ICSE QUESTION PAPER

MATHEMATICS

(Two hours and a half)

Answers to this Paper must be written on the paper provided separately. You will **not** be allowed to write during the first **15** minutes. This time is to be spent in reading the question paper. The time given at the head of this Paper is the time allowed for writing the answers.

Attempt all questions from Section A and any four questions from Section B. All working, including rough work, must be clearly shown and must be done on the same sheet as the rest of the answer. Omission of essential working will result in the loss of marks.

The intended marks for questions or parts of questions are given in brackets []. Mathematical tables are provided.

SECTION A [40 Marks]

(Answer all questions from this Section.)

Question 1.

- (a) Ranbir borrows ₹ 20,000 at 12% per annum compound interest. If he repays
 ₹ 8400 at the end of the first year and ₹ 9680 at the end of the second year, find the amount of loan outstanding at the beginning of the third year. [3]
- (b) Find the value of x, which satisfy the inequation $-2\frac{5}{6} < \frac{1}{2} \frac{2x}{3} \le 2$, $x \in W$. Graph the solution set on the number line. [3]
- (c) A die has 6 faces marked by the given numbers as shown below :

 $1 \ 2 \ 3 \ -1 \ -2 \ -3$

The die is thrown once. What is the probability of getting

- (i) a positive integer.
- (ii) an integer greater than -3.
- (iii) the smallest integer.

Solution :

(a) Given : Principal for the first year (P) = ₹ 20,000, r = 12%.

We know that

$$A = P\left(1 + \frac{r}{100}\right)^{n}$$
Amount after the first year = 20,000 $\left(1 + \frac{12}{100}\right)^{n}$
= 20,000 $\left(\frac{112}{100}\right)$
= ₹ 22,400

Money repays at the end of first year = ₹8,400

(given)

[4] ,

Principal for the second year $= \langle 22,400 - \langle 8,400 \rangle$ = ₹14,000 Amount after second year = $14,000 \left(1 + \frac{12}{100} \right)^{4}$ = ₹15,680 Money repays at the end of the second year = ₹ 9,680 (given) ... The loan outstanding at the beginning of the third year = ₹15,680 - ₹9,680 = ₹6,000. $-2\frac{5}{6} < \frac{1}{2} - \frac{2x}{2} \le 2$ (b) Given: $-\frac{17}{6} < \frac{3-4x}{6} \le 2$ Multiplying throughout by 6 $-17. < 3 - 4x \le 12$ 1 - 17 < 3 - 4x $3 - 4x \le 12$ and $3 - 12 \leq 4x$ 4x < 3 + 174x < 20 $-9 \leq 4x$ $\Rightarrow -\frac{9}{4} < x$ x < 5 $\left\{5 > x \ge \frac{-9}{4}\right\}$ Hence, the solution set is $\{x : x \in W, -\frac{9}{4} \le x < 5\}$ $\therefore \{0, 1, 2, 3, 4\}$ **€ ⊤ ↑ ↑ ↑ ↑ ↑ ↑ ⊤** ⊤ ⊤ ⊤ -∞ -1 0 1 2 3 4 5 6 7 The graph of the solution set is shown by dots on the number line. No. of sample space n(S) = 6**(c)** a positive integer = $\{1, 2, 3\}$ (i) No. of favourables n(E) = 3Probability = $\frac{n(E)}{n(S)} = \frac{3}{6} = \frac{1}{2}$ Ans an integer greater than $-3 = \{1, 2, 3, -1, -2\}$ (ii) No. of favourables n(E) = 5Probability = $\frac{n(E)}{n(S)} = \frac{5}{6}$ Ans. (iii) Smallest integer = -3Probability of smallest integer $\frac{n(E)}{n(S)} = \frac{1}{6}$. **Question 2.** (a) Find x, y if $\begin{bmatrix} -2 & 0 \\ 2 & 1 \end{bmatrix} \begin{vmatrix} -1 \\ 2r \end{vmatrix} + 3 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} y \\ 2 \end{bmatrix}$. [3] vount in a bank and deposited ₹ 800
94 at the time of maturity, find the
[3]

A (-4, 2) and B(3, 6) is divided by [4]

$$\begin{bmatrix} y\\ 3 \end{bmatrix}$$

$$\begin{cases} y\\ 3 \end{bmatrix}$$

$$\begin{cases} 2y\\ 6 \end{bmatrix}$$

$$\end{cases}$$

$$\begin{cases} 2y\\ 6 \\\\ 2y\\ 6 \\\\ 2y\\ 6 \end{bmatrix}$$

$$\end{cases}$$

$$\end{cases}$$

$$\begin{cases} 2y\\ 6 \\\\ 2y\\ 6 \\\\ 2$$

Ans.

; points A (-4, 2) and B (3, 6) in

B(3,6) (x₂,y₂) :. Coordinates of P is $\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right) = \left(\frac{43k - 4}{k+1}, \frac{6k_2t}{k+1}\right).$ But coordinate of P is (x, 3) $\frac{6k+2}{k+1} = 3$ ⇒ 6k + 2 = 3k + 3 $3k = 1 \Rightarrow k = \frac{1}{3}$ \therefore The required ratio is $\frac{1}{3}$: 1 *i.e.*, 1:3 (internally) Ans. $x = \frac{3k-4}{k+1}$ (i) Putting $k = \frac{1}{3}$, we get $x = \frac{3 \times \frac{1}{3} - 4}{\frac{1}{2} + 1} = \frac{1 - 4}{\frac{1 + 3}{2}} = \frac{-3}{4/3} = \frac{-9}{4}$ Апв. (ii) \therefore Coordinate of P is $\left(\frac{-9}{4}, 3\right)$ Length of AP = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $=\sqrt{\left(-\frac{9}{4}+4\right)^2+(3-2)^2}$ $= \sqrt{\left(\frac{-9+16}{4}\right)^2 + (1)^2} = \sqrt{\frac{49}{16} + 1}$ $=\sqrt{\frac{49+16}{16}}=\sqrt{\frac{65}{16}}=\frac{\sqrt{65}}{4}$ Ans.

Question 3.

(a) Without using trigonometric tables, evaluate

(b) Using the Remainder and Factor Theorem, factorise the following polynomial:

$$x^3 + 10x^2 - 37x + 26$$
[3]

(c) In the figure given below, ABCD is a rectangle. AB = 14 cm, BC = 7 cm. From the rectangle, a quarter circle BFEC and a semicircle DGE are removed. Calculate the area of the remaining piece of the rectangle. (Take $\pi = 22/7$) [4]

Solution:

(a) Given :

 $\sin^2 34^\circ + \sin^2 56^\circ + 2 \tan 18^\circ \tan 72^\circ - \cot^2 30^\circ$ $= \sin^2 34^\circ + \sin^2 (90^\circ - 34^\circ) + 2 \tan 18^\circ \tan (90^\circ - 18^\circ) - \cot^2 30^\circ$ $= \sin^2 34^\circ + \cos^2 34^\circ + 2 \tan 18^\circ \cot 18^\circ - (\sqrt{3})$ $= 1 + 2 \tan 18^{\circ} \times \frac{1}{\tan 18^{\circ}} 3$ = 1 + 2 - 3= 0 $f(x) = x^3 + 10x^2 - 37x + 26$ (b) Let Putting x = 1, we get f(1) = 1 + 10 - 37 + 26 = 0: By factor theorem, x - 1 is factor of f(x). $x^2 + 11x - 26$ (x-1) $x^3 + 10x^2 - 37x + 26$ $x^3 - x^2$ _ + $11x^2 - 37x$ $11x^2 - 11x$ + -26x + 26-26x + 26+ х On dividing $x^3 + 10x^2 - 37x + 26$ by x - 1, we get $x^2 + 11x - 26$ as the quotient and remainder = 0. . The other factor of f(u) are the factor of $u^2 + 11$ 00

$$\therefore \text{ The other factor of } f(x) \text{ are the factor of } x^2 + 11x - 26$$
Now,

$$x^2 + 11x - 26$$

$$= x^2 + 13x - 2x - 26$$

$$= x (x + 13) - 2 (x + 13)$$

$$= (x + 13) (x - 2)$$
Hence, $x^3 + 10x^2 - 37x + 26 = (x - 1) (x - 2) (x + 13)$
Ans.
(c) Area of rectangle ABCD = $14 \times 7 = 98 \text{ cm}^2$
Area of quarter circle BFEC = $\frac{1}{4}\pi (7)^2 = \frac{49}{4}\pi$
Area of quarter circle DGE = $\frac{1}{2}\pi (7)^2 = \frac{1}{2} \times \frac{49}{4}\pi$
Area of semi-circle DGE = $\frac{1}{2}\pi (7)^2 = \frac{1}{2} \times \frac{49}{4}\pi$

$$= 98 - \frac{49}{4}\pi + \frac{1}{2} \times \frac{49}{4}\pi$$

$$= 98 - \frac{49}{4} \times \frac{22}{7} \times \frac{3}{2} = 98 - \frac{231}{4}$$

$$= 98 - 57.75$$

$$= 40.25 \text{ cm}^2.$$
Ans.

Question 4.

- (a) The numbers 6, 8, 10, 12, 13 and x are arranged in an ascending order. If the mean of the observations is equal to the median, find the value of x. [3]
- (b) In the figure, $\triangle DBC = 58^\circ$. BD is a diameter of the circle. Calculate :

- (c) Using graph paper to answer the following questions. (Take 2 cm = 1 unit on both axis)
 - (i) Plot the points A (-4, 2) and B (2, 4)
 - (ii) A' is the image of A when reflected in the y-axis. Plot it on the graph paper and write the coordinates of A'.
 - (iii) B' is the image of B when reflected in the line AA'. Write the coordinates of B'.
 - (iv) Write the geometric name of the figure ABA'B'.
 - (v) Name a line of symmetry of the figure formed. [4]

Solution :

(a) Numbers in ascending order are 6, 8, 10, 12, 13, x.

Mean =
$$\frac{6+8+10+12+13+x}{6} = \frac{49+x}{6}$$

No. of terms $(n) = 6$ (even)
Median = $\frac{\left(\frac{n}{2}\right)^{\text{th}} \text{term} + \left(\frac{n}{2}+1\right)^{\text{th}} \text{term}}{2}$
Median = $\frac{\left(\frac{6}{2}\right)^{\text{th}} \text{term} + \left(\frac{6}{2}+1\right)^{\text{th}} \text{term}}{2} = \frac{3^{\text{rd}}+4^{\text{th}}}{2}$
 $= \frac{10+12}{2} = \frac{22}{2} = 11$

According to given condition

$$\frac{49+x}{6} = 11$$

49 + x = 66⇒ x = 17Ans. $\angle DBC = 58^{\circ}$ (b) $\ln \triangle BCD;$ (given) \angle BCD = 90° (Angle in the semicircle as BD is diameter) (i) $\therefore \angle DBC + \angle BCD + \angle BDC = 180^{\circ}$ $58^{\circ} + 90^{\circ} + \angle BDC = 180^{\circ}$ $\angle BDC = 180^{\circ} - (90^{\circ} + 58^{\circ})$ $= 180^{\circ} - 148^{\circ}$ = 32° Ans. (ii) $\angle BEC + \angle BDC = 180^{\circ}$ (. BECD is a cyclic quadrilateral) $\angle BEC = 180^{\circ} - \angle BDC$ $= 180^{\circ} - 32^{\circ}$ $\angle BEC = 148^{\circ}$ Ans. (iii) $\angle BAC = \angle BDC$ (Angle of same segment are equal) $\angle BAC = 32^{\circ}$ Ans.

(c) (i) See Graph.

- (ii) Coordinate of A' = (4, 2)
- (iii) Coordinate of B' = (2, 0)
- (iv) Geometric name = Kite.
- (v) AA' is the symmetric line.

SECTION B [40 Marks]

Answer any four Questions in this Section.

Question 5.

- (a) A shopkeeper bought a washing machine at a discount of 20% from a wholesaler, the printed price of the washing machine being ₹ 18,000. The shopkeeper sells it to a consumer at a discount of 10% on the printed price. If the rate of sales tax is 8% find :
 - (i) the VAT paid by the shopkeeper.
 - (ii) the total amount that the consumer pays for the washing machine. [3]

(b) If
$$\frac{x^2 + y^2}{x^2 - y^2} = \frac{17}{8}$$
, then find the valu
(i) $x : y$.
(ii) $\frac{x^3 + y^3}{x^3 - y^3}$

(c) In $\triangle ABC$, $\angle ABC = \angle DAC$. AB = 8 cm.

- (i) Prove that $\triangle ACD$ is similar to $\triangle A$
- Find BC and CD (ii)
- (iii) Find area of $\triangle ACD$: area of $\triangle ABC$

Solution :

(ii)

(a) Given : Printed price of washing machine

(i) Amount of discount to shopkeeper =

= Shopkeeper's price = = Sales Tax paid by shopkeeper = $\frac{1}{1}$ Discount for consumer = $\frac{1}{10}$. Price for consumer $= \mathbf{\overline{x}} \mathbf{1}^{\mathrm{c}}$ = ₹1 8 100 Tax charged by the shopkeeper == ₹1,. Since, Tax paid by the shopkeeper = $\mathbf{\xi}$ 1,1 VAT paid by the shopkeeper = Tax c= ₹1,2: . = ₹144 Total amount paid by the consumer for wash = ₹ 16,20 = **₹**17,496. (b) Given : $\frac{x^2 + y^2}{x^2 - y^2} = \frac{17}{8}$

· (i) Applying componendo and dividendo

 $\frac{(x^2+y^2)+(x^2-y^2)}{(x^2-y^2)-(x^2-y^2)} = \frac{17+8}{17-8}$

$$2x^{2} = \frac{25}{9} \Rightarrow \frac{x^{2}}{y^{2}} = \frac{25}{9}$$

$$\frac{x}{y} = \frac{5}{3}$$

$$x : y = 5 : 3.$$
Ans.
(ii) As
$$\frac{x}{y} = \frac{5}{3}$$
Cubing both sides, we get
$$\frac{x^{3}}{y^{3}} = \frac{(5)^{3}}{(3)^{3}} = \frac{125}{27}$$
Applying componendo and Dividendo
$$\frac{x^{3} + y^{3}}{x^{3} - y^{3}} = \frac{125 + 27}{125 - 27}$$

$$\Rightarrow \frac{x^{3} + y^{3}}{x^{3} - y^{3}} = \frac{125}{98}$$

$$\frac{x^{2} + y^{3}}{x^{3} - y^{3}} = \frac{76}{98}$$
(i) In \triangle ACD and \triangle BCA
$$\angle C = \angle C$$
(common)
$$\angle ABC = \angle CAD$$
(given)
$$\triangle ACD - \triangle BCA$$
(AA postulates)
(i)
$$ACD - \triangle BCA$$

$$AC = CD = AD$$

$$BC = \frac{4 \times 8}{5} = \frac{32}{5} = 6 \cdot 4 \text{ cm.} \text{ and } CD = \frac{5}{8} \times 4 = \frac{5}{2} = 2 \cdot 5 \text{ cm.} \text{ Ans.}$$
(ii)
$$\triangle ACD - \triangle ABC$$

$$\frac{area}(\triangle ACD) = AC^{2}$$

$$area (\triangle ACD) : area (\triangle ABC) = 1 : 4.$$
Ans.

Question 6.

- (a) Find the value of 'a' for which the following points A (a, 3), B (2, 1) and C (5, a) are collinear. Hence find the equation of the line.
 [3]
- (b) Salman invests a sum of money in ₹ 50 shares, paying 15% dividend quoted at 20% premium. If his annual dividend is ₹ 600, calculate :
 - (i) the number of shares he bought.
 - (ii) his total investment.
 - (iii) the rate of return on his investment.

- (c) The surface area of a solid metallic sphere is 2464 cm². It is melted and recast into solid right circular cones of radius 3.5 cm and height 7 cm. Calculate :
 - (i) the radius of the sphere.

(ii) the number of cones recast. (Take
$$\pi = 22/7$$
) [4]

Solution :

(a) Given : A (a, 3), B(2, 1) and C(5, a) are collinear.

		Slope of AB	=	Slope of BC	
		1-3	_	a-1	
		2 - a	=	5 - 2	
		- 2	-	$\underline{a-1}$	
		2 - a	-	3	
		- 6	=	(2-a)(a-1)	
		- 6	ŝ	$2a-2-a^2+a$	
		$a^2 - 3a - 4$	=	0	
		$a^2 - 4a + a - 4$	=	0	
		(a-4)(a+1)	=	0	
		a	5	4, -1	
	Rejecting,	a	=	-1 \therefore does not satisfy the e	quation
		a	=	4	
		Slope of BC	=	$a-1 = \frac{4-1}{3} = \frac{3}{3} = 1 = m$	
-	Equation of	f BC; $(\gamma - 1)$	Ŧ	1(x-2)	
	-	y-1	¥	x-2	
		x - y	=	1	Ans.
(b)		Nominal value of 1 share	=	₹ 50	
				15	
		Dividend on 1 share	=	$100 \times 50 = 7.50$	
		Total Dividend of Salman	9	₹600	
	(i) N	o. of shares Salman bought	=	$\frac{600}{7-50} = 80$	Ans.
	(ii)	Premium on 1 share	₽	$\frac{20}{100} \times 50 = ₹10$	
		Market value of 1 share	=	50 + 10 = ₹ 60	
	Tota	al investment for 80 shares	=	80 × 60 = ₹ 4,800.	Ans.
	(iii)	Rate of return	=	600 4800 × 100 = 12·5%.	Ans.
(c)	(i)	Let the radius of sphere	=	r cm	
		Surface area of sphere	=	$4\pi r^2 = 2464 \text{ cm}^2$	(given)
		-		2464	-
		7~	2	4π	
		2م	=	$\frac{2464 \times 7}{4 \times 22}$	
			=	196	
		r	=	14 cm.	Ans.

(ii) Volume of sphere
$$=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (14)^3$$

Volume of cone $=\frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (3\cdot5)^2 \times 7$
No. of cones recast $=\frac{\text{Volume of sphere}}{\text{Volume of cone}}$
 $=\frac{\frac{4\pi}{3}(14)^3}{\frac{1}{3}\pi (3\cdot5)^2 \times 7} = \frac{4 \times 14 \times 14 \times 14}{3\cdot5 \times 3\cdot5 \times 7} = \frac{3200}{25}$
 $= 128.$ Ans.

Question 7.

(a) Calculate the mean of the distribution given below using the short cut method.

Marks	11-20	21-30	31-40	41-50	51-60	61-70	71-80	_
No. of students	2	6	10	12	9	7	4	_
								[8]

- (b) In the figure given below, diameter AB and CD of a circle meet at P. PT is a tangent to the circle at T. CD = 7.8 cm, PD = 5 cm, PD = 4 cm. Find :
 - (i) *AB*.
 - (ii) the length of tangent PT.

(c) Let $A = \begin{bmatrix} 2 & 1 \\ 0 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 1 \\ -3 & -2 \end{bmatrix}$ and $C = \begin{bmatrix} -3 & 2 \\ -1 & 4 \end{bmatrix}$. Find $A^2 + AC - 5B$.

Solution :

(a)	Marks	f	Mean Value	A = 45.5	f×d
	(C.I.)		x	d = x - A	
	11-20	2	15·5	- 30	- 60
	2130	6	25.5	- 20	- 120
	31-40	10	35.2	- 10	- 100
	41–50	12	45·Б	0	0
	51-60	9	55·5	10	90
	6170	7	65∙5	20	140
	71-80	4	75·5	30	120
		$\Sigma f = 50$			$\Sigma fd = 70$

[4]

[3]

P

Question 8.

- (a) The compound interest, calculated yearly, on a certain sum of money for the second year is ₹ 1320 and for the third year is ₹ 1452. Calculate the rate of interest and the original sum of money. [3]
- (b) Construct a $\triangle ABC$ with BC = 6.5 cm, AB = 5.5 cm, AC = 5 cm. Construct the incircle of the triangle. Measure and record the radius of the incircle. [3]
- (c) (Use a graph paper for this question.) The daily pocket expenses of 200 students in a school are given below :

Pocket expenses	0–5	5–10	10–15	15–20	20–25	25–30	3035	35-40
(in र)								
Number of students	10	14	28	42	50	30	14	12
(frequency)								

Draw a histogram representing the above distribution and estimate the mode from the graph. [4]

Solution :

(a)

C.I. for the third year =
$$₹1,452$$
.
C.I. for the second year = $₹1,320$
S.I. on $₹1,320$ for one year = $₹1,452 - ₹1,320 = ₹132$.
Rate of interest = $\frac{132 \times 100}{1,320} = 10\%$. Ans

Let the original money be \mathbf{R} P.

Amount after 2 year – amount after one year = C.I. for second year.

. .

$$P\left(1 + \frac{10}{100}\right) - P\left(1 + \frac{10}{100} = 1,320\right)$$

$$P\left[\left(\frac{110}{100}\right)^2 - \frac{110}{100} = 1,320\right]$$

$$P\left[\left(\frac{11}{10}\right)^2 - \frac{11}{10}\right] = 1,320 \implies P\left(\frac{121}{100} - \frac{11}{10}\right) = ₹1,320$$

$$P \times \frac{11}{100} = ₹1,320 \implies P = \frac{1,320 \times 100}{11} = ₹12,000$$
Rate of interest = 10%

 \Rightarrow and

Original sum of money = **?** 12,000

Ans.

(b) Steps of construction :

- (1)Construct a \triangle ABC with the given data.
- (2) Draw the internal bisectors of $\angle B$ and \angle C. Let these bisectors cut at O.
- (3) Taking O as centre. Draw a incircle which touches all the sides of the Δ ABC.
- (4) From O draw a perpendicular to side BC which cut at N.
- Measure ON which is required radius B^{-1} (5) of the incircle. ON = 1.5 cm.

Question 9.

- (a) If (x-9): (3x+6) is the duplicate ratio of 4:9, find the value of x. [3]
- (b) Solve for x using the quadratic formula. Write your answer correct to two significant figures. $(x-1)^2 - 3x + 4 = 0$. [3]

)	A page from the saving bank account of Priyanka is given below :					
	Date	Particulars	Amount withdrawn (र)	Amount deposited (र)	Balance (₹)	
	03/04/2006	B/F	_	_	4,000.00	
	05/04/2006	By cash	—	2,000.00	6,000.00	
	18/04/2006	By cheque	_	6,000.00	12,000.00	
	25/05/2006	To cheque	5,000.00	_	7,000.00	
	30/05/2006	By cash		3,000.00	10,000.00	
	20/07/2006	By self	4,000.00	_	6,000.00	
	10/09/2006	By cash	_	2 ,000.00	8,000.00	

If the interest earned by Priyanka for the period of ending September, 2006 is ₹ 175, find the rate of interest. [4]

7,000.00

1,000.00

Solution :

19/09/2006

(a) Given : (x-9): (3x+6) is the duplicate ratio of 4:9

To cheque

$$\Rightarrow \frac{x - 9}{3x + 6} = \left(\frac{4}{9}\right)^{2}$$

$$\frac{x - 9}{3x + 6} = \frac{16}{81}$$

$$81x - 729 = 48x + 96$$

$$81x - 48x = 96 + 729$$

$$\Rightarrow 33x = 825$$

$$x = \frac{825}{33} = 25$$
Ans.

(b) Given:
$$(x-1)^2 - 3x + 4 = 0$$

 $x^2 + 1 - 2x - 3x + 4 = 0$
 \Rightarrow $x^2 - 5x + 5 = 0$ with $ax^2 + bx + c = 0$, we get $a = 1, b = -5, c = 5$.
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(5)}}{2 \times 1}$
 $= \frac{5 \pm \sqrt{25-20} - 5 \pm \sqrt{5}}{2}$
 $= \frac{5 \pm 2\cdot236}{2} = \frac{5 \pm 2\cdot236}{2}$ and $\frac{5 - 2\cdot236}{2}$
 $= \frac{7\cdot236}{2}$ and $\frac{2\cdot764}{2}$
 $= 3\cdot618$ and $1\cdot382$ Ans.
(c) Principal for the month of April = $(6,000)$
Principal for the month of Aug. $(6,000)$
Principal for the month of Aug. $(7,000)$
Principal for the month of $Aug. (7,000)$
Principal for the month

Question 10.

(a) A two digit positive number is such that the product of its digits is 6. If 9 is added to the number, the digits interchange their places. Find the number. [4]

Marks	No. of Students
010	3
10–20	7
20–30	12
30-40	17
40-50	23
5060	14

(b) The marks obtained by 100 students in a Mathematics test are given below :

60–70	9
70–80	6
8090	5
90–100	4

Draw an ogive for the given distribution on a graph sheet. (Use a scale of 2 cm = 10 units on both axis).

Use the ogive to estimate the

- (i) median.
- (ii) lower quartile.
- (iii) number of students who obtained more than 85% marks in the test.
- (iv) number of students who did not pass in the test if the pass percentage was 35.
 [6]

Solution :

(a)	Let the requ Given : xy =	ired two digit number be $10x + \frac{1}{2}$ 6 and $10x + y + 9 = 10y + x$	у			
	10x - x + y - 10y + 9 = 0					
$\Rightarrow \qquad 9x - 9y + 9 = 0$						
		y = x	+ 1			
xy = 6 (given)						
		x(x+1) = 6				
	⇒	$x^2+x-6=0$				
	⇒	$x^2 + 3x - 2x - 6 = 0$				
	⇒	(x+3)(x-2) = 0				
	⇒	x = -	3, 2			
	Rejecting	<i>x</i> ≃ -	3			
	When $x = 2$,	y = x + 1 = 2 + 1 = 3				
	The required two digit number = $10x + y$					
		= 10)×2+3			
		= 23	3. Ans.			
(b)	Marks	No. of Students	Cumulative frequency (c.f.)			
	0–10	3	3			
	10-20	7	10			
	20–30	12	22			
	30-40	17	39			
	40-50	23	62			
	5 0–6 0	14	76			
	60–70	09	85			
	70-80	06	91			
	80-90	05	96			
	90–100	04	100			

On the graph paper, we plot the following points

(10, 3), (20, 10), (30, 22), (40, 39), (50, 62), (60, 76), (70, 85), (80, 91), (90, 96), (100, 100)

, **¥** 100 R 90 80 70 ġ 60 Ρ ₽ 50 ĩ Ŧ 20 T Q 10 N D M 1 2c [™]o^H J J 70 Marks → 70 Ð Median $= \left(\frac{n}{2}\right)^{h}$ term (i) $=\frac{100}{2}=50^{\text{th}}$ term From the graph 50^{th} term = 43. Ans. Lower quartile = $\left(\frac{n}{4}\right)^{h}$ term (ii) I $=\frac{100}{4}=25^{\text{th}}$ term. From the graph 25^{th} term = 31 Ans. The number of students who obtained more than 85% marks in test (iii) = 100 - 95= 5 students. Ans. The number of students who did not pass in the test if the pass (iv) percentage was 35 = 30. Ans. **Question 11.** (a) In the figure given below, O is the centre of the circle. AB D and CD are two chords of the circle. OM is perpendicular to AB and ON is perpendicular to CD. AB = 24 cm, OM = 5 cm, ON = 12 cm. Find the :

- (i) radius of the circle.
- (ii) length of chord CD.

(b) Prove the identity :

 $(\sin \theta + \cos \theta) (\tan \theta + \cot \theta) = \sec \theta + \csc \theta.$

(c) An aeroplane at an altitude of 250 m observes the angle of depression of two boats on the opposite banks of a river to be 45° and 60° respectively. Find the width of the river. Write the answer correct to the nearest whole number. [4]

.

[3]

Solution:

(a) Given : AB = 24 cm; OM = 5 cm, ON = 12 cm.
OM 1 AB
M is mid point of AB.
AM = 12 cm.
(i) Let radius of circle = r
From
$$\triangle$$
 AMO; $\triangle O^2 = \triangle M^2 + OM^2$
(by Pythagoras theorem)
 $r^2 = (12)^2 + (5)^2$
 $= 144 + 25$
 $r^2 = 169$
 $r = 13 cm.$ Ane.
(ii) Now from \triangle CNO; $CO^2 = ON^2 + CN^2$
 $r^2 = (12)^2 + CN^2$ (: $\triangle O = CO = r$)
 $(13)^2 - (12)^2 = CN^2$
 $169 - 144 = CN^2$
 $CN^2 = 25$
 $CN = 5$
As ON \perp CD, N is mid point of CD.
 \therefore CD = 2 CN = $2 \times 5 = 10$ cm.
(b) L.H.S. = $(\sin \theta + \cos \theta) (\tan \theta + \cot \theta)$
 $= (\sin \theta + \cos \theta) (\frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta})$
 $= (\sin \theta + \cos \theta) (\frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta})$
 $= (\sin \theta + \cos \theta) \times \frac{1}{\cos \theta \sin \theta}$
 $= \frac{\sin \theta}{\cos \theta \sin \theta} + \frac{\cos \theta}{\cos \theta \sin \theta}$
 $= \frac{1}{\cos \theta} + \frac{1}{\sin \theta}$
 $= \sec \theta + \csc \theta$
 $= R.H.S.$ Hence Proved.

AD = 250 m height of aeroplane(c) Let Two boats are at B and C. BD = x and DC = yLet A 45% (60% x From \triangle ADB; $= \cot 45^{\circ}$ 250 x 250 = 1 x = 250 m250m $\frac{y}{250} = \cot 60^{\circ}$ From \triangle ADC; 45° 60° °C $\frac{y}{250} = \frac{1}{\sqrt{3}}$ D ¥ $y = 250 \times \frac{1}{\sqrt{3}}$ ⇒

Width of river BC = BD + DC = x + y

 $= 250 + \frac{250}{\sqrt{3}}$ $= 250 \left(1 + \frac{1}{\sqrt{3}}\right) = 250 \left(\frac{\sqrt{3} + 1}{\sqrt{3}}\right)$ Ans. $= 250 \left(\frac{1.732 + 1}{1.732}\right) = 250 \left(\frac{2.732}{1.732}\right)$ $= 250 \times 1.577$ = 394.25 m = 394 m.Ans.