ICSE BOARD
 Class X Mathematics
 Board Paper - 2017(Solution)

SECTION A

1.

(a) Cost price of an article $=$ Rs. 3,450
(i) Marked price of the article $=$ Cost price $+16 \%$ of Cost price

$$
\begin{aligned}
& =3450+\frac{16}{100} \times 3450 \\
& =3450+552 \\
& =\text { Rs. } 4002
\end{aligned}
$$

(ii) Price paid by the customer = Marked price + Sales Tax

$$
\begin{aligned}
& =4002+\frac{10}{100} \times 4002 \\
& =4002+400.2 \\
& =\text { Rs. } 4402.20
\end{aligned}
$$

(b) $13 x-5<15 x+4<7 x+12, \quad x \in R$

Take $\quad 13 x-5<15 x+4 \quad 15 x+4<7 x+12$

$$
13 x<15 x+9 \quad 15 x<7 x+8
$$

$$
0<2 x+9 \quad 8 x<8
$$

$$
-9<2 x \quad x<1
$$

$$
-\frac{9}{2}<x \quad x<1
$$

$$
\therefore-\frac{9}{2}<\mathrm{x}<1
$$

$$
\text { i.e. }-4.5<x<1
$$

\therefore Solution set $=\{\mathrm{x}:-4.5<\mathrm{x}<1, \mathrm{x} \in \mathrm{R}\}$
The solution on the number line is as follows:

(c) $\frac{\sin 65^{\circ}}{\cos 25^{\circ}}+\frac{\cos 32^{\circ}}{\sin 58^{\circ}}-\sin 28^{\circ} \cdot \sec 62^{\circ}+\operatorname{cosec}^{2} 30^{\circ}$
$=\frac{\sin \left(90^{\circ}-25^{\circ}\right)}{\cos 25^{\circ}}+\frac{\cos \left(90^{\circ}-58^{\circ}\right)}{\sin 58^{\circ}}-\sin 28^{\circ} \times \frac{1}{\cos \left(90^{\circ}-28^{\circ}\right)}+\frac{1}{\sin ^{2} 30}$
$=\frac{\cos 25^{\circ}}{\cos 25^{\circ}}+\frac{\sin 58^{\circ}}{\sin 58^{\circ}}-\sin 28^{\circ} \times \frac{1}{\sin 28^{\circ}}+\left(\frac{1}{\left(\frac{1}{2}\right)^{2}}\right)$
$=1+1-1+4$
$=5$
2.
(a) Given: $\mathrm{A}=\left[\begin{array}{ll}3 & \mathrm{x} \\ 0 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}9 & 16 \\ 0 & -\mathrm{y}\end{array}\right]$ and $\mathrm{A}^{2}=\mathrm{B}$

Now, $A^{2}=A \times A=\left[\begin{array}{ll}3 & x \\ 0 & 1\end{array}\right] \times\left[\begin{array}{cc}3 & x \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}9 & 3 x+x \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}9 & 4 x \\ 0 & 1\end{array}\right]$
We have $A^{2}=B$
Two matrices are equal if each and every corresponding element is equal.
Thus, $\left[\begin{array}{cc}9 & 4 \mathrm{x} \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}9 & 16 \\ 0 & -\mathrm{y}\end{array}\right]$
$\Rightarrow 4 \mathrm{x}=16$ and $1=-\mathrm{y}$
$\Rightarrow \mathrm{x}=4$ and $\mathrm{y}=-1$
(b) Population after n years $=$ Present population $\times\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}}$

Present population $=2,00,000$
After first year, population $=2,00,000 \times\left(1+\frac{10}{100}\right)^{1}$

$$
=2,00,000 \times \frac{11}{10}
$$

$$
=2,20,000
$$

Population after two years $=2,20,000 \times\left(1+\frac{15}{100}\right)^{1}$

$$
=2,53,000
$$

Thus, the population after two years is $2,53,000$.
(c) Three vertices of a parallelogram taken in order are $\mathrm{A}(3,6), \mathrm{B}(5,10)$ and $\mathrm{C}(3,2)$
(i) We need to find the co-ordinates of D.

We know that the diagonals of a parallelogram bisect each other.
Let (x, y) be the co-ordinates of D.
\therefore Mid - point of diagonal $\mathrm{AC}=\left(\frac{3+3}{2}, \frac{6+2}{2}\right) \equiv(3,4)$
And, mid - point of diagonal $\mathrm{BD}=\left(\frac{5+\mathrm{x}}{2}, \frac{10+\mathrm{y}}{2}\right)$
Thus, we have

$$
\begin{aligned}
& \frac{5+x}{2}=3 \text { and } \frac{10+y}{2}=4 \\
& \Rightarrow 5+x=6 \text { and } 10+y=8 \\
& \Rightarrow x=1 \text { and } y=-2 \\
& \therefore D=(1,-2)
\end{aligned}
$$

(ii) Length of diagonal $\mathrm{BD}=\sqrt{(1-5)^{2}+(-2-10)^{2}}$

$$
\begin{aligned}
& =\sqrt{(-4)^{2}+(-12)^{2}} \\
& =\sqrt{16+144} \\
& =\sqrt{160} \\
& =4 \sqrt{10}
\end{aligned}
$$

(iii) $\mathrm{A}(3,6)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}(5,10)=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

Slope of line $A B=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{10-6}{5-3}=\frac{4}{2}=2$
\therefore Equation of line AB is given by

$$
\begin{aligned}
& \mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right) \\
& \Rightarrow \mathrm{y}-6=2(\mathrm{x}-3) \\
& \Rightarrow \mathrm{y}-6=2 \mathrm{x}-6 \\
& \Rightarrow 2 \mathrm{x}-\mathrm{y}=0 \\
& \Rightarrow 2 \mathrm{x}=\mathrm{y}
\end{aligned}
$$

3.

(a)

Area of one semi-circle $=\frac{1}{2} \times \pi \times\left(\frac{21}{2}\right)^{2}$
\Rightarrow Area of both semi-circles $=2 \times \frac{1}{2} \times \pi \times\left(\frac{21}{2}\right)^{2}$
Area of one triangle $=\frac{1}{2} \times 21 \times \frac{21}{2}$
\Rightarrow Area of both triangles $=2 \times \frac{1}{2} \times 21 \times \frac{21}{2}$
Area of shaded portion

$$
\begin{aligned}
& =2 \times \frac{1}{2} \times \pi \times\left(\frac{21}{2}\right)^{2}+2 \times \frac{1}{2} \times 21 \times \frac{21}{2} \\
& =\frac{22}{7} \times \frac{441}{4}+\frac{441}{2} \\
& =\frac{693}{2}+\frac{441}{2} \\
& =\frac{1134}{2} \\
& =567 \mathrm{~cm}^{2}
\end{aligned}
$$

(b)

Marks (x)	0	1	2	3	4	5	Total
No. of Students (f)	1	3	6	10	5	5	$\mathrm{n}=30$
fx	0	3	12	30	20	25	$\Sigma \mathrm{fx}=90$
c.f.	1	4	10	20	25	30	

Mean $=\frac{\sum \mathrm{fx}}{\mathrm{n}}=\frac{90}{30}=3$

Number of observations $=30$ (even)
\therefore Median $=\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { observation }+\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }} \text { observation }}{2}$

$$
=\frac{\left(\frac{30}{2}\right)^{\text {th }} \text { observation }+\left(\frac{30}{2}+1\right)^{\text {th }} \text { observation }}{2}
$$

$$
=\frac{15^{\text {th }} \text { observation }+16^{\text {th }} \text { observation }}{2}
$$

$$
=\frac{3+3}{2}
$$

$$
=3
$$

Mode $=$ The number (marks) with highest frequency $=3$
(c) In the given figure, $\mathrm{TS} \perp \mathrm{SP}$,
$\mathrm{m} \angle \mathrm{TSR}=\mathrm{m} \angle \mathrm{OSP}=90^{\circ}$
In $\triangle \mathrm{TSR}, \mathrm{m} \angle \mathrm{TSR}+\mathrm{m} \angle \mathrm{TRS}+\mathrm{m} \angle \mathrm{RTS}=180^{\circ}$
$\Rightarrow 90^{\circ}+65^{\circ}+\mathrm{x}=180^{\circ}$
$\Rightarrow \mathrm{x}=180^{\circ}-90^{\circ}-65^{\circ}$
$\Rightarrow \mathrm{x}=25^{\circ}$
Now, $\mathrm{y}=2 \mathrm{x}$ [Angle subtended at the centre is double that of the angle subtended by the arc at the same centre]
$\Rightarrow \mathrm{y}=2 \times 25^{\circ}$

$\therefore \mathrm{y}=50^{\circ}$
In \triangle OSP, $\mathrm{m} \angle \mathrm{OSP}+\mathrm{m} \angle \mathrm{SPO}+\mathrm{m} \angle \mathrm{POS}=180^{\circ}$
$\Rightarrow 90^{\circ}+\mathrm{z}+50^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{z}=180^{\circ}-140^{\circ}$
$\therefore \mathrm{z}=40^{\circ}$
4.
(a) Given,
$\mathrm{P}=$ Rs. 1000
$\mathrm{n}=2$ years $=24$ months
r $=6 \%$
(i) Interest $=\mathrm{P} \times \frac{\mathrm{n}(\mathrm{n}+1)}{2} \times \frac{\mathrm{r}}{12 \times 100}$

$$
\begin{aligned}
& =1000 \times \frac{24 \times 25}{2} \times \frac{6}{12 \times 100} \\
& =1500
\end{aligned}
$$

Thus, the interest earned in 2 years is Rs. 1500.
(ii) Sum deposited in two years $=24 \times 1000=24,000$

Maturity value $=$ Total sum deposited in two years + Interest

$$
\begin{aligned}
& =24,000+1,500 \\
& =25,500
\end{aligned}
$$

Thus, the maturity value is Rs. 25,500.
(b) $(K+2) x^{2}-K x+6=0$

Substituting $x=3$ in equation (1), we get
$(K+2)(3)^{2}-K(3)+6=0$
$\therefore 9(\mathrm{~K}+2)-3 \mathrm{~K}+6=0$
$\therefore 9 \mathrm{k}+18-3 \mathrm{k}+6=0$
$\therefore 6 \mathrm{k}+24=0$
$\therefore \mathrm{K}=-4$
Now, substituting $K=-4$ in equation (1), we get
$(-4+2) x^{2}-(-4) x+6=0$
$\therefore-2 \mathrm{x}^{2}+4 \mathrm{x}+6=0$
$\therefore \mathrm{x}^{2}-2 \mathrm{x}-3=0$
$\therefore x^{2}-3 x+x-3=0$
$\therefore \mathrm{x}(\mathrm{x}-3)+1(\mathrm{x}-3)=0$
$\therefore(\mathrm{x}+1)(\mathrm{x}-3)=0$
So, the roots are $x=-1$ and $x=3$.
Thus, the other root of the equation is $x=-1$.
(c) Each interior angle of the regular hexagon $=\frac{(2 n-4)}{n} \times 90^{\circ}=\frac{(2 \times 6-4)}{6} \times 90^{\circ}=120^{\circ}$

Steps of construction:
i. Construct the regular hexagon ABCDEF with each side equal to 5 cm .
ii. Draw the perpendicular bisectors of sides AB and AF and make them intersect each other at point 0 .
iii. With O as the centre and OA as the radius draw a circle which will pass through all the vertices of the regular hexagon ABCDEF .

SECTION B

5.

(a)
(i) See the figure.
(ii) Reflection of points on the y-axis will result in the change of the x-coordinate
(iii) Points will be $\mathrm{B}^{\prime}(-2,5), \mathrm{C}^{\prime}(-5,2), \mathrm{D}^{\prime}(-5$, $-2), E^{\prime}(-2,-5)$.
(iv) The figure $B^{\prime} D^{\prime} E^{\prime} D^{\prime} C^{\prime} B^{\prime}$ is a hexagon.
(v) The lines of symmetry is x-axis or y-axis.

(b) Principal for the month of April = Rs. 0

Principal for the month of May = Rs. 4650
Principal for the month of June = Rs. 4750
Principal for the month of July $=$ Rs. 8950
Total Principal for one month $=$ Rs. 18,350
Time $=\frac{1}{12}$ year, Rate $=4 \%$
Interest earned $=\frac{18350 \times 1 \times 4}{100 \times 12}=61.17$
Money received on closing the account on $1^{\text {st }}$ August, 2010
= Last Balance + Interest earned
= Rs. $(8950+61.17)$
$=$ Rs. 9011.17
6.
(a) Given that a, b and c are in continued proportion.

$$
\begin{aligned}
\Rightarrow \frac{a}{b} & =\frac{b}{c} \Rightarrow b^{2}=a c \\
\text { L.H.S. } & =(a+b+c)(a-b+c) \\
& =a(a-b+c)+b(a-b+c)+c(a-b+c) \\
& =a^{2}-a b+a c+a b-b^{2}+b c+a c-b c+c^{2} \\
& =a^{2}+a c-b^{2}+a c+c^{2} \\
& =a^{2}+b^{2}-b^{2}+b^{2}+c^{2} \quad\left[\because b^{2}=a c\right] \\
& =a^{2}+b^{2}+c^{2} \\
& =\text { R.H.S. }
\end{aligned}
$$

(b)
i. The line intersects the x -axis where, $\mathrm{y}=0$. Thus, the co-ordinates of A are $(4,0)$.
ii. Length of $\mathrm{AB}=\sqrt{(4-(-2))^{2}+(0-3)^{2}}=\sqrt{36+9}=\sqrt{45}=3 \sqrt{5}$ units

Length of $\mathrm{AC}=\sqrt{(4-(-2))^{2}+(0+4)^{2}}=\sqrt{36+16}=\sqrt{52}=2 \sqrt{13}$ units
iii. Let Q divides AC in the ratio m_{1} : m_{2}. Thus, the co-ordinates of Q are $(0, \mathrm{y})$

Since $x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}$
$\Rightarrow 0=\frac{\mathrm{m}_{1}(-2)+\mathrm{m}_{2}(4)}{\mathrm{m}_{1}+\mathrm{m}_{2}} \Rightarrow 2 \mathrm{~m}_{1}=4 \mathrm{~m}_{2} \Rightarrow \mathrm{~m}_{1}=2 \mathrm{~m}_{2}$
$\Rightarrow \frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{2}{1}$
\therefore Required ratio is $2: 1$.
iv. $\mathrm{A}(4,0)=\mathrm{A}\left(\mathrm{x} 1, \mathrm{y}_{1}\right)$ and $\mathrm{B}(-2,-4)=\mathrm{b}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

Slope of $A C=\frac{-4-0}{-2-4}=\frac{-4}{-6}=\frac{2}{3}$
\therefore Equation of line $A C$ is given by $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& \Rightarrow y-0=\frac{2}{3}(x-4) \\
& \Rightarrow 3 y=2 x-8 \\
& \Rightarrow 2 x-3 y=8
\end{aligned}
$$

(c) Consider the following distribution:

Class Interval	Frequency (f)	Class mark (x)	fx
$0-10$	8	5	40
$10-20$	5	15	75
$20-30$	12	25	300
$30-40$	35	35	1225
$40-50$	24	45	1080
$50-60$	16	55	880
Total	$\mathrm{n}=\sum \mathrm{f}=100$		$\sum \mathrm{fx}=3600$

Mean $=\frac{\sum \mathrm{fx}}{\mathrm{n}}=\frac{3600}{100}=36$
7.
(a) Radius of small sphere $=r=2 \mathrm{~cm}$

Radius of big sphere $=\mathrm{R}=4 \mathrm{~cm}$
Volume of small sphere $=\frac{4}{3} \pi r^{3}=\frac{4 \pi}{3} \times(2)^{3}=\frac{32 \pi}{3} \mathrm{~cm}^{3}$
Volume of big sphere $=\frac{4}{3} \pi \mathrm{R}^{3}=\frac{4 \pi}{3} \times(4)^{3}=\frac{256 \pi}{3} \mathrm{~cm}^{3}$
Volume of both the spheres $=\frac{32 \pi}{3}+\frac{256 \pi}{3}=\frac{288 \pi}{3} \mathrm{~cm}^{3}$
Weneed to find $\mathrm{R}_{1} . \mathrm{h}=8 \mathrm{~cm}$ (Given)
Volume of the cone $=\frac{1}{3} \pi \mathrm{R}_{1}{ }^{2} \times(8)$
Volume of the cone=Volume of both the sphere
$\Rightarrow \frac{1}{3} \pi \mathrm{R}_{1}{ }^{2} \times(8)=\frac{288 \pi}{3}$
$\Rightarrow \mathrm{R}_{1}{ }^{2} \times(8)=288$
$\Rightarrow \mathrm{R}_{1}{ }^{2}=\frac{288}{8} \Rightarrow \mathrm{R}_{1}{ }^{2}=36$
$\Rightarrow \mathrm{R}_{1}=6 \mathrm{~cm}$
(b) The given polynomials are $a x^{3}+3 x^{2}-9$ and $2 x^{3}+4 x+a$.

Let $p(x)=a x^{3}+3 x^{2}-9$ and $q(x)=2 x^{3}+4 x+a$
Given that $p(x)$ and $q(x)$ leave the same remainder when divided by $(x+3)$,
Thus by Remainder Theorem, we have
$\mathrm{p}(-3)=\mathrm{q}(-3)$
$\Rightarrow \mathrm{a}(-3)^{3}+3(-3)^{2}-9=2(-3)^{3}+4(-3)+\mathrm{a}$
$\Rightarrow-27 a+27-9=-54-12+a$
$\Rightarrow-27 \mathrm{a}+18=-66+\mathrm{a}$
$\Rightarrow-27 \mathrm{a}-\mathrm{a}=-66-18$
$\Rightarrow-28 \mathrm{a}=-84$
$\Rightarrow \mathrm{a}=\frac{84}{28}$
$\therefore \mathrm{a}=3$
(c) L.H.S. $=\frac{\sin \theta}{1-\cot \theta}+\frac{\cos \theta}{1-\tan \theta}$

$$
\begin{aligned}
& =\frac{\sin \theta}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\cos \theta}{1-\frac{\sin \theta}{\cos \theta}} \\
& =\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta}+\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta} \\
& =\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta}-\frac{\cos ^{2} \theta}{\sin \theta-\cos \theta} \\
& =\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin \theta-\cos \theta} \\
& =\frac{(\sin \theta-\cos \theta)(\sin \theta+\cos \theta)}{\sin \theta-\cos \theta} \\
& =\sin \theta+\cos \theta \\
& =\text { R.H.S. }
\end{aligned}
$$

8.

(a) Construction: Join AD and CB.

In $\triangle \mathrm{APD}$ and $\triangle \mathrm{CPB}$
$\angle \mathrm{A}=\angle \mathrm{C}$
$\angle \mathrm{D}=\angle \mathrm{B}$
.....(Angles in the same segment)
$\Rightarrow \triangle \mathrm{APD} \sim \Delta \mathrm{CPB}$
.....(Angles in the same segment)
....(By AA Postulate)
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{CP}}=\frac{\mathrm{PD}}{\mathrm{PB}}$
....(Corresponding sides of similar triangles)
$\Rightarrow \mathrm{AP} \times \mathrm{PB}=\mathrm{CP} \times \mathrm{PD}$
(b) Total number of balls $=5+6+9=20$
(i) Number of green balls $=9=$ Numberof favourable cases
$\therefore \mathrm{P}($ Green ball $)=\frac{\text { Number of favourable cases }}{\text { Total number of balls }}=\frac{9}{20}$
(ii) Number of white balls $=5$, Number of red balls $=6$

Number of favourable cases $=5+6=11$
$\therefore \mathrm{P}($ White ball or Red ball $)=\frac{\text { Number of favourable cases }}{\text { Total number of balls }}=\frac{11}{20}$
(iii) $\mathrm{P}($ Neither green ball nor white ball $)=\mathrm{P}($ Red ball $)$

$$
\begin{aligned}
& =\frac{\text { Number of Red balls }}{\text { Total number of balls }} \\
& =\frac{6}{20}
\end{aligned}
$$

(c)
(i) 100 shares at Rs. 20 premium means:

Nominal value of the share is Rs. 100
Market value of each share $=100+20=$ Rs. 120
Investment = Rs. 9600
\therefore Number of shares $=\frac{\text { Investment }}{\text { Market Value of each Share }}=\frac{9600}{120}=80$
(ii) Sale price of each share $=$ Rs. 160
\therefore The sale proceeds $=80 \times 160=$ Rs. 12,800
(iii) New investment = Rs. 12,800

Market Value of each share $=$ Rs. 40
\therefore Number of shares $=\frac{\text { Investment }}{\text { Market Value of each share }}=\frac{12800}{40}=320$
(iv) Dividend in the $1^{\text {st }}$ investment:
$=$ Number of shares \times Rate of dividend \times N.V. of each share $=80 \times 8 \% \times 100$
$=80 \times \frac{8}{100} \times 100$
$=$ Rs. 640

Dividend in the $2^{\text {nd }}$ investment
$=$ Number of shares \times Rate of dividend \times N.V. of each share
$=320 \times 10 \% \times 50$
$=320 \times \frac{10}{100} \times 50$
$=$ Rs. 1600

Thus, change in two dividends $=1600-640=$ Rs. 960
9.
(a) Consider the following figure:

In $\triangle \mathrm{AEC}$,
$\tan 30^{\circ}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AE}}{120}$
$\Rightarrow \frac{120}{\sqrt{3}}=\mathrm{AE}$
$\therefore \mathrm{AE}=69.28 \mathrm{~m}$
In $\triangle \mathrm{BEC}$,
$\tan 24^{\circ}=\frac{E B}{E C}$
$\Rightarrow 0.445=\frac{\mathrm{EB}}{120}$
$\therefore \mathrm{EB}=53.427 \mathrm{~m}$
Thus, height of first tower, $\mathrm{AB}=\mathrm{AE}+\mathrm{EB}$

$$
\begin{aligned}
& =69.282+53.427 \\
& =122.709 \mathrm{~m} \\
& =122 \mathrm{~m} \text { (correct to } 3 \text { significant figures) }
\end{aligned}
$$

And, height of second tower, $\mathrm{CD}=\mathrm{EB}=53.427 \mathrm{~m}=53.4$ (correct to 3 significant figures)
(b) The cumulative frequency table of the given distribution table is as follows:

Weight in Kg	Number of workers	Cumulative frequency
$50-60$	4	4
$60-70$	7	11
$70-80$	11	22
$80-90$	14	36
$90-100$	6	42
$100-110$	5	47
$110-120$	3	50

The ogive is as follows:

Number of workers $=50$
(i) Upper quartile $(\mathrm{Q} 3)=\left(\frac{3 \times 50}{4}\right)^{\text {th }}$ term $=(37.5)^{\text {th }}$ term $=92$

Lower quartile $\left(\mathrm{Q}_{1}\right)=\left(\frac{50}{4}\right)^{\text {th }}$ term $=(12.5)^{\text {th }}$ term $=71.1$
(ii) Through mark of 95 on the x -axis, draw a vertical line which meets the graph at point C.
Then through point C , draw a horizontal line which meets the y-axis at the mark of 39 .
Thus, number of workers weighing 95 kg and above $=50-39=11$
10.
(a) (i) Selling price of the manufacturer $=$ Rs. 25000

Marked price of the wholesaler
$=25000+\frac{20}{100} \times 25000$
$=25000+5000$
=Rs. 30,000
(ii) For retailer,
C.P. $=$ Marked price - Discount
$=$ Rs. $30000-10 \%$ of Rs. 30000
$=$ Rs. $30000-\frac{10}{100} \times$ Rs. 30000
$=$ Rs. $30000-$ Rs. 3000
=Rs. 27,000
Now, C.P.inclusive of $\operatorname{tax}=$ Rs. $27000+8 \%$ of Rs. 27000

$$
\begin{aligned}
& =\text { Rs. } 27000+\frac{8}{100} \times \text { Rs. } 27000 \\
& =\text { Rs. } 27000+\text { Rs. } 2160 \\
& =\text { Rs. } 29,160
\end{aligned}
$$

(iii) For wholesaler,

$$
\begin{aligned}
& \text { C.P. }=\text { Rs. } 25000 \\
& \text { S.P. }=\text { Rs. } 27000 \\
& \text { Profit }=\text { S.P. }- \text { C.P. }=\text { Rs. }(27000-25000)=\text { Rs. } 2000 \\
& \text { VAT paid by wholesaler }=\frac{8}{100} \times \text { Rs. } 2000=\text { Rs. } 160
\end{aligned}
$$

(b) $\mathrm{AB}=\left[\begin{array}{ll}3 & 7 \\ 2 & 4\end{array}\right]\left[\begin{array}{ll}0 & 2 \\ 5 & 3\end{array}\right]$

$$
=\left[\begin{array}{ll}
3 \times 0+7 \times 5 & 3 \times 2+7 \times 3 \\
2 \times 0+4 \times 5 & 2 \times 2+4 \times 3
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
0+35 & 6+21 \\
0+20 & 4+12
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
35 & 27 \\
20 & 16
\end{array}\right]
$$

$$
5 \mathrm{C}=5\left[\begin{array}{cc}
1 & -5 \\
-4 & 6
\end{array}\right]=\left[\begin{array}{cc}
5 & -25 \\
-20 & 30
\end{array}\right]
$$

$$
\mathrm{AB}-5 \mathrm{C}=\left[\begin{array}{cc}
35 & 27 \\
20 & 16
\end{array}\right]-\left[\begin{array}{cc}
5 & -25 \\
-20 & 30
\end{array}\right]=\left[\begin{array}{cc}
30 & 52 \\
40 & -14
\end{array}\right]
$$

(c)
(i)Consider $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ACB}$.
$\angle \mathrm{A}=\angle \mathrm{A}$ [Common]
$\mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{E}=90^{\circ}$
Thus by Angle-Angle similarity, triangles, $\triangle \mathrm{ACB} \sim \triangle \mathrm{ADE}$.
(ii)Since $\triangle \mathrm{ADE} \sim \triangle \mathrm{ACB}$, their sides are proportional.
$\Rightarrow \frac{\mathrm{AE}}{\mathrm{AB}}=\frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{BC}}$..
In $\triangle A B C$, by Pythagoras Theorem, we have
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
$\Rightarrow A B^{2}+5^{2}=13^{2}$
$\Rightarrow A B=12 \mathrm{~cm}$
From equation (1), we have,
$\frac{4}{12}=\frac{\mathrm{AD}}{13}=\frac{\mathrm{DE}}{5}$
$\Rightarrow \frac{1}{3}=\frac{\mathrm{AD}}{13}$
$\Rightarrow \mathrm{AD}=\frac{13}{3} \mathrm{~cm}$
Also $\frac{4}{12}=\frac{D E}{5}$
$\Rightarrow \mathrm{DE}=\frac{20}{12}=\frac{5}{3} \mathrm{~cm}$
(iii) We need to find the area of $\triangle \mathrm{ADE}$ and quadrilateral BCED.

$$
\begin{aligned}
& \text { Area of } \triangle \mathrm{ADE}=\frac{1}{2}
\end{aligned} \text { } \begin{aligned}
& \text { Area of quad. } \mathrm{ACED} \times \mathrm{DE}=\frac{1}{2} \times 4 \times \frac{5}{3}=\frac{10}{3} \mathrm{~cm}^{2} \\
&=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AB}-\frac{10}{3} \\
&=\frac{1}{2} \times 5 \times 12-\frac{10}{3} \\
&=30-\frac{10}{3} \\
&=\frac{80}{3} \mathrm{~cm}^{2}
\end{aligned}
$$

Thus ratio of areas of $\triangle \mathrm{ADE}$ to quadrilateral $\mathrm{BCED}=\frac{\frac{10}{3}}{\frac{80}{3}}=\frac{1}{8}$
11.
(a) Let the two natural numbers be x and $(8-x)$. Then, we have

$$
\begin{aligned}
& \frac{1}{x}-\frac{1}{8-x}=\frac{2}{15} \\
& \Rightarrow \frac{8-x-x}{x(8-x)}=\frac{2}{15} \\
& \Rightarrow \frac{8-2 x}{x(8-x)}=\frac{2}{15} \\
& \Rightarrow \frac{4-x}{x(8-x)}=\frac{1}{15} \\
& \Rightarrow 15(4-x)=x(8-x) \\
& \Rightarrow 60-15 x=8 x-x^{2} \\
& \Rightarrow x^{2}-15 x-8 x+60=0 \\
& \Rightarrow x^{2}-23 x+60=0 \\
& \Rightarrow x^{2}-20 x-3 x+60=0 \\
& \Rightarrow(x-3)(x-20)=0 \\
& \Rightarrow(x-3)=0 \text { or }(x-20)=0 \\
& \Rightarrow x=3 \text { or } x=20
\end{aligned}
$$

Since sum of two natural numbers is $8, x$ cannot be equal to 20
$\Rightarrow \mathrm{x}=3$ and $8-\mathrm{x}=8-3=5$
Hence, required natural numbers are 3 and 5 .
(b) $\frac{x^{3}+12 x}{6 x^{2}+8}=\frac{y^{3}+27 y}{9 y^{2}+27}$
$\Rightarrow \frac{x^{3}+12 x+6 x^{2}+8}{x^{3}+12 x-6 x^{2}-8}=\frac{y^{3}+27 y+9 y^{2}+27}{y^{3}+27 y-9 y^{2}-27}$ (Using componendo-dividendo)
$\Rightarrow \frac{(x+2)^{3}}{(x-2)^{3}}=\frac{(y+3)^{3}}{(y-3)^{3}}$
$\Rightarrow\left(\frac{x+2}{x-2}\right)^{3}=\left(\frac{y+3}{y-3}\right)^{3}$
$\Rightarrow \frac{x+2}{x-2}=\frac{y+3}{y-3}$
$\Rightarrow \frac{2 \mathrm{x}}{4}=\frac{2 \mathrm{y}}{6}$ (Using componendo-dividendo)
$\Rightarrow \frac{\mathrm{x}}{2}=\frac{\mathrm{y}}{3}$
$\Rightarrow \frac{x}{y}=\frac{2}{3} \Rightarrow x: y=2: 3$
(c)

1. Draw a line segment AB of length 5.5 cm .
2. Make an angle $\mathrm{m} \angle \mathrm{BAX}=105^{\circ}$ using a protractor.
3. Draw an arc AC with radius $\mathrm{AC}=6 \mathrm{~cm}$ on AX with centre at A .
4. Join BC.

Thus $\triangle \mathrm{ABC}$ is the required triangle.
(i) Draw BR , the bisector of $\angle \mathrm{ABC}$, which is the locus of points equidistant from $B A$ and BC.
(ii) Draw MN, the perpendicular bisector of BC, which is the locus of points equidistant from B and C.
(iii) The angle bisector of $\angle A B C$ and perpendicular bisector of $B C$ meet at point P. Thus, P satisfies the above two loci.
Length of $\mathrm{PC}=4.8 \mathrm{~cm}$

