CHAPTER 1

NUMBER SYSTEMS
I

1.1 Introduction

In your earlier classes, you have learnt about the number line and how to represent
various types of numbersonit (see Fig. 1.1).
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Fig. 1.1: Thenumber line

Just imagine you start from zero and go on walking along this number linein the
positive direction. As far as your eyes can see, there are numbers, numbers and
numbers!

3 2 -1 -

Fig. 1.2

Now suppose you start walking along the number line, and collecting some of the
numbers. Get a bag ready to store them!
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2 M ATHEMATICS

You might begin with picking up only natural
numberslike1, 2, 3, and so on. You know that thislist
goes on for ever. (Why is this true?) So, now your
bag containsinfinitely many natural numbers! Recall
that we denote this collection by the symbol N.

Now turn and walk all the way back, pick up
zero and put it into the bag. You now have the
collection of whole numbers which is denoted by
the symbol W.

Now, stretching in front of you are many, many negative integers. Put al the

negative integers into your bag. What is your new collection? Recall that it is the
collection of all integers, and it is denoted by the symbol Z.

Z comesfromthe
Germanword
“zahlen”, which means

“to count”.

Arethere some numbers still left on the line? Of course! There are numbers like

13

—2005
22 or even 006 If you put all such numbersalsointothebag, it will now bethe
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NUMBER SYSTEMS 3

collection of rational numbers. The collection of rational numbersis denoted by Q.
‘Rational’ comes from the word ‘ratio’, and Q comes from the word ‘ quotient’.

You may recall the definition of rational numbers:

A number ‘r’ is called a rational number, if it can be written in the form ap ,
where p and q are integers and g # 0. (Why do we insist that g = 07?)

Noticethat all the numbers now in the bag can be writtenin theform ap ,Where p

-25
and g areintegers and g = 0. For example, —25 can be written as T; herep =-25
and g = 1. Therefore, the rational numbers also include the natural numbers, whole
numbers and integers.
You also know that the rational numbers do not have a unique representation in

theform ap,wherepandqareintegersandq;to. Forexample, - =~ =7—= =—

47

= a , and so on. These are equivalent rational numbers (or fractions). However,

when we say that P isarational number, or when we represent P on the number

line, we assume that g = 0 and that p and g have no common factors other than 1
(that is, p and q are co-prime). So, on the number line, among the infinitely many

1 1
fractions equivalent to > we will choose 5 to represent all of them.

Now, | et us solve some examples about the different types of numbers, which you
have studied in earlier classes.
Examplel: Arethefollowing statementstrue or false? Give reasonsfor your answers.
(i) Every whole number isanatural number.
(i) Every integer isarational number.
(i) Every rational number isan integer.
Solution : (i) False, because zero is a whole number but not a natural number.

m
(i) True, because every integer m can be expressed in the form T andsoitisa
rational number.
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4 M ATHEMATICS

(iii) False, because —

5 is not an integer.

Example 2 : Find five rational numbers between 1 and 2.
We can approach this problem in at least two ways.
Solution 1 : Recall that to find arational number between r and s, you can add r and

r+s 3
s and divide the sum by 2, that is % lies between r and s. So, E is a number

between 1 and 2. You can proceed in this manner to find four more rational numbers

511 13 d7

between 1 and 2. These four numbers are Z E E Z-

Solution 2: Theother optionistofind al thefiverational numbersin one step. Since
we want five numbers, we write 1 and 2 as rational numbers with denominator 5 + 1,

6 12 7 8 9 10 11
i.e,1=— and2=—.Thenyoucancheckthat —,—, =, — and — areall rationa
6 6 6’6 6 6 6
7 4 35 11
numbers between 1 and 2. So, the five numbers are (—5 § —2 3andE'

Remark : Notice that in Example 2, you were asked to find five rational numbers
between 1 and 2. But, you must have realised that in fact there are infinitely many
rational numbers between 1 and 2. In genera, there are infinitely many rational
numbers between any two given rational numbers.

Let ustake alook at the number line again. Have you picked up al the numbers?
Not, yet. The fact is that there are infinitely many more numbers left on the number
line! There are gapsin between the places of the numbers you picked up, and not just
one or two but infinitely many. The amazing thing is that there are infinitely many
numbers lying between any two of these gaps too!

So we are left with the following questions: A @) ?

1. What arethe numbers, that areleft on the number
line, called?
2. How do we recognise them? That is, how do we

distinguish them from the rationals (rational
numbers)? o

Lo 1
These questions will be answered in the next section. ﬂ‘
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EXERCISE 1.1

1. Iszeroarationa number? Canyouwriteitintheform g ,Wherepand g areintegers
and g= 0?
2. Findsix rational numbers between 3 and 4.

4

3
3. Findfiverationa numbers between 3 and T

4. Statewhether thefollowing statementsaretrue or false. Give reasonsfor your answers.
(i) Every natural number isawhole number.
(i) Every integer isawhole number.
(iii) Every rational number isawhole number.

1.2Irrational Numbers

We saw, in the previous section, that there may be numbers on the number line that
are not rationals. In this section, we are going to investigate these numbers. So far, all

the numbers you have come across, are of the form ap , Where p and q are integers

and g 0. So, you may ask: are there numbers which are not of thisform? There are
indeed such numbers.

The Pythagoreans in Greece, followers of the famous
mathematician and philosopher Pythagoras, were the first
to discover the numbers which were not rational's, around
400 BC. These numbers are called irrational numbers
(irrationals), because they cannot be written in the form of
aratio of integers. There are many myths surrounding the
discovery of irrational numbers by the Pythagorean,
Hippacus of Croton. In all the myths, Hippacus has an

unfortunate end, either for discovering that \/E isirrational

or for disclosing the secret about \/E to people outside the Pythagoras
secret Pythagorean sect! (569 BCE —-479BCE)
Fig. 1.3

Let usformally define these numbers.
A number ‘s iscalledirrational, if it cannot be written in the form ap , Where p

and g are integers and g = O.
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6 M ATHEMATICS

You already know that there are infinitely many rationals. It turns out that there
areinfinitely many irrational numberstoo. Some examplesare:

,/E, \/§, Jl_5 , T, 0.10110111011110...

Remark : Recall that when we use the symbol f we assume that it is the

positive square root of the number. So JZ = 2, though both 2 and —2 are square
roots of 4.

Some of theirrational numberslisted above arefamiliar to you. For example, you
have already come across many of the square roots listed above and the number 7.

The Pythagoreans proved that JE isirrational. Later in approximately 425 BC,

Theodorus of Cyrene showed that «/3, \/5, /6, V7, 10, V11, V12, V13, V14, J15
and /17 are also irrationals. Proofs of irrationality of /2, 4/3, 4/5, etc., shall be

discussed in Class X. Asto m, it was known to various cultures for thousands of
years, it was proved to beirrational by Lambert and Legendre only in the late 1700s.
In the next section, we will discusswhy 0.10110111011110... and &t are irrational.

Let usreturn to the questionsraised at the end of %‘
the previous section. Remember the bag of rational
numbers. If we now put al irrational numbers into
the bag, will there be any number |eft on the number
line? Theanswer isno! It turnsout that the collection
of al rational numbersand irrational numberstogether
make up what we call the collection of real numbers
whichisdenoted by R. Therefore, areal number iseither rational or irrational. So, we
can say that every real number isrepresented by a unique point on the number
line. Also, every point on the number line represents a unique real number.
Thisiswhy we call the number line, the real number line.

In the 1870s two German mathematicians,
Cantor and Dedekind, showed that :
Corresponding to every real number, thereisa
point onthereal number line, and corresponding
to every point onthe number line, there existsa
unique real number.

R. Dedekind (1831-1916) G. Cantor (1845-1918)
Fig.1.4 Fig. 1.5
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NUMBER SYSTEMS 7

L et us see how we can locate some of the irrational numbers on the number line.

Example 3 : Locate /2 on the number line.

Solution : It is easy to see how the Greeks might have discovered  C B

2
JE . Consider a unit square OABC, with each side 1 unit in length V2 1

(see Fig. 1.6). Then you can see by the Pythagoras theorem that O LA

OB = ,/12 +12 = \J2. How do we represent 2 onthenumber line? Fig. 1.6

Thisis easy. Transfer Fig. 1.6 onto the number line making sure that the vertex O
coincides with zero (see Fig. 1.7).

C B
A
V2 1|y V2
] e :
0 AP 2 3

3 2 14
2

Fig. 1.7

We have just seen that OB = JE . Using a compass with centre O and radius OB,

draw an arc intersecting the number line at the point P. Then P corresponds to ‘/E on
the number line.

Example 4 : Locate \/§ on the number line.
Solution : Let usreturnto Fig. 1.7.

D
\\
S ZRN
1R \\ J3
t t — . ‘!‘/; t
3 2 alo APQ 3
Fig.1.8

Construct BD of unit length perpendicular to OB (as in Fig. 1.8). Then using the

Pythagoras theorem, we see that OD = (ﬁ)z +1° = J§ Using a compass, with

centre O and radius OD, draw an arc which intersects the number line at the point Q.
Then Q corresponds to /3 .
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8 M ATHEMATICS

In the same way, you can locate Jﬁ for any positiveinteger n, after \/n —1 hasbeen
located.

EXERCISE 1.2

1. State whether the following statements are true or false. Justify your answers.
() Everyirrational numberisareal number.

(i) Every point onthe number lineisof theform Jﬁ , Where misanatural number.
(ili) Every real number isanirrational number.

2. Arethesqguarerootsof all positiveintegersirrational? If not, give an example of the
square root of anumber that isarational number.

3. Show how /5 can be represented on the number line.

4. Classroom activity (Constructing the‘squarer oot
spiral’) : Take alarge sheet of paper and construct
the‘ squareroot spiral’ inthefollowing fashion. Start
with apoint O and draw aline segment OP, of unit
length. Draw a line segment P,P, perpendicular to
OP, of unit length (see Fig. 1.9). Now draw aline
segment P,P, perpendicular to OP,. Thendraw aline _ _
segment P,P, perpendicular to OP,. Continuing in ~ F19- 1.9 Constructing
this manner, you can get the line segment P_,P, by squarer oot spiral
drawing aline segment of unit length perpendicular to OP._,. Inthis manner, you will
have created the points P,, P,,...., P,,,... ., and joined them to create a beautiful spiral

21 Fgyeees

depicting ﬁ Jéﬁ

1.3Real Numbersand their Decimal Expansions

In this section, we are going to study rational and irrational numbersfrom adifferent
point of view. We will look at the decimal expansions of real numbers and see if we
can use the expansions to distinguish between rationals and irrationals. We will also
explain how to visualise the representation of real numbers on the number line using
their decimal expansions. Since rationals are more familiar to us, let us start with
10 7 1
them. Let us take three examples : 337
Pay special attention to the remainders and see if you can find any pattern.
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NUMBER SYSTEMS 9

Example 5 : Find the decimal expansions of % ! and %

8
Solution :
[ 3:333... 0.875 0.142857...
3|10 817.0 7110
(9 64 7
10 60 30
9 56 28
10 40 20
| 9 40 14
10 0 60
9 56
1 40
35
50
49
1

Remainders: 1,1,1,1,1... Remainders: 6, 4, 0 Remainders: 3,2,6,4,5,1,
Divisor: 3 Divisor: 8 3,2,6,4,5,1,...

Divisor: 7
What have you noticed? You should have noticed at |east three things:
(i) Theremainderseither become O after acertain stage, or start repeating themselves.
(i)  Thenumber of entriesin the repeating string of remaindersislessthan the divisor

1 1
(in 3 one number repeats itself and the divisor is 3, in 7 there are six entries

326451 in the repeating string of remaindersand 7 isthe divisor).
(i) If the remainders repeat, then we get a repeating block of digits in the quotient

1 1
(for 3 3repeatsin the quotient and for 7 we get the repeating block 142857 in
the quotient).
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10 M ATHEMATICS

Although we have noticed this pattern using only the examples above, it istruefor all

rationalsof theform ap (g#0). Ondivisionof pby g, two main things happen —either

the remainder becomes zero or never becomes zero and we get a repeating string of
remainders. Let uslook at each case separately.

Case (i) : The remainder becomes zero

7
In the exampl e of 8 we found that the remainder becomes zero after some steps and

7 1 639
the decimal expansion of § =0.875. Other examplesare P =0.5, ﬁ =2.556. Inall

these cases, the decimal expansion terminates or ends after a finite number of steps.
We call the decimal expansion of such numbers terminating.

Case (il) : The remainder never becomes zero

1 1 . . .
In the examples of § and - we notice that the remainders repeat after a certain

stage forcing the decimal expansion to go on for ever. In other words, we have a
repeating block of digitsin the quotient. We say that this expansion isnon-terminating

1 1
recurring. For example, 3= 0.3333...and 7= 0.142857142857142857 ...

1
The usual way of showing that 3 repeats in the quotient of ;_3, isto writeit as o3.

1 1
Similarly, sincethe block of digits 142857 repeatsin the quotient of - wewrite 7 as

0142857 , Where the bar above the digits indicates the block of digits that repeats.
Als03.57272... can bewritten as 3.572. So, all these exampl es give us non-terminating
recurring (repeating) decimal expansions.

Thus, we see that the decimal expansion of rational numbers have only two choices:
either they are terminating or non-terminating recurring.

Now suppose, on the other hand, on your walk on the number line, you come across a
number like 3.142678 whose decimal expansion is terminating or a number like
1.272727... that is, 1.27 , whose decimal expansion is non-terminating recurring, can

you conclude that it is arational number? The answer is yes!
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NUMBER SYSTEMS 11

Wewill not proveit but illustrate thisfact with afew examples. The terminating cases
are easy.
Example6: Show that 3.142678 isarational number. In other words, express 3.142678

in the form ap , Where pand g are integersand q # 0.

3142678
1000000

Now, let usconsider the case when the decimal expansion isnon-terminating recurring.

Solution : We have 3.142678 = » and hence is arational number.

Example 7 : Show that 0.3333... = 03 canbe expressed in theform —g , Wherep and

g are integers and q # 0.

Solution : Since we do not know what 03 is, letuscal it ‘x’ and so
x= 0.3333...
Now here is where the trick comes in. Look at
10x=10x (0.333...) = 3.333...
Now, 3.3333...= 3+ X, sincex = 0.3333...
Therefore, 10x=3+x
Solving for x, we get

[EEN

9x = 3,i.e,Xx= 5

Example 8 : Show that 1.272727... = 1.27 can be expressed in the form ap , Wherep

and g are integers and g # O.

Solution : Letx =1.272727... Since two digits are repeating, we multiply x by 100 to
get

100 x = 127.2727...
So, 100 x = 126 + 1.272727... = 126 + X
Therefore, 100x —x= 126, i.e, 99x=126
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12 M ATHEMATICS

126
9

clR

ie, X =

14 —
You can check the reverse th E =127.

Example 9 : Show that 0.2353535... = 0.235 can be expressed in the form ap

where p and g are integers and g # 0.

Solution : Let x = 0.235. Over here, note that 2 does not repeat, but the block 35
repeats. Since two digits are repeating, we multiply x by 100 to get

100 x = 23.53535...

o, 100 x = 23.3 + 0.23535... =23.3 + X
Therefore, 99 x= 233
233 233
i.e, 99 x = — , which givesx = —
10 990

233 —
You can also check the reverse that EO = 0.235.

So, every number with anon-terminating recurring decimal expansion can be expressed

intheform —3 (q# 0), wherep and g areintegers. Let us summarise our resultsin the

followingform:

The decimal expansion of a rational number is either terminating or non-
terminating recurring. Moreover, a number whose decimal expansion is
terminating or non-terminating recurring is rational.

So, now we know what the decimal expansion of a rational number can be. What
about the decimal expansion of irrational numbers? Because of the property above,
we can conclude that their decimal expansions are non-terminating non-recurring.
So, the property for irrational numbers, similar to the property stated abovefor rational
numbers, is

The decimal expansion of an irrational number is non-terminating non-recurring.

Moreover, a number whose decimal expansion is non-terminating non-recurring
is irrational.
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NUMBER SYSTEMS 13

Recall s = 0.10110111011110... from the previous section. Notice that it is non-
terminating and non-recurring. Therefore, from the property above, it isirrational.
Moreover, notice that you can generate infinitely many irrationalssimilar to s.

What about the famous irrationals ‘/5 andrt? Here are their decimal expansions up
to a certain stage.

2 =1.414213562373095048801688724209...
n = 3.14159265358979323846264338327950...

2 22
(Note that, we often take = as an approximate vaue for m, but T # £l )

Over the years, mathematicians have devel oped various techniques to produce more
and more digits in the decimal expansions of irrational numbers. For example, you

might havelearnt to find digitsin the decimal expansion of ‘/§ by the division method.
Interestingly, in the Sulbasutras (rules of chord), a mathematical treatise of the Vedic

period (800 BC - 500 BC), you find an approximation of JE asfollows:
1 (1 1 1 11
‘/E:1+—+(—x—)—(—x—x—j:1.4142156
3 4 3 34 4 3

Noticethat it is the same as the one given above for thefirst five decimal places. The
history of the hunt for digitsin the decimal expansion of & isvery interesting.

The Greek geniusArchimedes was the first to compute s e Y .
digitsinthe decimal expansion of . He showed 3.140845 izfg:‘%
< 1 < 3.142857. Aryabhatta (476 — 550 AD), the great RS
Indian mathematician and astronomer, found the value
of mcorrect to four decimal places(3.1416). Using high Feed N
speed computers and advanced algorithms, m has been B ;_;\
computed to over 1.24 trillion decimal places! —
Archimedes (287 BCE —212 BCE)
Fig. 1.10

Now, let us see how to obtain irrational numbers.

1 2
Example 10 : Find an irrational number between 2 and —.

7
1 N -
Solution : We saw that 7 = 0142857. So, you can easily calculate % =0.285714.

1 2
To find an irrational number between ? and ? we find a number which is
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14 M ATHEMATICS

non-terminating non-recurring lying between them. Of course, you can find infinitely
many such numbers.

An example of such anumber is0.150150015000150000...

EXERCISE 1.3
1. Writethefollowing in decimal form and say what kind of decimal expansion each
has :
36 1 1
. —_— .. il e 4_
0 o (i) 5 (i) 43
v > 2 e
iv) V) V) 255
1 —_— 2
2. Youknow that Z= 0142857 . Can you predict what the decimal expansions of 77
4 5 6 . . o
77,7 ae without actually doing the long division? If so, how?

1
[Hint : Study the remainderswhile finding the value of Z carefully.]

3. Expressthefollowingintheform ap , Where p and g areintegersandq = 0.
() 06 (i) 047 (i) 0001

4. Express 0.99999 .... in the form ap . Are you surprised by your answer? With your
teacher and classmates discuss why the answer makes sense.

5. What can the maximum number of digits be in the repeating block of digits in the

1
decimal expansion of Iva ? Perform the division to check your answer.

6. Look at several examplesof rationa numbersintheform ap (g#0), wherepandqare

integers with no common factors other than 1 and having terminating decimal
representations (expansions). Can you guess what property q must satisfy?

7. Writethree numbers whose decimal expansions are non-terminating non-recurring.

8. Findthreedifferent irrational numbers between the rational numbersi; and 131

9. Classify thefollowing numbersasrational or irrational :

0 423 (i) 225 (iii) 0.379%
(iv) 7.478478... (v) 1.101001000100001...
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1.4 Representing Real Numberson theNumber Line

In the previous section, you have seen that any
real number has adecimal expansion. This helps

us to represent it on the number line. Let ussee ¢ — (;) ' /@
how.

Suppose we want to locate 2.665 on the

A
&
°
N
|u ;Z

number line. We know that this lies between 2~ D s 3
and 3. I 21222324 . 26272829 I
So, let us look closely at the portion of the «¢ 1111 I 1111 D>
number line between 2 and 3. Suppose we divide (i)
thisinto 10 equal parts and mark each point of _
Fig. 1.11

divisionasin Fig. 1.11 (i). Then the first mark to
theright of 2 will represent 2.1, the second 2.2, and so on. You might be finding some
difficulty in observing these points of division between2and 3inFig. 1.11 (i). To have
a clear view of the same, you may take a magnifying glass and look at the portion
between 2 and 3. It will look likewhat you seein Fig. 1.11 (ii). Now, 2.665 lies between
2.6 and 2.7. So, let us focus on the portion between 2.6 and 2.7 [See Fig. 1.12(i)]. We
imagineto dividethisagain into ten equal parts. Thefirst mark will represent 2.61, the
next 2.62, and so on. To see this clearly, we magnify thisas shownin Fig. 1.12 (ii).

2 3

21222324 2627 7\\2.9

4

2.6 2.7
o

2.65

2,61 262 263 2.64 | 2,66 2.67 2.68 2.69

LIIT11lIId,
(i)

Fig. 1.12

Again, 2.665 lies between 2.66 and 2.67. So, let us focus on this portion of the
number line [see Fig. 1.13(i)] and imagineto divide it again into ten equal parts. We
magnify it to seeit better, asin Fig. 1.13 (ii). Thefirst mark represents 2.661, the next
one represents 2.662, and so on. So, 2.665 is the 5th mark in these subdivisions.
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PERERN

2.66 2.67

2.665

| 2.6612.6622.6632.664 2.6662.6672.6682.669

NENE NN N
(i)
Fig. 1.13

<

We call this process of visualisation of representation of numbers on the number line,
through a magnifying glass, as the process of successive magnification.

So, we have seenthat it ispossible by sufficient successive magnificationsto visualise
the position (or representation) of areal number with aterminating decimal expansion
on the number line.

Let us now try and visualise the position (or representation) of areal number with a
non-terminating recurring decimal expansion on the number line. We can look at
appropriate intervals through a magnifying glass and by successive magnifications
visualise the position of the number on the number line.

Example1l: Visualizetherepresentation of 5.37 onthe number line upto 5 decimal
places, that is, up to 5.37777.

Solution : Once again we proceed by successive magnification, and successively
decrease thelengths of the portions of the number linein which 5.37 islocated. First,

we see that 5.37 is located between 5 and 6. In the next step, we locate 5.37
between 5.3 and 5.4. To get a more accurate visualization of the representation, we
dividethisportion of the number lineinto 10 equal partsand use amagnifying glassto

visualizethat 5.37 liesbetween 5.37 and 5.38. Tovisualize 5.37 more accurately, we
again dividethe portion between 5.37 and 5.38 into ten equal partsand use amagnifying

glassto visualizethat 5.37 liesbetween 5.377 and 5.378. Now to visualize 5.37 still
more accurately, we divide the portion between 5.377 an 5.378 into 10 equal parts, and
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NUMBER SysTEMS 17

visualize the representation of 5.37 asin Fig. 1.14 (iv). Notice that 5.37 is located
closer to 5.3778 than to 5.3777 [see Fig 1.14 (iv)].

5 | 6

53 /.. 54
‘ 5317532 533 534 | 53 5.37&.38 .39 ‘
1
Lt ) |,
(ii)

5.37 5.38

5.375
‘ 5.371 5372 5.373 5374 | 5.37 5.377&37 379 ‘
1
gl
| (iii)
l
1
l
1
1
|5.37'/1 53773 | 5.3771I 53779
Lty
537 (iv)
Fig. 1.14

Remark : We can proceed endlessly in this manner, successively viewing through a
magnifying glass and simultaneously imagining the decrease in the length of the portion
of the number line in which 5.37 is located. The size of the portion of the line we
specify depends on the degree of accuracy we would like for the visualisation of the
position of the number on the number line.
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18 M ATHEMATICS

You might have realised by now that the same procedure can be used to visualise a
real number with a non-terminating non-recurring decimal expansion on the number
line.

In the light of the discussions above and visualisations, we can again say that every
real number is represented by a unique point on the number line. Further, every
point on the number line represents one and only one real number.

EXERCISE 14

1. Visualise3.765 on the number line, using successive magnification.

2. Visualise 426 onthe number line, upto 4 decimal places.

1.5 Operationson Real Numbers

You have learnt, in earlier classes, that rational numbers satisfy the commutative,
associative and distributive lawsfor addition and multiplication. Moreover, if we add,
subtract, multiply or divide (except by zero) two rational numbers, we still get arational
number (that is, rational numbers are ‘closed’ with respect to addition, subtraction,
multiplication and division). It turns out that irrational numbers also satisfy the
commutative, associative and distributive lawsfor addition and multiplication. However,
the sum, difference, quotients and products of irrational numbers are not always

Ji7

irrational. For example, (yB)+(—/). (\/_2) - (\/5) , (\/§)(\/§) and 75 e
rationals.
Let uslook at what happens when we add and multiply arational number with an

irrational number. For example, /3 isirrational. What about 2 + J3 and 2\/§ ?Since
J§ has a non-terminating non-recurring decimal expansion, the same is true for

21 /3 and 2\/3. Therefore, both 2 + /3 and 23 are alsoirrational numbers.

Example 12 : Check whether 7J§, 773«/5 + 21,1 — 2 areirrational numbers or

not.

Solution @ 5 =2.236..., 2 =1.4142..., n = 3.1415...
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Then 7\/3 =15.652..., E = \/—5—‘/5 :? = 3.1304...

V2 +21=224142.. n—2=1.1415..
All theseare non-terminating non-recurring decimals. So, all theseareirrational numbers.

Now, let us see what generally happens if we add, subtract, multiply, divide, take
square roots and even nth roots of these irrational numbers, where n is any natural
number. Let us look at some examples.

Example 13 : Add 22 + 53 and 2 — 3,/3.
Solution : (2*15 +5\/§) +(‘/§—3\/§) = (2\/E +*/§)+(5\/§—3\/§)
= @+1V2+ 6-3V3=3y2+ 23

Example 14 : Multiply 645 by 245 .
Solution : 6y5 x 25 =6x2x {f5 x J5 =12x5=60

Example 15 : Divide 8415 by 24/3 .

Solution : 815 = 243 = 8‘/5\7_‘,3 NG

These examples may lead you to expect the following facts, which are true:
(i) Thesum or difference of arational number and anirrational number isirrational.

(i) Theproduct or quotient of anon-zero rational number with anirrational number is
irrational.

(i) 1f weadd, subtract, multiply or dividetwo irrationals, the result may berational or
irrationd.

We now turn our attention to the operation of taking square roots of real numbers.

Recall that, if aisanatural number, then JE = b meansb?=a andb > 0. The same
definition can be extended for positive real numbers.

Let a> 0 be areal number. Then J_ =b meansb2=aand b > 0.

In Section 1.2, we saw how to represent Jﬁ for any positive integer n on the number
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line. We now show how tofind \/;( for any given positivereal number x geometrically.
For example, let usfind it for x=3.5, i.e., wefind /35 geometrically.

Fig. 1.15

Mark the distance 3.5 unitsfrom afixed point A on agiven lineto obtain apoint B such
that AB = 3.5 units (see Fig. 1.15). From B, mark a distance of 1 unit and mark the
new point as C. Find the mid-point of AC and mark that point as O. Draw asemicircle
with centre O and radius OC. Draw aline perpendicular to AC passing through B and

intersecting the semicircle at D. Then, BD = 4/3.5.

More generally, to find \/; for any positive real
number x, we mark B so that AB = x units, and, asin
Fig. 1.16, mark C so that BC = 1 unit. Then, aswe

have done for the case x = 3.5, we find BD = \/; A v - B 1 C
(see Fig. 1.16). We can prove this result using the _

Pythagoras Theorem. Fig. 1.16

Noticethat, in Fig. 1.16, A OBD isaright-angled triangle. Also, theradius of thecircle
ooX+1

is—~ units.

X+1 .
Therefore, OC=0D = OA = T units.

y (x+1)_ x—1
Now, OB = 5 )T %
So, by the Pythagoras Theorem, we have
BDZ — ODZ OBZ — (X_H'jz — (X__ljz —ﬂ =X
T T T L2 2 4

This shows that BD = 4/x .
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This construction gives usavisual, and geometric way of showing that ‘/} existsfor

all real numbers x > 0. If you want to know the position of ‘/)'( on the number line,
then let us treat the line BC as the number line, with B as zero, C as 1, and so on.
Draw an arc with centre B and radius BD, which intersects the number line in E

(see Fig. 1.17). Then, E represents \/;

Fig. 1.17

We would like to now extend the idea of square roots to cube roots, fourth roots,
and in general nth roots, wheren is a positive integer. Recall your understanding of
sguare roots and cube roots from earlier classes.

What is g/§ ?Well, we know it has to be some positive number whose cube is 8, and
you must have guessed g/§ =2. Letustry 3/243 . Do you know some number b such
that b° = 2437 The answer is 3. Therefore, 5/243 =3

From these examples, can you define @/a_ for areal number a > 0 and apositive
integer n?
Let a> 0 be areal number and n be a positive integer. Then {'/5 =b,if b"=aand
b> 0. Notethat the symbol * /=’ usedin /2, 8, {/a, etc. iscalled theradical sign.

We now list some identities relating to square roots, which are useful in various
ways. You are aready familiar with some of these from your earlier classes. The
remaining onesfollow from the distributive law of multiplication over addition of rea
numbers, and from the identity (x +y) (x—Y) = X —y?, for any real numbersx andy.

Let aand b be positive real numbers. Then

0 ab=Javb () \/é :%
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i) (Va+b)(va-vb)=a-b  (v) (a+vb)(a-b)=a’-b
) (V2 VB) (4G + V) =G + VB + JB% + b
(vi) (Va++b) =a+2/ab+b

Let uslook at some particular cases of these identities.

Example 16 : Simplify thefollowing expressions:

i) (5+7)(2+5) (i) (5+45)(5-+5)

i) (V3+47) (v) (VL 7) (VEL+7)
Solution : (i) (5+v7)(2+V5)=10+5/5 + 27 + /35
(i) (5+J§)(5—\/3):52—(\/3)2:25—5:20
i) (V3+7) =(V3) + 2V37 + (V7) =3+ 2y2L+ 7=10 + 2J21
(v) (VIL-7) (VL4 7) = (VE) —(v7) =11-7=4

Remark : Notethat ‘simplify’ in the example above has been used to mean that the
expression should be written as the sum of arational and an irrational number.

1
We end this section by considering the following problem. Look at —2 Canyoutell

whereit shows up onthe number line? You know that itisirrational. May beit iseasier
to handleif the denominator isarational number. Let usseg, if wecan ‘rationalise’ the
denominator, that is, to make the denominator into a rational number. To do so, we
need the identities involving square roots. Let us see how.

1
Example 17 : Rationalise the denominator of 75

1
Solution : Wewant towrite E asan equivalent expression in which the denominator

isarational number. Weknow that /2 . /2 isrational. Wealso know that multiplying
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facts together to get

1 J'J'
J’J’J’

1
Inthisform, it iseasy to locate E on the number line. It is half way between 0 and
V2!

1
Example 18 : Rationalise the denominator of o ‘/5

1
Solution : We use the Identity (iv) given earlier. Multiply and divide _2+ \/§ by

1 2-\3 2-43
—2-3
2-J3 oo TR ST RT3 B,

5
Example 19 : Rationalise the denominator of —\/é — «/5

Solution : Here we use the Identity (iii) given earlier.

3B _5(V3v) (-
© BB R A T (2P

1
Example 20 : Rationalise the denominator of :
7+ 32

_ 1 1 7-3\2)_ 7-32 _7-32
Solution : =
RN - 7+3\/§X{7 3\/'J 9-18 3l

So, when the denominator of an expression contains aterm with a sguare root (or
anumber under aradical sign), the process of converting it to an equivalent expression
whose denominator is arational number is called rationalising the denominator.
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EXERCISE 1.5
Classify thefollowing numbersasrational or irrational:
27
i - i (3+23) =23 iy —=
0 2-5 (i) (3+ v23) - 23 i o
_ 1
(iv) ﬁ (v) 21

Simplify each of the following expressions:

0 (3+v3)(2++2) (i) (3+4/3)(3-+3)
i (V5 +2) ) (V& —V2) (VB ++2)

Recall, m isdefined astheratio of the circumference (say ¢) of acircletoitsdiameter

c
(say d). Thatis, = a Thisseemsto contradict thefact that m isirrational. How will
you resolve this contradiction?
Represent \/9.3 on the number line.

Rationalise the denominators of the following:

1

1

O 7 0 7T
1 1

(i) 552 ™) F 2

1.6 Lawsof Exponentsfor Real Numbers

Do you remember how to simplify thefollowing?

(i) 172.17°= i) 5% =
(iii) Zz—ij = (iv) 7.9 =
Did you get these answers? They are as follows:
(i) 172.17°=17" (i) (5?7 =5m
(iii) 23—]0 =23 (iv) 73. R =63
23
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To get these answers, you would have used the following laws of exponents,
which you have learnt in your earlier classes. (Here a, n and m are natural numbers.
Remember, ais called the base and m and n are the exponents.)

() a.a=ann (i) (@ = am

(i) %= a" ", m>n (iv) ambn = (ab)m
What is (8)°? Yes, it is 1! So you have learnt that (a)° = 1. So, using (iii), we can
1
get o = a". We can now extend the laws to negative exponents too.

So, for example:

1

iy 177170 =177 = — i) (537 =5
(i) 17 (i) 57 =5
237 17 : -3 -3 -3
D =23 (iv) (0~-(9)” =(63
Suppose we want to do the following computations:

2 1 2!
(i 28.2° (i) [35J

1
T T
(i) - (iv) 13° -17°

73

How would we go about it? It turns out that we can extend the laws of exponents
that we have studied earlier, even when the base is a positive real number and the
exponentsarerational numbers. (Later you will study that it can further to be extended
when the exponents are real numbers.) But before we state these laws, and to even

3
make sense of these laws, we need to first understand what, for example 42 is. So,
we have some work to do!

In Section 1.4, we defined {1/5 for areal number a > 0 asfollows:

Let a> 0 be areal number and n a positive integer. Then \”/5 =b,ifb"=aand
b>0.

2 1
In the language of exponents, we define 9/5 = a". So, in particular, \3/5 =23,

3
There are now two ways to look at 42 .

File Name : C:\Computer Station\Maths-I X\Chapter\Chap-1\Chap-1 (29-12—2005).PM 65



26 M ATHEMATICS

4 = (fzJ _p_g

3 1

42 = (4) = (64)

1
2

=8

Therefore, we havethefollowing definition:

Let a > 0 be area number. Let m and n be integers such that m and n have no
common factors other than 1, and n> 0. Then,

o = () -
We now have the following extended laws of exponents:
Let a> 0 be area number and p and g be rational numbers. Then, we have

(i) ar.ad=ard (i) (@) = am
P
(iii) %= a’ (iv) &b = (@b)®
You can now use these laws to answer the questions asked earlier.
2 1 EaY
Example 21 : Simplify (i) 23 .23 (i) (35J
7§ _ L
(i) — (iv) 13°.17°
Solution : 7

(i) 25-2%=2[§+§]:2'§:21=2 (i) (3%} _F

7é [Li] 35 22 101 1 1
(i) ——=7° ¥ =75 =75 (iv) 13°-175 = (13x 17)% = 2215
75
EXERCISE 1.6
1 1 1
1. Find: (i) 642 (i) 325 (i) 125°
3 2 3 -1
2. Find: (i) & (i) 325 (i) 16% (iv) 1253
1
2 1 7 2 11
3. smpliy: () 228 @) (3] ) T (v) 7. g¢

174
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1.7Summary
In this chapter, you have studied the following points:

1. Anumber riscalled arational number, if it can bewrittenintheform ap ,Wherepandgare

integersand g #0.

2. Anumber siscalled airrational number, if it cannot bewrittenintheform Ep,wherepand

gareintegersand q= 0.

3. Thedecimal expansion of arational number iseither terminating or non-terminating recurring.
M oreover, anumber whose decimal expansionisterminating or non-terminating recurring
isrational.

4. Thedecimal expansion of anirrational number isnon-terminating non-recurring. Moreover,
anumber whose decimal expansion isnon-terminating non-recurringisirrational.

5. All therational and irrational numbers make up the collection of real numbers.

6. Thereis a unique real number corresponding to every point on the number line. Also,
corresponding to each real number, there is a unique point on the number line.

r
7. Ifrisrationa andsisirrational, thenr + sandr —sareirrational numbers, and rsand s are

irrational numbers, r 0.
8. For positive real numbersa and b, the following identities hold:

) ab=+ayb <ii)\ﬁ=§_§
i) (va+vb)(Va-yb)=a-b (v) (a+b)(a—+b)=a>-b
W) («/5+«/E)2=a+2@+b

va

N : 1 : : a-b
9. Torationalisethe denominator of «/5 Y wemultiply thisby 75—_b, whereaandb are

integers.
10. Let a> 0 bearea number and p and g be rational numbers. Then
@) a.at=ar (i) (a)*=am
ap
(iii) o a1 (iv) @b’ =(ab)’
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