-	<u> </u>	
							Nwo	X2 2		

A and B are two points on a uniform ring of radius r.) The resistance of the ring is R. $\angle AOB = \theta$ as shown in the figure. The equivalent resistance between points A & B is

(B)

(C) $R\left(1 - \frac{\theta}{2\pi}\right)$

Two wires of equal length and equal diameter and having resistivities ρ_1 and p, are connected in series. The equivalent resistivity of the combination 18 1 -/ 1. ...

Match the following two columns.

	Column I		Column II
a)	Electrical resistance	p)	ML ³ T ⁻³ A ⁻²
b)	Electrical potential	q) [']	ML ² T ⁻³ A ⁻²
c)	Specific resistance	13	ML ² T ⁻³ A ⁻¹
d)	Specific conductance	s)	None of these

(A)
$$a-p, b-r, c-q, d-s$$

(B)
$$a-q$$
, $b-r$, $c-p$, $d-s$
(C) $a-p$, $b-q$, $c-s$, $d-r$

(C)
$$a-p, b-q, c-s, d-r$$

(D)
$$a-q, b-s, c-r, d-p$$

Angle of prinimum deviation for a prism of refractive index 1.5 is equal to the angle of prism of given prism. Then the angle of prism is _____

m. 18 2

36) A ray of light passes from a medium A having refractive index 1.6 to the medium B having refractive index 1.5. The value of critical angle of medium

medium B having refractive index 1.5. The value of crit	tical angle of medium
A is 920C 2	1.5 x22898A
(A) $\sin^{-1}\left(\frac{15}{16}\right)$ (B) $\sin^{-1}\sqrt{\frac{16}{15}}$	
(16) 810CA 2-1 (B) 311 V15	100×2-2+
(C) $\sin^{-1}\left(\frac{1}{2}\right)$ 2 $\int_{-\infty}^{\infty}$ (D) $\sin^{-1}\left(\frac{16}{15}\right)$	200
(.6.	
(Space for Rough Work)	

(B)
$$\sin^{-1}\sqrt{\frac{16}{15}}$$

(C)
$$\sin^{-1}\left(\frac{1}{2}\right)$$

$$(D) \quad \sin^{-1}\left(\frac{16}{15}\right)$$

(Space for Rough Work)

16 16 x 10 8 PO PONS 1.5 10 x 15 48°36'2 STANGEN SANC 2 July (15) COSA [12] C= 870 (15)

GUJCET-E-2015 BOOKLET B

CHEMISTRY

- 41) What is IUPAC name for isophthalic acid?
 - (A) Benzene 1, 5 dicarboxylic acid
 - Benzene 1, 2 dicarboxylic acid
 - (C) Benzene 1, 4 dicarboxylic acid
 - (D) Benzene 1, 3 dicarboxylic acid
- 42) What is the name for (ed azo dye)
 - (A) p N, N dimethyl amino azo benzene
 - (B) β napthyl azo benzene
 - (C) p amino azo benzene
 - (D) p hydroxy azo benzene
- 43) Which of the following is not formed by Sandmayer reaction?
 - (A) C_6H_5CN

(B) C₆H₅I

(C) C_6H_5Br

(D) C_6H_5C1

For which vitamin liver is not the source?

(A) Vitamin - H

(B) Vitamin - B_2

(C) Vitamin-B₁₂

(D) Vitamin - B₁

•	joined by $C_1 - O - C_4$ chain.	
	(A) Amylopectin	(B) Lactose
	(C) Cellulose	(D) Maltose
•		
4	6) Which of the following polymerisation reaction?	polymer is formed by cationic addition
	(A) PVC	(B) Poly styrene
	(C) Teflon	(D) Butyl rubber
47	Which of the following polyn	ner is used in pigment?
	(A) Orlon	Neoprene.
And State of	(C) Teflon	Buna - S
48)	To prevent food from spoilage	by microorganism, which substance is used?
	(A) Tetrazine	(B) Arneto
aX.v	(C) Salt of sorbic acid	(D) Aspartame
	(Space fo	r Rough Work)

45) In which of the following compound, all the monosaccharide units are not

49)	Wh	nich of the following de	efect is seen in F	eO?		-
	(A)	Impurity defect			•	•
	(BY)	[®] Metal deficiency def	ect			
	(C)	Displacement defect				`.
	(D)	Metal excess defect	,			
50)	Wh	ich of the following su	bstance possess	antiferromag	neticproper	rty?
	(AX)	MnO	(B)	CrO ₂		
	(C)	H ₂ O	(D)	Fe ₃ O ₄		
		.			•	
51)	cons wha [Ure	boiling points for aquistant temperature. If 3 t is the weight of sucrosea - 60 gm/mole, sucrose34.2 gram	gm of urea is o se dissolved in	dissolved in its 1 litre solu	its I litre so	
	(C)		(D)	3.0 gram	60	342
52)	Whi	ch option is inconsista	nt for Raoult's l	aw?	en e	
7	(A)	Solute undergoes diss	sociation in solu	tion		
	(B)	The change in heat of	dilution for sol	ution = 0		
	(C)	Solute does not under	go association i	n solution	in the second of	
	(D)	Volume of liquid solution.	lvent + volume	of liquid so	lute = volu	me of
- •						
			-			

53)	Which colligative property is more useful to determine the molecular weight of the substances like proteins and polymers?
1	(A) Osmotic pressure
	(B) Elevation in boiling point
	(C) Depression of freezing point
	(D) Lowering of vapour pressure
	man of the state o
54)	The resulting solution obtained at the end of electrolysis of concentrated aqueous solution of NaCl
•	(A) the colour of red or blue litmus does not change
	(B) turns blue litmus into red
· · · · · · · · · · · · · · · · · · ·	(C) remains colourless with phenolphthalein
	(D) turns red litmus into blue
t	
256	The value of E° for metal A, B and C are 0.34 Volt, -0.80 Volt and 0.46 Volt respectively. State the correct order for their ability to act as reducing agent. (A) C > A > B (B) A > B > C (C) B > C > B > A (D) C > B > A (E) C > B > B > C (E) C > B > A (E) C > B > C (E) C > C > B > C (E) C >
	(C) 29.25 gm (D) 58.5 gm
GUJCET-BOOKLE	

57) Which method is used to get very pure germanium used in semiconductor?

(A) zone - refining

- (B) vapour phase refining
- (C) liquation
- (D) electrolysis
- 58) Which product will be obtained in the following reaction?

Reaction: $P_{4(s)} + 3NaOH_{(aq)} + 3H_2O_{(l)} \rightarrow 2PH_3 + 3NaOH_{(aq)} + 002$

- (B) $PH_{3_{(g)}} + 3NaH_2PO_{2_{(gg)}}$
- (C) $2PH_{3_{(g)}} + 3Na_2HPO_{2_{(aq)}}$
- (D) $PH_{3_{(g)}} + 3Na_2HPO_{2_{(aq)}}$
- 59) The molecular formulae for phosgene and tear gas are ____ and ____ respectively.
 - (A) SOCl₂ and CCl₃NO₂
- (B) COCl₂ and CCl₂NO₂
- (C) COCl2 and CCl3NO2
- (D) SOCl₂ and CCl₂NO₂
- Which of the following mixture is called Aquaregia?
 - (A) Three parts of conc. HCl and 1 part of conc. HNO,
 - (B) Three parts of dil. HCl and 1 part of conc. HNO₃
 - (C) Three parts of conc. HCl and 1 part of dil. HNO₃
 - (D) Two parts of conc. HCl and two parts of conc. HNO,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	when of the following is anythe mande:
	(A) 3 - chloro cyclo hex-1-ene (B) (1 - bromo ethyl) benzene (C) 1 - bromo benzene
	(B) (1 - bromo ethyl) benzene
	(C) 1 - bromo benzene
	(D) Benzyl chloride
	62) 50% of the reagent is used for dehydrohalogenation of 6.45 gmCH ₃ CH ₂ Cl ₃ . What will be the weight of the main product obtained?
•	[At. mass of H, C and Cl are 1, 12 & 35.5 gm/mole ⁻¹ respectively]
20	(A) 5.6 gm (B) 1:4 gm (C) HT (10) 102°
(A) (PA) 24	(A) 5.6 gm (B) 1.4 gm (2 H5 C10 1) 2° (C) 2.8 gm Cn H2n 1 = 6.65 (D) 0.7 gm (6 4.5 82.25)
(Colons	
	Name the following reaction $CH_3CH_2Cl + NaI \xrightarrow{acctone} CH_3CH_2I + NaCl$
	(A) Hell-Volhard Zelinsky reaction Cn Henz 64.5
	Prinkel-stein reaction
	(C) Wurtz reaction 50% — 6.45grs n 281.75
	(D) Swartz reaction
	Ot2 TOH2
	Which reagent is used for bromination of methyl phenyl ether?
	(A) HBr/A - 32.75 - 612
	(A) HBr/A (B) Br ₂ /CH ₃ COOH) (C) B (T) (CH ₃ COOH) (C) B (T) (T) (CH ₃ COOH) (C) B (T)
	(IV) Rr / Haitr
	$\frac{\text{BL}_2 / \text{TeBL}_3}{\text{BL}_2 / \text{Red P}}$
	musole

- (SFITTHOOK TO HOW Which of the following acid does not have -COOH group?
 - (A) Salicylic acid
- (B) Picric acid

(C) Benzoic acid

- (D) Ethanoic acid
- Which of the following statement is not correct?

Boiling point of o-nitrophenol is lower than that of p-nitrophenol

- (B) Phenol is neutralised by sodium carbonate
- Solubility of phenol in water is more than that of chlorobenzene
- (D) Phenol is used to prepare analgesic drugs
- Total order of reaction $X + Y \rightarrow XY$ is 3. The order of reaction with respect to X is 2. State the differential rate equation for the reaction.

(A)
$$-\frac{d[X]}{dt} = K[X][Y]^2$$

(B)
$$-\frac{d[X]}{dt} = K[X]^0 [Y]^3$$

$$(\mathcal{C}) - \frac{d[X]}{dt} = K[X]^{2}[Y] \qquad (D) - \frac{d[X]}{dt} = K[X]^{3}[Y]^{0}$$

 $X \xrightarrow{Step-I} Y \xrightarrow{Step-II} Z$ is a complex reaction. Total order of reaction is

2 and Step - II is slow step. What is molecularity of Step-II?

(A) 4

(C) · 3

(D) 1

Reaction $3ClO^- \rightarrow ClO_3^- + 2Cl^-$ occurs in following two steps.

- (i) $ClO^- + ClO^- \xrightarrow{K_1} ClO_2^- + Cl^-$ (Slow step)
- (ii) $ClO_2^- + ClO^- \xrightarrow{K_2} ClO_3^- + Cl^-$ (Fast step)

then the rate of given reaction = _____

(A) $K_2[ClO^-]^3$

- (B) $K_1[ClO^-]$
- (C) $K_2[ClO_2^-][ClO^-]$
- (D) K₁ [ClO⁻]²
- 70) At given temperature and pressure adsorption of which gas of the following will take place the most?
 - (A) Di nitrogen 2
- (B) Di oxygen 2

(C) Ammonia

- (D) Di hydrogen H2
- 71) Which type of colloid is the dissolution of sulphur (S_8) ?
 - (A) Macromolecular colloid
- (B) Micelle
- (C) Multimolegular colloid
- (D) Associated colloid
- (72) For Adsorption phenomenon,
 - (A) $\Delta H = +ve$, $\Delta S = +ve$
- $\Delta H = -ve, \Delta S = +ve$
- (C) $\Delta H = -ve$, $\Delta S = -ve$
- (D) $\Delta H = +ve$, $\Delta S = -ve$

- Which of the following statement is incorrect for KMnO₄?
 - (A) It is dark purple coloured amorphous substance.
 - (B) It is used as antiseptic.
 - (C) It is used as bleaching agent in textile industries.
 - (D) It is an oxidising agent.

Which of the following ion has the maximum theoretical magnetic moment?

Which of the following oxide has the maximum basicity?

(A) Gd,O,

- (B) Pr₂O₃
- (D) La₂O₃
- CQ
- Which of the following spectrochemical series is true?
 - (A) $SCN^- < F^- < en < CO < NH_3$
 - (B) SCN < F < NH₃ < en < CO
 - (C) $SCN^- < F^- < en < NH_3 < CO$
 - (D) $SCN^- < NH_3 < F^- < en < CO$

77) Which of the fo	ollowing complex is paramagnetic?	-22x-42x 0613-21-42x
(A) [NiCl ₄] ² -	(B) (Co(NH ₃)	26/34) 21=+2
(C) [Ni (CN) ₄	D) [Ni (CO)]	1 DOBYE
	and [Ni(CN) ₄] are diamagnetic. The to	
(A) dsp^2 , $d\underline{sp}^2$	(B) sp ³ , dsp ²	satus1
(C) dsp^2 , sp^3	(D) sp ³ , sp ³	111111111111111111111111111111111111111
Which of the fo	ollowing order of acidic strength is not	correct?
ANCH (A) CH, COOL	H>CH ₃ CH ₂ COOH>(CH ₃) ₂ ·CH·CO	OH C \$133 CMG (120)
(B) CH ₃ ·CH ₂ ·C	CH.COOH>CH, CH-CH ₂ -COOH>C	H ₂ ·CH ₂ ·CH ₂ ·COOH
(C) H-COOH	> CH ₃ COOH > C ₆ H ₅ COOH 1	
(D) Cl ₃ ·C·COO	OH > Cl ₂ ·CH·COOH > Cl·CH ₂ ·COOH	
80) What is the form	nula of Acrolein?	10780780.
(A) $CH_2 = CH$	-CONH, CH2CICOC	of CACIO CCIO
$CH_2 = CH$		
(C) $CH_2 = CH$	- COOH	
(D) CH2 = CH	– СНО	
	(C C D 1 . YAZ . 1 .	

BIOLOGY

81)) A-	The DNA fingerprint is the same for every cell, tissue and organ of a person.		
	R -	DNA fingerprint is used for treatment of inherited disorders like Huntigton's disease, Alzheimer's and Sickle cell anemia?		
	(A)	A is wrong and R is correct		
	(B)	A and R both are correct but R is not explanation of A		
	(%)	A is correct and R is wrong		
•	(D)	(D) A and R both are correct. R is explanation of A		
		\·		
82)	Which part is not included in Coehlear duct?			
	(A)	Tectorial membrane	(B)	Macula of Utricle
	(C)	Scala Media	(D)	Reissner's membrane
		• ,		
83)	Whi	ch is Gynandromorph type of animal?		
. *	(A)	Drossophilla	(B)	Beetles
rij PC.	(C)	Silk worms	Ø	All of the above
•				
84)	DNA	polymerase enzyme is iso	lated from	which bacteria?
	(A)	Agro bacterium	(B)	Thermus aquaticus
<u>. </u>	(C)	Bacillus thrunegenesis	(D)	E.Coli
		(Space for	Rough W	(ork)

85) Match the column I, II and III

Column I

Column II

Column III

P) (Trichomoniasis)

- i) Herpes Simplex
- x) Pain in lower abdom en

Q) Syphilis

- ii) Neisseria gonorrhoeae
- y) Inflammation and itching in and arounch vagina

- R) Gonorrhoea
- iii), Treponema
- z) Patchy hair loss

- S) Genital herpes
- iv) <u>Trichomonas</u> Vaginalis
- w) Feeling of uneasiness
- (A) (P i z) (Q ii y) (R iv w) (S iii x)
- (B) (P iv y) (Q i z) (R ii x) (S iii w)
- (C) (P iv x) (Q i w) (R ii y) (S iii z)
- (D) (P iv y) (Q iii z) (R ii x) (S i w)
- 86) What is the height and weight of twelve weeks old human embryo?
 - (A) 32 cm, 650 gram
- (B) 7.5 cm, 14 gram
- (C) 42 cm, 1800 gram
- (D) 7.5 cm, 650 gram

Fram Rooms and Morth

87) Assertion A: Restriction endonuclease recognize short palindromic sequence and cut at specific sites.

Reason - R: When a restriction endonuclease acts on Palindrome, it cleaves both the strands of DNA molecule.

- (A) A is wrong and R is correct
- (B) A and R are both correct but R is not explanation of A
- (C) A is correct and R is wrong
- (D) A and R are both correct. R is explanation of A.
- 88) Write proper option by matching column I, II and III.

Column I Column II Column III (Name) (Enzyme) (Function) P) Chymo-Gastric Juice A) Dipeptide convert into amino acid trypsinogen B) Proteoses convert into Intestinal Juice , Q Ptylin small polypeptides R) Renin C) Casein convert into iii) Saliva paracasein Pancreatic juice S) Erepsin D) Conversion of starch into maltose

(A)
$$(i - Q - A)(ii - P - C)(iii - R - B)(iv - S - D)$$

(C)
$$(i - S - D)(ii - R - C)(iii - P - B)(iv - Q - A)$$

(D)
$$(i - R - C)(ii - S - A)(iii - Q - B)(iv - P - D)$$

89) Write the correct sequence of genetic diversity.

- (A) Kingdom → Species → Chromosomes → Genes → Nucleotides
- (B) Population \rightarrow Species \rightarrow Chromosomes \rightarrow Genes \rightarrow Nucleotides
- (C) Species \rightarrow Genes \rightarrow Population \rightarrow Chromosomes \rightarrow Nucleotides
- (D) Kingdom \rightarrow Population \rightarrow Species \rightarrow Genes \rightarrow Chromosome → Nucleotides

Match the column I and II and select the correct option.

C

S

P

R

P

Column I

Column II (concentration of DDT in ppm)

- A) Zooto Plankton
- P) 0.003 ppm
- B) Small fishes
- Q) ²2 ppm

Water C) (

- R) 25. ppm
- D) (Fish eating birds
- 0.04 ppm S)c

E) Big fishes

- 0.5 ppm T)
- \mathbf{B} A

T

- D E
- (A) Q P
- T R

S **(B)**

R Q

(C) S

- P Q
- R

91) Which of the following disease causes severe back pain?	shows the blockage of kidney tubules and
(A) Nephritis	
(B) Kidney failure	
(C) Uremia	
(D) Renal calculi	
respectively in Peroxisome?	compounds are formed having 2C and 3C
(A) Phosphoglycerate, Glycola	Le te
(B) Glycine, Glycerate	
(C) Serine, Glycine 2 C	
(D) Glycolate, Glycine 2	
93) During rainy season wooden doo Why?	ors and windows are not properly closed.
(A) Imbibition	
(B) Diffusion	
(C) Osmosis	
(D) Plasmolysis	
(0	

Match the column I, II and III

Column I

Column II

Column III

- A) Sickle Cell Anaemia
- i) Due to recessive PP genes
- P) Arrangement of Valine in place of . Glutamic acid

- B) Phenyl Ketonuria
- ii) Due to absence of homogentisic oxidase enzyme
- O) Inborn error of metabolism

- C) Alkaptonuria
- iii) Follows Mendelian R) Urine turns black Principles
 - when exposed to air

- D) Thalassaemia
- iv) Characters caused S) The required by homozygous recessive genes
 - haemoglobin is not generated in the blood
- (A) (A iii R)(B i Q)(C iv P)(D ii S)
- (B) (A iv P) (B i Q) (C ii R) (D iii S)
- (C) (A iv P) (B iii R) (C i S) (D ii R)
- (D) (A ii S) (B iii R) (C i Q) (D iv P)
- Which of the following is the symptom of Ulcerative colitis? 95)
 - (A) Eyes turn yellow
 - Difficulty in swallowing
 - Loss of appetite (C)
 - Watery stools containing blood and mucus

- 96) Which one is not cranial bone?
 - (A) Sphenoid

(B) Zygometic

(C) Temporal

(D) Frontal

97)

In this process which of the following play important role?

(A) Chlorophyll

- (B) Light energy
- (C) Ca++, Mn++, Cl-
- (D) All of the above
- 98) Which of the following is correct trend of succession in Hydroseric succession?
 - (A) Rooted submerged → Phytoplankton → Reed swamp → Sedge medow
 - (B) Phytoplankton → Reed swamp → Rooted submerged → Sedge melow
 - (C) Phytoplankton → Sedge medow → Reed swamp → Root submerged
 - (D) Phytoplankton → Rooted submerged → Reed swamp → Sedge

99

On which surface of cell Donnan equilibrium occur?

- (A) Nuclear membrane
- (B) Tonoplast
- (C) Plasma membrane
- (D) Cell wall

100) Which type of gene regulate sex-determination in Spinach plant?

(A) Multiple genes

(B) Heterozygous genes

(C) Single gene

(D) Homozygous genes

101) When the respiratory substances are more than one then which respiratory substrates are not used?

(B) Lipid

(C) Carbohydrate

(D) (A) and (B) both

102) State the condition of muscle contraction in following diagram.

- (A) Resting potential
- (B) Contraction
- (C) Maximally contracted
- (D) None

103) How many years are considered in one minute in Geological clock?

(A) 1,90,000 years

(B) 1,87,500,000 years

((Ø) 3,25,000 years

(D) 52000 years

104) Which structure is formed at the time of exchange of gamete nuclei in given animal during sexual reproduction.

- (A) Cytoplasmic bridge
- (B) Cytoplasmic filaments

(C) Internal tubule

(D) Plasmodesmata

105) Name the plant shows adventive embryonic cells.

- (A) Lemon and Palms
- Citrus and Mango
- (C) Lemon and Maize
- (D) Sunflower and Mango

106	a Dur	ing respiration	
100		PGAL is not produced during respiratory events	
	· (/1)	1 O/AL is not produced during respiratory events	
	(B)	2 PGAL during glycolysis and 4 Pyruvic acid are produced in Kreb's cycle	
	(C)	2 PGAL during glycolysis and 2 Pyruvic acid are produced in Kreb's cycle	
	<i>(</i> b)	2 PGAL during glycolysis and none of the PGAL produced in Kreb's cycle	
107)	Whic	ch of the following function is performed by collecting tubule of kidney?	
	(A)	In the maintenance of pH and ionic balance of blood by the secretion of H ⁺ and K ⁺ ions	
	(B)	Maintenance of pH of blood and removal of Na ⁺ and K ⁺ ions	
	(C) Absorption of glucose and ammonia from the blood		
	(D)	None of above	
l 08)		Nerve fibre can become excited through touch, smell, pressure and ical changes and there is a change in polarity.	
	R - It	is called active potential.	
	-		

- - (A) A is wrong and R is correct
 - A and R both are correct but A is not correct explanation of R.
 - A is correct and R is wrong
 - A and R both are correct and A is correct explanation of R.

(Space for Rough Work)

GUJCET-E-2015 BOOKLET

(P.T.O.)

109) Select proper option, by matching column I, II and III.

Column I

Column II

Column III

(Common Name)

(Roman Numerical Designation)

(Activation product)

P) (Prothrombin)

i) Convertin

Q) Proconvertin

ii) Fibrin

R) Fibrinogen

z) II

iii) Thrombin

S) Proaccelerin

w) VII

iv) Accelerin

(A) (P-z-iii) (Q-w-i) (R-x-ii) (S-y-iv)

(B) (P - w - ii) (Q - z - iii) (R - y - iv) (S - x - i)

(C) (P-z-iii) (Q-w-ii) (R-x-iv) (S-y-i)

(D) $\overline{(P-z-iii)}$ (Q-w-i) (R-y-ii) (S-x-iv)

110) What is "A" and "B" in given diagram?

(A) A = Lagging strand

B = Movement of Helicase

(B) A = RNA Primer

 $B = D\tilde{N}A$ Helicase

(C) A = Single strand Binding Protein

B = DNA Helicase

(D) A = RNA Primer

B = RNA Helicase

111) In which field application of biotec	chnology occurs?
(A) Bio-medicine	
(B) Agriculture	
(C) Environmental field	
(D) All of the above	
112) shows anti-allergic and an	ti-inflammatory effect.
(A) Noradrenaline	
(B) Glucocorticoids	
(C) Sexcorticoids	
(D) Mineralocorticoids	
	•
113) During the process of decompositio convert into inorganic ions and sal	n in which stage complex organic matter ts by fungi?
(A) Mineralization	(B) Catabolism
(C) Fragmentation	(D) All of the above
114) How much amount of volume of a	ir is in lungs FRC?
(A) 1600 ml to 2100 ml	(B) 2100 ml to 2500 ml
(C) 2500 ml to 3000 ml	(D) 1500 ml to 1600 ml
F	
(Space for R	ough Work) RV4ERV 21100+
	21100+

115) What indicated "A" in given figure?

- (A) Hydrophobic bond
- (B) Glycocidic bond

(9) Disulfide bond

- (D) Peptide bond
- 116) What is total diastolic time of ventricle in cardiac cycle?
- 0.1 0.1

(A) 0.10 second

(B) 0.40 second

(C) 0.50 second

- (D) 0.30 second
- 0.4
- 0.4
- 205

- 117) Which amino acid determines by four genetic codes?
 - (A) Tyrosine (Tyr)
- (B) Proline (Pro)

(C) Serine (Ser)

(D) Leucine (Leu) G.

118) Which is the inhibitory hormone of GH?

- (A) Testosterone
- (B) Parathormone

(C) Somatostatin

(D) Insulin

119) Complete and balanced the following reaction.

$$Na_2HPO_4 + X \rightarrow Y + NaH_2PO_4$$

$$X = H_2CO_3$$
, $Y = NaHCO_3$

(B)
$$X = H_2CO_3$$
, $Y = NaH_2CO_3$

(C)
$$X = NaHCO_3$$
, $Y = H_2CO_3$

(D) $X = NaHCO_3$, Y = NaCl

120) How many molecules of ATP and NADPH are require in formation of two molecules of glueose) How many Calvin cycles are required?

- (A) 24 ATP, 36 NADPH, 12 Calvin cycles
- (B) 18 ATP, 12 NADPH, 6 Calvin cycles
- (C) 36 ATP, 24 NADPH, 6 Calvin cycles
- 36 ATP, 24 NADPH, 12 Calvin cycles

1 - SATP ENAD

1-2 18FAP 12 MAD.

2-86 24NA

· 12 Cycles