Sample Paper-II (Unsolved)

Subject: Chemistry

Class: IX

Time: 3 Hr. M.M.: 70

General In tructions:

- (i) All questions are compulsory.
- (ii) Marks for questions are indicated against each.
- (iii) Question no. 1-8 are very short answer questions carrying 1 march each.
- (iv) Questions no. 9-18 are short answer questions carrying 2 marks each.
- (v) Question no. 19-27 are also short answer question carrying 3 marks each.
- (vi) Question no. 28-30 are long answer questions carrying 5 marks each.
- (vii) Answer should be brief and to the point.
- Write the correct set of four quantum numbers for the valence electron of potassium (Z = 19).
- Write the I PAC name and symbol for the element with atomic number 199.
- 3. What property of molecules of real gases is indicated by van der Walls constant 'a'?
- When 430J of work was done on a system, it lost 120J of nergy as heat. Calculate the value of internal energy change (Δ) for this process.
- Write K_n is terms of K_n for the following chemical reaction:

$$2SO_3(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

- 6. Given an example of disproportionation reaction.
- Name the isotope of hydrogen which contains equal number of protons and neutrons.
- 8. Write I PAC name of the following organic compund:

- A sample of drinking water was found to be severely contraminated with chloroform (CHCl₃), supposed to be careinogenic in nature. The level of contamination was 15ppm (by mass).
 - a) Express this in percent by mass.
 - b) Determine the molality of chloroform in the water sampl

[Given molar mass of CHCl₃ = 118.5g-mol |

10.	An electron has a speed of 40ms^{-1} accurate upto 99.99%. What is the uncertainty in locating its position? [Given $m_e = 9.11 \times 10^{-3}1 \text{ kg}$] 2		2	
11.	Giv	ve correct reason for the following:	2	
	a)	$\mathrm{BF_3}$ has a zero dipole moment although the B–F bonds are plar.		
	b)	All carbon to oxygen bonds in CO ₃ ²⁻ are equivalent.		
12.		lance the following redox reaction by ion electron method (in basic dium):	2	
		$MnO_4^-(aq) + \Gamma^-(aq) \rightarrow MnO_2(s) + I_2(s)$		
13.	Co	mplete the following reactions:	2	
	a)	$PbS(s) + H_2O_2(aq) \rightarrow$		
	b)	$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow$		
OR				
A		.ccount for the following:		
	a)	Soft water lathers with soap but not hard water.		
	b)	Temporary hardness of water can be removed by boiling.		
14.	a)	Mention the type of hybridisation of each carbon in the compound $CH_3 - CN$.	2	
	b)	Draw the structure of 2-methylpropan-2-ol.		
15.		In sulphur estimation, 0.157g of an organic compound gave 0.4813g 2 of barium sulphate. What is the percentage of sulphur in the compound?		
16.	Wr	ite the structures of products (A and B) of the following reactions:	2	
	. ,	$HC \equiv CH \xrightarrow{Na} A \xrightarrow{CH_3Br} B$		
	b)	$BrH_2 C - CH_2 Br \xrightarrow{Alcohol} A \xrightarrow{NaNH_2} B$		
17.	Arı	range the following in order of property mentioned against each:	2	
	a)	BeCl ₂ , MgCl ₂ , CaCl ₂ , BaCl ₂ [Increasing ionic character]		
	b)	$Mg(OH)_2, Ca(OH)_2, Ba(OH)_2, Sr(OH)_2 \\ [Increasing solubility in water the content of the co$]	
18.	Giv	ve reasons for the following:		
	a)	The enthalpy of neutralisation is always constant i.e., 57.1 kJ/mol whas strong acid neutralises a strong base.	nen	

b) Neither q nor W is a state function but q + W is a state function.

- 19. a) State Gay Lussac's law of gaseous volumes.
 - b) What mass of CaCO3 is required to react completely with 25ml of 0.75M HCl according to equation?

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

[Given atomic masses: Ca + 40u, C = 12u, O = 16u, Cl = 35.5u and H = 1u]

- 20. Account for the following:
 - a) Ionization enthalpy of nitrogen is more than that of oxygen.
 - b) A cation is always smaller then its parent atom.
- 21. Calculate the standard enthalphy of formation of CH₃OH (I) from the following data:

$$\begin{split} & \text{CH}_3\text{OH }(\textit{l}) + \frac{3}{2} \text{ O}_2\left(g\right) \to \text{CO}\left(g\right) + 2\text{H}_2\text{O}\left(\textit{l}\right) & ; \ \Delta_1\text{H}^6 = 726 \text{ kJ/mol} \\ & \text{C (graphite)} + \text{O}_2\left(g\right) \to \text{CO}_2\left(g\right) & ; \ \Delta_2\text{H}^6 = 393 \text{ kJ/mol}^{-1} \\ & \text{H}_2\left(g\right) + \frac{1}{2} \text{ O}_2\left(g\right) \to \text{H}_2\text{O}\left(\textit{l}\right) & ; \ \Delta_2\text{H}^6 = 286 \text{ kJ/mol} \end{split}$$

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(l)$$
 ; $\Delta_1H^6 = 286 \text{ kJ/mol}$

3

3

3

- 22. a) State Pauli's exclusion principle.
 - b) Account for the following:
 - Chromium has configuration 3d⁵4s¹ and not 3d⁴4s².
 - ii) Bohr's orbit are called stationary states.
- 23. Explain the following terms:
 - a) Photochemical smog
 - b) Acid rain
 - c) Eutrophication
- 24. a) Write the molecular orbital configuration of O2+. Calculate its bond order and predict its magnetic behaviour.
 - b) What is the state of hybridisation of nitrogen in NH₄⁺ion? 3
- 25. Account for the following:
 - a) Potassium carbonate cannot be prepared by Solvay process.
 - b) Beryllium and magnesium do not give colour to flame.
 - c) Alkali metals and alkaline earth metals cannot be obtained by chemical reduction methods.

What happens when:

- a) sodium metal is dropped in water?
- b) sodium metal is heated in free supply of air?
- c) sodium peroxide dissolves in water?
- 26. a) What would be the S.I. unit for quantity pV^2T^2/n ?
 - Calculate the volume occupied by 8.8g of CO₂ at 31.1°C and 1 bar pressure. (R = 0.083 bar LK⁻¹ mol⁻¹).
- 27. a) Arrange the following in order of property mentioned against each: 3
 - i) $(CH_3)_3C^0$, $CH_3CH_2CH^+$ $CH_3CH_2CH_2CH^+_3$ [Increasing stability order] CH
 - ii) CH₃CH₂COOH, (CH₃)₂CHOOH and (CH₃)₃ CCOOH
 [Increasing acidic strength]
 - b) Write the name of isomerism among the following compounds:
 CH₃O CH₂CH₂CH₃ and CH₃CH₂O CH₂ CH₃
- 28. a) Write the conjugate acid of HCOO-.

b) Calculate the pH of a 1.0×10^{-8} M solution of HCl.

3

5

c) Calculate the solubility of A_2X_3 in pure water, assuming that neither kind of ion reacts with water. The solubility product of A_2X_3 is $K_\infty = 1.1 \times 10^{-23}$.

OR

- a) Write the conjgate acid of NH3.
- b) Assign reason for the following:
 - i) A solution of NH₄Cl in water shows pH less than 7.
 - ii) In qualitative analysis NH₄Cl is added before adding NH₄OH for testing Fe³⁺ or Al³⁺ ions.
- c) Consider the reaction ₩

$$N_2(g) + 3H_2(g)$$
 2NH₃+ Heat

Indicate the direction in which the equilibrium will shift when:

- i) temperature is increased.
- pressure is increased.

29. a) Draw the structure of B₂H₆.b) What happens when:

- i) Boric acid is added to water.
- ii) Aluminium is treated with dilute NaOH.
- c) Give suitable reason for the following:
 - i) [SiF₆]²⁻ is known whereas [SiCl₆]²⁻ not.
 - In group 14, the tendency for catenation decreases with increasing atomic number.

OR

- a) Complete the follwing chemical equations:
 - i) $Fe_2O_3 + 3CO \xrightarrow{\Delta}$
 - ii) CaCO₃+2HCl→
- b) Write a brief account on the following:
 - i) Diamond is covalent, yet it has high melting point.
 - ii) Atomic radius of gallium (135pm) is less than that of aluminium (143pm).
 - iii) Graphite is a good conductor of electricity but diamond is insulator.
- 30. a) Explain the following reactions with suitable examples:
- 5

5

- i) Wurtz reaction.
- ii) Friedal-Crafts alkylation reaction.
- An alkene 'A' on azonolysis gives mixture of ethanol and pentan-3 one.
 Write the structure and IUPAC name of 'A'.
- c) Give one chemical test to distinguish between ethene and ethyne.

OR

- a) Write suitable reason for the following:
 - i) C-C bond length in benzene ring is 139 pm which is in between C-C single bond 154 pm and C=C double bond 133 pm.
 - ii) Trans-2-butene has higher melting point than cis-isomer.
- b) Give a chemical test to distinguish between but-1-yne and but-2-yne.
- c) How will you carry out the following conversions:
 - i) Ethene to benzene
 - ii) 1-bromopropane to 2-bromopropane.