CHEMISTRY PAPER - 1(THEORY)

(Maximum Marks: 70)

(Time allowed: Three hours)

(Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.)

Answer all questions in Part I and six questions from Part II, choosing two questions from Section A, two from Section B and two from Section C. All working, including rough work, should be done on the same sheet as, and adjacent to, the rest of the answer.

The intended marks for questions or parts of questions are given in brackets []. Balanced equations must be given wherever possible and diagrams where they are helpful. When solving numerical problems, all essential working must be shown.

In working out problems use the following data:

Gas constant R = 1.987 cal deg⁻¹ mol⁻¹ = $8.314 JK^{-1} mol^{-1} = 0.0821 dm^{3} atm K^{-1} mol^{-1}$

11 $atm = 1 dm^3 atm = 101.3 J.$ 1 Faraday = 96500 Coulombs.

Avogadro's number = 6.023×10^{23} .

PART I (20 Marks)

Answer all questions.

Question 1

Fill in the blanks by choosing the appropriate word/words from those given in the (a) [5] brackets:

(Henry's, aldol condensation, absence, do not, ohm, Raoult's, increases, common ion effect, easily, three, solubility product, ohm⁻¹, two, four, ohm⁻¹cm², cannizzaro, ohm⁻¹cm⁻¹, zero, decreases, presence)

- Ideal solutions obey _____ law and they _____ form azeotropic mixtures. (i)
- Benzaldehyde undergoes _____ reaction due to _____ of a-hydrogen (ii) atom.
- The solubility of silver chloride _____ in the presence of sodium chloride (iii) because of .
- The unit of conductance is and that of specific conductance is (iv)
- When the concentration of a reactant of first order reaction is doubled, the rate (v)becomes times, but for order reaction, the rate remains . same.

This Paper consists of 7 printed pages and 1 blank page.

- (b) Complete the following statements by selecting the **correct alternative from** the [5] choices given:
 - (i) Electrochemical equivalent is the amount of substance which gets deposited from its solution on passing electrical charge equal to:
 - (1) 96,500 Coulombs
 - (2) 1 Coulomb
 - (3) 60 Coulombs
 - (4) 965 Coulombs
 - (ii) The complex ion $[Ni(CN)_4]^{2-}$ is:
 - (1) Square planar and diamagnetic
 - (2) Tetrahedral and paramagnetic
 - (3) Square planar and paramagnetic
 - (4) Tetrahedral and diamagnetic
 - (iii) Wohler's synthesis is used for the preparation of:
 - (1) Glycine
 - (2) Amino acids
 - (3) Urea
 - (4) Proteins
 - (iv) When SO₂ gas is passed through acidified $K_2Cr_2O_7$ solution, the colour of the solution changes to:

2

- (1) Red
- (2) Black
- (3) Orange
- (4) Green

(v) In the equation $CH_3COOH + Cl_2 \xrightarrow{Red P} A$, the compound A is:

- (1) CH_3CH_2Cl
- (2) $ClCH_2COOH$

- (3) CH₃Cl
- (4) CH₃COCI

- (c) Answer the following questions:
 - (i) What is the order of reaction whose rate constant has the same unit as the rate of reaction?
 - (ii) What is the pH value of a solution whose hydroxyl ion concentration is 1×10^{-2} M?
 - (iii) Calculate the number of coulombs required to deposit 5.4g of Al when the electrode reaction is:

 $Al^{3+} + 3e^{-} \rightarrow Al$ [Atomic Weight of Al = 27 g/mol].

- (iv) Write the reaction to prepare acetaldehyde from hydrogen gas and an acid chloride.
- (v) The edge length of unit cell of a body centered cubic (bcc) crystal is 352 pm. Calculate the radius of the atom.
- (d) Match the following:
 - (i) Weak electrolyte
 - (ii) Colour in crystals
 - (iii) Acetone
 - (iv) Sorensen
 - (v) Ammonical silver nitrate

- (a) pH of a solution
- (b) Iodoform
- (c) Tollen's reagent
- (d) Ostwald dilution law
- (e) F centre

PART II (50 Marks)

Answer six questions choosing two from Section A, two from

Section B and two from Section C.

SECTION A

Answer any two questions.

Question 2

- (a) (i) A 10% aqueous solution of cane sugar (mol. wt. 342) is isotonic with 1.754% [2] aqueous solution of urea. Find the molecular mass of urea.
 - (ii) The molecular weight of an organic compound is 58 g mol⁻¹. What will be the [2] boiling point of a solution containing 48 grams of the solute in 1200 grams of water?

[K_b for water = 0.513° C kg mole⁻¹; Boiling point of water = 100° C.]

(iii) What will be the value of van't Hoff factor(i) of benzoic acid if it dimerises in [1] aqueous solution? How will the experimental molecular weight vary as compared to the normal molecular weight?

14

		. 4	
	(ii)	What is a buffer solution? How is it prepared? Explain the buffer action of a basic buffer with a suitable example.	[2]
3H		(3) Will the cell work spontaneously for the condition given in (2) above?	
X		(2) What will be the emf of the cell if the concentration of Cd^{2+} is 0.1 M and that of Ag^{+} is 0.2 M?	
		(1) Write the cell representation.	
		The standard reduction potentials (E^{0}) for Ag ⁺ /Ag and Cd ²⁺ /Cd are 0.80V and $-0.40V$ respectively:	
(a)	(1)	$2Ag^+ + Cd \rightarrow 2Ag + Cd^{2+}$	[2]
	(:)	Consider the following cell reaction at 298 K.	[3]
Que	stian 4	i i	8
(c)	Wat illus	er acts as Bronsted acid as well as a Bronsted base. Give one example each to trate this statement.	[2]
		(2) The time required for completing 87.5% of the reaction.	
×		(1) The half-life period of the reaction.	
	(ii)	In a first order reaction, 10% of the reactant is consumed in 25 minutes. Calculate:	[2]
		(2) Pressure is reduced.	
		(1) Temperature is decreased to 273K.	
		what will happen to the concentration of N_2 if:	
⊭ (b)	(i)	For the reaction: $2NO_{(g)} \rightleftharpoons N_{2(g)} + O_{2(g)}; \Delta H = -heat$ $K_{a} = 2.5 \times 10^{2} \text{ at } 298 \text{K}$	[2]
		density is 3.4 g cm^{-3} . What will be the edge length of the unit cell?	[-]
	(ii)	A compound AB has a simple cubic structure and has molecular mass 99. Its	[2]
2		be the number of atoms present in respective unit cells? Justify your answer with calculation	
(a)	(i)	In a body centred and face centred arrangement of atoms of an element, what will	[2]
Que	stion 3		
(c)	Grap	white is anisotropic with respect to conduction of electric current. Explain.	[1]
		Atomic Weights: $[Pb = 207 \text{ and } Cl = 35.5]$	
	(11)	PbCl ₂ in g/lit. at 298K.	[2]
		increased?	
(b)	(i)	Determine the pH value of 0.001 M acetic acid solution if it is 2% ionised at this concentration. How can the degree of dissociation of this acetic acid solution be	[2]

- (b) Explain the following:
 - (i) When NaCl is added to AgNO₃ solution, a white precipitate is formed.
 - (ii) An aqueous solution of ammonium chloride is acidic in nature.
- (c) A 0.05 M NH₄OH solution offers the resistance of 50 ohms to a conductivity cell at [3] 298K. If the cell constant is 0.50 cm⁻¹ and molar conductance of NH₄OH at infinite dilution is 471 4 ohm⁻¹ cm² mol⁻¹, calculate:

[2]

(i) . Specific conductance

(ii) Molar conductance

(iii) Degree of dissociation

SECTION B

Answer any two questions

Question 5

(a)	Write the IUPAC names of the following:		
	(i)	[CO(NH ₃) ₄ SO ₄]NO ₃	
	(ii)	K[Pt(NH ₃)Cl ₃]	- 201
(b)	What type of isomerism is exhibited by the following pairs of compounds:		
	(i)	$[PtCl_2(NH_3)_4]Br_2$ and $[PtBr_2(NH_3)_4]Cl_2$	
	(ii)	$[Cr(SCN)(H_2O)_5]^{2+}$ and $[Cr(NCS)(H_2O)_5]^{2+}$	
(c)	How when	does $K_2[Pt Cl_4]$ get ionised when dissolved in water? Will it form precipitate AgNO ₃ solution is added to it? Give a reason for your answer.	[2]
Ques	tion 6		
(a)	Give balanced equations for the following reactions:		
	(i) ⁻	Silver nitrate is added to dilute solution of sodium thiosulphate.	
	(ii)	Potassium dichromate is treated with acidified ferrous sulphate solution.	
	(iii)	Phosphorous reacts with conc. sulphuric acid.	
(b)	How pyrol	will you obtain pure potassium permanganate ($KMnO_4$) crystals from its ore, usite? Give the steps involved and the reactions.	[2]

Question 7

- (a) (i) Sulphur dioxide acts as an oxidizing agent as well as a reducing agent. Give one [3] reaction each to show its oxidizing nature and its reducing nature.
 - (ii) Explain why an aqueous solution of potassium hexacyanoferrate (II) does not give the test for ferrous ion.
- (b) What is meant by Lanthanide contraction? Write the general electronic configuration of [2] inner transition elements.

SECTION C

Answer any two questions.

Question 8

(a)	How can the following conversions be brought about:				
	(i)	Acetaldehyde to acetaldehyde phenyl hydrazone.	[1]		
	(ii)	Benzoic acid to aniline.	[1]		
	(iii)	Methyl chloride to acetone.	[2]		
	(iv)	Benzene to benzene diazonium chloride.	[1]		
(b)	(i)	Glycerol (propane 1, 2, 3 triol) is more viscous than ethylene glycol (ethane 1, 2, diol). Explain.	·[1]		
	(ii)	How can urea be detected by Biuret test?	[1]		
(c)	Iden	tify the compounds A, B and C:	[3]		
	(i)	$C_2H_5OH \xrightarrow{PCI_5} A \xrightarrow{KCN} B \xrightarrow{H_3O^+} C_2H_5COOH \xrightarrow{NH_3} C$			
	(ii)	$C_6H_5COOH \xrightarrow{SOCl_2} A \xrightarrow{NH_3} B \xrightarrow{Br_2/KOH} C$			
Ques	tion 9				
(a)	Give	balanced equations for the following name reactions:	[3]		
	(1)	Benzoin condensation			
	(11)	Control and the second se			
	(111)	Carbylamine reaction			
(b)	Give	Give chemical test to distinguish: [3]			
	(i)	Formaldehyde and acetaldehyde			
	(ii)	Dimethyl ether and ethyl alcohol.			
(c)	(i)	Write the structure of three ethers with molecular formula $C_4H_{10}O$.	[4]		
	(ii)	Starting with Grignard's reagent, how will you prepare propanoic acid?			

Question 10

- (a) An organic compound A has the molecular formula C₇H₆O. When A is treated with [3] NaOH followed by acid hydrolysis, it gives two products B and C. When B is oxidized, it gives A, when A and C are each treated separately with PCl₅, they give two different products D and E.
 - (i) Identify A, B, C, D and E.
 - (ii) Give the chemical reaction when A is treated with NaOH and name the reaction.

(b) Answer the following:

- (i) What do you observe when glucose solution is heated with Tollen's reagent?
- (ii) Name the monomers and the type of polymerisation in each of the following polymers:
 - (1) Terylene
 - (2) Polyvinyl chloride
- (c) Give balanced equations for the following reactions:
 - (i) Ethylamine with nitrous acid.
 - (ii) Diethyl ether with phosphorous pentachloride.
 - (iii) Aniline with acetyl chloride.

[3]

2012-201