
CBSE QUESTION PAPER CLASS-X MATHS

SECTION - A

Question 1: In figure, AB = $5\sqrt{3}$ cm, DC = 4cm, BD = 3cm, then tan θ is

Question 2: In figure, what values of x will make *DE* || *AB*?

- (a) 3 (b) 2
- (c) **5**
- (c) **4**

Question 3: Find the LCM and HCF of 510 and 92 and verify that LCM × HCF = product of the two numbers

Question 4: If $\cos \theta + \cos^2 \theta = 1$, the value of $\sin^2 \theta + \sin^4 \theta$ is

a) 0
b) 1
c) 2
d) -1

Question 5: If $\triangle ABC \cong \triangle RQP$, $\angle A = 80^{\circ}$ and $\angle B = 60^{\circ}$, the value of $\angle P$ is

(a) 80°
(b) 30°
(c) 40°
(d) 50°

Question 6: In the give figure, $\angle ACB = 90^{\circ}$ and $\angle BDC = 90^{\circ}$, CD = 4cm, BD = 3cm, AC = 12cm, $\cos A - \sin A$ is equal to (a). $\frac{5}{12}$ (b). $\frac{5}{13}$

(c).
$$\frac{7}{13}$$

(d). $\frac{7}{12}$

Question 7: If $\tan 2A = \cot(A -$

18°), Where 2A is an acute angle, then the value of A is

(a) 24°
(b) 63°
(c) 40°
(d) 36°

Question 8: If $\sec x + \tan x = p$, then $\sec x$ is equal to

(a)
$$\frac{P^2 - 1}{p}$$

(b)
$$\frac{P^2 + 1}{p}$$

(c)
$$\frac{P^2 - 1}{2p}$$

(d)
$$\frac{P^2 + 1}{2p}$$

Question 9: The largest number that will divide 398, 436 and 542 leaving remainder 7,11 and 15 respectively is

(a) 11
(b) 17
(c) 34
(d) 51

Question 10: If $\cos x = \cos 60^\circ \cos 30^\circ + \sin 60^\circ \sin 30^\circ$, then the value of x is

- (*a*) 90°
- (**b**) 45°
- (*c*) 30°
- (*d*) 60°

Question 11: If α and β are the zeroes of the quadratic polynomial $p(x) = ax^2 + bx + c$, then evaluate:

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

Question 12: Check whether 6^n can end with the digit 0 for any natural number n.

Question 13:

$$\frac{\cos\theta}{1+\sin\theta} = \frac{1-\sin\theta}{\cos\theta}$$

OR

Prove that: (i) $\tan 20^{\circ} \tan 35^{\circ} \tan 45^{\circ} \tan 55^{\circ} \tan 70^{\circ} = 1$

(ii) $\sin 48^{\circ} \sec 42^{\circ} + \csc 42^{\circ} = 2$

(*iii*)
$$\frac{\sin 70^{\circ}}{\cos 20^{\circ}} + \frac{\csc 20^{\circ}}{\sec 70^{\circ}} - 2\cos 70^{\circ} \csc 20^{\circ} = 0$$

Question 14: Reena has pens and pencils which together are 40 in number. If she has 5 more pencils and 5 less pens, then number of pencils would become 4 times the number of pens. Find the original number of pens and pencils.

Question 15: In figure, $AB \perp BC$, $DE \perp AC$ and $GF \perp BC$, therefore $ADE \sim \triangle GCF$

Question 16:

$$\frac{2x}{x-4} + \frac{2x-5}{x-3} = \frac{25}{3}$$

Question 17: The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality.

Monthly consumption (in units)	65 – 85	85 – 105	105 – 125	125 – 145	145 – 165	165 – 185	185 - 205
Number of consumers	4	5	13	20	14	8	4

Write the above distribution as less than type cumulative frequency distribution.

Question 18: The length of 42 leaves of a plant are measure correct up to the nearest millimeter and the data is as under:

Length (in mm)	118 – 126	126 – 134	134 – 142	142 – 150	150 – 158	158 – 166
Number of leaves	4	5	10	14	4	5

Find the mode length of the leaves.

SECTION - C

Question 19: Prove that $\frac{7}{3}\sqrt{5}$ is irrational number.

OR

Prove that $5 - 2\sqrt{3}$ is an irrational number

Question 20: Prove that $n^2 - n$ dis divisible by 2 for any positive integer n.

Question 21: Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other, they meet in 1 hour. What are the speeds of the two cars?

OR

Solve the following pair of equations:

$$\frac{10}{x+y} + \frac{2}{x-y} = 4$$
$$\frac{15}{x+y} - \frac{5}{x-y} = -2$$

Question 22: If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 - px + q$, prove that

$$\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{p^4}{q^2} - \frac{4p^2}{q} + 2$$

Question 23: In an isosceles triangle ABC, AB = AC = 25 cm, BC = 14 cm. Calculate the altitude from A on BC.

Question 24:

$$\frac{\cos\theta}{1+\sin\theta} = \frac{1-\sin\theta}{\cos\theta}$$

Question 25:

$$\frac{1-\sin\theta}{1+\sin\theta}-(\sec\theta-\tan\theta)^2$$

OR

Tan 45°		5sin 90 °		
cosec 30°	cot 45°	2 Cos 0°		

Question 26:

In Figure, XY||QR, $\frac{PQ}{XQ} = \frac{7}{3}$ and PR = 6. 3cm. Find YR.

Question 27. Find mean of the following frequency distribution using step-deviation method:

Class- Interval	0-60	60-120	120-180	180-240	240-300
Frequency	22	35	44	25	24

Classes	0-20	20-40	40-60	60-80	80-100
Frequency	15	22	37	р	21

The mean of the following distribution is 52.5 find the value of p.

Question 28. A survey regarding the height (in cm) of 51 girls of class X of a school was conducted and the following data was obtained:

Height (in cm)	Number of girls
less than 140	4
less than 145	11
less than 150	29
less than 155	40
less than 160	46
less than 165	51

Find the median height.

SECTION - D

Question 29: If the median of the distribution given below is 28.5, find the values of x and y, if the total frequency is 60.

Class interval	0-10	10-20	20-30	30-40	40-50	50-60	Total
Frequency	5	Х	20	15	У	5	60

Question 30: If tan A - n tan B and sin A - m sin B, prove that $\cos^2 A = \frac{m^2 - 1}{n^2 - 1}$

OR

Prove the identity:

$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} + \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = 2 \sec\theta$$

Question:31: Find all zeroes of the polynomial $f(x) = 2x^4 - 2x^3 - 7x^2 + 3x + 6$, if it's tho zeroes are $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$

Question: 32

$$\frac{\tan\theta}{1-\cot\theta} = \frac{\cot\theta}{1-\tan\theta} = 1+\tan\theta+\cot\theta$$

Question 33. The following table shows the ages of 100 persons of a locality.

Age(years)	Number of person
0-10	5
10-20	15
20-30	20
30-40	23
40-50	17
50-60	11
60-70	9

Draw the less than ogive and find the median.

Question 34: Prove that in a triangle, if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points the other two sides are divided in the same ratio

OR

Prove that in a right angle triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.