
General Instruction : 
(i) All questions are compulsory.
(ii) The question paper consists of 29 questions divided into four section A, B, C and D. Sections A comprises of 4

questions of one mark each, Section B comprises of 8 questions of two marks each, Section C comprises of 11
questions of four marks each and Section D comprises of 6 questions of six marks each.

(iii) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the
question.

(iv) There is no overall choice. However, internal choice has been provided in 3 questions of four marks each and 3
questions of six marks each. You have to attempt only one of the alternatives in all such questions.

(v) Use of calculators is not permitted. You may ask for logarithmic tables, if required.

SECTION - A 

Question numbers 1 to 4 carry 1 mark each 

1. If for any 2 × 2 square matrix A, A(adj A) = , then write the value of |A|. ⎥
⎦

⎤
⎢
⎣

⎡
80
08

Sol. A(adj A) = ⎥
⎦

⎤
⎢
⎣

⎡
80
08

by using property 
A(adj A) = |A| In  

⇒ |A| In = ⎥
⎦

⎤
⎢
⎣

⎡
80
08

⇒|A| In = 8 ⇒ |A| = 8⎥
⎦

⎤
⎢
⎣

⎡
10
01

2. Determine the value of 'k' for which the following function is continuous at x = 3 :

 f(x) = 
⎪⎩

⎪
⎨
⎧

=

≠
+

3x,k

3x,
3–x

36–)3x( 2

 

Sol. f(x) = 
3x

lim
→ 3x

lim
→ 3–x

36–)3x( 2+

= 
3x

lim
→ )3–x(

)63x()6–3x( +++

= 12 
given that f(x) is continuous at x = 3 
∴  f(x) = f(3) 

3x
lim

→

⇒ k = 12
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3. Find : ∫ xcosxsin
xcos–xsin 22

dx

Sol. ∫ ⋅ xcosxsin
xcos–xsin 22

dx

= 2 ∫ x2sin
x2cos– dx

= – 2 ∫ dxx2cot

=  
2

|x2sin|log2–  + C

= – log |sin 2x| + C 

4. Find the distance between the planes 2x – y + 2z = 5 and 5x – 2⋅5y + 5z = 20.

Sol. 2x – y + 2z = 5 …(1) 
5x – 2⋅5 y + 5z = 20 
or 2x – y + 2z = 8   …(2) 

 Distance between plane (1) & (2) 

 = 
222

21

cba

d–d

++
 = 

9
3  = 1 

SECTION - B 

Question numbers 5 to 12 carry 2 marks each 

5. If A is a skew-symmetric matrix of order 3, then prove that det A = 0.

Sol. Let A =  be a skew symmetric matrix of order 3 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0c–b–
c0a–
ba0

∴ |A| = 
0c–b–
c0a–
ba0

|A| = – a (0 + bc) + b(ac – 0) 
     = – abc + abc = 0 Proved 

6. Find the value of c in Rolle's theorem for the function f(x) = x3 – 3x in [– 3 , 0].

Sol. f(x) = x3 – 3x
(i) f(x) being a polynomial is continuous on [– 3 , 0]

(ii) f(– 3 ) = f (0) = 0

(iii) f′(x) = 3x2 – 3 and this exist uniquely on [– 3 , 0]

∴ f(x) is derivable on (– 3 , 0)
∴ f(x) satisfies all condition of Rolle's theorem
∴ There exist atleast one c ∈ (– 3 , 0) where f′(c) = 0
⇒ 3c2 – 3 = 0
⇒ c = ± 1 ⇒ c = – 1



7. The volume of a cube is increasing at the rate of 9 cm3/s. How fast is its surface area increasing when the

 Assumed volume of cube = V

Given that, 

length of an edge is 10 cm ?

Sol.

dt
dV 3 =  9 cm /sec

dt
dA = ?

l = 10 cm

 
dt
dl

dt
dV =

dt
d

(l)3 = 9   ⇒ 3l2  = 9

dt
dl = 2l

3   ……….(1) 

 No (6 l2) = 12 l 
dt
dl = 12 l × 2l

3w 
dt
dA  =

dt
d (form (1)) 

   = 6.3
10
3636

==
l

 cm2/ sec 

.  Show that the function f(x) = x3 – 3x2 + 6x – 100 is increasing on R. 

f(x) = x  – 3x  + 6x – 100 

) 

n R. 

.  The x-coordinate of a point on the line joining the points P(2, 2, 1) and Q(5, 1, –2) is 4. Find its z-coordinate. 

Sol. 

8

3 2Sol. 
f′(x) = 3x2 – 6x + 6 

 f′(x) = 3 (x2 – 2x + 2
 f′(x) = 3 [(x – 1)2 + 1] 
 f′(x) > 0 for all x ∈ R 

So, f(x) is increasing o

9

R P Q
(2, 2, 1) (5, 1, –2)

k 1

Let R divides PQ in the ratio k : 1 

 R ⎟
⎠
⎞⎛ +++ 1k2–2k2k5

⎜ ++ 1k
,

1k
,

k
given x co-ordinate of R = 4 

∴ 

⎝ +1

1k
2k5 +

+
 = 4 

⇒ k = 2

∴ z co-ordinate = 
12

1)2(2–
+

+  = – 1 



10. A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green, is tossed. Let A be the event "number

A = {2, 4, 6}  P(A) = 

obtained is even" and B be the event "number obtained is red". Find if A and B are independent events.

Sol. 
6
3  =

2
1

 P(B) = 

B = {1, 2, 3} 

 = 
2
1

6
3 A ∩ B = {2} 

 P(A ∩ B) = 
6
1

2
1  ×

2
1  =

4
1Here, P(A) P(B) = 

Since, P (A ∩ B) ≠ P(A) P(B), so events A and B are not independent events. 

1. Two tailors, A and B, earn 00 and 1 &j 3 &j 400 per day respectively. A can stitch 6 shirts and 4 pairs of trousers
a

ol. 
Tailor A Tailor B Minimum Total No. 

while B can stitch 10 shirts nd 4 pairs of trousers per day. To find how many days should each of them work
and if it is desired to produce at least 60 shirts and 32 pairs of trousers at a minimum labour cost, formulate
this as an LPP.

S

No. of shirts 6 10 60 
No. of trousers 4 4 32 
Wage Rs 3 day Rs 4 day 00/ 00/

or A and tailor B works for  days respectiv

f shirts = 60 

sers = 32 

l labour cost

blem reduces to : z = 300 x + 400 y 

  Find : 

Let tail  x days and y ely 
∴ x ≥ 0, y ≥ 0 
minimum number o
∴ 6x + 10y ≥ 60 

  3x + 5y ≥ 30 
minimum no. of trou
∴ 4x + 4y ≥ 32 
⇒ x + y ≥ 8

Let z be the tota
∴ z = 300 x + 400 y 
∴ The given L.P. Pro

  x ≥ 0, y ≥ 0, 3x + 5y ≥ 30 and  x + y ≥ 8 

∫ 2x–x8–5
dx12.

Sol. ∫ 2x–x8–5
dx

= – ∫ + }21–)4x{(
dx

2

=  ∫ + 22 )4x(–)21(
dx

 = 
212

1 log
)4x(–21
)4x(21

+
++  + C  



SECTION - C 
Question numbers 13 to 23 carry 4 marks each 

13. If tan–1

4–x
3–x  + tan–1

4x
3x +  =

4
π , then f

+
ind the value of x. 

Sol. tan–1 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+

16–x
9–x–1

4x
3x

4–x
3–x

2

2
 = 

4
π

)9–x(–)16–x(
)4–x)(3x()3–x)(4x(

22
+++  = 1 

2 – 24 = – 7  2x
 2x2 = – 7 + 24 

   x2 = 
2

17

   x = ± 
2

17

14. Using properties of determinants, prove that

133
12a1a2
11a2a2a 2 ++

++  = (a – 1)3 

OR 
Find matrix A such that 

A = 

Sol. Use R1 = R1 – R2; R2 = R2 – R3 ; R3 = R3 

 = 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

43–
01
1–2

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

229
2–1
8–1–

L.H.S.

133
01–a2–a2
01–a1–

 = 

a2

133
0)1–a()1–a(2
0)1–a()1a)(1–a( +

2Taking common (a – 1)  

 = (a 1)– 
133
012
01)1a( +

2

 = (a – 1)2 [(a + 1) (1 – 0) – 1 (2 – 0)] 
 = (a – 1)2 [(a + 1) – 2] 
 = (a – 1)3 
 = R.H.S.



OR 

 Let matrix A is  

 A 

 =  

 = 

Comparing both the sides 

 b = – 2 

 So, 

  If xy + yx = ab, then find

= ⎥
⎦

⎢
⎣c

⎤⎡ ba
d

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

4
0
1–

3
1
2

–
⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

22
2–
8–

9
1
1–

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++ d4b3–
b

d–b2

c4a
a

c–a2

3– ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

22
2–
8–

9
1
1–

2a – c = – 1, 
2b – d = – 8 
And  a = 1   ,

After solving we get 
c = 3, d = – 4 

A = ⎥
⎦

⎢
⎣3

⎤⎡ 2–1
4–

 
dx
dy .15.

OR 

 If ey(x + 1) = 1, then show that 2

2

dx
yd  = 

2

dx
dy

⎟
⎠
⎞

⎜
⎝
⎛ . 

Sol. We have xy + yx = ab. 

Differentiating w.r.t. x, we get 
dx
d (xy) +

dx
d (yx) = 0. …(1) 

Let u = x ∴ log u = y log x 

⇒ 

y

u
1

dx
du

x
1= y.  + log x.

dx
dy

dx
du  = u ⎟

⎠
⎞

⎜
⎝
⎛ +

dx
dyxlog

x
y; ⇒ 

 or 
dx
d  (xy) = xy ⎟

⎠
⎞

⎜
⎝
⎛ +

dx
dyxlog

x
y …(2) 

Let v = yx ∴ log v = x log y 

⇒  = v ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ylog

dx
dy

y
x  

v
1

dx
dv

y
1

dx
dy

dx
dv = x. + log y . 1 ; ⇒ 

 or 
dx
d  (yx) = yx

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ylog

dx
dy

y
x …(3) 

Using (2) and (3) in (1), 

we get xy ⎟
⎠
⎞⎛ dyy

⎜ +
dx

xlog
x

+ yx

⎝ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ylog

dx
dy

y
x  = 0.  …(4) 

⇒ (xy log x + xyx–1)  = – 1–xy

1–yx

xyxlogx
yxylogy

+
+

dx
dy  = – (yx log y + yxy–1) or

dx
dy



OR 
 Let e  (x + 1) = 1 

  e (1) + (x + 1) ey

y

 
dx
dyy  = 0

⇒ (x + 1)
dx
dy  + 1 = 0 …(1) 

Again differentiating w.r.t. x 

∴ (x + 1) 2

2yd  + ⎟
⎠
⎞⎛ dy

dx
⎜

dx
.1 = 0 

⎝

2

2

dx
yd  = –

)1x(
dx
dy

+

2

2

dx
yd  =

dx
dy .

dx
dy [equation (1)] 

2

2

dx
yd  = 

2

dx
dy

⎟
⎠
⎞

⎜
⎝
⎛

16. Find : θ
θ−θ+

θ
∫ d

)cos45)(sin4(
cos

22

Sol. θ
θ−θ+

θ
∫ d

)cos45)(sin4(
cos

22

= ∫ θ−θ+

θθ

))sin–1(45)(n
dcos

22si4(

∫ +θ+θ
θθ

)1sin4)(4(sin
dcos

22

 Put sinθ = t 
 Cosθ dθ = dt  

∴ I = dt
)t41)(t4(

1
22 ++∫

 Consider 

2222 t41
DCt

t4
BAt

)t41)(t4(
1

+
+

+
+
+

=
++

2 2

2
1 = (At + B) (1 + 4t ) + (Ct + D)(4 + t ) 
   = At + B + 4At3 + 4Bt2 + 4Ct + Ct3 + 4D + Dt  
   = (4A + C)t3 + (4B + D)t2 + (A + 4C)t + (B + 4D)  
4A + C = 0 ⇒ C = – 4 A 
4B + D = 0 ⇒ D = – 4 B 
A + 4C = 0 ⇒ Α = – 4 C 
B + 4D = 1 

By solving we get A = 0, B = –
15
1 , C = 0, D =

15
4



∴ 2222 t41
15

4

t4
15

1–

)t41)(t4(
1

+
+

+
=

++

 ∴Ι = ∫ ∫
+

×+
+

dt
t

4
1

1
4
1

15
4dt

t4
1

15
1–

22

     = – C
2

1
ttan

2
1
1

15
1

2
ttan

2
1

15
1– 1–1– +

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
×+⎟

⎠
⎞

⎜
⎝
⎛×

    = ( ) Ct2tan
15
2

2
ttan

30
1– 1–1– ++⎟

⎠
⎞

⎜
⎝
⎛

    = ( ) C
2

sintan
30
1–sin2tan

15
2 1–1– +⎟

⎠
⎞

⎜
⎝
⎛ θ

θ  

17. Evaluate : ∫
π

+
0

xtanxsec
xtanx dx

OR 

 Evaluate : ∫ ++
4

1

dx|}4–x||2–x||1–x{|

Sol. I = ∫
π

+0 xtanxsec
xtanx dx …(1) 

I = ∫
π π

0 xtan–xsec–
)xtan)(–x–( dx

I = ∫
π

+
π

0 xtanxsec
xtan)x–( dx …(2) 

Adding (1) & (2) 

2I = ∫
π

+
π

0 xtanxsec
xtan dx

⇒ 2I = 2π ∫
π

+

2/

0 xtanxsec
xtan dx

( )
⎭
⎬
⎫

⎩
⎨
⎧ ==∫ ∫

a2

0

a

0
)x(fx–a2fwheneverdx)x(f2dx)x(fQ

I = π ∫
π

+

2/

0 xtanxsec
xtan dx

I = π ∫
π 2/

0 22 xtan–xsec
)xtan–x(secxtan dx

I = π ∫
π

dx 
2/

0

2 )xtan–xtanx(sec

= π dx ∫
π

+
2/

0

2 )1xsec–xtanx(sec



I =  π [ ] 2/
0xxtan–xsec π+

  = π
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
π

+
−π

→

0sec–
2

)xtan–x(seclim

2
x

  =    π π
π

+
−π

→

–
2xcos

xsin–1lim
2

2
x

 

  = π
−

⎟
⎠
⎞

⎜
⎝
⎛ π

→
2

x

lim
)xsin1(xcos

xsin–1 2

+
 + 

2

2π – π

  = 
2

2π – π

OR 
Let f (x) = | x – 1| +| x – 2 | + |x – 4| 
We have three critical points x = 1, 2, 4 
(i) when x < 1
(ii)  when 1 ≤ x < 2
(iii) when  2 ≤ x < 4
(iv) when x ≥ 4

f(x) = – (x – 1) – (x – 2) – (x – 4)  if  x < 1 
  = (x – 1) – (x – 2) – (x – 4) if  1 ≤ x < 2 
  =  (x – 1) + (x – 2) – (x – 4)  if  2 ≤ x < 4  
  =  (x – 1) + (x – 2) + (x – 4) if  x ≥ 4 

 ∴f(x) = –3x + 7 if  x < 1 
 = –x + 5 if  1 ≤ x < 2 
 = x + 1  if  2 ≤ x < 4 
 = 3x –7  if  x ≥ 4 

∴ I = ( dx )∫
4

1

xf

∴ I = ( ) ( )∫ ∫+
2

1

4

2

dxxfdxxf

∴Ι = ( ) ( )∫ ∫ +++
2

1

4

2

dx1xdx5x–

     = 
4

2

22

1

2
x

2
xx5

2
x–

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

     = ⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ + 2

2
4–4

2
165

2
1––10

2
4–

     = 
2
234–12

2
9–8 =+



18. Solve the differential equation (tan–1 x – y)dx = (1 + x2) dy.

Sol. We have

2

1–

x1
y–xtan

dx
dy

+
=

2

1–

2 x1
xtan

x1
y

dx
dy

+
=

+
+

 I.F = xtandx
x1
1

1–2 ee =∫ +

∫ ×
+

= dxe
x1

xtane.y
1–1– tan

2

1–
xtan

Put  t = tan–1x 

  dt = 2x1
dx.1

+

=  ∫ dt
III
e.t t

= ∫ dte.1–e.t tt

ce–ete.y ttxtan 1–
+=

 ce)1x(tane.y xtan1xtan 1–1–
+−= −

  y = tan–1 x –1 + xtan 1–
ce

19. Show that the points A, B, C with position vectors 2 î  – ĵ  + k̂  î  – 3 ĵ  – k̂  and 3  – 4 ĵ  – 4 k̂
respectively, are the vertices of a right-angled triangle, Hence find the area of 

 , 5 î
the triangle. 

Sol. AB  = –  –  î ĵ2  – k̂6 A

C B

BC  =  ĵ  + î2  – k̂

CA  =  –   î ĵ3  – k̂5

BC ⋅ CA  = 0 
BC  ⊥ CA  
∴ ΔABC is a right angled triangle 

  Δ = 
2
1 | BC | | AC |

Δ = 
2
1 114 ++ 2591 ++

   = 
2
1 6 35

   = 
2
1 210

20. Find the value of λ, if four points with position vectors and  ,k̂9ĵ6î3 ++ k̂ĵ3î2,k̂3ĵ2î ++++ ,k̂ĵ6î4 λ++
are coplanar.

Sol. We have  
P.V. of A = 3 k̂9ĵ6î ++

P.V. of B = k̂3ĵ2î ++



k̂6–ĵ4–î2–AB =

k̂8–ĵ3–î–AC =

k̂)9–(îAD λ+=

Now   
⇒× )ADAC.(AB 0

)9–(01
8–3–1–
6–4–2–

=
λ

 

⇒ –2(–3λ + 27) + 4(–λ + 9 +8) –6(0 + 3) = 0

⇒ 6λ – 54 – 4λ + 68 – 18 = 0

2λ – 4 = 0

λ = 2

Q AD,AC,AB are coplanar and so the points A, B, C and D are coplanar. 

21. There are 4 cards numbered 1, 3, 5 and 7, one number on one card. Two cards are drawn at random without
replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.

Sol. X denote sum of the numbers so, X can be 4, 6, 8, 10, 12 

X Number on card P(x) X P(x) X2 P(x)

4 (1, 3) 
4
1  ×

3
1  × 2 =

6
1 2/3 8/3 

6 (1, 6) 
4
1  ×

3
1  × 2 =

6
1 1 6 

8 (3, 5) or (1, 7) 
4
1  ×

3
1  × 2 +

4
1  ×

3
1  ×  2 =

3
1 8/3 64/3 

10 (3, 7) 
4
1  ×

3
1  × 2 =

6
1 5/3 50/3 

12 (5, 7) 
4
1  ×

3
1  × 2 =

6
1 2 24 

Mean      = ∑ X P(x) = 8 

 Variance = ∑ X2 P(x) – (∑ X P(x))2 = 
3

212  – 64 =
3
20

22. Of the students in a school, it is known that 30% have 100% attendance and 70% students are irregular.
Previous year results report that 70% of all students who have 100% attendance attain A grade and 10%
irregular students attain A grade in their annual examination. At the end of the year, one student is chosen at
random from the school and he was found to have an A grade. What is the probability that the student has
100% attendance? Is regularity required only in school? Justify your answer.



Sol. Let E1 be students having 100% attendance 
E2 be students having irregular attendance 
E be students having A grade 

 P(E1) = 
100
30 P(E2) = 

100
70

P ⎟⎟
⎞

⎜⎜
⎛ E  =

⎠⎝ 1E 100
70  ×

100
30  = 21%

P ⎟⎟
⎞

⎜⎜
⎛ E  =

⎠⎝ 2E 100
10  ×

100
70  = 7 %

By Baye's theorem, 

So, P ⎟
⎞

⎜
⎛ E  =

⎠⎝ E
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2
2

1
1

1
1

E
EP)E(P

E
EP)E(P

E
EP)E(P

 = 

100
7

100
70

100
21

100
30

100
21

100
30

×+×

×
= 

4963
63
+

 = 
112
63

23. Maximize Z = x + 2y
Subject to the constraints

  x + 2y ≥ 100 
  2x – y ≤ 0 
  2x + y ≤ 200 
  x, y ≥ 0 

Solve the above LPP graphically. 
Sol.  x + 2y = 100 
  2x – y = 0   ……(1) 

 2x + y = 200   ……(2) 
 x = 0, y = 0   ……(3) 

(0, 200)

(0, 50)

(20, 40)

C

Y

X'
Y'

A
X(100, 0)

B(50, 100)
y = 2x

2x + y = 200

O
x + 2y = 100

Corner points are A (100, 0), B(50, 100), C(20, 40)  
Corner points Z = x + 2y 

minimumA(100, 0) 100 
B(50, 100) 250 maximum
C(20, 40) 100 minimum

Maximum at point B and maximum value 250   



SECTION - D 
Question numbers 24 to 29 carry 6 marks each 

24. Determine the product and use it to solve the system of equations 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

312
2–2–1

11–1

1–3–5
317–
444–

x – y + z = 4, x – 2y – 2z = 9, 2x + y +3z = 1. 

Sol. Product of the matrices  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

312
2–2–1

11–1

1–3–5
317–
444–

 = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
+

+
+
+

++
++

3–65
92–7–

128–4–

1–65–
32–7
48–4

2–3–5
617–
844–

 = = 8 I3  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

8
0
0

0
8
0

0
0
8

  Hence  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1–3–5
317–
444–

8
1

312
2–2–1

11–1 1–

Now, given system of equations can be written in matrix form, as follows 

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
9
4

z
y
x

312
2–2–1

11–1 1–

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
9
4

312
2–2–1

11–1

z
y
x 1–

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
9
4

1–3–5
317–
444–

8
1

z
y
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++
++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1–27–20
3928–
43616–

8
1

z
y
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

8–
16–

24

8
1

z
y
x

8
8–z,

8
16–y,

8
24x ===

x = 3,    y = –2,      z = –1 



25. Consider f : R – 
⎭
⎬
⎫

⎩
⎨
⎧

3
4–  → R –

⎭
⎬
⎫

⎩
⎨
⎧

3
4  given by f (x) =

4x3
3x4

+
+ . Show that f is bijective. Find the inverse of f 

and hence find f–1(0) and x such that f–1(x) = 2. 
OR 

Let A = Q × Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. 
Determine, whether * is commutative and associative.Then, with respect to * on A 
(i) Find the identity element in A.
(ii) Find the invertible elements of A.

Sol. f (x) = 
4x3
3x4

+
+ , x ∈ R – 

⎭
⎬
⎫

⎩
⎨
⎧

3
4–

f is one – one → 

 Let x1, x2 ∈ R – 
⎭
⎬
⎫

⎩
⎨
⎧

3
4–  and f (x1) = f (x2)

⇒ 
4x3
3x4

1

1

+
+  = 

4x3
3x4

2

2

+
+

⇒ 12x1 x2 + 16 x1 + 9 x2 + 12 = 12x1 x2 + 9 x1 + 16 x2 + 12
⇒ 7x1 = 7x2  ⇒ x1 = x2
∴ f is one –  one
f is onto →

 Let k ∈ R – 
⎭
⎬
⎫

⎩
⎨
⎧

3
4  be any number

f (x) = k ⇒  
4x3
3x4

+
+

⇒ 4x + 3 = 3kx + 4k

⇒ x = 
k3–4
3–k4

 Also 
k3–4
3–k4  = –

3
4

implies – 9 = – 16 (which is impossible) 

∴ f ⎟
⎠
⎞

⎜
⎝
⎛

k3–4
3–k4  = k i.e. f is onto

∴ The function f is invertible i.e. f–1 exist inverse of f 
 Let f–1 (x) = k 

f (k) = x 

⇒ 
4k3
3k4

+
+  = x 

⇒ k = 
x3–4
3x4 −

∴ f–1 (x) = 
x3–4
3x4 + , x ∈ R –

⎭
⎬
⎫

⎩
⎨
⎧

3
4–

  f–1 (0) = – 
4
3

 and when 
 f–1 (x) = 2 

⇒ 
x3–4
3–x4  = 2

⇒ 4x – 3 = 8 – 6x
⇒ 10x = 11

⇒ x = 
10
11



OR 
(i) Let (e, f) be the identify element for *

∴ for (a, b) ∈ Q × Q, we have
(a, b) * (e, f) = (a, b) = (e, f) * (a, b) 

⇒ (ae, af + b) = (a, b) = (ea, eb + f)
⇒ ae = a, af + b = b, a = ea, b = eb + f
⇒ e = 1, af = 0, e = 1, b = (1) b + f 

  (Q  a need not be '0') 
⇒ e = 1, f = 0, e = 1, f = 0
∴ (e, f) = (1, 0) ∈ Q × Q
∴ (1, 0) is the identify element of A

(ii) Let (a, b) ∈ Q × Q
Let (c, d) ∈ Q × Q
such that
(a, b) * (c, d) = (1, 0) = (c, d) * (a, b)
⇒ (ac, ad + b) = (1, 0) = (ca, cb + d)
⇒ ac = 1, ad + b = 0, ca = 1, cb + d = 0

⇒ c =
a
1 , d = –

a
b , ⎟

⎠
⎞

⎜
⎝
⎛

a
1  b + d = 0 (a ≠ 0)

  ∴ (c, d) = ⎟
⎠
⎞

⎜
⎝
⎛

a
b–,

a
1  (a ≠ 0) 

  ∴ for a ≠ 0, (a, b)–1 = ⎟
⎠
⎞

⎜
⎝
⎛

a
b–,

a
1

26. Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.
Sol. If each side of square base is x and height is h then volume

V = x2h    ⇒ h = 2x
V

S is surface area then 

S = 4hx + 2x2 = 4 ⎟
⎠
⎞

⎜
⎝
⎛

2x
V x + 2x2

⇒ S = +
x
V4 2x2

Diff. w. r. to x 

x4
x
V4

dx
dS

2 +−= and 4
x
V8

dx
Sd

32

2
++=

 Now 0
dx
dS

=  ⇒ 4x = 2x
V4

⇒ x3 = V ⇒ x = V1/3

at x = V1/3, 2

2

dx
Sd  > 0

⇒ S is minimum when x = V1/3

and h = 3/1
3/22 V

V
V

x
V

==  ⇒ x = h

⇒ x = h means it is a cube



27. Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are
A (4, 1), B (6, 6) and C (8, 4).

OR
 Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x – 2y + 12 = 0.

Sol. 

(4, 1) A

B (6, 6)

C (8, 4)

D 
4 

E
6

F 
8 

x

y 

Equation of AB is y – 1 = 
4–6
1–6  (x – 4)

⇒ 2y – 2 = 5x – 20

⇒ y =
2
x5  – 9

Equation of BC is 

⇒ y – 6 =
6–8
6–4  (x – 6)

⇒ y = – x + 12
Equation of AC is

⇒ y – 1 =
4–8
1–4  (x – 4)

⇒ 4y – 4 = 3x – 12

⇒ y =
4
x3  – 2

 Area of ΔABC = area ABED + area BEFC – area ADFC 

= ∫ ⎟
⎠
⎞

⎜
⎝
⎛6

4
9–

2
x5 dx + dx –( )∫ +

8

6
12x– ∫ ⎟

⎠
⎞

⎜
⎝
⎛6

4
2–

4
x3 dx 

 = 
6

4

2
x9–

4
x5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 + 

8

6

2
x12

2
x–

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+  – 

6

4

2
x2

8
x3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−  = 7 sq units  

OR 

Parabola 4y = 3x2  …(1) 
line 3x – 2y + 12 = 0 …(2) 

from (2) y = 
2

12x3 +

putting this value of y is (1) we get 
6x + 24 = 3x2 
⇒ x = 4, – 2
when x = 4 then y = 12

x = – 2 then y = 3 
 Required area 

= ∫ x – dx 
4

2–
)lineofy( d ∫

4

2–
)parabolaofy(



(4, 12)

y

x

(–2, 3)

x = 2 O
r 

x = 4

 = dx
4
x3

2
12x34

2–

2

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

 = 
4
3

∫ dx +
4

2–

2 )x–x28(

 = 
4
3

4

2–

3
2

3
x–xx8 ⎥

⎦

⎤
⎢
⎣

⎡
+ = 27 sq. units

28. Find the particular solution of the differential equation (x – y)
dx
dy  = (x + 2y), given that y = 0 when x = 1.

Sol.  (x – y) 
dx
dy  = ( )y2x +

dx
dy  =

y–x
y2x +

Let y = Vx 

dx
dy  = V + x

dx
dV

⇒ V + x
dx
dV  =

Vx–x
)Vx(2x +

⇒ V + x
dx
dV  = 

V–1
V21+

⇒ x
dx
dV  = 

V–1
VV–V21 2++

⇒ ∫ ++ 2VV1
V–1 dV = ∫ x

dx

⇒ ∫∫ =
⎭
⎬
⎫

⎩
⎨
⎧

++
−+

−
x

dxdV
VV1

3)1V2(
2
1

2

⇒ – 
2
1

⎥⎦
⎤

⎢⎣
⎡

++++
+

∫ ∫ 22 VV1
dV3–dV

VV1
1V2 = ∫ x

dx

⇒ –
2
1 log |1+ V + V2| +

2
3

∫
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ +

22

2
3

2
1V

dV = log|x| + C 

⇒ –
2
1  log |1 + V + V2| +

2
3

3
2  tan–1

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
+

2
3

2
1V

= log|x| + C 



⇒ –
2
1 log 2

2

x
y

x
y1 ++ + 3 tan–1 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ +

3

1
x
y2

= log|x| + C 

we have y = 0 when x = 1 

⇒ 0 + 3  tan–1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3
1  = 0 + C

⇒ C = 3  tan–1

3
1

∴ Solution 

⇒ –
2
1 log 2

2

x
y

x
y1 ++  + 3  tan–1 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ +

3

1
x
y2

= log |x| + 3  tan–1 
3

1

29. Find the coordinates of the point where the line through the points (3, –4, –5) and (2, –3, 1), crosses the plane
determined by the points (1, 2, 3), (4, 2, –3) and (0, 4, 3).

OR
A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C.

Show that the locus of the centroid of triangle ABC is 2x
1  + 2y

1  + 2z
1  = 2p

1 .

Sol. Equation of line passing through 
(3, – 4, – 5) and (2, – 3, 1) 

1–
3–x  =

1
4y +  =

6
5z + …(1) 

Equation of plane passing through 
(1, 2, 3) (4, 2, – 3) and (0, 4, 3) 

021–
6–03
3–z2–y1–x

 = 0 

⇒ (x – 1) (12) – (y – 2) (– 6) + (z – 3) (6) = 0
⇒ 2x + y + z – 7 = 0 …(2) 
Let any point on line (1)

P 

is P (– k + 3, k – 4, 6k – 5) 
it lies on plane 
∴ 2(– k + 3) + k – 4 + 6k – 5 – 7 = 0 

  5k = 10 
⇒ k = 2
∴ P (1, –2, 7)



OR 
Let the equation of plane 

a
x  +

b
y  +

c
z  = 1      …(1) 

It cut the co-ordinate axes at A, B and C 
∴A (a, 0, 0),   B (0, b, 0),  C (0, 0, c) 
Let the centroid of ΔABC be (x, y, z) 

∴ ⎟
⎠
⎞

⎜
⎝
⎛ ===

3
cz,

3
by,

3
ax   …(2) 

given that distance of plane (1) from origin is 3p 

∴
222 c

1
b
1

a
1

1

++
= 3p 

⇒ 2a
1  + 2b

1  + 2c
1  = 2p9

1

 from (2) 

⇒ 2x9
1  + 2y9

1  + 2z9
1  = 2p9

1

⇒ 2x
1  + 2y

1  + 2z
1  = 2p

1  Proved
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