CBSE QUESTION PAPER CLASS-X MATHS

SECTION - A

Question 1. Which of the following numbers has terminating decimal expansion?

$$(a) \frac{37}{45} \\ (b) \frac{21}{2^3 5^6} \\ (c) \frac{17}{49} \\ (d) \frac{89}{2^2 3^2}$$

Question 2:

If one of the zeroes of the quadratic polynomial $(k - 1)x^2 + kx + 1$ is -3, then the value of k is

(a)
$$-\frac{4}{3}$$

(b) $\frac{4}{3}$
(c) $\frac{2}{3}$
(d) $-\frac{2}{3}$

Question 3:

If a rational number x is expressed as $x = \frac{p}{q}$, where p, q are integer, $q \neq 0$ and p, q have no common factor (except 1), then the decimal expansion of x is terminating if and only if q has a prime factorization of the form:

- (a) $2^m . 5^n$
- (b) $2^m 3^n$
- (c) $2^m . 7^n$
- (d) $5^m . 3^n$

Where m and n are non-negative integers.

Question 4:

If $0^{\circ} < x < 90^{\circ}$ and $2\sin^2 x = \frac{1}{2}$, then the value of x is

- (*a*) 90°
- (**b**) 30°
- (*c*) 15°
- (*d*) 60°

Question 5:

If
$$\tan \theta = \frac{1}{\sqrt{7}}$$
, then the value of $\frac{\cos ec^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta}$ is
(a) $\frac{1}{5}$
(b) $\frac{3}{4}$
(c) $\frac{6}{4}$
(d) $\frac{4}{\sqrt{7}}$

Question 6:

Which of the following numbers has non-terminating repeating decimal expansion?

$$(a) \frac{7}{80} \\ (b) \frac{17}{320} \\ (c) \frac{20}{100} \\ (d) \frac{93}{420}$$

Question 7:

The value of p for which the polynomial $x^3 + 4x^2 - px + 8$ is exactly divisible by (x - 2) is

(a) 1

(b) **0**

(c) **15**

(d) 16

Question 8:

 $n^2 - 1$ is divisible by 8, if n is

- (a) an integer
- (b) a natural number
- (c) an odd integer
- (d) an even integer

Question 9:

If
$$\cot \theta + \frac{1}{\cot \theta} = 2$$
, then the value of $\cot^2 \theta + \frac{1}{\cot^2 \theta}$ is
(a) -1
(b) 1
(c) 2
(d) -2

Question 10:

The value of $\csc^2 30^\circ \sin^2 45^\circ - \sec^2 60^\circ$ is

a. -1
b. 1
c. -2
d. 2

SECTION - B

Question 11: Use Euclid's division algorithm to find HCF of 870 and 225.

Question 12: Explain $5 \times 4 \times 3 \times 2 \times 1 + 3$ is a composite number.

Question 13:

If α and β are the zeroes of the quadratic polynomial $p(x) = x^2 - \alpha x + b$, then find the value of $\alpha^2 + \beta^2$.

Question 14: Solve 37x + 43y = 123, 43x + 37y = 117

OR

Solve
$$x + \frac{6}{y} = 6$$
, $3x - \frac{8}{y} = 5$.

Question 15: In figure, $\triangle ABD$ is a right triangle, right-angled at A and AC \perp BD. Prove that $AB^2 = BC$. BD

Question 16:

Without using trigonometric tables, find the value of

 $\frac{\cos 70^{\circ}}{\sin 20^{\circ}} + \cos 57^{\circ} \csc 33^{\circ} - 2 \cos 60^{\circ}$

OR

If A, B, C are interior angles of $\triangle ABC$, then show that

 $\cos\left(\frac{B+C}{2}\right) = \sin\frac{A}{2}$

Question 17:

The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality.

Monthly Consumption (in units)	65-85	85-105	105-125	125-145	145-165	165-185	185-205
Number of consumers	4	5	13	20	14	8	4

Write the above distribution as less than type cumulative frequency distribution.

Question 18:

Find the mode of the following data:

Class	0-20	20-40	40-60	60-80
Frequency	15	6	18	10

SECTION-C

Question19:

Prove that $3 + \sqrt{2}$ is an irrational number

Prove that $5\sqrt{2}$ is irrational number.

Question20:

Show that 5^n can'tend with the digit 2 for any natural number n.

Question 21

A and B are friends and their ages differ by year. A's father D is twice as old as A and B is twice as old as his sister C. The age of D and C differ by 40 years. Find the ages of A and B.

OR

Solve the following pair of equations:

$$\frac{5}{x-1} + \frac{1}{y-2} = 2$$
$$\frac{6}{x-1} - \frac{3}{y-2} = 1$$

Question 22:

Obtain all zeroes of the polynomial $f(x) = x^4 - 3x^2 = x^2 + 9x$ if two of its zeroes are $-\sqrt{3}$, and $\sqrt{3}$.

Question 23:

In figure, $\triangle ABC$ is right-angled at B, BC=7cm and AC – AB = 1cm. Find the value of $\cos A - \sin A$.

Question 24:

$$\frac{\cos\theta}{\csc\theta+1} + \frac{\cos\theta}{\csc\theta-1} = 2\tan\theta$$

Question 25:

$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} + \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = 2 \sec\theta$$

Question 26:

In the figure, ABC is a triangle with $\angle B = 90^{\circ}$, Medians AE and CD of respective lengths $\sqrt{40}$ cm and 5cm are drawn. Find the length of the hypotenuse AC.

Question 27: Compute the median for the following cumulative frequency distribution :

Weight	Less							
	than 38	than 40	than 42	than 44	than 46	than 48	than 50	than 52
Number	0	3	5	9	14	28	32	35
of								
students								

Find the missing frequencies in the following frequency distribution table, if N = 100 and median is 32.

Marks	0-10	10-20	20-30	30-40	40-50	50-50	Total
obtained							
No, of	10	?	25	30	?	10	100
students							

Question 28: The mean of- the following frequency distribution is 25.2. Find the missing frequency **x**

C.I.	0-10	10-20	20-30	30-40	40-50
Frequency	8	Χ	10	11	9

SECTION - D

Question29:

Divide $30x^4 + 11x^3 - 82x^2 - 12x + 48 by (3x^2 + 2x - 4)$) and verify the result by division algorithm.

Question 30:

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, prove that the other two sides are divided in the same ratio. Solution. Given : A triangle ABC in which a line parallel to BC intersects other two sides AB and AC at D and E respectively.

OR

Prove that in a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the first side is a right angle. Solution. Given :A triangle ABC such that :

Question 31. Without using trigonometric tables, evaluate the following :

 $\frac{\sec 37^{\circ}}{\csc 53^{\circ}} + 2\cot 15^{\circ}\cot 25^{\circ}\cot 45^{\circ}\cot 75^{\circ}\cot 65^{\circ} - 3(\sin^2 18^{\circ} + \sin^2 72^{\circ})$

Prove that
$$:\frac{\tan\theta}{1-\cot\theta}+\frac{\cot\theta}{1-\tan\theta}=1+\sec\theta\csc\theta$$

Question 32.

Form the pair of linear equations in the following problem, and find their solutions graphically. 10 students of Class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.

Question 33:

prove that $\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$.

Question 34:

m3.30. Solve the following system of linear equations graphically : &+y-8 32-2y-12 Also find the coordinates of the points where the lines meet the z-axis.