ICSE QUESTION PAPER
 Class X Maths
 (2016) Solution

SECTION A

1. (a) Let $f(x)=2 x^{3}+3 x^{2}-k x+5$

Using remainder theorem,
$\mathrm{f}(2)=7$
$\therefore 2(2)^{3}+3(2)^{2}-\mathrm{k}(2)+5=7$
$\therefore 2(8)+3(4)-\mathrm{k}(2)+5=7$
$\therefore 16+12-2 \mathrm{k}+5=7$
$\therefore 2 \mathrm{k}=16+12+5-7$
$\therefore 2 \mathrm{k}=26$
$\therefore \mathrm{k}=13$
(b) $\mathrm{A}^{2}=9 \mathrm{~A}+\mathrm{MI}$
$\Rightarrow A^{2}-9 A=m I$
$\mathrm{A}^{2}=\mathrm{AA}$
$=\left[\begin{array}{cc}2 & 0 \\ -1 & 7\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ -1 & 7\end{array}\right]$
$=\left[\begin{array}{cc}4 & 0 \\ -9 & 49\end{array}\right]$
Substitute A^{2} in (1)
$\mathrm{A}^{2}-9 \mathrm{~A}=\mathrm{mI}$
$\Rightarrow\left[\begin{array}{cc}4 & 0 \\ -9 & 49\end{array}\right]-9\left[\begin{array}{cc}2 & 0 \\ -1 & 7\end{array}\right]=m\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}4 & 0 \\ -9 & 49\end{array}\right]-\left[\begin{array}{cc}18 & 0 \\ -9 & 63\end{array}\right]=\left[\begin{array}{cc}\mathrm{m} & 0 \\ 0 & \mathrm{~m}\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}-14 & 0 \\ 0 & -14\end{array}\right]=\left[\begin{array}{cc}\mathrm{m} & 0 \\ 0 & \mathrm{~m}\end{array}\right]$
$\Rightarrow \mathrm{m}=-14$
(c) Mean $=\frac{\text { Sum of all observations }}{\text { Total number of observations }}$
$\therefore 68=\frac{45+52+60+\mathrm{x}+69+70+26+81+94}{9}$
$\Rightarrow 68=\frac{497+x}{9}$
$\Rightarrow 612=497+\mathrm{x}$
$\Rightarrow \mathrm{x}=612-497$
$\Rightarrow \mathrm{x}=115$

Data in ascending order
$26,45,52,60,69,70,81,94,115$
Since the number of observations is odd, the median is the $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ observation
\Rightarrow Median $=\left(\frac{9+1}{2}\right)^{\text {th }}$ observation $=5^{\text {th }}$ observation
Hence, the median is 69.
2. (a) (i) Slope of $P Q=\frac{3-k}{1-3 k-6}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2}=\frac{3-\mathrm{k}}{-3 \mathrm{k}-5} \\
& \Rightarrow-3 \mathrm{k}-5=2(3-\mathrm{k}) \\
& \Rightarrow-3 \mathrm{k}-5=6-2 \mathrm{k} \\
& \Rightarrow \mathrm{k}=-11
\end{aligned}
$$

(ii)Substituting k in P and Q, we get

$$
\begin{aligned}
& \mathrm{P}(6, \mathrm{k})=\mathrm{P}(6,-11) \text { and } \mathrm{Q}(1-3 \mathrm{k}, 3)=\mathrm{Q}(34,3) \\
& \therefore \text { Midpoint of } \mathrm{PQ}=\left(\frac{6+34}{2}, \frac{-11+3}{2}\right)=\left(\frac{40}{2}, \frac{-8}{2}\right)=(20,-4)
\end{aligned}
$$

(b) $\operatorname{cosec} 27^{\circ}-\tan ^{2} 33^{\circ}+\cos 44^{\circ} \operatorname{cosec} 46^{\circ}-\sqrt{2} \cos 45^{\circ}-\tan ^{2} 60^{\circ}$

$$
\begin{aligned}
& =\operatorname{cosec}^{2}\left(90^{\circ}-33^{\circ}\right)^{\circ}-\tan ^{2} 33^{\circ}+\cos 44^{\circ} \operatorname{cosec}\left(90^{\circ}-44^{\circ}\right)-\sqrt{2} \cos 45^{\circ}-\tan ^{2} 60^{\circ} \\
& =\sec ^{2} 33^{\circ}-\tan ^{2} 33^{\circ}+\cos 44^{\circ} \sec 44^{\circ}-\sqrt{2} \cos 45^{\circ}-\tan ^{2} 60 \\
& =1+1-\sqrt{2} \cos 45^{\circ}-\tan ^{2} 60 \\
& =1+1-\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)-(\sqrt{3})^{2} \\
& =2-1-3 \\
& =-2
\end{aligned}
$$

(c) Let the number of cones be n.

Let the radius of sphere ber $r_{s}=6 \mathrm{~cm}$
Radius of a cone be $r_{c}=2 \mathrm{~cm}$
And height of the cone be $=3 \mathrm{~cm}$
Volume of sphere $=n($ Volume of a metallic cone)
$\Rightarrow \frac{4}{3} \pi r_{s}^{3}=n\left(\frac{1}{3} \pi r_{c}^{2} h\right)$
$\Rightarrow \frac{4}{\not Z} \pi r_{s}^{3}=n\left(\frac{1}{\not Z} \pi r_{c}^{2} h\right)$
$\Rightarrow \frac{4 r_{s}^{3}}{r_{c}^{2} h}=n$
$\Rightarrow \mathrm{n}=\frac{4(6)^{3}}{(2)^{2}(3)}$
$\Rightarrow \mathrm{n}=\frac{4 \times 216}{4 \times 3}$
$\Rightarrow \mathrm{n}=72$
Hence, the number of cones is 72 .
3. (a) $-3(x-7) \geq 15-7 x>\frac{x+1}{3}$
$\Rightarrow-3(x-7) \geq 15-7 x$ and $15-7 x>\frac{x+1}{3}$
$\Rightarrow-3 \mathrm{x}+21 \geq 15-7 \mathrm{x}$ and $45-21 \mathrm{x}>\mathrm{x}+1$
$\Rightarrow-3 \mathrm{x}+7 \mathrm{x} \geq 15-21$ and $45-1>\mathrm{x}+21 \mathrm{x}$
$\Rightarrow 4 \mathrm{x} \geq-6$ and $44>22 \mathrm{x}$
$\Rightarrow \mathrm{x} \geq \frac{-3}{2}$ and $2>\mathrm{x}$
$\Rightarrow x \geq-1.5$ and $2>x$
The solution set is $\{x: x \in R,-1.5 \leq x<2\}$.

(b) (i) AD is parallel to BC , i.e., OD is parallel to BC and BD is transversal.
$\Rightarrow \angle \mathrm{ODB}=\angle \mathrm{CBD}=32^{\circ} \quad \ldots .($ Alternate angles $)$
In $\triangle O B D$,
$\mathrm{OD}=\mathrm{OB} \quad$....(Radii of the same circle)
$\Rightarrow \angle \mathrm{ODB}=\angle \mathrm{OBD}=32^{\circ}$
(ii) AD is parallel to BC , i.e., AO is parallel to BC and $O B$ is transversal.
$\Rightarrow \angle \mathrm{AOB}=\angle \mathrm{OBC} \quad \ldots .$. (Alternate angles)
$\Rightarrow \angle \mathrm{OBC}=\angle \mathrm{OBD}+\angle \mathrm{DBC}$
$\Rightarrow \angle \mathrm{OBC}=32^{\circ}+32^{\circ}$
$\Rightarrow \angle \mathrm{OBC}=64^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=64^{\circ}$
(iii) In $\triangle O A B$,

$$
\begin{aligned}
& \mathrm{OA}=\mathrm{OB} \quad \ldots .(\text { Radii of the same circle) } \\
& \Rightarrow \angle \mathrm{OAB}=\angle \mathrm{OBA}=\mathrm{x} \text { (say) } \\
& \angle \mathrm{OAB}+\angle \mathrm{OBA}+\angle \mathrm{AOB}=180^{\circ} \\
& \Rightarrow \mathrm{x}+\mathrm{x}+64^{\circ}=180^{\circ} \\
& \Rightarrow 2 \mathrm{x}=180^{\circ}-64^{\circ} \\
& \Rightarrow 2 \mathrm{x}=116^{\circ} \\
& \Rightarrow \mathrm{x}=58^{\circ} \\
& \Rightarrow \angle \mathrm{OAB}=58^{\circ} \\
& \text { i.e., } \angle \mathrm{DAB}=58^{\circ} \\
& \Rightarrow \angle \mathrm{DAB}=\angle \mathrm{BED}=58^{\circ} \quad \ldots . . \text { (Angles inscribed in the same arc are equal.) }
\end{aligned}
$$

(c) $\frac{3 a+2 b}{5 a+3 b}=\frac{18}{29}$

$$
\Rightarrow 29(3 a+2 b)=18(5 a+3 b)
$$

$$
\Rightarrow 87 \mathrm{a}+58 \mathrm{~b}=90 \mathrm{a}+54 \mathrm{~b}
$$

$$
\Rightarrow 58 \mathrm{~b}-54 \mathrm{~b}=90 \mathrm{a}-87 \mathrm{a}
$$

$$
\Rightarrow 4 \mathrm{~b}=3 \mathrm{a}
$$

$$
\Rightarrow \frac{\mathrm{a}}{\mathrm{~b}}=\frac{4}{3}
$$

4. (a) Total number of outcomes $=30$
(i) The perfect squares lying between 11 and 40 are 16,25 and 36 .

So the number of possible outcomes $=3$
\therefore Probability that the number on the card drawn is a perfect square

$$
=\frac{\text { Number of possible outcomes }}{\text { Total number of outcomes }}=\frac{3}{30}=\frac{1}{10}
$$

(ii) The numbers from 11 to 40 that are divisible by 7 are $14,21,28$ and 35 .

So the number of possible outcomes $=4$
Probability that the number on the card drawn is divisible by 7
$=\frac{\text { Number of possible outcomes }}{\text { Total number of outcomes }}=\frac{4}{30}=\frac{2}{15}$
(b) (i)

$A^{\prime}=(4,4)$ AND $B^{\prime}=(3,0)$
(ii) The figure is an arrow head.
(iii) The y-axis is the line of symmetry of figure OABCB'A'.
(c) (i) $\mathrm{P}=\mathrm{Rs} .5000, \mathrm{~T}=1$ year, $\mathrm{A}=\mathrm{Rs} .5325$
$I=A-P$
$\Rightarrow \mathrm{I}=5325-5000$
$\Rightarrow \mathrm{I}=325$
So, the interest at the end of first year is Rs. 325 .
$\mathrm{I}=\frac{\mathrm{PRT}}{100}$
$\Rightarrow \mathrm{R}=\frac{\mathrm{I} \times 100}{\mathrm{P} \times \mathrm{T}}$
$\Rightarrow \mathrm{R}=\frac{325 \times 100}{5000 \times 1}$
$\Rightarrow R=\frac{32500}{5000}=6.5 \%$
So,the rate of interest at the end of the first year is 6.5\%.
(ii) The amount at the end of the first year will be the principal for the second year.

$$
\begin{aligned}
& \mathrm{P}=\mathrm{Rs} .5325, \mathrm{~T}=1 \text { year, } \mathrm{R}=6.5 \% \\
& \mathrm{I}=\frac{\mathrm{PRT}}{100} \\
& \Rightarrow \mathrm{I}=\frac{5325 \times 6.5 \times 1}{100} \\
& \Rightarrow \mathrm{I}=346.125 \\
& \mathrm{~A}=\mathrm{P}+\mathrm{I} \\
& \Rightarrow \mathrm{~A}=5325+346.125 \\
& \Rightarrow \mathrm{~A}=5671.125 \\
& \Rightarrow \mathrm{~A} \approx \mathrm{Rs} .5671
\end{aligned}
$$

So,the amount at the end of the second year is Rs. 5671.

SECTION B (40 Marks)

Attempt any four questions from this section
5. (a) $x^{2}-3(x+3)=0$
$\Rightarrow \mathrm{x}^{2}-3 \mathrm{x}-9=0$
Comparing with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, we get
$a=1, b=-3, c=-9$
$\therefore \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$\Rightarrow \mathrm{x}=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(-9)}}{2(1)}$
$\Rightarrow \mathrm{x}=\frac{3 \pm \sqrt{9+36}}{2}$
$\Rightarrow \mathrm{x}=\frac{3 \pm \sqrt{45}}{2}$
$\Rightarrow \mathrm{x}=\frac{3 \pm \sqrt{9 \times 5}}{2}$
$\Rightarrow \mathrm{x}=\frac{3 \pm 3 \sqrt{5}}{2}$
$\Rightarrow \mathrm{x}=\frac{3+3 \sqrt{5}}{2}$ or $\mathrm{x}=\frac{3-3 \sqrt{5}}{2}$
$\Rightarrow \mathrm{x}=\frac{3+3 \times 2.236}{2}$ or $\mathrm{x}=\frac{3-3 \times 2.236}{2}$
$\Rightarrow \mathrm{x}=\frac{3+6.708}{2}$ or $\mathrm{x}=\frac{3-6.708}{2}$
$\Rightarrow \mathrm{x}=\frac{9.708}{2}$ or $\mathrm{x}=\frac{-3.708}{2}$
$\Rightarrow \mathrm{x}=4.85$ or $\mathrm{x}=-1.85$
(b) Since the interest is earned on the minimum balance between $10^{\text {th }}$ day and the last day of the month as per entries, we have
Minimum balance for April = Rs. 8300
Minimum balance for May = Rs. 7600
Minimum balance for June = Rs. 10300
Minimum balance for July = Rs. 10300
Minimum balance for August = Rs. 3900
Minimum balance for September $=$ Rs. 0
Total balance = Rs. 40400
\Rightarrow Total amount qualifying for interest $=$ Rs. 40400
\Rightarrow Principle for 1 month $\left(\frac{1}{12}\right.$ year $)=$ Rs. 40400,
Rate of interest $=4.5 \%$ per annum

$$
\Rightarrow \text { Interest }=\text { Rs. } \frac{40400 \times 4.5 \times \frac{1}{12}}{100}=\text { Rs. } 151.50
$$

$$
\begin{aligned}
\text { Amount } & =\text { Balance in the account in last month }+ \text { Interest } \\
& =5900+151.5 \\
& =\text { Rs. } 6051.50
\end{aligned}
$$

Thus, Mrs. Ravi receives Rs. 6051.50 on closing the account.
(c) Given $\mathrm{P}=$ Rs. $1500, \mathrm{I}=496.50, \mathrm{R}=10 \%$

$$
\begin{aligned}
& A=P+I \\
& \Rightarrow A=\text { Rs. } 1500+\text { Rs. } 496.50=\text { Rs. } 1996.50 \\
& A=P\left(1+\frac{R}{100}\right)^{n} \\
& \Rightarrow 1996.50=1500\left(1+\frac{10}{100}\right)^{n} \\
& \Rightarrow \frac{1996.50}{1500}=\left(1+\frac{1}{10}\right)^{n} \\
& \Rightarrow 1.331=(1.1)^{n} \\
& \Rightarrow(1.1)^{3}=(1.1)^{n} \\
& \Rightarrow n=3
\end{aligned}
$$

6. (a) Steps of construction:
7. Draw AF measuring 5 cm using a ruler.
8. With A as the centre and radius equal to AF , draw an arc above AF .
9. With F as the centre, and same radius cut the previous arc at Z
10. With Z as the centre, and same radius draw a circle passing through A and F .
11. With A as the centre and same radius, draw an arc to cut the circle above AF at B .
12. With B as the centre and same radius, draw ar arc to cut the circle at C.
13. Repeat this process to get remaining vertices of the hexagon at D and E.
14. Join consecutive arcs on the circle to form the hexagon.
15. Draw the perpendicular bisectors of AF, FE and DE.
16. Extend the bisectors of AF, FE and DE to meet CD, BC and AB at X, L and O respectively.
17. Join AD, CF and EB.
18. These are the 6 lines of symmetry of the regular hexagon.

(b) (i) Since $\square P Q R S$ is a cyclic quadrilateral,
$\angle \mathrm{QRT}=\angle \mathrm{SPT} \quad \ldots .(1)$ (exterior angle is equal to interior opposite angle) In $\triangle T P S$ and $\triangle T R Q$,
$\angle \mathrm{PTS}=\angle \mathrm{RTQ} \ldots$. (commonangle)
$\angle \mathrm{QRT}=\angle \mathrm{SPT} \quad \ldots .($ from 1$)$
$\Rightarrow \Delta \mathrm{TPS} \sim \Delta \mathrm{TRQ} \quad \ldots$ (AA similarity criterion)
(ii) Since $\Delta T P S \sim \Delta T R Q$, implies that corresponding sides are proportional

$$
\begin{aligned}
& \text { i.e., } \frac{S P}{Q R}=\frac{T P}{T R} \\
& \Rightarrow \frac{S P}{4}=\frac{18}{6} \\
& \Rightarrow S P=\frac{18 \times 4}{6} \\
& \Rightarrow S P=12 \mathrm{~cm}
\end{aligned}
$$

(iii) Since $\triangle T P S \sim \triangle T R Q$,

$$
\begin{aligned}
& \frac{\operatorname{Ar}(\Delta \mathrm{TPS})}{\operatorname{Ar}(\Delta \mathrm{TRQ})}=\frac{\mathrm{SP}^{2}}{\mathrm{RQ}^{2}} \\
& \Rightarrow \frac{27}{\operatorname{Ar}(\Delta \mathrm{TRQ})}=\frac{12^{2}}{4^{2}} \\
& \Rightarrow \operatorname{Ar}(\Delta \mathrm{TRQ})=\frac{27 \times 4 \times 4}{12 \times 12} \\
& \Rightarrow \operatorname{Ar}(\Delta \mathrm{TRQ})=3 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Now, } \operatorname{Ar}(\square \mathrm{PQRS})=\operatorname{Ar}(\Delta \mathrm{TPS})-\operatorname{Ar}(\Delta \mathrm{TRQ})=27-3=24 \mathrm{~cm}^{2}
$$

(c) $\mathrm{A}=\left[\begin{array}{cc}4 \sin 30^{\circ} & \cos 0^{\circ} \\ \cos 0^{\circ} & 4 \sin 30^{\circ}\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$
(i) Let the order of matrix $\mathrm{X}=\mathrm{m} \times \mathrm{n}$

Order of matrix $\mathrm{A}=2 \times 2$
Order of matrix $B=2 \times 1$
Now, $A X=B$

\Rightarrow Order of matrix $\mathrm{X}=\mathrm{m} \times \mathrm{n}=2 \times 2$
(ii) Let the matrix $\mathrm{X}=\left\lfloor\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right\rfloor$

$$
\mathrm{AX}=\mathrm{B}
$$

$$
\Rightarrow\left[\begin{array}{cc}
4 \sin 30^{\circ} & \cos 0^{\circ} \\
\cos 0^{\circ} & 4 \sin 30^{\circ}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{c}
4\left(\frac{1}{2}\right) \\
1 \\
1
\end{array} 4\left(\frac{1}{2}\right)\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{c}
2 x+y \\
x+2 y
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

$$
\Rightarrow 2 x+y=4 \ldots .(1)
$$

$$
x+2 y=5 \quad \ldots .(2)
$$

Multiplying (1) by 2 , we get
$4 x+2 y=8$
Subtracting (2) from (3), we have
$3 x=3$
$\Rightarrow \mathrm{x}=1$
Substitute x in (1), we get
$2 \times 1+y=4$
$\Rightarrow \mathrm{y}=2$
Hence, the matrix $X=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
7. (a)

A is the aeroplane, D and C are the ships sailing towards A.
Ships are sailing towards the aeroplane in the same direction. In the figure, height $\mathrm{AB}=1500 \mathrm{~m}$

To find: Distance between the ships, that is CD.

Solution:
In the right-angled $\triangle \mathrm{ABC}$,
$\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow 1=\frac{1500}{\mathrm{BC}}$
$\Rightarrow \mathrm{BC}=1500 \mathrm{~m}$

In the right-angled $\triangle \mathrm{ABD}$,
$\tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{1500}{B D}$
$\Rightarrow \mathrm{BD}=1500 \sqrt{3} \mathrm{~m}$
$\Rightarrow \mathrm{BD}=1500(1.732)=2598 \mathrm{~m}$
\therefore Distance between the ships $=C D=B D-B C$

$$
\begin{aligned}
& =2598-1500 \\
& =1098 \mathrm{~m}
\end{aligned}
$$

(b)

Scores	f	c.f.
$0-10$	9	9
$10-20$	13	22
$20-30$	20	42
$30-40$	26	68
$40-50$	30	98
$50-60$	22	120
$60-70$	15	135
$70-80$	10	145
$80-90$	8	153
$90-100$	7	160
	$\mathrm{n}=160$	

(i) Median $=\left(\frac{\mathrm{n}}{2}\right)^{\text {th }}$ term $=\left(\frac{160}{2}\right)^{\text {th }}$ term $=80^{\text {th }}$ term

Through mark 80 on y-axis, draw a horizontal line which meets theogive drawn at point Q .
Through Q, draw a vertical line which meets thex-axis at the mark of 43.
\Rightarrow Median $=43$
(ii) Since the number of terms $=160$

Lower quartile $\left(Q_{1}\right)=\left(\frac{160}{4}\right)^{\text {th }}$ term $=40^{\text {th }}$ term $=28$
Upper quartile $\left(Q_{3}\right)=\left(\frac{3 \times 160}{4}\right)^{\text {th }}$ term $=120^{\text {th }}$ term $=60$
\therefore Inter-quartile range $=Q_{3}-Q_{1}=60-28=32$
(iii) Since 85% scores $=85 \%$ of $100=85$

Through mark for 85 on x-axis, draw a vertical line which meets the ogive drawn at point B.
Through the point B, draw a horizontal line which meets the y-axis at the mark of 150 .
\Rightarrow Number of shooters who obtained more than 85% score $=160-150=10$
8. (a) Let $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k$
$\Rightarrow \mathrm{x}=\mathrm{ak}, \mathrm{y}=\mathrm{bk}, \mathrm{z}=\mathrm{ck}$
L.H.S. $=\frac{x^{3}}{a^{3}}+\frac{y^{3}}{b^{3}}+\frac{z^{3}}{c^{3}}$
$=\frac{(\mathrm{ak})^{3}}{\mathrm{a}^{3}}+\frac{(\mathrm{bk})^{3}}{\mathrm{~b}^{3}}+\frac{(\mathrm{ck})^{3}}{\mathrm{c}^{3}}$
$=\frac{a^{3} k^{3}}{a^{3}}+\frac{b^{3} k^{3}}{b^{3}}+\frac{c^{3} k^{3}}{c^{3}}$
$=\mathrm{k}^{3}+\mathrm{k}^{3}+\mathrm{k}^{3}$
$=3 \mathrm{k}^{3}$
R.H.S. $=\frac{3 \mathrm{xyz}}{\mathrm{abc}}$

$$
=\frac{3(\mathrm{ak})(\mathrm{bk})(\mathrm{ck})}{\mathrm{abc}}
$$

$$
=3 \mathrm{k}^{3}
$$

= L.H.S.
\Rightarrow L.H.S. $=$ R.H.S.
$\Rightarrow \frac{\mathrm{x}^{3}}{\mathrm{a}^{3}}+\frac{\mathrm{y}^{3}}{\mathrm{~b}^{3}}+\frac{\mathrm{z}^{3}}{\mathrm{c}^{3}}=\frac{3 \mathrm{xyz}}{\mathrm{abc}}$
(b) Steps for construction:
(i) Draw $\mathrm{AB}=5 \mathrm{~cm}$ using a ruler.
(ii) With A as the centre cut an arc of 3 cm on AB to obtain C .
(iii) With A as the centre and radius 2.5 cm , draw an arc above AB .
(iv) With same radius, and C as the centre draw an arc to cut the previous arc and mark the intersection as 0 .
(v) With O as the centre and radius 2.5 cm , draw a circle so that points A and C lie on the circle formed.
(vi) Join OB.
(vii) Draw the perpendicular bisector of OB to obtain the mid-point of OB, M.
(viii) With the M as the centre and radius equal to OM, draw a circle to cut the previous circle at points P and Q.
(ix) Join PB and QB. PB and QB are the required tangents to the given circle from exterior point B.

$\mathrm{QB}=\mathrm{PB}=3 \mathrm{~cm}$
That is, length of the tangents is 3 cm .
(c) (i) Since, A lies on the x-axis, let the coordinates of A be ($x, 0$).

Since Blies on the y - axis, let the coordinates of Bbe ($0, y$).
Let $\mathrm{m}=1$ and $\mathrm{n}=2$.
Using section formula,
Coordinates of $\mathrm{P}=\left(\frac{1(0)+2(\mathrm{x})}{1+2}, \frac{1 \mathrm{y}+2(0)}{1+2}\right)$
$\Rightarrow(4,-1)=\left(\frac{2 x}{3}, \frac{y}{3}\right)$
$\Rightarrow \frac{2 \mathrm{x}}{3}=4$ and $\frac{\mathrm{y}}{3}=-1$
$\Rightarrow \mathrm{x}=6$ and $\mathrm{y}=-3$
So, the coordinates of A are $(6,0)$ and that of B are $(0,-3)$.
(ii) Slope of $A B=\frac{-3-0}{0-6}=\frac{-3}{-6}=\frac{1}{2}$
\Rightarrow Slope of line perpendicular to $A B=m=-2$
$\mathrm{P}=(4,-1)$
\Rightarrow Required equation is
$\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\Rightarrow \mathrm{y}-(-1)=-2(\mathrm{x}-4)$
$\Rightarrow y+1=-2 x+8$
$\Rightarrow 2 \mathrm{x}+\mathrm{y}=7$
9. (a) Marked price of the article = Rs. 6,000.

A dealer buys an article at a discount of 30% from the wholesaler.
\therefore Price of the article which the dealer paid to the wholesaler
$=6000-30 \%$ of 6000
$=6000-\frac{30}{100} \times 6000$
$=$ Rs. 4200
Sales tax paid by dealer $=6 \%$ of $4200=\frac{6}{100} \times 4200=$ Rs. 252
\therefore Amount of the article inclusive of sales tax at which the dealer bought it
$=$ Rs. 4200 + Rs. 252 = Rs. 4452

Dealer sells the article at a discount of 10% to the shopkeeper.
\therefore Price of the article which the shopkeeper paid to the dealer
$=6000-10 \%$ of 6000
$=6000-\frac{10}{100} \times 6000$
$=$ Rs. 5400

Sales tax paid by shopkeeper $=6 \%$ of $5400=\frac{6}{100} \times 5400=$ Rs. 324
\therefore Amount of the article inclusive of sales tax at which the shopkeeper bought it $=$ Rs. 5400 + Rs. $324=$ Rs. 5724

The value added by dealer $=$ Rs. $5400-$ Rs. $4200=$ Rs. 1200

Amount of VAT paid by dealer
$=6 \%$ of 1200
$=\frac{6}{100} \times 1200$
$=$ Rs. 72
\therefore Price paid by shopkeeper including tax is Rs 5724.
\therefore VAT paid by dealer is Rs. 72 .
(b) (i) Area of the shaded part = Area of the circle + area of the semicircle

$$
\begin{aligned}
& =\pi(2.5)^{2}+\frac{\pi(2)^{2}}{2} \\
& =\pi[6.25+2] \\
& =\frac{22}{7}[8.25] \\
& \approx 26 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) Area of kite $=\frac{\text { product of the diagonals }}{2}=\frac{\mathrm{AC} \times \mathrm{BD}}{2}=\frac{12 \times 8}{2}=48 \mathrm{~cm}^{2}$

$$
\begin{aligned}
\text { Area of the unshaded part } & =\text { Area of the kite }- \text { Area of the shaded part } \\
& =48-26 \\
& =22 \mathrm{~cm}^{2}
\end{aligned}
$$

(c) (i) Scale factor $\mathrm{k}=\frac{1}{300}$

Length of the model of the ship $=\mathrm{k} \times$ Length of the ship
$\Rightarrow 2=\frac{1}{300} \times$ Length of the ship
\Rightarrow Length of the ship $=600 \mathrm{~m}$
(ii) Area of the deck of the model $=\mathrm{k}^{2} \times$ Area of the deck of the ship
\Rightarrow Area of the deck of the model $=\left(\frac{1}{300}\right)^{2} \times 180,000$

$$
\begin{aligned}
& =\frac{1}{90000} \times 180,000 \\
& =2 \mathrm{~m}^{2}
\end{aligned}
$$

(iii) Volume of the model $=\mathrm{k}^{3} \times$ Volume of the ship
$\Rightarrow 6.5=\left(\frac{1}{300}\right)^{3} \times$ Volume of the ship
\Rightarrow Volume of the ship $=6.5 \times 27000000=175500000 \mathrm{~m}^{3}$
10. (a) (i) $I=$ Rs. $1200, n=2 \times 12=24$ months, $r=6 \%$

$$
\begin{aligned}
& \mathrm{I}=\mathrm{P} \times \frac{\mathrm{n}(\mathrm{n}+1)}{2 \times 12} \times \frac{\mathrm{r}}{100} \\
& \Rightarrow 1200=\mathrm{P} \times \frac{24 \times 25}{24} \times \frac{6}{100} \\
& \Rightarrow 1200=\mathrm{P} \times \frac{3}{2} \\
& \Rightarrow \mathrm{P}=\frac{1200 \times 2}{3} \\
& \Rightarrow \mathrm{P}=\text { Rs. } 800
\end{aligned}
$$

So the monthly instalment is Rs. 800.
(ii) Total sum deposited $=\mathrm{P} \times \mathrm{n}=$ Rs. $800 \times 24=$ Rs. 19200
\therefore Amount of maturity $=$ Total sum deposited + Interest on it

$$
\begin{aligned}
& =\text { Rs. } 19200+\text { Rs. } 1200 \\
& =\text { Rs. } 20400
\end{aligned}
$$

(b) (i)

Class interval	Frequency
$0-10$	2
$10-20$	5
$20-30$	8
$30-40$	4
$40-50$	6

(ii)

Class interval	Frequency (f)	Mean value (x)	fx
$0-10$	2	5	10
$10-20$	5	15	75
$20-30$	8	25	200
$30-40$	4	35	140
$40-50$	6	45	270
	$\Sigma \mathrm{f}=25$		$\Sigma \mathrm{f}=695$

$$
\therefore \text { Mean }=\frac{\sum \mathrm{fx}}{\sum \mathrm{f}}=\frac{695}{25}=27.8
$$

(iii) Here the maximum frequency is 8 which is corresponding to class $20-30$. Hence, the modal class is $20-30$.
(c) Time taken by bus to cover total distance with speed $\mathrm{x} \mathrm{km} / \mathrm{h}=\frac{240}{\mathrm{x}}$

Time taken by bus to cover total distance with speed $(x-10) k m / h=\frac{240}{x-10}$ According to the given condition,
$\frac{240}{x-10}-\frac{240}{x}=2$
$\Rightarrow 240\left(\frac{1}{x-10}-\frac{1}{x}\right)=2$
$\Rightarrow \frac{1}{x-10}-\frac{1}{x}=\frac{1}{120}$
$\Rightarrow \frac{x-x+10}{x(x-10)}=\frac{1}{120}$
$\Rightarrow \frac{10}{x^{2}-10 x}=\frac{1}{120}$
$\Rightarrow \mathrm{x}^{2}-10 \mathrm{x}=1200$
$\Rightarrow \mathrm{x}^{2}-10 \mathrm{x}-1200=0$
$\Rightarrow(\mathrm{x}-40)(\mathrm{x}+30)=0$
$\Rightarrow \mathrm{x}-40=0$ or $\mathrm{x}+30=0$
$\Rightarrow \mathrm{x}=40$ or $\mathrm{x}=-30$
Since, the speed cannot be negative, the uniform speed is $40 \mathrm{~km} / \mathrm{h}$.
11. (a) L.H.S. $=\frac{\cos A}{1+\sin A}+\tan A$

$$
\begin{aligned}
& =\frac{\cos A(1-\sin A)}{(1+\sin A)(1-\sin A)}+\frac{\sin A}{\cos A} \\
& =\frac{\cos A-\sin A \cos A}{1-\sin ^{2} A}+\frac{\sin A}{\cos A} \\
& =\frac{\cos A-\sin A \cos A}{\cos ^{2} A}+\frac{\sin A}{\cos A} \\
& =\frac{1}{\cos A}-\frac{\sin A}{\cos A}+\frac{\sin A}{\cos A} \\
& =\frac{1}{\cos A} \\
& =\sec A \\
& =\text { R.H.S }
\end{aligned}
$$

(b) (i) Steps of construction:

1. Draw $\mathrm{BC}=6.5 \mathrm{~cm}$ using a ruler.
2. With B as the centre and radius equal to approximately half of $B C$, draw an arc that cuts the segment $B C$ at Q.
3. With Q as the centre, and same radius, cut the previous arc at P.
4. Join BP and extend it.
5. With B as the centre and radius 5 cm , draw an arc that cuts the arm PB to obtain point A.
6. Join AC to obtain $\triangle \mathrm{ABC}$.

(ii)Steps for construction :
7. With A as the centre and radius 3.5 cm , draw a circle.
8. The circumference of a circle is the required locus.

(iii)Steps for construction :
9. With C as the centre and with radius of a length less than CA or BC , draw an arc to cut the line segments AC and BC at D and E respectively.
10. With the same radius or a suitable radius and with Das the centre, draw an arc of a circle.
11. With the same radius and with E as the centre draw an arc such that the two arcs intersect at H .
12. Join C and H .
13. CH is the bisector of $Đ A C B$ and is the required locus.

(iv) Steps for construction:
14. We known that the points at a distance of 3.5 cm from A will surely lie on the circle with centre A.
15. Also, the points on the angle bisector CH are the points equidistant from $A C$ and BC.
16. Mark X and Y which are at the intersection of the circle and the angle bisector CH.
17. Measure XY. XY=5cm
(c)
(i) Total dividend $=$ Rs.2,475

Dividend on each share $=12 \%$ of Rs. $25=\frac{12}{100} \times 25=$ Rs. 3
\therefore Number of shares bought $=\frac{\text { Total dividend }}{\text { Dividend on 1 share }}=\frac{2475}{3}=825$
(ii) Market value of each share $=\frac{\text { Total Investment }}{\text { Number of shares bought }}=\frac{26400}{825}=$ Rs. 32

