ICSE Board
 Class IX Mathematics
 Paper 4 - Solution

SECTION - A (40 Marks)

Q. 1.
(a) Consider

$$
\begin{aligned}
& \frac{3 \sqrt{2}+2 \sqrt{3}}{5 \sqrt{2}-4 \sqrt{3}}=x-y \sqrt{6} \\
& \Rightarrow \frac{3 \sqrt{2}+2 \sqrt{3}}{5 \sqrt{2}-4 \sqrt{3}} \times \frac{5 \sqrt{2}+4 \sqrt{3}}{5 \sqrt{2}+4 \sqrt{3}}=x-y \sqrt{6} \\
& \Rightarrow \frac{30+12 \sqrt{6}+10 \sqrt{6}+24}{50-48}=x-y \sqrt{6} \\
& \Rightarrow \frac{54+22 \sqrt{6}}{2}=\frac{2(27+11 \sqrt{6})}{2}=x-y \sqrt{6} \\
& \Rightarrow 27+11 \sqrt{6}=x-y \sqrt{6} \\
& \Rightarrow x=27, y=-11
\end{aligned}
$$

(b) Dimensions of the brick:

Length (l) $=20 \mathrm{~cm}$, breadth (b) $=5 \mathrm{~cm}$ and height (h) $=5 \mathrm{~cm}$
Volume of brick (V) $=\mathrm{lbh}=500 \mathrm{~cm}^{3}$
Dimensions of the wall:
Length (l) $=2.5 \mathrm{~m}=250 \mathrm{~cm}$, breadth (b) $=0.5 \mathrm{~m}=50 \mathrm{~cm}$ and
height (h) $=5 \mathrm{~m}=500 \mathrm{~cm}$
Volume of the wall $\left(\mathrm{V}_{1}\right)=\mathrm{LBH}=6250000 \mathrm{~cm}^{3}$
Let N be the number of bricks required to make the wall.
Then, $\mathrm{N} \times \mathrm{V}=\mathrm{V}_{1}$
$\Rightarrow \mathrm{N}=\frac{6250000}{500}=12500$
Thus, 12500 bricks are required to make the wall.
(c) Let $\mathrm{P}=$ Rs. x , rate $=\mathrm{r} \%$

Then, $\frac{\mathrm{x} \times \mathrm{r} \times 1}{100}=350 \Rightarrow \mathrm{rx}=35000$
Now, principal for second year $=$ Rs. $(\mathrm{x}+350)$
$\Rightarrow r x+350 r=42000$
$\Rightarrow 35000+350 \mathrm{r}=42000$
[From (1)]
$\Rightarrow 350 \mathrm{r}=42000-35000$
$\Rightarrow 350 \mathrm{r}=7000$
$\Rightarrow \mathrm{r}=\frac{7000}{350}=20 \%$

Q. 2.

(a) $a^{2}-3 a+1=0$

On dividing equation (1) by a, we get, $a-3+\frac{1}{a}=0$
(i) $a+\frac{1}{a}=3$

On squaring equation (2), we have

$$
\begin{aligned}
& \left(a+\frac{1}{a}\right)^{2}=3^{2} \\
& a^{2}+\frac{1}{a^{2}}+2 \times a \times \frac{1}{a}=9 \\
& a^{2}+\frac{1}{a^{2}}+2=9 \\
& a^{2}+\frac{1}{a^{2}}=9-2=7
\end{aligned}
$$

(ii) Cubing equation (2), we have

$$
\begin{aligned}
& \left(a+\frac{1}{a}\right)^{3}=3^{3} \\
& a^{3}+\frac{1}{a^{3}}+3 \times a \times \frac{1}{a}\left(a+\frac{1}{a}\right)=27 \\
& a^{3}+\frac{1}{a^{3}}+3(3)=27 \\
& a^{3}+\frac{1}{a^{3}}=27-9=18
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 20-45(\mathrm{~m}+\mathrm{n})^{2}=5\left[4-9(\mathrm{~m}+\mathrm{n})^{2}\right] \\
& =5\left[(2)^{2}-\{3(\mathrm{~m}+\mathrm{n})\}^{2}\right] \\
& =5[2+3(\mathrm{~m}+\mathrm{n})][2-3(\mathrm{~m}+\mathrm{n})] \\
& =5(2+3 \mathrm{~m}+3 \mathrm{n})(2-3 \mathrm{~m}-3 \mathrm{n})
\end{aligned}
$$

(c) Here
$\frac{5 \sin 62^{\circ}}{\cos 28^{\circ}}=\frac{5 \sin \left(90^{\circ}-28^{\circ}\right)}{\cos 28^{\circ}}=\frac{5 \cos 28^{\circ}}{\cos 28^{\circ}}=5$
And $\frac{2 \sec 34^{\circ}}{\operatorname{cosec} 56^{\circ}}=\frac{2 \sec \left(90^{\circ}-56^{\circ}\right)}{\operatorname{cosec} 56^{\circ}}=\frac{2 \operatorname{cosec} 56^{\circ}}{\operatorname{cosec} 56^{\circ}}=2$
$\therefore \frac{5 \sin 62^{\circ}}{\cos 28^{\circ}}-\frac{2 \sec 34^{\circ}}{\operatorname{cosec} 56^{\circ}}=5-2=3$
Q. 3
(a) Let the side of square be x cm
\therefore Its perimeter is 4 x cm
Given, $4 x=4(p+3 q)$
$\Rightarrow x=\frac{4(p+3 q)}{4}=(p+3 q) \mathrm{cm}$
\therefore Area $=(\text { side })^{2}=(p+3 q)^{2}$
$=\left(p^{2}+9 q^{2}+6 p q\right) \mathrm{cm}^{2}$
(b) $\mathrm{m} \angle \mathrm{AOB}=\mathrm{z}=90^{\circ}$ [Diagonals of a rhombus bisect each other at right angle]
$\mathrm{m} \angle \mathrm{ABO}=180-160=20^{\circ}$

In $\triangle A O B, m \angle B A O+m \angle A O B+m \angle A B O=180^{\circ}$
$\mathrm{m} \angle \mathrm{BAO}+90^{\circ}+20^{\circ}=180^{\circ}$
$\mathrm{m} \angle \mathrm{BAO}=70^{\circ}$

Also, $\mathrm{x}=\mathrm{m} \angle \mathrm{BAO}=70^{\circ}$ [Alternate interior angles are equal as $\mathrm{AB} \| \mathrm{DC}$]
In $\triangle \mathrm{ADB}, \mathrm{AD}=\mathrm{AB}$
$\angle \mathrm{ABD}=\angle \mathrm{ADB}$ (Angles opposites to equal sides are equal)
Therefore, $\mathrm{y}=20^{\circ}$
(c) $\mathrm{x}=2^{\frac{1}{3}}+2^{\frac{-1}{3}}$

On cubing both sides

$$
x^{3}=\left(2^{\frac{1}{3}}\right)^{3}+\left(2^{\frac{-1}{3}}\right)^{3}+3 \times 2^{\frac{1}{3}} \times 2^{\frac{-1}{3}}\left(2^{\frac{1}{3}}+2^{\frac{-1}{3}}\right)
$$

[By using $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$]
$\Rightarrow \mathrm{x}^{3}=2+2^{-1}+3 \times 2^{\circ} \times \mathrm{x}$
$\mathrm{x}^{3}=2+\frac{1}{2}+3 \mathrm{x}$
$\Rightarrow 2 x^{3}=5+6 x$ or $2 x^{3}=6 x+5$
Q. 4.
(a) We have $\frac{\log 4}{\log \frac{1}{2}}=\frac{\log 2^{2}}{\log 2^{-1}}=\frac{2 \log 2}{-1 \log 2}=-2$

$$
\text { Now } \frac{\log (a-b)}{\log 5}=-2
$$

$$
\Rightarrow \log (\mathrm{a}-\mathrm{b})=-2 \log 5
$$

$$
\Rightarrow \log (\mathrm{a}-\mathrm{b})=\log 5^{-2}
$$

$$
\Rightarrow \mathrm{a}-\mathrm{b}=\frac{1}{5^{2}}
$$

$$
\begin{equation*}
\Rightarrow a-b=\frac{1}{25} \tag{1}
\end{equation*}
$$

Again, $\frac{\log (\mathrm{a}+\mathrm{b})}{\log 2}=-2$
$\Rightarrow \log (\mathrm{a}+\mathrm{b})=-2 \log 2$
$\Rightarrow \log (\mathrm{a}+\mathrm{b})=\log 2^{-2}$
$\Rightarrow \mathrm{a}+\mathrm{b}=\frac{1}{4}$
From (1) and (2), we get
$\mathrm{a}=\frac{29}{200}, \mathrm{~b}=\frac{21}{200}$
(b) Given: In the equilateral $\triangle \mathrm{ABC}, \mathrm{AD}$ is perpendicular to BC .

To prove: $4 A D^{2}=3 A B^{2}$
Proof: $\mathrm{AD} \perp \mathrm{BC} \quad$ [Given]
BD $=$ DC
[In an equilateral triangle \perp from the vertex bisects the base] In right $\triangle A D B, A D^{2}+B D^{2}=A B^{2} \quad$ [Pythagoras theorem]
$\Rightarrow \mathrm{AD}^{2}+\left[\frac{1}{2} \mathrm{BC}\right]^{2}=\mathrm{AB}^{2} \quad\left[\because \mathrm{BD}=\frac{1}{2} \mathrm{BC}\right]$

$\Rightarrow \mathrm{AD}^{2}+\frac{\mathrm{BC}^{2}}{4}=\mathrm{AB}^{2}$
$\Rightarrow \mathrm{AD}^{2}+\frac{\mathrm{AB}^{2}}{4}=\mathrm{AB}^{2}[\because \mathrm{AB}=\mathrm{BC}]$
$\Rightarrow 4 \mathrm{AD}^{2}+\mathrm{AB}^{2}=4 \mathrm{AB}^{2}$
$\Rightarrow 4 \mathrm{AD}^{2}=3 \mathrm{AB}^{2}$
(c)

Sum of exterior angles $=\frac{1}{6}^{\text {th }}$ of the sum of interior angles
$360=\frac{1}{6} \times(2 n-4) \times 90$
$\Rightarrow 4 \times 6=2 n-4$
$\Rightarrow 24=2 \mathrm{n}-4$
$\Rightarrow 2 \mathrm{n}=28 \Rightarrow \mathrm{n}=14$

SECTION - B

Q. 5.
(a)

$$
\begin{align*}
& 3 x-7=\frac{1}{y} \tag{1}\\
& x+\frac{1}{y}=1 \tag{2}
\end{align*}
$$

Substituting $\frac{1}{y}=a$
$3 x-a=7 \ldots .(3)$
$x+a=1$
Applying 1(3)-3(4), we get

$$
\begin{aligned}
& -4 a=4 \\
& \Rightarrow \mathrm{a}=\frac{-4}{4}=-1 \\
& \therefore \frac{1}{\mathrm{y}}=-1 \\
& \Rightarrow \mathrm{y}=-1
\end{aligned}
$$

Substituting value of y in equation (2) we get
$\mathrm{x}=2$
Hence, $\mathrm{x}=2$ and $\mathrm{y}=-1$.
(b) Given: $\angle \mathrm{R}=\angle \mathrm{S}$ and $\angle \mathrm{RPQ}=\angle \mathrm{PQS}$

To prove: $\mathrm{PS}=\mathrm{QR}$
Proof: In $\triangle P Q S$ and $\triangle P Q R$, we have

$$
\begin{gathered}
\mathrm{PQ}=\mathrm{PQ} \quad \text { [Common] } \\
\angle \mathrm{PSQ}=\angle \mathrm{PRQ} \text { [Given] } \\
\angle \mathrm{RPQ}=\angle \mathrm{PQS} \text { [Given] }
\end{gathered}
$$

Hence, $\triangle \mathrm{PQS} \cong \triangle \mathrm{PQR} \quad$ [AAS]
$\therefore \mathrm{PS}=\mathrm{PR}$ [CPCT]

(c) Let ABC be an equilateral triangle whose sides measure ' a ' units each. Draw $\mathrm{AD} \perp \mathrm{BC}$. Then, D is the mid-point of BC .

$$
\Rightarrow \quad \mathrm{AB}=\mathrm{a}, \mathrm{BD}=\frac{1}{2} \mathrm{BC}=\frac{\mathrm{a}}{2}
$$

Since $\triangle \mathrm{ABD}$ is a right triangle right - angled at D .

$$
\begin{aligned}
& \therefore \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \\
& \Rightarrow \mathrm{a}^{2}=\mathrm{AD}^{2}+\left(\frac{\mathrm{a}}{2}\right)^{2} \\
& \Rightarrow \mathrm{AD}^{2}=\mathrm{a}^{2}-\frac{\mathrm{a}^{2}}{4}=\frac{3 \mathrm{a}^{2}}{4} \\
& \Rightarrow \mathrm{AD}=\frac{\sqrt{3} \mathrm{a}}{2} \\
& \therefore \quad \text { Altitude }=\frac{\sqrt{3}}{2} \mathrm{a}
\end{aligned}
$$

Now,
Area of $\Delta \mathrm{ABC}=\frac{1}{2}($ Base \times Height $)$
Area of $\triangle A B C=\frac{1}{2}(B C \times A D)$
\Rightarrow Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{a} \times \frac{\sqrt{3}}{2} \mathrm{a}=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$

Q. 6.

(a) The given points are $\mathrm{A}(4,-1), \mathrm{B}(6,0), \mathrm{C}(7,2)$ and $\mathrm{D}(5,1)$.

Using distance formula,
Diagonal AC $=\sqrt{(4-7)^{2}+(-1-2)^{2}}=\sqrt{9+9}=\sqrt{18}$
Diagonal $\mathrm{BD}=\sqrt{(6-5)^{2}+(0-1)^{2}}=\sqrt{1+1}=\sqrt{2}$
Since, $A C \neq B D, A B C D$ is not a square.
(b)
$(e-y)^{3}+(y-g)^{3}+(g-e)^{3}$
Here, $\mathrm{e}-\mathrm{y}+\mathrm{y}-\mathrm{g}+\mathrm{g}-\mathrm{e}=0$
Here, by the result, if $a+b+c=0$, then, $a^{3}+b^{3}+c^{3}=3 a b c$

$$
(e-y)^{3}+(y-g)^{3}+(g-e)^{3}=3 \times(e-y)(y-g)(g-e)
$$

(c)

$$
\begin{aligned}
& (\text { Per. })^{2}+(\text { Base })^{2}=(\text { Hyp. })^{2} \quad \text { [By Pythagoras theorem] } \\
& \Rightarrow 5^{2}+(\text { Base })^{2}=13^{2} \\
& \Rightarrow(\text { Base })^{2}=13^{2}-5^{2} \\
& \Rightarrow \text { Base }=\sqrt{169-25}=\sqrt{144}=12 \\
& \therefore \tan \theta=\frac{5}{12}, \frac{1}{\cos \theta}=\sec \theta=\frac{13}{12} \\
& \Rightarrow \tan \theta+\frac{1}{\cos \theta}=\frac{5}{12}+\frac{13}{12}=\frac{5+13}{12}=\frac{18}{12}=\frac{3}{2}
\end{aligned}
$$

Q. 7.

(a) Given: $\triangle \mathrm{ABC}$ in which AD is the median.

To prove: $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A D C)$
Construction: Draw AL \perp BC.
Proof: Since D is the mid-point of $B C$, we have $B D=D C$
$\Rightarrow \frac{1}{2} \mathrm{BD} \times \mathrm{AL}=\frac{1}{2} \mathrm{DC} \times \mathrm{AL}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADC})$
Hence, a median of a triangle divides in into two triangles of equal area.
(b) Let the width of concrete wall be $\mathrm{x} m$

In $\triangle \mathrm{PQR}, \angle \mathrm{Q}=90^{\circ}, \angle \mathrm{P}=\theta^{\circ}$ and $\angle \mathrm{R}=\phi^{\circ}$
By Pythagoras theorem, we have

$$
\begin{aligned}
& \mathrm{PQ}^{2}=\mathrm{PR}^{2}-\mathrm{QR}^{2} \\
& \Rightarrow \mathrm{PQ}^{2}=(\mathrm{x}+2)^{2}-\mathrm{x}^{2} \\
& \Rightarrow \mathrm{PQ}^{2}=\mathrm{x}^{2}+4 \mathrm{x}+4-\mathrm{x}^{2} \\
& \Rightarrow \mathrm{PQ}^{2}=4(\mathrm{x}+1) \\
& \Rightarrow \mathrm{PQ}=2 \sqrt{\mathrm{x}+1}
\end{aligned}
$$

Now, $\cot \phi=\frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{\mathrm{x}}{2 \sqrt{\mathrm{x}+1}}$ and $\tan \theta=\frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{\mathrm{x}}{2 \sqrt{\mathrm{x}+1}}$
(i) $(\sqrt{\mathrm{x}+1}) \cot \phi=(\sqrt{\mathrm{x}+1}) \times \frac{\mathrm{x}}{2 \sqrt{\mathrm{x}+1}}=\frac{\mathrm{x}}{2}$
(ii) $\left(\sqrt{\mathrm{x}^{3}+\mathrm{x}^{2}}\right) \tan \theta=\left(\sqrt{\mathrm{x}^{2}(\mathrm{x}+1)}\right) \tan \theta=\mathrm{x}(\sqrt{\mathrm{x}+1}) \times \frac{\mathrm{x}}{2 \sqrt{\mathrm{x}+1}}=\frac{\mathrm{x}^{2}}{2}$
(iii) $\cos \theta=\frac{P Q}{P R}=\frac{2 \sqrt{x+1}}{x+2}$
(c) Given, circumference $=704 \mathrm{~m}$
$\therefore 2 \pi r=704$
$\Rightarrow 2 \times \frac{22}{7} \times r=704$
$\Rightarrow \mathrm{r}=\frac{7 \times 704}{2 \times 22}=112 \mathrm{~m}$
andR $=112+14=126 \mathrm{~m}$
\therefore Surface area of road $=\pi R^{2}-\pi r^{2}$

$$
=\pi(\mathrm{R}+\mathrm{r})(\mathrm{R}-\mathrm{r})
$$

$$
=\frac{22}{7}(126+112)(126-112)
$$

$$
=\frac{22}{7} \times 238 \times 14=10472 \mathrm{~m}^{2}
$$

Given Rate of paving $=$ Rs. 100 per m^{2}
\therefore Total cost $=10472 \times 100=$ Rs. 1047200
Q. 8.
(a) Given: $\mathrm{A} \triangle \mathrm{ABC}$ and $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are the mid-points of BC, CA and DF $\mathrm{AB}=5.8 \mathrm{~cm}, \mathrm{EF}=6 \mathrm{~cm}$ and $\mathrm{DF}=5 \mathrm{~cm}$
To find: BC and CA
$\mathrm{EF} \| \mathrm{BC}$ [As E and F are mid-points of AC and AB]
Also, $\mathrm{EF}=\frac{1}{2} \mathrm{BC}$
$\mathrm{BC}=2 \times \mathrm{EF}=2 \times 6=12 \mathrm{~cm}$
Thus, $\mathrm{BC}=12 \mathrm{~cm}$
$\mathrm{DF} \| \mathrm{AC}$ [As D and F are mid-points of AB and BC respectively]
And $\mathrm{DF}=\frac{1}{2} \mathrm{AC} \Rightarrow 5=\frac{1}{2} \mathrm{AC} \Rightarrow \mathrm{AC}=10 \mathrm{~cm}$
(b)

$$
\begin{aligned}
& x^{3}+y^{3}+z^{3}-3 x y z \\
& =(x+y)^{3}-3 x y(x+y)+z^{3}-3 x y z \\
& =(x+y)^{3}+z^{3}-3 x y(x+y)-3 x y z \\
& =(x+y+z)\left[(x+y)^{2}-(x+y) z+z^{2}\right]-3 x y(x+y+z) \\
& =(x+y+z)\left(x^{2}+2 x y+y^{2}-x z-y z+z^{2}-3 x y\right) \\
& =(x+y+z)\left(x^{2}+y^{2}+z^{2}-y z-x z-x y\right)
\end{aligned}
$$

(c) $\mathrm{P}=$ Rs. $30,000, \mathrm{~A}=$ Rs. $39,930, \mathrm{~T}=3$ half years $\Rightarrow \mathrm{n}=3$

$$
\begin{aligned}
& A=P\left(1+\frac{r}{100}\right)^{n} \\
& 39,930=30,000\left(1+\frac{r}{100}\right)^{3} \\
& \Rightarrow \frac{39930}{30000}=\left(1+\frac{r}{100}\right)^{3} \\
& \Rightarrow \frac{1331}{1000}=\left(1+\frac{r}{100}\right)^{3} \\
& \Rightarrow\left(\frac{11}{10}\right)^{3}=\left(1+\frac{r}{100}\right)^{3} \\
& \Rightarrow \frac{r}{100}=\frac{11}{10}-1=\frac{1}{10} \\
& \Rightarrow \quad r=10 \%
\end{aligned}
$$

So, rate of interest per annum $=20 \%$

Q. 9.

(a) Given: $\mathrm{AD}=\mathrm{AB}, \mathrm{AE}$ bisects $\angle \mathrm{A}$

Construction: Join DE
To prove: $\mathrm{BE}=\mathrm{ED}$
Proof: In $\triangle A B E$ and $\triangle A D E$
$\mathrm{AE}=\mathrm{AE}$ [Common]
$\mathrm{AD}=\mathrm{AB}$ [Given]
And $\angle \mathrm{BAE}=\angle \mathrm{DAE} \quad$ [AE bisects $\angle \mathrm{A}$]
$\Rightarrow \triangle \mathrm{ABE} \cong \triangle \mathrm{ADE} \quad$ [S.A.S. Congruency]
So, $\mathrm{BE}=\mathrm{ED}$ [CPCT]

(b)

Given: $\frac{x-b-c}{a}+\frac{x-c-a}{b}+\frac{x-a-b}{c}=3$
$\Rightarrow \frac{\mathrm{x}-\mathrm{b}-\mathrm{c}}{\mathrm{a}}-1+\frac{\mathrm{x}-\mathrm{c}-\mathrm{a}}{\mathrm{b}}-1+\frac{\mathrm{x}-\mathrm{a}-\mathrm{b}}{\mathrm{c}}-1=3-3$
$\Rightarrow \frac{\mathrm{x}-\mathrm{a}-\mathrm{b}-\mathrm{c}}{\mathrm{a}}+\frac{\mathrm{x}-\mathrm{c}-\mathrm{a}-\mathrm{b}}{\mathrm{b}}+\frac{\mathrm{x}-\mathrm{a}-\mathrm{b}-\mathrm{c}}{\mathrm{c}}=0$
$\Rightarrow(\mathrm{x}-\mathrm{a}-\mathrm{b}-\mathrm{c})\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}\right)=0$
$\Rightarrow \mathrm{x}-\mathrm{a}-\mathrm{b}-\mathrm{c}=0 \quad\left(\right.$ as $\left.\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}} \neq 0\right)$
$\Rightarrow \mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
(c) Given that AB and CD are two chords of a circle with centre 0 , intersecting at a point $E . P Q$ is the diameter through E , such that $\angle \mathrm{AEQ}=\angle \mathrm{DEQ}$.
To prove that $\mathrm{AB}=\mathrm{CD}$.
Draw perpendiculars OL and OM on chords AB and CD respectively.
Now, $\mathrm{m} \angle \mathrm{LOE}=180^{\circ}-90^{\circ}-\mathrm{m} \angle \mathrm{LEO}$... [Angle sum property of a triangle]
$=90^{\circ}-\mathrm{m} \angle \mathrm{LEO}$
$\Rightarrow \mathrm{m} \angle \mathrm{LOE}=90^{\circ}-\mathrm{m} \angle \mathrm{AEQ}$
$\Rightarrow \mathrm{m} \angle \mathrm{LOE}=90^{\circ}-\mathrm{m} \angle \mathrm{DEQ}$
$\Rightarrow \mathrm{m} \angle \mathrm{LOE}=90^{\circ}-\mathrm{m} \angle \mathrm{MEQ}$
$\Rightarrow \angle \mathrm{LOE}=\angle \mathrm{MOE}$
In \triangle OLE and $\triangle O M E$,
$\angle \mathrm{LEO}=\angle \mathrm{MEO}$
$\angle \mathrm{LOE}=\angle \mathrm{MOE}$
$\mathrm{EO}=\mathrm{EO}$
$\Delta \mathrm{OLE} \cong \triangle \mathrm{OME}$

$\mathrm{OL}=\mathrm{OM}$
Therefore, cords AB and CD are equidistant from the centre.
Hence AB = CD

Q. 10.

(a) Adjustment factor $=\frac{41-40}{2}=0.5$

C.I	C.I after Adjustment	Frequency
$36-40$	$35.5-40.5$	3
$41-45$	$40.5-45.5$	6
$46-50$	$45.5-50.5$	5
$51-55$	$50.5-55.5$	10
$56-60$	$55.5-60.5$	9
$61-65$	$60.5-65.5$	7

(b) Let the numerator be x and denominator be y

Then, the required fraction is $\frac{x}{y}$
According to the given conditions

$$
\begin{align*}
& \frac{x+2}{y+1}=\frac{5}{8} \\
& \Rightarrow 8 x+16=5 y+5 \\
& \Rightarrow 8 x-5 y=-11 \tag{1}\\
& \text { And } \frac{x+1}{y+1}=\frac{1}{2} \\
& \Rightarrow 2 x+2=y+1 \\
& \quad \Rightarrow 2 x-y=-1 \tag{2}
\end{align*}
$$

On Solving (1) and (2), we get
$y=7$ and $x=3$
Hence, the required fraction is $\frac{3}{7}$

Q. 11.

(a)
(i) Draw $\mathrm{AB}=5.2 \mathrm{~cm}$
(ii) At B construct $\mathrm{m} \angle \mathrm{ABP}=90^{\circ}$
(iii) With A as the centre and radius 5.7 cm , draw an arc to cut BP at C.
(iv) With C as centre and radius equal to 5.2 cm draw an arc.
(v) With B as centre and radius equal to 5.7 cm , cut the previous arc at D
(vi) Join AD and DC

(b) $4 x-y=13 \Rightarrow 4 x=13+y \Rightarrow x=\frac{13+y}{4}$

Taking convenient values of y, we get

x	3	4	2
y	-1	3	-5

And $5 x+y=14 \Rightarrow 5 x=14-y \Rightarrow x=\frac{14-y}{5}$
Taking convenient values of y, we get

x	3	2	4
y	-1	4	-6

Now plot these points on the graph paper,

i. From graph, the coordinates of the point of intersection of two lines are $(3,-1)$.
ii. In $\triangle A B C, B C=0.6 \mathrm{~cm}, A D=1 \mathrm{~cm}$
\therefore Area $(\triangle A B C)=\frac{1}{2} \times B C \times A D=\frac{1}{2} \times 0.6 \times 1=0.3 \mathrm{~cm}^{2}$
(c) Radius of the drum $=\frac{70}{2}=35 \mathrm{~cm}$
\therefore No. of revolution $=\frac{\text { Distance by which the bucket is raised }}{\text { Circumference of the drum }}$

$$
=\frac{11 \times 100}{2 \pi \times 35}=\frac{11 \times 100 \times 7}{2 \times 35 \times 22}=5
$$

No. of revolutions $=5$

