ICSE QUESTION PAPER MATHEMATICS

(Twoo hours and a half)
Answers to this Paper must be written on the paper provided separately.
You will not be allowed to write during the first 15 minutes.
This time is to be spent in reading the question paper.
The time given at the head of this Paper is the time allowed for writing the answers.
Attempt all questions from Séction A and any four questions from Section B.
All working, including rough work, must be clearly shown and must be done on the same sheet as the rest of the answer. Omission of essential working will result in the loss of marks.
The intended marks for questions or parts of questions are given in brackets [].
Mathematical tables are provided.
SECTION A [40 Marks]
(Answer all questions from this Section.)

Question 1.

(a) Ranbir borrows $₹ 20,000$ at 12% per annum compound interest. If he repays ₹ 8400 at the and of the first year and ₹ 9680 at the end of the second year, find the amount of loan outstanding at the beginning of the third year.
(b) Find the value of x, which satisfy the inequation $-2 \frac{5}{6}<\frac{1}{2}-\frac{2 x}{3} \leq 2, x \varepsilon W$. Graph the solution set on the number line.
(c) A die has 6 faces marked by the given numbers as shown below:
1 \square
\square
\square
\square

The die is thrown once. What is the probability of getting
(i) a positive integer.
(ii) an integer greater than -3.
(iii) the smallest integer.

Solution:

(a) Given: Principal for the first year $(\mathrm{P})=\boldsymbol{₹} \mathbf{2 0 , 0 0 0}, r=12 \%$.

We know that

$$
A=P\left(1+\frac{r}{100}\right)
$$

$$
\begin{aligned}
\text { Amount after the first year } & =20,000\left(1+\frac{12}{100}\right)^{1} \\
& =20,000\left(\frac{112}{100}\right) \\
& =222,400
\end{aligned}
$$

Principal for the second year $=$ ₹ $22,400-₹ 8,400$
$=$ ₹ 14,000
Amount after second year $=14,000\left(1+\frac{12}{100}\right)^{4}$
$=₹ 15,680$
Money repays at the end of the second year $=\mathbf{~} 9,680$
(given)
\therefore The loan outstanding at the beginning of the third year

$$
\begin{aligned}
& =\text { ₹ 15,680- ₹ 9,680 } \\
& =₹ 6,000 .
\end{aligned}
$$

(b) Given:

$$
\begin{array}{r}
-2 \frac{5}{6}<\frac{1}{2}-\frac{2 x}{3} \leq 2 \\
-\frac{17}{6}<\frac{3-4 x}{6} \leq 2
\end{array}
$$

Multiplying throughout by 6

	$-17,<3-4 x$	≤ 12			
-17	$<3-4 x$	and		$3-4 x$	≤ 12
$4 x$	$<3+17$		$3-12$	$\leq 4 x$	
$4 x$	<20			-9	$\leq 4 x$
x	<5			$-\frac{9}{4}$	$<x$

$$
\{5>x \geq-9\}
$$

Hence, the solution set is $\left\{x: x \in W,-\frac{9}{4} \leq x<5\right\}$
$\therefore\{0,1,2,3,4\}$

$$
\begin{array}{ccccccccccc}
\leftarrow & T & \uparrow & 4 & + & \uparrow & -1 & T & T & T & \rightarrow \\
-\infty & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & +\infty
\end{array}
$$

The graph of the solution set is shown by dots on the number line.
(c)

No. of sample space $n(S)=6$
(i)
a positive integer $=\{1,2,3\}$
No. of favourables $n(E)=3$

$$
\text { Probability }=\frac{n(E)}{n(S)}=\frac{3}{6}=\frac{1}{2}
$$

(ii)

$$
\begin{aligned}
\text { an integer greater than }-3 & =\{1,2,3,-1,-2\} \\
\text { No. of favourables } n(E) & =5 \\
\text { Probability } & =\frac{n(E)}{n(S)}=\frac{5}{6}
\end{aligned}
$$

Ans.
(iii) Smallest integer $=-3$

Probability of smallest integer $\begin{aligned} & n(\mathrm{E}) \\ & n(S)\end{aligned}=\frac{1}{6}$.
Question 2.
(a) Find x, y if $\left[\begin{array}{rr}-2 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{r}-1 \\ 2 x\end{array}\right]+3\left[\begin{array}{r}-2 \\ 1\end{array}\right]=2\left[\begin{array}{l}y \\ 3\end{array}\right]$.
vount in a bank and deposited ₹ 800 54 at the time of maturity, find the

$$
2 x=6
$$

$$
x=3
$$

Ans.
: ₹ 800
deposited $=1 \frac{1}{2}$ years $=18$ months.
1en
$\times \frac{n(n+1)}{2 \times 12} \times \stackrel{r}{100}$
$1 \times \frac{18 \times 19}{2 \times 12} \times{ }^{r} 100 \downarrow$
$4 r$
$800=\mathbb{P} 14,400$
rity value
:4
: $4-14,400$

Ans.
\geq points $A(-4,2)$ and $B(3,6)$ in
\therefore Coordinates of P is $\left(\begin{array}{cc}m_{1} x_{2}+m_{2} \dot{x}_{1} & m_{1} y_{2}+m_{2} y_{1} \\ m_{1}+m_{2} & m_{1}+m_{2}\end{array}\right)=\binom{43 k-46 k_{2}}{k+1}$.
But coordinate of P is $(x, 3)$

$$
\Rightarrow \quad \begin{aligned}
\frac{6 k+2}{k+1} & =3 \\
6 k+2 & =3 k+3 \\
3 k & =1 \Rightarrow k=\frac{1}{3}
\end{aligned}
$$

\therefore The required ratio is $\frac{1}{3}: 1$ i.e., $1: 3$ (internally)
Ans.
(i)

$$
x=\frac{3 k-4}{k}+1
$$

Putting $k=\frac{1}{3}$, we get

$$
x=\frac{3 \times \frac{1}{3}-4}{\frac{1}{3}+1}=\frac{1-4}{\frac{1+3}{3}}=\frac{-3}{4 / 3}=\frac{-9}{4}
$$

Ans.
(ii) \therefore Coordinate of P is $\left(\begin{array}{c}-9 \\ 4\end{array}, 3\right)$

$$
\begin{aligned}
& \text { Length of } A P=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
&=\sqrt{ }\left(-\frac{9}{4}+4\right)^{2}+(3-2)^{2} \\
&=\sqrt{\binom{-9+16}{4}^{2}+(1)^{2}}=\sqrt{\frac{49}{16}+1} \\
&=\sqrt{49+16} 16=\sqrt{\frac{65}{16}}=\sqrt{66} \\
& 4
\end{aligned}
$$

Question 3.

(a) Without using trigonometric tables, evaluate

$$
\sin ^{2} 34^{\circ}+\sin ^{2} 56^{\circ}+2 \tan 18^{\circ} \tan 72^{\circ}-\cot ^{2} 30^{\circ}
$$

(b) Using the Remainder and Factor Theorem, factorise the following polynomial:

$$
\begin{equation*}
x^{3}+10 x^{2}-37 x+26 \tag{8}
\end{equation*}
$$

(c) In the figure given below, $A B C D$ is a rectangle. $A B=14 \mathrm{~cm}, B C=7 \mathrm{~cm}$. From the rectangle, a quarter circle BFEC and a semicircle DGE are removed. Calculate the area of the remaining piece of the rectangle. (Take $\pi=22 / 7$)

Solution:

(a) Given:

$$
\begin{aligned}
& \sin ^{2} 34^{\circ}+\sin ^{2} 56^{\circ}+2 \tan 18^{\circ} \tan 72^{\circ}-\cot ^{2} 30^{\circ} \\
= & \sin ^{2} 34^{\circ}+\sin ^{2}\left(90^{\circ}-34^{\circ}\right)+2 \tan 18^{\circ} \tan \left(90^{\circ}-18^{\circ}\right)-\cot ^{2} 30^{\circ} \\
= & \sin ^{2} 34^{\circ}+\cos ^{2} 34^{\circ}+2 \tan 18^{\circ} \cot 18^{\circ}-(\sqrt{3}) \\
= & 1+2 \tan 18^{\circ} \times \frac{1}{\tan 18^{\circ}} 3 \\
= & 1+2-3 \\
= & 0
\end{aligned}
$$

(b) Let

$$
f(x)=x^{3}+10 x^{2}-37 x+26
$$

Putting $x=1$, we get

$$
f(1)=1+10-37+26=0
$$

\therefore By factor theorem, $x-1$ is factor of $f(x)$.

$$
\begin{aligned}
& \frac{x^{2}+11 x-26}{x-1)} \begin{array}{l}
x^{9}+10 x^{2}-37 x+26 \\
x^{3}-x^{2} \\
-\quad+ \\
11 x^{2}-37 x \\
11 x^{2}-11 x \\
+ \\
+26 x+26 \\
-26 x+26 \\
+
\end{array}
\end{aligned}
$$

On dividing $x^{3}+10 x^{2}-37 x+26$ by $x-1$, we get $x^{2}+11 x-26$ as the quotient and remainder $=0$.
\therefore The other factor of $f(x)$ are the factor of $x^{2}+11 x-26$
Now,

$$
\begin{aligned}
& x^{2}+11 x-26 \\
= & x^{2}+13 x-2 x-26 \\
= & x(x+13)-2(x+13) \\
= & (x+13)(x-2)
\end{aligned}
$$

Hence, $x^{3}+10 x^{2}-37 x+26=(x-1)(x-2)(x+13)$
Ans.
(c)

Area of rectangle $\mathrm{ABCD}=14 \times 7=98 \mathrm{~cm}^{2}$
Area of quarter circle $\mathrm{BFEC}=\frac{1}{4} \pi(7)^{2}=\frac{49}{4} \pi$
Area of semi-circle DGE $\left.=\frac{1}{2} \pi \frac{7}{2}\right)^{2}=\frac{1}{2} \times \frac{49}{4} \pi$
Area of remaining piece of rectangle $\left.=98-\frac{49}{4} \pi+\frac{1}{2} \times \frac{49}{4} \pi\right]$

$$
=98-\frac{49}{4} \pi\left[1+\frac{1}{2}\right]
$$

$$
\begin{aligned}
& =98-\frac{49}{4} \times \frac{22}{7} \times \frac{3}{2}=98-\frac{231}{4} \\
& =98-57.75 \\
& =40.25 \mathrm{~cm}^{2} .
\end{aligned}
$$

Ans.

Question 4.

(a) The numbers 6, 8,10,12, 13 and x are arranged in an ascending order. If the mean of the observations is equal to the median, find the value of x.
(b) In the figure, $\triangle D B C=58^{\circ} . B D$ is a diameter of the circle. Calculate:
(i) $\angle B D C$
(ii) $\angle B E C$
(iii) $\angle B A C$

(c) Using graph paper to answer the following questions. (Take $2 \mathrm{~cm}=1$ unit on both axis)
(i) Plot the points $A(-4,2)$ and $B(2,4)$
(ii) A^{\prime} is the image of A when reflected in the y-axis. Plot it on the graph paper and write the coordinates of A.
(iii) B^{\prime} is the image of B when reflected in the line $A A^{\prime}$. Write the coordinates of B^{\prime}.
(iv) Write the geometric name of the figure $A B A$ ' ${ }^{\prime}$.
(v) Name a line of symmetry of the figure formed.

Solution :

(a) Numbers in ascending order are 6, 8, 10, 12, 13, x.

$$
\text { Mean }=\frac{6+8+10+12+13+x}{6}=\frac{49+x}{6}
$$

$$
\text { No. of terms }(n)=6 \text { (even) }
$$

$$
\begin{aligned}
\text { Median } & =\frac{\left(\frac{\pi}{2}\right)^{\mathrm{b}} \text { term }+\left(\frac{\pi}{2}+1\right)^{\mathrm{th}} \text { term }}{2} \\
\text { Median } & =\frac{\left(\frac{6}{2}\right)^{\mathrm{h}} \text { term }+\left(\frac{6}{2}+1\right)^{\mathrm{b}} \text { term } 3^{\mathrm{rd}}+4^{\mathrm{ch}}}{2} \\
& =\frac{10+12}{2}=\frac{22}{2}=11
\end{aligned}
$$

According to given condition

$$
\frac{49+x}{6}=11
$$

$\Rightarrow \quad 49+x=66$
$x=17$
Ans.
(b) In $\triangle \mathrm{BCD}^{2} \quad \angle \mathrm{DBC}=58^{\circ} \quad$ (given)
(i) $\quad \angle \mathrm{BCD}=90^{\circ}$ (Angle in the semicircle as BD is diameter)
$\therefore \angle \mathrm{DBC}+\angle \mathrm{BCD}+\angle \mathrm{BDC}=180^{\circ}$

$$
58^{\circ}+90^{\circ}+\angle \mathrm{BDC}=180^{\circ}
$$

$$
\angle \mathrm{BOC}=180^{\circ}-\left(90^{\circ}+58^{\circ}\right)
$$

$$
=180^{\circ}-148^{\circ}
$$

$$
=32^{\circ}
$$

Ans.
(ii) $\quad \angle \mathrm{BEC}+\angle \mathrm{BDC}=180^{\circ} \quad(\because \mathrm{BECD}$ is a cyclic quadrilateral)
$\angle \mathrm{BEC}=180^{\circ}-\angle \mathrm{BDC}$
$=180^{\circ}-32^{\circ}$
$\angle \mathrm{BEC}=148^{\circ}$
Ans.
(iii) $\quad \angle \mathrm{BAC}=\angle \mathrm{BDC} \quad$ (Angle of same segment are equal)
$\angle \mathrm{BAC}=32^{\circ}$
Ans.
(c) (i) See Graph.

(ii) Coordinate of $A^{\prime}=(4,2)$
(iii) Coordinate of $B^{\prime}=(2,0)$
(iv) Geometric name $=$ Kite.
(v) AA^{\prime} is the symmetric line.

SECTION B [40 Marks]

Answer any four Questions in this Section.

Question 5.

(a) A shopkeeper bought a washing machine at a discount of 20% from a wholesaler, the printed price of the washing machine being ₹ 18,000. The shopkeeper sells it to a consumer at a discount of 10% on the printed price. If the rate of sales tax is 8% find:
(i) the VAT paid by the shopkeeper.
(ii) the total amount that the consumer pays for the washing machine.
(b) If $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}=\frac{17}{8}$, then find the valu
(i) $x: y$.
(ii) $\begin{aligned} & x^{3}+y^{3} \\ & x^{3}-y^{3}\end{aligned}$
(c) In $\triangle A B C, \angle A B C=\triangle O A C \cdot A B=8 \mathrm{~cm}$.
(i) Prove that $\triangle A C D$ is similar to \triangle
(ii) Find $B C$ and $C D$
(iii) Find area of $\triangle A C D$: area of $\triangle A B C$

Solution :

(a) Given: Printed price of washing machine
(i) Amount of discount to shopkeeper =

$$
\begin{aligned}
& = \\
\text { Shopkeeper's price } & = \\
& =
\end{aligned}
$$

Sales Tax paid by shopkeeper $=1$

$$
\begin{aligned}
\text { Discount for consumer } & =\frac{1}{10} \\
\text { Price for consumer } & =₹ 1 ; \\
& =₹ 1
\end{aligned}
$$

Tax charged by the shopkeeper $\dot{=} \begin{gathered}8 \\ 100\end{gathered}$

$$
=₹ 1
$$

Since, Tax paid by the shopkeeper $=$ ₹ 1,1
VAT paid by the shopkeeper = Tax

$$
\begin{aligned}
& =₹ 1,2 \\
& =₹ 144
\end{aligned}
$$

(ii) Total amount paid by the consumer for wash

$$
\begin{aligned}
& =₹ 16,20 \\
& =श 17,496 .
\end{aligned}
$$

(b) Given: $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}=\frac{17}{8}$
(i) Applying componendo and dividendo

$$
\frac{\left(x^{2}+y^{2}\right)+\left(x^{2}-y^{2}\right)}{\left(x^{2}-y^{2}\right)-\left(x^{2}-y^{2}\right)}=\frac{17+8}{17-8}
$$

$$
\begin{aligned}
2 x^{2} & =\frac{25}{2 y^{2}} \Rightarrow x^{2} \\
\frac{x}{y} & =\frac{5}{3} \\
x: y & =5: 3 . \\
\frac{x}{y} & =\frac{5}{3}
\end{aligned}
$$

(ii) As

Cubing both sides, we get

Applying componendo and Dividendo

$$
\Rightarrow \quad \begin{aligned}
& \frac{x^{9}+y^{3}}{x^{3}-y^{9}}=125+27 \\
& \frac{x^{3}+y^{3}}{x^{3}-y^{3}}=125-27 \\
& \frac{x^{3}+y^{3}}{x^{3}-y^{3}}=76 \\
& \hline 99
\end{aligned}
$$

Ans.
(c) (i) In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{BCA}$

$$
\begin{array}{rl}
\angle \mathrm{C} & =\angle \mathrm{C} \\
\angle \mathrm{ABC} & =\angle \mathrm{CAD} \\
\triangle \mathrm{ACD} & -\triangle \mathrm{BCA} \\
\triangle \mathrm{ACD} & -\triangle \mathrm{BCA} \\
\mathrm{AC} \mathrm{CD} & =\mathrm{AD} \\
\mathrm{BC}=\mathrm{CA} & \mathrm{BA} \\
4 \quad \mathrm{CD} & =\frac{5}{8} \\
\mathrm{BC}=\frac{\text { (common) }}{4} & \text { (given) } \\
4 \quad \mathrm{~S}=\frac{5}{8} \quad \text { and } \quad \frac{\mathrm{CD}}{4}=\frac{5}{8} \quad \text { (AA postulates) } \\
\mathrm{BC}
\end{array}
$$

(iii)

$$
\operatorname{area}(\triangle \mathrm{ACD}): \operatorname{area}(\triangle \mathrm{ABC})=1: 4
$$

Ans.

Question 6.

(a) Find the value of ' a ' for which the following points $A(a, 3), B(2,1)$ and $C(5, a)$ are collinear. Hence find the equation of the line.
(b) Salmon invests a sum of money in $\geqslant 50$ shares, paying 15% dividend quoted at 20% premium. If his annual dividend is $₹ 600$, calculate :
(i) the number of shares he bought.
(ii) his total investment.
(iii) the rate of return on his investment.
(c) The surface area of a solid metallic sphere is $2464 \mathrm{~cm}^{2}$. It is melted and recast into solid right circular cones of radius 3.5 cm and height 7 cm . Calculate :
(i) the radius of the sphere.
(ii) the number of cones recast. (Take $\pi=22 / 7$)

Solution:
(a) Given : $\mathrm{A}(a, 3), \mathrm{B}(2,1)$ and $\mathrm{C}(5, a)$ are collinear.

$$
\text { Slope of } A B=\text { Slope of } B C
$$

$$
\begin{array}{rl}
1-3 & =a-1 \\
2-a & 5-2 \\
-2 & =\frac{a-1}{3} \\
2-a & \\
-6 & =(2-a)(a-1) \\
-6 & =2 a-2-a^{2}+a \\
a^{2}-3 a-4 & =0 \\
a^{2}-4 a+a-4 & =0 \\
(a-4)(a+1) & =0 \\
a & =4,-1 \\
a & =-1 \\
a & =4
\end{array}
$$

$$
\text { Slope of } \mathrm{BC}=\frac{a-1}{5-2}=\frac{4-1}{3}=\frac{3}{3}=1=\mathrm{m}
$$

- Equation of BC;

$$
\begin{aligned}
(y-1) & =1(x-2) \\
y-1 & =x-2 \\
x-y & =1
\end{aligned}
$$

(b)

$$
\text { Nominal value of } 1 \text { share }=₹ 50^{\circ}
$$

$$
\text { Dividend on } 1 \text { share }=\frac{15}{100} \times 50=₹ 7.50
$$

$$
\text { Total Dividend of Salman }=₹ 600
$$

(i) No. of shares Salman bought $=\frac{700}{7-50}=80$ Ans.
(ii)

Premium on 1 share $=\frac{20}{100} \times 50=₹ 10$
Market value of 1 share $=50+10=₹ 60$
Total investment for 80 shares $=80 \times 60=\mathbf{~} 4,800$.
Ans.
(iii)

Rate of return $=\frac{600}{4800} \times 100=12.5 \%$.
Ans.
(c) (i) Let the radius of sphere $=r \mathrm{~cm}$

Surface area of sphere $=4 \pi r^{2}=2464 \mathrm{~cm}^{2}$

$$
\begin{aligned}
r^{2} & =\frac{2464}{4 \pi} \\
r^{2} & =\frac{2464 \times 7}{4 \times 22} \\
& =196 \\
r & =14 \mathrm{~cm} .
\end{aligned}
$$

Ans.
(ii) \quad Volume of sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(14)^{3}$

$$
\text { Volume of cone }=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(3.5)^{2} \times 7
$$

No. of cones recast $=\frac{\text { Volume of sphere }}{\text { Volume of cone }}$

$$
\begin{aligned}
& =\frac{\frac{4 \pi}{3}(14)^{9}}{\frac{1}{3} \pi(3.5)^{2} \times 7}=\frac{4 \times 14 \times 14 \times 14}{3.5 \times 3.5 \times 7} \quad 3200 \\
& =128
\end{aligned}
$$

Ans.

Question 7.

(a) Calculate the mean of the distribution given below using the short cut method.

Marks	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-70$	$71-80$
No. of students	2	6	10	12	9	7	4

[3]
(b) In the figure given below, diameter $A B$ and $C D$ of a circle meet at P. PT is a tangent to the circle at $T . C D=7.8 \mathrm{~cm}, P D=5 \mathrm{~cm}, P D=4 \mathrm{~cm}$. Find :
(i) $A B$.
(ii) the length of tangent PT.
(c) $\operatorname{Let} A=\left[\begin{array}{rr}2 & 1 \\ 0 & -2\end{array}\right], B=\left[\begin{array}{rr}4 & 1 \\ -3 & -2\end{array}\right.$ and $C=\left[\begin{array}{rr}-3 & 2 \\ -1 & 4\end{array}\right]$.

Find $A^{2}+A C-5 B$.
[4]

Solution :

(a)	Marks (C.I.)	\boldsymbol{f}	Mean Value \boldsymbol{x}	$\mathbf{A = 4 5 \cdot 5}$ $\boldsymbol{d = x}-\mathbf{A}$
$11-20$	2	$15 \cdot 5$	-30	$\boldsymbol{f} \times \boldsymbol{d}$
$21-30$	6	$25 \cdot 5$	-20	-60
$31-40$	10	$35 \cdot 5$	-10	-100
$41-50$	12	$45 \cdot 5$	0	0
$51-60$	9	$55 \cdot 5$	10	90
$61-70$	7	$65 \cdot 5$	20	140
$71-80$	4	$75 \cdot 5$	30	120
	$\Sigma f=50$			$\Sigma f d=70$

$$
\begin{aligned}
\text { Mean } & =A+\frac{\Sigma f d}{\Sigma f} \\
& =45 \cdot 5+\frac{70}{60}=45 \cdot 5+1 \cdot 4 \\
& =46 \cdot 9
\end{aligned}
$$

Ans.
(b) (i) Since chord CD and tangent at point T intersect each other at P,

$$
\begin{equation*}
\mathrm{PC} \times \mathrm{PD}=\mathrm{PT}^{2} \tag{1}
\end{equation*}
$$

Since chord $A B$ and tangent at point T intersect each other at P,

$$
\begin{equation*}
\mathrm{PA} \times \mathrm{PB}=\mathrm{PT}^{2} \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
\begin{equation*}
\mathrm{PC} \times \mathrm{PD}=\mathrm{PA} \times \mathrm{PB} \tag{3}
\end{equation*}
$$

Given: $\mathrm{CD}=7.8 \mathrm{~cm} ; \mathrm{PD}=5 \mathrm{~cm}, \mathrm{~PB}=4 \mathrm{~cm}$.

$$
\therefore P A=P B+A B=4+A B, P C=P D+C D=5+7 \cdot 8=12 \cdot 8 \mathrm{~cm} .
$$

Putting these values in eq. (3)

$$
\begin{array}{rlrl}
& & 12.8 \times 5 & =(4+\mathrm{AB}) \times 4 \\
& & 4+\mathrm{AB} & =12.8 \times 5 \\
\Rightarrow & 4+\mathrm{AB} & =16 \\
\Rightarrow & \mathrm{AB} & =12 \mathrm{~cm} . \\
& \text { Hence, } & \mathrm{AB} & =12 \mathrm{~cm} .
\end{array}
$$

Ans.
(ii) From eq. (1),

$$
\mathrm{PT}^{2}=\mathrm{PA} \times \mathrm{PB}=12.8 \times 5
$$

$\Rightarrow \quad \mathrm{PT}^{2}=64$
$\Rightarrow \quad \mathrm{PT}=8 \mathrm{~cm} .=$ Length of tangent. Ans
(c) Given: $\mathrm{A}=\left[\begin{array}{rr}2 & 1 \\ 0 & -2\end{array}\right], \mathrm{B}=\left[\begin{array}{rr}4 & 1 \\ -3 & -2\end{array}\right], \mathrm{C}=\left[\begin{array}{ll}-3 & 2 \\ -1 & 4\end{array}\right]$

$$
\begin{aligned}
A^{2}=A \cdot A & =\left[\begin{array}{rr}
2 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{rr}
2 & 1 \\
0 & -2
\end{array}\right] \\
& =\left[\begin{array}{ll}
4+0 & 2-2 \\
0+0 & 0+4
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right] \\
A C & =\left[\begin{array}{rr}
2 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{ll}
-3 & 2 \\
-1 & 4
\end{array}\right]=\left[\begin{array}{ll}
-6-1 & 4+4 \\
0+2 & 0-8
\end{array}\right] \\
& =\left[\begin{array}{rr}
-7 & 8 \\
2 & -8
\end{array}\right]
\end{aligned}
$$

and

$$
5 B-5\left[\begin{array}{rr}
4 & 1 \\
-3 & -2
\end{array}\right]-\left[\begin{array}{rr}
20 & 5 \\
-15 & -10
\end{array}\right]
$$

Now,

$$
\begin{aligned}
\mathrm{A}^{2}+\mathrm{AC}-6 \mathrm{~B} & =\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]+\left[\begin{array}{rr}
-7 & 8 \\
2 & -8
\end{array}\right]-\left[\begin{array}{rr}
20 & 5 \\
-15 & -10
\end{array}\right] \\
& =\left[\begin{array}{cc}
4-7-20 & 0+8-5 \\
0+2+15 & 4-8+10
\end{array}\right] \\
& =\left[\begin{array}{cc}
-23 & 3 \\
17 & 6
\end{array}\right]
\end{aligned}
$$

Question 8.

(a) The compound interest, calculated yearly, on a certain sum of money for the second year is ₹ 1320 and for the third year is ₹ 1452. Calculate the rate of interest and the original sum of money.
(b) Construct a $\triangle A B C$ with $B C=6.5 \mathrm{~cm}, A B=5.5 \mathrm{~cm}, A C=5 \mathrm{~cm}$. Construct the incircle of the triangle. Measure and record the radius of the incircle.
(c) Use a graph paper for this question.) The daily pocket expenses of 200 students in a school are given below:

Pocket expenses (in ₹)	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Number of students (frequency)	10	14	28	42	50	30	14	12

Draw a histogram representing the above distribution and estimate the mode from the graph.

Solution :

(a)
C.I. for the third year $=$ ₹ 1,452 .
C.I. for the second year $=₹ 1,320$
S.I. on ₹ 1,320 for one year $=₹ 1,452-₹ 1,320=₹ 132$.

$$
\text { Rate of interest }=\frac{132 \times 100}{1,320}=10 \%
$$

Ans.

Let the original money be ₹ P .
Amount after 2 year - amount after one year = C.I. for second year.

$$
\begin{aligned}
& P\left(1+\frac{10}{100}\right)^{2}-P\left(1+\frac{10}{100}=1,320\right. \\
& P\left[\left(\frac{110}{100}\right)^{2}-\frac{110}{100}\right.=1,320 \\
& P\left[\left(\frac{11}{10}\right)^{2}-\frac{11}{10}\right]=1,320 \Rightarrow P\left(\frac{121}{100}-\frac{11}{10}\right)=₹ 1,320 \\
& P \quad P \times 11 \\
& \Rightarrow 100
\end{aligned}=₹ 1,320 \Rightarrow P=\frac{1,320 \times 100}{11}=₹ 12,000
$$

Rate of interest $=10 \%$
and

$$
\text { Original sum of money }=₹ 12,000
$$

Ans.
(b) Steps of construction:
(1) Construct a $\triangle A B C$ with the given data.
(2) Draw the internal bisectors of $\angle \mathrm{B}$ and $\angle C$. Let these bisectors cut at 0 .
(3) Taking O as centre. Draw a incircle which touches all the sides of the Δ ABC.
(4) From O draw a perpendicular to side BC which cut at N .
(5) Measure ON which is required radius of the incircle.
$O N=1.5 \mathrm{~cm}$.

(c)

Mode $=21$
Question 9.
(a) If $(x-9):(3 x+6)$ is the duplicate ratio of $4: 9$, find the value of x.
[3]
(b) Solve for x using the quadratic formula. Write your answer correct to two significant figures. $(x-1)^{2}-3 x+4=0$.
(c) A page from the saving bank account of Priyanka is given below:

Date	Particulars	Amount withdrawn (2)	Amount deposited (२)	Balance (२)
$03 / 04 / 2006$	B/F	-	-	$4,000.00$
$05 / 04 / 2006$	By cash	-	$2,000.00$	$6,000.00$
$18 / 04 / 2006$	By cheque	-	$6,000.00$	$12,000.00$
$25 / 05 / 2006$	To cheque	$5,000.00$	-	$7,000.00$
$30 / 05 / 2006$	By cash	-	$3,000.00$	$10,000.00$
$20 / 07 / 2006$	By self	$4,000.00$	-	$6,000.00$
$10 / 09 / 2006$	By cash	-	$2,000.00$	$8,000.00$
$19 / 09 / 2006$	To cheque	$1,000.00$	-	$7,000.00$

If the interest earned by Priyanka for the period of ending September, 2006 is ₹ 175, find the rate of interest.

Solution :

(a) Given : $(x-9):(3 x+6)$ is the duplicate ratio of $4: 9$

$$
\begin{array}{rl}
\Rightarrow \quad \frac{x}{3 x+9} & =\left(\frac{4}{9}\right)^{2} \\
x-9 & =16 \\
3 x+6 & 81 \\
81 x-729 & =48 x+96 \\
81 x-48 x & =96+729 \\
33 x & =825 \\
x & =\frac{825}{33}=25
\end{array}
$$

Ans.
(b) Given: $\quad(x-1)^{2}-3 x+4=0$

$$
x^{2}+1-2 x-3 x+4=0
$$

\Rightarrow

$$
x^{2}-6 x+5=0
$$

Comparing $x^{2}-5 x+5=0$ with $a x^{2}+b x+c=0$, we get $a=1, b=-5, c=5$.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{ } b^{2}-4 a c}{2 a} \\
x & =\frac{-(-5) \pm \frac{\sqrt{(-5)^{2}-4(1)(5)}}{2 \times 1}}{2} \\
& =\frac{5 \pm \sqrt{25-20}=\frac{5 \pm \sqrt{5}}{2}}{2} \\
& =\frac{5 \pm 2.236=\frac{5+2.236}{2}}{2} \text { and } \frac{5-2.236}{2} \\
& =\frac{7.236}{2} \text { and } \frac{2.764}{2} \\
& =3.618 \text { and } 1.382
\end{aligned}
$$

Ans.
(c) Principal for the month of April $=$ ₹ 6,000

Principal for the month of May $=$ ₹ 7,000
Principal for the month of June $=₹ 10,000$
Principal for the month of July $=\boldsymbol{F} \quad 6,000$
Principal for the month of Aug. $=$ ₹ 6,000
Principal for the month of Sep. $=$ 7 7,000
Total principal for 1 month $=\mathbf{7 2 , 0 0 0}$
Now, $P=₹ 42,000, \mathrm{I}=$ ₹ $175, \mathrm{~T}=\frac{1}{12}$ years, $\mathrm{R}=$?

$$
\begin{aligned}
\text { Interest } & =\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100} \\
175 & =\frac{42,000 \times \mathrm{R} \times 1}{100 \times 12} \\
\mathrm{R} & =\frac{175 \times 100 \times 12}{42,000 \times 1} \\
& ={ }^{2,100}=5 \% .
\end{aligned}
$$

Ans.

Question 10.

(a) A two digit positive number is such that the product of its digits is 6 . If 9 is added to the number, the digits interchange their places. Find the number. [4]
(b) The marks obtained by 100 students in a Mathematics test are given below :

Marks	No. of Students
$0-10$	3
$10-20$	7
$20-30$	12
$30-40$	17
$40-50$	23
$50-60$	14

$60-70$	9
$70-80$	6
$80-90$	5
$90-100$	4

Draw an ogive for the given distribution on a graph sheet.
(Use a scale of $2 \mathrm{~cm}=10$ units on both axis).
Use the ogive to estimate the
(i) median.
(ii) lower quartile.
(iii) number of students who obtained more than 85% marks in the test.
(iv) number of students who did not pass in the test if the pass percentage was 35.

Solution :
(a) Let the required two digit number be $10 x+y$

Given : $x y=6$ and $10 x+y+9=10 y+x$

$$
10 x-x+y-10 y+9=0
$$

$\Rightarrow \quad 9 x-9 y+9=0$
$\Rightarrow \quad \dot{x}-y+1=0$

$$
y=x+1
$$

$$
x y=6 \text { (given) }
$$

$$
x(x+1)=6
$$

$\Rightarrow \quad x^{2}+x-6=0$
$\Rightarrow \quad x^{2}+3 x-2 x-6=0$
$\Rightarrow \quad(x+3)(x-2)=0$
\Rightarrow $x=-3,2$
Rejecting $x=-3$
When $x=2$,
$y=x+1=2+1=3$
.. The required two digit number $=10 x+y$
$=10 \times 2+3$
$=23$.
Ans.

(b) | Marks | No. of Studenta | Cumulative frequency (c.f.) |
| :---: | :---: | :---: |
| $0-10$ | 3 | 3 |
| $10-20$ | 7 | 10 |
| $20-30$ | 12 | 22 |
| $30-40$ | 17 | 39 |
| $40-50$ | 23 | 62 |
| $50-60$ | 14 | 76 |
| $60-70$ | 09 | 86 |
| $70-80$ | 06 | 91 |
| $80-90$ | 05 | 96 |
| $90-100$ | 04 | 100 |

On the graph paper, we plot the following points
(10, 3), (20, 10), (30, 22), (40, 39), (50, 62), (60, 76), (70, 85), (80, 91), (90, 96), (100, 100)

From the graph $50^{\text {th }}$ term $=43$.
Ans.
(ii)

$$
\begin{aligned}
\text { Lower quartile } & =\left(\frac{n}{4}\right)^{h} \text { term } \\
& ={ }_{4}^{100}=25^{\mathrm{hh}} \text { term. }
\end{aligned}
$$

From the graph $25^{\text {th }}$ term $=31$
Ans.
(iii) The number of students who obtained more than 85% marks in test

$$
=100-95
$$

$=5$ students.
Ans.
(iv) The number of students who did not pass in the test if the pass percentage was $35=30$.

Ans.

Question 11.

(a) In the figure given below, O is the centre of the circle. $A B$ and $C D$ are two chords of the circle. OM is perpendicular to $A B$ and $O N$ is perpendicular to $C D$.
$A B=24 \mathrm{~cm}, O M=5 \mathrm{~cm}, O N=12 \mathrm{~cm}$. Find the :
(i) radius of the circle.
(ii) length of chord $C D$.

(b) Prove the identity:
$(\sin \theta+\cos \theta)(\tan \theta+\cot \theta)=\sec \theta+\operatorname{cosec} \theta$.
[3]
(c) An aeroplane at an altitude of 250 m observes the angle of depression of two boats on the opposite banks of a river to be 45° and 60° respectively. Find the width of the river. Write the answer correct to the nearest whole number. [4]
Solution :
(a) Given: $\mathrm{AB}=24 \mathrm{~cm} ; \mathrm{OM}=5 \mathrm{~cm}, \mathrm{ON}=12 \mathrm{~cm}$.
$O M \perp A B$
M is mid point of $A B$.

$$
\mathrm{AM}=12 \mathrm{~cm}
$$

(i) Let radius of circle $=r$

From \triangle AMO;

$$
\begin{aligned}
\mathrm{AO}^{2} & =\mathrm{AM}^{2}+\mathrm{OM}^{2} \\
r^{2} & =(12)^{2}+(5)^{2} \\
& =144+25 \\
r^{2} & =169 \\
r & =13 \mathrm{~cm} .
\end{aligned}
$$

Ans.
(ii) Now from $\triangle \mathrm{CNO} ; \quad \mathrm{CO}^{2}=\mathrm{ON}^{2}+\mathrm{CN}^{2}$

$$
r^{2}=(12)^{2}+\mathrm{CN}^{2} \quad(\because \mathrm{AO}=\mathrm{CO}=r)
$$

$$
\begin{aligned}
(13)^{2}-(12)^{2} & =\mathrm{CN}^{2} \\
169-144 & =\mathrm{CN}^{2} \\
\mathrm{CN}^{2} & =25 \\
\mathrm{CN} & =5
\end{aligned}
$$

As $\mathrm{ON} \perp \mathrm{CD}, \mathrm{N}$ is mid point of CD .

$$
\therefore C D=2 \mathrm{CN}=2 \times 5=10 \mathrm{~cm} .
$$

Ans.
(b)

$$
\begin{aligned}
\text { L.H.S. } & =(\sin \theta+\cos \theta)(\tan \theta+\cot \theta) \\
& =(\sin \theta+\cos \theta)\left(\begin{array}{c}
\left.\sin \theta+\frac{\cos \theta}{\cos \theta}+\frac{\sin \theta}{}\right)
\end{array}\right. \\
& =(\sin \theta+\cos \theta)\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}\right) \\
& =(\sin \theta+\cos \theta) \times \frac{1}{\cos \theta \sin \theta} \\
& =\frac{\sin \theta}{\cos \theta \sin \theta+} \cos \theta \sin \theta \\
& =\frac{1}{\cos \theta}+\frac{1}{\sin \theta} \\
& =\sec \theta+\operatorname{cosec} \theta \\
& =\text { R.H.S. }
\end{aligned}
$$

(c) Let
$A D=250 \mathrm{~m}$ height of aeroplane
Two boats are at B and C.
Let $\quad \mathrm{BD}=x$ and $\mathrm{DC}=y$
From $\triangle \mathrm{ADB}$;

$$
\begin{array}{rl}
x & x \\
250 & =\cot 45^{\circ} \\
x & =1 \\
250 & =1 \\
x & =250 \mathrm{~m}
\end{array}
$$

From $\triangle \mathrm{ADC}$;

$$
\frac{y}{250}=\cot 60^{\circ}
$$

$$
\underset{250}{y}=\frac{1}{\sqrt{3}}
$$

$\Rightarrow \quad y=250 \times \frac{1}{\sqrt{3}}$
Width of river $\mathrm{BC}=\mathrm{BD}+\mathrm{DC}=x+y$

$$
\begin{aligned}
& =250+\frac{250}{\sqrt{3}} \\
& =250\left(1+\frac{1}{\sqrt{3}}\right)=250\left(\begin{array}{c}
\frac{\sqrt{3}}{\sqrt{3}}+1
\end{array}\right) \\
& =250\binom{1.732+1}{1.732}=250\binom{2.732}{1.732} \\
& =250 \times 1.577 \\
& =394.25 \mathrm{~m}=394 \mathrm{~m} .
\end{aligned}
$$

