ICSE Board
 Class IX Mathematics
 Paper 5 - Solution

Time: $\mathbf{2}^{11 / 2} \mathbf{h r s}$
Total Marks: $\mathbf{8 0}$

SECTION - A

Q. 1.
(a) Let $x=0 . \overline{001}$

Then, $x=0.001001001$
Therefore, $1000 \mathrm{x}=1.001001001$
Subtracting (i) from (ii), we get $999 x=1 \Rightarrow x=\frac{1}{999}$
Hence, $0 . \overline{001}=\frac{1}{999}$
(b) On arranging the numbers in ascending order, we get
$3,4,9,10,12,15,18,27,47,48,75,81$
$\mathrm{n}=12$ (even)
Median $=\frac{\frac{\mathrm{n}}{2}^{\text {th }} \text { term }+\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }} \text { term }}{2}$

$$
\begin{aligned}
& =\frac{\frac{12}{2}^{\text {th }} \text { term }+\left(\frac{12}{2}+1\right)^{\text {th }} \text { term }}{2} \\
& =\frac{6^{\text {th }} \text { term }+7^{\text {th }} \text { term }}{2} \\
& =\frac{15+18}{2} \\
& =16.5
\end{aligned}
$$

(c) Given, side of the square $=\left(\frac{x+1}{2}\right)$ units

And diagonal $=\frac{3-x}{\sqrt{2}}$ units $==\sqrt{2}$ side
$\Rightarrow \frac{3-\mathrm{x}}{\sqrt{2}}=\sqrt{2}\left(\frac{\mathrm{x}+1}{2}\right)$
$\Rightarrow 3-\mathrm{x}=\mathrm{x}+1$
$\Rightarrow 2 \mathrm{x}=2 \Rightarrow \mathrm{x}=1$
\therefore length of side $=\frac{x+1}{2}=\frac{1+1}{2}=1$ unit

Q. 2.

(a)

Since $A B$ is a tangent to the inner circle.
$\angle O D B=90^{\circ} \ldots$...(tangent is \perp to the radius of a circle) AB is a chord of the outer circle.
We know that, the perpendicular drawn from the centre to a chord of a circle, bisects the chord.
$\Rightarrow \mathrm{AB}=2 \mathrm{DB}$
In \triangle ODB,
By Pythagoras theorem,
$O B^{2}=O D^{2}+D^{2}$
$\Rightarrow 6.5^{2}=2.5^{2}+\mathrm{DB}^{2}$
$\Rightarrow \mathrm{DB}^{2}=6.5^{2}-2.5^{2}$
$\Rightarrow \mathrm{DB}^{2}=42.25-6.25$
$\Rightarrow \mathrm{DB}^{2}=36 \mathrm{~cm}$
$\Rightarrow \mathrm{DB}=6 \mathrm{~cm}$
$\mathrm{AB}=2 \mathrm{DB}=2(6)=12 \mathrm{~cm}$
(b) Given points are $\mathrm{A}(8,2), \mathrm{B}(5,-3)$ and $\mathrm{C}(0,0)$.

Using the distance formula, we get,
$A C=\sqrt{(8-0)^{2}+(2-0)^{2}}=\sqrt{68}$
$\mathrm{BC}=\sqrt{(5-0)^{2}+(-3-0)^{2}}=\sqrt{34}$
$A B=\sqrt{(5-8)^{2}+(-3-2)^{2}}=\sqrt{34}$
Since, $B C=A B, \triangle A B C$ is an isosceles triangle.
(c) By Pythagoras theorem

$$
\begin{aligned}
& \mathrm{y}^{2}=\mathrm{x}^{2}+(\text { Base })^{2} \\
& \Rightarrow(\text { Base })^{2}=\mathrm{y}^{2}-\mathrm{x}^{2} \\
& \Rightarrow \text { Base }=\sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}} \\
& \therefore \cos \theta=\frac{\sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}}}{\mathrm{y}}, \tan \theta=\frac{\mathrm{x}}{\sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}}} \\
& \cos \theta \times \tan \theta=\frac{\sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}}}{\mathrm{y}} \times \frac{\mathrm{x}}{\sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}}}=\frac{\mathrm{x}}{\mathrm{y}}
\end{aligned}
$$

Q. 3
(a) $a^{2}+b^{2}-c^{2}-2 a b=a^{2}+b^{2}-2 a b-c^{2}$

$$
\begin{aligned}
& =(\mathrm{a}-\mathrm{b})^{2}-(\mathrm{c})^{2} \\
& =(\mathrm{a}-\mathrm{b}+\mathrm{c})(\mathrm{a}-\mathrm{b}-\mathrm{c})
\end{aligned}
$$

(b)

$$
\begin{align*}
& \text { Let } x=9^{\log 4}, y=16^{\log 3} \\
& \log x=\log 9^{(\log 4)} \\
& \log x=\log 4 \cdot \log 9 \quad \ldots .(1) \tag{1}\\
& \log y=16^{\log 3} \\
& \Rightarrow \log y=\log 3 \cdot \log 16=\log 3 \cdot \log 4^{2} \\
& \Rightarrow \log y=2 \log 3 . \log 4 \\
& \Rightarrow \log y=\log 9 . \log 4 \tag{2}
\end{align*}
$$

$$
\Rightarrow \log x=\log y \quad[\text { From (1) and (2)] }
$$

$$
\text { Hence } x=y
$$

(c)

$$
\begin{aligned}
& \left(\frac{81}{16}\right)^{-3 / 4} \times\left[\left(\frac{25}{9}\right)^{-3 / 2} \div\left(\frac{5}{2}\right)^{-3}\right] \\
& =\left(\frac{3^{4}}{2^{4}}\right)^{-3 / 4} \times\left[\left(\frac{5^{2}}{3^{2}}\right)^{-3 / 2} \div\left(\frac{5}{2}\right)^{-3}\right] \\
& =\left(\frac{3}{2}\right)^{4 \times-3 / 4} \times\left[\left(\frac{5}{3}\right)^{2 \times-3 / 2} \div\left(\frac{5}{2}\right)^{-3}\right] \\
& =\left(\frac{3}{2}\right)^{-3} \times\left[\left(\frac{5}{3}\right)^{-3} \div\left(\frac{5}{2}\right)^{-3}\right] \\
& =\left(\frac{3}{2}\right)^{-3} \times\left(\frac{5}{3} \div \frac{5}{2}\right)^{-3} \\
& =\left(\frac{3}{2}\right)^{-3} \times\left(\frac{5}{3} \times \frac{2}{5}\right)^{-3} \\
& =\left(\frac{3}{2}\right)^{-3} \times\left(\frac{2}{3}\right)^{-3} \\
& =\left(\frac{3}{2} \times \frac{2}{3}\right)^{-3} \\
& =(1)^{-3} \\
& =1
\end{aligned}
$$

Q. 4.

(a) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDE}$

$$
\begin{aligned}
& \angle \mathrm{BAC}=\angle \mathrm{CED} \quad \text { [Given] } \\
& \mathrm{AC}=\mathrm{EC} \quad[\text { Given }]
\end{aligned}
$$

$\angle \mathrm{ACB}=\angle \mathrm{DCE}$ [Vertically opposite $\angle \mathrm{s}$]
Hence $\triangle \mathrm{ACB} \cong \triangle \mathrm{ECD}$ [\because ASS - condition of congruency is satisfied]
$\therefore \mathrm{AB}=\mathrm{ED} \quad[\mathrm{CPCT}]$
Then, $2 \mathrm{x}+4=3 \mathrm{y}+8$
$2 x-3 y=4$
Also, BC = CD
$\mathrm{x}=2 \mathrm{y}$
$x-2 y=0$
Solving (1) and (2), we get
$x=8$ and $y=4$
(b) Amount at the end of first year = Principal for second year $\mathrm{P}=$ Rs. $1250, \mathrm{~A}=$ Rs. $1375, \mathrm{n}=1$, rate $=\mathrm{r} \%$

$$
1375=1250\left(1+\frac{r}{100}\right)^{1}
$$

$$
\frac{1375}{1250}=\frac{100+r}{100}
$$

$$
\Rightarrow 125000+1250 r=137500
$$

$$
\Rightarrow 1250 \mathrm{r}=137500-125000
$$

$$
\Rightarrow 1250 r=12500 \Rightarrow r=\frac{12500}{1250}=10 \%
$$

(c) Steps of construction:

1) Draw a line AP.
2) Now draw $\mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{CP}=3.5 \mathrm{~cm}$
3) Draw a line $B C$ such that $A B=B C$.
4) Now at C draw a line CY parallel to AP.

5) At point C and A , taking radius same as AB draw arcs cutting each other at D .
6) Now join AD.
$A B C D$ is the required rhombus.

SECTION - B

Q. 5.
(a) (i) $3 x-y-2=0$
$\Rightarrow y=3 x-2$
Taking convenient value of x

x	0	2	3
y	-2	4	7

$2 \mathrm{x}+\mathrm{y}-8=0$
$y=8-2 x$
Taking convenient value of x

x	0	2	3
y	8	4	2

Now plot these points on the graph paper,

(ii) The coordinates of the point of intersection are (2, 4).
(b) Given: ABCD is a parallelogram, M is the midpoint of AC, X and Y are points on AB and DC respectively such that $\mathrm{AX}=\mathrm{CY}$.
To prove: (a) $\Delta \mathrm{AXM} \cong \triangle \mathrm{CYM}$ (b) XMY is a straight line
Construction: Join XM and MY
Proof:
(a) In $\triangle s$ AMX and CMY
$\mathrm{AM}=\mathrm{MC}$ [Given]
$\mathrm{AX}=\mathrm{CY}$ [Given]

$\angle \mathrm{XAM}=\angle \mathrm{YCM}$ [Alternate angles]
So, $\triangle \mathrm{AXM} \cong \Delta \mathrm{CYM}$ [SAS]
(b) $\angle \mathrm{AMX}=\angle \mathrm{CMY}$ [Vertically opposite angles]
$\therefore \mathrm{XMY}$ is a straight line.
Q. 6.
(a) Let the speed of boat in still water be $=x$ kmph

And speed of the stream $=y \mathrm{kmph}$
Speed of boat upstream $=(x-y) \mathrm{kmph}$
Speed of boat downstream $=(x+y)$ kmph
Time taken for upstream journey $=\frac{8}{x-y}$
Time taken for downstream journey $=\frac{8}{x+y}$
As per the problem, $\frac{8}{x-y}=1 \mathrm{hr}$

$$
\begin{equation*}
x-y=8 \tag{1}
\end{equation*}
$$

Also,
$\frac{8}{x+y}=\frac{40}{60}=\frac{2}{3}$

$$
\begin{equation*}
x+y=12 \tag{2}
\end{equation*}
$$

Solving (1) and (2) we get
$\mathrm{x}=10 \mathrm{kmph} ; \mathrm{y}=2 \mathrm{kmph}$
(b) Edge of the cubical tank $=1.5 \mathrm{~m}=150 \mathrm{~cm}$

Surface area of the tank $=5 \times 150 \times 150 \mathrm{~cm}^{2}$
Area of each square tile $=$ side \times side $=25 \times 25 \mathrm{~cm}^{2}$
\therefore Number of tiles required $=\frac{\text { Surface area of the tank }}{\text { area of each tile }}=\frac{5 \times 150 \times 150}{25 \times 25}=180$
Cost of 1 dozen tiles, i.e. cost of 12 tiles $=$ Rs. 360
Cost of one tile $=$ Rs. $\frac{360}{12}=$ Rs. 30
Thus, the cost of 180 tiles $=180 \times 30=$ Rs. 5400
(c) $3 p-2 q=5$
$q-1=3 p$
From equation (2),
$\mathrm{p}=\frac{\mathrm{q}-1}{3}$
Substituting the value of p in equation (1), we get
$3\left(\frac{q-1}{3}\right)-2 q=5$
$\Rightarrow \mathrm{q}-1-2 \mathrm{q}=5$
$\Rightarrow-\mathrm{q}=5+1$
$\Rightarrow \mathrm{q}=-6$
Substituting the value of q in equation (2) we get,
$\Rightarrow \mathrm{q}-1=3 \mathrm{p}$
$\Rightarrow-6-1=3 p$
$\Rightarrow-7=3 p$
$\Rightarrow \mathrm{p}=-\frac{7}{3}$
$\Rightarrow \mathrm{p}=-\frac{7}{3}, \mathrm{q}=-6$
Q. 7.
(a)

$$
\begin{aligned}
& A=60^{\circ} \text { and } B=30^{\circ} \\
& \begin{aligned}
& \Rightarrow A-B=60^{\circ}-30^{\circ}=30^{\circ} \\
& \therefore \tan (A-B)=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \\
& \text { And, } \frac{\tan A-\tan B}{1+\tan A \tan B}=\frac{\tan 60^{\circ}-\tan 30^{\circ}}{1+\tan 60^{\circ} \tan 30^{\circ}} \\
&=\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+\sqrt{3} \times \frac{1}{\sqrt{3}}} \\
&=\frac{\frac{2}{\sqrt{3}}}{2} \\
&=\frac{1}{\sqrt{3}}
\end{aligned} \\
& \begin{aligned}
\therefore \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
\end{aligned}
\end{aligned}
$$

(b) Length of garden $=120-2 \times 5$ and breadth $=70-2 \times 5$ $\Rightarrow \mathrm{l}=110 \mathrm{~m}, \mathrm{~b}=60 \mathrm{~m}$
Area of garden $=1 \times b=110 \times 60=600 \mathrm{~m}^{2}$

Given, rate $=$ Rs. $10 \mathrm{~m}^{2}$

$$
\therefore \text { Cost }=\text { Area } \times \text { rate }
$$

$$
\text { Cost }=\text { Rs. } 66000
$$

(c) Given: A rectangle PQRS

To prove: $\mathrm{PR}^{2}+\mathrm{QS}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}+\mathrm{RS}^{2}+\mathrm{SP}^{2}$
Proof: In \triangle PSR

$$
\begin{align*}
& \mathrm{PR}^{2}=\mathrm{PS}^{2}+\mathrm{SR}^{2} \ldots . \text { (1) } \quad[\text { Pythagoras theorem }] \\
& \text { In } \triangle \mathrm{QRS}, \\
& \mathrm{QS}^{2}=\mathrm{QR}^{2}+\mathrm{RS}^{2} \ldots . .(2)
\end{align*}
$$

Adding (1) and (2), we get

$$
\begin{aligned}
& \mathrm{PR}^{2}+\mathrm{QS}^{2}=\mathrm{PS}^{2}+\mathrm{SR}^{2}+\mathrm{QR}^{2}+\mathrm{RS}^{2} \\
& =\mathrm{RS}^{2}+\mathrm{QR}^{2}+\mathrm{PS}^{2}+\mathrm{PQ}^{2}[\because \mathrm{RS}=\mathrm{PQ}] \\
& \mathrm{PR}^{2}+\mathrm{QS}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}+\mathrm{RS}^{2}+\mathrm{SP}^{2} \\
& \quad=\mathrm{RS}^{2}+\mathrm{QR}^{2}+\mathrm{PS}^{2}+\mathrm{PQ}^{2}[\because \mathrm{RS}=\mathrm{PQ}] \\
& \therefore \mathrm{PR}^{2}+\mathrm{QS}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}+\mathrm{RS}^{2}+\mathrm{SP}^{2}
\end{aligned}
$$

Q. 8.
(a) Construction: Draw $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$. Join OB and OD .

$\mathrm{BM}=\frac{\mathrm{AB}}{2}=\frac{5}{2}$ and $\mathrm{ND}=\frac{\mathrm{CD}}{2}=\frac{11}{2}$ (Perpendicular from centre bisects the chord)
Let $O N$ be x, so $O M$ will be $6-\mathrm{x}$.
In $\triangle \mathrm{MOB}, \mathrm{OM}^{2}+\mathrm{MB}^{2}=\mathrm{OB}^{2}$
$\therefore(6-\mathrm{x})^{2}+\left(\frac{5}{2}\right)^{2}=\mathrm{OB}^{2}$
$\therefore 36+\mathrm{x}^{2}-12 \mathrm{x}+\frac{25}{4}=\mathrm{OB}^{2}$
In $\triangle \mathrm{NOD}, \mathrm{ON}^{2}+\mathrm{ND}^{2}=\mathrm{OD}^{2}$
$\therefore \mathrm{OD}^{2}=\mathrm{x}^{2}+\left(\frac{11}{2}\right)^{2}=\mathrm{x}^{2}+\frac{121}{4}$
We have $0 B=O D$
....(radii of same circle)
$36+x^{2}-12 x+\frac{25}{4}=x^{2}+\frac{121}{4}$ [From (1) and (2)]
$\therefore 12 x=36+\frac{25}{4}-\frac{121}{4}=\frac{144+25-121}{4}=\frac{48}{4}=12$
$\therefore 12 \mathrm{x}=12 \Rightarrow \mathrm{x}=1$
From equation (2),
$\mathrm{OD}^{2}=(1)^{2}+\left(\frac{121}{4}\right)=1+\frac{121}{4}=\frac{125}{4} \Rightarrow \mathrm{OD}=\frac{5}{2} \sqrt{5}$
Hence, the radius of the circle is $\frac{5}{2} \sqrt{5} \mathrm{~cm}$.
(b) We know,

$$
\begin{aligned}
p^{3}+q^{3} & =(p+q)^{3}-3 p q(p+q) \\
& =(1+p q)^{3}-3 p q(1+p q) \\
& =(1+p q)^{3}-3 p q(1+p q) \\
& =1+p^{3} q^{3}+3 p q(1+p q)-3 p q(1+p q) \\
& =1+p^{3} q^{3}
\end{aligned}
$$

Hence, $p^{3}+q^{3}=1+p^{3} q^{3}$
(c) Rewriting we get the continuous frequency distribution as following:

C.I	Frequency (No. of students)
Below 15	20
$15-30$	$35-20=15$
$30-45$	$40-35=5$
$45-60$	$55-40=15$
$60-75$	$65-55=10$
$75-90$	$70-65=5$

Q. 9.
(a) Given: $\mathrm{AD} \perp \mathrm{BC}$

To prove:
$\mathrm{AB}>\mathrm{BD}$
$A C>C D$
$A B+A C>B C$
Proof: In $\triangle \mathrm{ABD}, \angle \mathrm{ADB}$ is the greatest angle [There can be only one right angle]

i. So, the side opposite to $\angle \mathrm{ADB}$ in $\triangle \mathrm{ABD}$ is greatest i.e., $\mathrm{AB}>\mathrm{BD}$
ii. Similarly, $\angle \mathrm{ADC}$ is the greatest angle in $\triangle \mathrm{ADC}$

$$
\text { So, } \mathrm{AC}>\mathrm{CD} \quad\left[\angle \mathrm{ADC}=90^{\circ}\right] \ldots \text { (2) }
$$

iii. On adding (1) and (2), we get $A B+A C>B D+C D$
$A B+A C>B C$
(b) We have,
(c) We have,

$$
\begin{aligned}
& x=30^{\circ} \Rightarrow 2 x=60^{\circ} \\
& \therefore \tan 2 x=\tan 60^{\circ}=\sqrt{3}
\end{aligned}
$$

$$
\text { And, } \frac{2 \tan x}{1-\tan ^{2} x}=\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}
$$

$$
=\frac{2 \times \frac{1}{\sqrt{3}}}{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}
$$

$$
=\frac{2 / \sqrt{3}}{1-\frac{1}{3}}=\frac{2 / \sqrt{3}}{2 / 3}
$$

$$
=\frac{2}{\sqrt{3}} \times \frac{3}{2}
$$

$$
=\sqrt{3}
$$

$\therefore \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$

$$
\begin{aligned}
& \frac{9^{\mathrm{n}} \times 3^{2} \times\left(3^{-\mathrm{n} / 2}\right)^{-2}-(27)^{\mathrm{n}}}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{\left(3^{2}\right)^{\mathrm{n}} \times 3^{2} \times 3^{2 \mathrm{n} / 2}-\left(3^{3}\right)^{\mathrm{n}}}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{3^{2 \mathrm{n}} \times 3^{2} \times 3^{\mathrm{n}}-3^{3 \mathrm{n}}}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{3^{2 \mathrm{n}+2+\mathrm{n}}-3^{3 \mathrm{n}}}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{3^{3 n+2}-3^{3 n}}{3^{3 m} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{3^{3 \mathrm{n}}\left(3^{2}-1\right)}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{3^{3 \mathrm{n}} \times 8}{3^{3 \mathrm{~m}} \times 8}=\frac{1}{27} \\
& \Rightarrow 3^{3 \mathrm{n}-3 \mathrm{~m}}=3^{-3} \quad \text { [on equating the exponents] } \\
& \Rightarrow 3 \mathrm{n}-3 \mathrm{~m}=-3 \Rightarrow \mathrm{n}-\mathrm{m}=-1 \Rightarrow \mathrm{~m}-\mathrm{n}=1
\end{aligned}
$$

Q. 10.
(a) In $\triangle A B C, \tan 30^{\circ}=\frac{B C}{A B}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{BC}}{15}$
$\Rightarrow \mathrm{BC}=\frac{\mathrm{AB}}{\sqrt{3}}=\frac{15}{\sqrt{3}}=\frac{15 \sqrt{3}}{\sqrt{3}}=5 \sqrt{3} \mathrm{~cm}$
(b)
(i) Given that ABCD is a parallelogram.

So, $\mathrm{AB}|\mid \mathrm{DE}$. That is, AB$| \mid \mathrm{FE}$.
Since the parallelograms have the same base $A B$, and the height on base
AB is equal, the areas of $\| \mathrm{gm} \mathrm{ABCD}$ and $\| \mathrm{gm}$ ABEF will be equal.
Hence, $\operatorname{ar}(\| \mathrm{gm}$ ABEF $)=\operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})=80 \mathrm{~cm}^{2}$
(ii) We know that the diagonal of a parallelogram, divides the parallelogram into two triangles with equal areas.

$$
\text { So, } \operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})=\frac{1}{2}(80)=40 \mathrm{~cm}^{2}
$$

(iii) Similarly,

$$
\operatorname{ar}(\triangle \mathrm{BEF})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABEF})=\frac{1}{2}(80)=40 \mathrm{~cm}^{2}
$$

(c) ABCD be a regular polygon
$B C$ and $E D$ when produced meet at P such that $\angle C P D=90^{\circ}$
$\angle \mathrm{CPD}=90^{\circ}$
Let $\angle \mathrm{BCD}=\mathrm{x}^{\circ}$
So, $\angle \mathrm{CDE}=\mathrm{x}^{\circ}$
$\angle \mathrm{PCD}=180-\mathrm{x}$
$\angle \mathrm{PDC}=180-\mathrm{x}$
In $\triangle \mathrm{CPD}$,

$$
\begin{aligned}
& 180^{\circ}-\mathrm{x}^{\circ}+180^{\circ}-\mathrm{x}^{\circ}+90^{\circ}=180^{\circ} \quad[\text { Sum of all } \angle \mathrm{s} \text { of a } \triangle] \\
& 270^{\circ}-2 \mathrm{x}^{\circ}=0 \\
& 2 \mathrm{x}^{\circ}=270^{\circ} \\
& \mathrm{x}^{\circ}=135^{\circ}
\end{aligned}
$$

Each external angle $=180^{\circ}-x^{\circ}=180-135=45^{\circ}$
No. of sides $=\frac{360^{\circ}}{45^{\circ}}=8^{\circ}$
Q. 11.
(a)

$$
\begin{aligned}
& \sqrt[3]{\frac{p}{q}}=\left(\frac{p}{q}\right)^{3-4 x}=\left(\frac{p}{q}\right)^{4 x-3} \\
& \Rightarrow\left(\frac{p}{q}\right)^{1 / 3}=\left(\frac{p}{q}\right)^{-3+4 x} \\
& \Rightarrow \frac{1}{3}=-3+4 x \\
& \Rightarrow 4 x=3+\frac{1}{3} \\
& \Rightarrow 4 x=\frac{10}{3} \\
& \Rightarrow x=\frac{10}{12} \\
& \Rightarrow x=\frac{5}{6}
\end{aligned}
$$

(b) $a+b=1, a-b=7$
$(a+b)^{2}-(a-b)^{2}=4 a b$
$\Rightarrow 1^{2}-7^{2}=4 \mathrm{ab}$
$\Rightarrow 1-49=4 \mathrm{ab}$
$\Rightarrow 4 \mathrm{ab}=-48$
$\Rightarrow \mathrm{ab}=-12$

Now, we know that
$\mathrm{a}^{2}+\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})^{2}-2 \mathrm{ab}=1^{2}-2 \times(-12)$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}=1+24=25$
(1) $5\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=25 \times 5=125$
(2) $a b=-12$ [using equation (1)]
(c) The given points $\mathrm{A}(0,4), \mathrm{O}(0,0), \mathrm{B}(3,0)$ can be plotted as follows:

Clearly, AOB is a right-angled triangle.
$\mathrm{OA}=4$ units, $\mathrm{OB}=3$ units.

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{AOB} & =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2} \times 3 \times 4 \\
& =6 \text { square units }
\end{aligned}
$$

