ICSE Board Class X Mathematics Board Paper 2015 (Solution)

SECTION A

1.

(a)

Given, b is the mean proportion between a and c .

$$
\begin{aligned}
\Rightarrow \frac{a}{b} & =\frac{b}{c}=k(\text { say }) \\
\Rightarrow a & =b k, b=c k \\
\Rightarrow a & =(c k) k=c k^{2}, b=c k \\
\text { L.H.S. } & =\frac{a^{4}+a^{2} b^{2}+b^{4}}{b^{4}+b^{2} c^{2}+c^{4}} \\
& =\frac{\left(c k^{2}\right)^{4}+\left(c k^{2}\right)^{2}(c k)^{2}+(c k)^{4}}{(c k)^{4}+(c k)^{2} c^{2}+c^{4}} \\
& =\frac{c^{4} k^{8}+\left(c^{2} k^{4}\right)\left(c^{2} k^{2}\right)+c^{4} k^{4}}{c^{4} k^{4}+\left(c^{2} k^{2}\right) c^{2}+c^{4}} \\
& =\frac{c^{4} k^{8}+c^{4} k^{6}+c^{4} k^{4}}{c^{4} k^{4}+c^{4} k^{2}+c^{4}} \\
& =\frac{c^{4} k^{4}\left(k^{4}+k^{2}+1\right)}{c^{4}\left(k^{4}+k^{2}+1\right)} \\
& =k^{4}
\end{aligned}
$$

R.H.S. $=\frac{a^{2}}{c^{2}}$

$$
\begin{aligned}
& =\frac{\left(\mathrm{ck}^{2}\right)^{2}}{\mathrm{c}^{2}} \\
& =\frac{\mathrm{c}^{2} \mathrm{k}^{4}}{\mathrm{c}^{2}} \\
& =\mathrm{k}^{4}
\end{aligned}
$$

Hence, L.H.S. = R.H.S.
(b)

Given equation is $4 x^{2}-5 x-3=0$.
Comparing with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, we get
$\mathrm{a}=4, \mathrm{~b}=-5$ and $\mathrm{c}=-3$
$\therefore \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$

$$
=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(4)(-3)}}{2 \times 4}
$$

$$
=\frac{5 \pm \sqrt{25+48}}{8}
$$

$$
=\frac{5 \pm \sqrt{73}}{8}
$$

$$
=\frac{5 \pm 8.54}{8}
$$

$$
=\frac{13.54}{8} \text { or } \frac{-3.54}{8}
$$

$$
=1.6925 \text { or }-0.4425
$$

$$
=1.69 \text { or }-0.44
$$

(c)

Join OA and OC.
Since the perpendicular from the centre of the circle to a chord bisects the chord.
Therefore, N and M are the mid-points of $A B$ and CD respectively.
Consequently,
$\mathrm{AN}=\mathrm{NB}=\frac{1}{2} \mathrm{AB}=\frac{1}{2} \times 24=12 \mathrm{~cm}$ and
$\mathrm{CM}=\mathrm{MD}=\frac{1}{2} \mathrm{CD}=\frac{1}{2} \times 10=5 \mathrm{~cm}$
In right-angled triangles ANO and CMO, we have
$\mathrm{OA}^{2}=\mathrm{ON}^{2}+\mathrm{AN}^{2}$ and $\mathrm{OC}^{2}=\mathrm{OM}^{2}+\mathrm{CM}^{2}$
$\Rightarrow 13^{2}=\mathrm{ON}^{2}+12^{2}$ and $13^{2}=\mathrm{OM}^{2}+5^{2}$
$\Rightarrow \mathrm{ON}^{2}=13^{2}-12^{2}$ and $\mathrm{OM}^{2}=13^{2}-5^{2}$
$\Rightarrow \mathrm{ON}^{2}=169-144$ and $\mathrm{OM}^{2}=169-25$
$\Rightarrow \mathrm{ON}^{2}=25 \quad$ and $\quad \mathrm{OM}^{2}=144$
$\Rightarrow \mathrm{ON}=5$ and $\mathrm{OM}=12$

Now, $\mathrm{NM}=\mathrm{ON}+\mathrm{OM}=5+12=17 \mathrm{~cm}$
Hence, the distance between the two chords is 17 cm .
2.
(a)

$$
\begin{aligned}
& \sin ^{2} 28^{\circ}+\sin ^{2} 62^{\circ}+\tan ^{2} 38^{\circ}-\cot ^{2} 52^{\circ}+\frac{1}{4} \sec ^{2} 30^{\circ} \\
& =\sin ^{2} 28^{\circ}+\sin ^{2}\left(90^{\circ}-28^{\circ}\right)+\tan ^{2} 38^{\circ}-\cot ^{2}\left(90^{\circ}-38^{\circ}\right)+\frac{1}{4} \sec ^{2} 30^{\circ} \\
& =\left(\sin ^{2} 28^{\circ}+\cos ^{2} 28^{\circ}\right)+\tan ^{2} 38^{\circ}-\tan ^{2} 38^{\circ}+\frac{1}{4} \times\left(\frac{2}{\sqrt{3}}\right)^{2} \\
& =1+0+\frac{1}{4} \times \frac{4}{3} \\
& =1+\frac{1}{3} \\
& =\frac{4}{3}
\end{aligned}
$$

(b)

Given: $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}-2 & 1 \\ -3 & 2\end{array}\right]$ and $A^{2}-5 B^{2}=5 C$
Now, $A^{2}=A \times A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right] \times\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
1 \times 1+3 \times 3 & 1 \times 3+3 \times 4 \\
3 \times 1+4 \times 3 & 3 \times 3+4 \times 4
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+9 & 3+12 \\
3+12 & 9+16
\end{array}\right] \\
& =\left[\begin{array}{ll}
10 & 15 \\
15 & 25
\end{array}\right]
\end{aligned}
$$

And, $B^{2}=B \times B=\left[\begin{array}{ll}-2 & 1 \\ -3 & 2\end{array}\right] \times\left[\begin{array}{ll}-2 & 1 \\ -3 & 2\end{array}\right]$

$$
=\left[\begin{array}{ll}
-2 \times(-2)+1 \times(-3) & -2 \times 1+1 \times 2 \\
-3 \times(-2)+2 \times(-3) & -3 \times 1+2 \times 2
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
4-3 & -2+2 \\
6-6 & -3+4
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Now, $A^{2}-5 B^{2}=\left[\begin{array}{ll}10 & 15 \\ 15 & 25\end{array}\right]-5\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}10 & 15 \\ 15 & 25\end{array}\right]-\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]=\left[\begin{array}{cc}5 & 15 \\ 15 & 20\end{array}\right]=5\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]=5 \mathrm{C}$
Hence, $C=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]$
(c)

For $1^{\text {st }}$ year:
$\mathrm{P}=$ Rs. 50,000; $\mathrm{R}=12 \%$ and $\mathrm{T}=1$ year
\therefore Interest $=$ Rs. $\frac{50,000 \times 12 \times 1}{100}=$ Rs. 6,000
And, Amount $=$ Rs. $50,000+$ Rs. $6,000=$ Rs. 56,000
Since Money repaid $=$ Rs. 33,000
\therefore Balance $=$ Rs. $56,000-$ Rs. $33,000=$ Rs. 23,000

For $2^{\text {nd }}$ year:
$P=$ Rs. 23,000; $R=15 \%$ and $T=1$ year
\therefore Interest $=$ Rs. $\frac{23,000 \times 15 \times 1}{100}=$ Rs. 3,450
And, Amount $=$ Rs. $23,000+$ Rs. $3,450=$ Rs. 26,450

Thus, Jaya must pay Rs. 26,450 at the end of 2nd year to clear her debt.
3.
(a)

List price $=$ Rs.42,000
Discount $=10 \%$ of Rs. 42,000

$$
\begin{aligned}
& =\frac{10}{100} \times \text { Rs. } 42,000 \\
& =\text { Rs. } 4,200
\end{aligned}
$$

\Rightarrow Discounted price $=$ Rs. $42,000-$ Rs. $4,200=$ Rs. 37,800
Off-season discount $=5 \%$ of Rs. 37,800

$$
\begin{aligned}
& =\frac{5}{100} \times \text { Rs. } 37,800 \\
& =\text { Rs. } 1,890
\end{aligned}
$$

\therefore Sale-price $=$ Rs. $37,800-$ Rs. $1,890=$ Rs. 35,910
(i) The amount of sales tax a customer has to pay $=8 \%$ of Rs. 35,910

$$
\begin{aligned}
& =\frac{8}{100} \times \text { Rs. } 35,910 \\
& =\text { Rs. } 2872.80
\end{aligned}
$$

(ii) The total price, a customer has to pay for the computer = Sale-price + Sales Tax

$$
\begin{aligned}
& =\text { Rs. } 35,910+\text { Rs. } 2872.80 \\
& =\text { Rs. } 38782.80
\end{aligned}
$$

(b)

Given, $\mathrm{P}(1,-2), \mathrm{A}(3,-6)$ and $\mathrm{B}(\mathrm{x}, \mathrm{y})$

$$
\mathrm{AP}: \mathrm{PB}=2: 3
$$

Hence, coordinates of $\mathrm{P}=\left(\frac{2 \times \mathrm{x}+3 \times 3}{2+3}, \frac{2 \times \mathrm{y}+3 \times(-6)}{2+3}\right)=\left(\frac{2 \mathrm{x}+9}{5}, \frac{2 \mathrm{y}-18}{5}\right)$
But, the coordinates of P are $(1,-2)$.
$\therefore \frac{2 \mathrm{x}+9}{5}=1 \quad$ and $\quad \frac{2 \mathrm{y}-18}{5}=-2$
$\Rightarrow 2 \mathrm{x}+9=5$ and $2 \mathrm{y}-18=-10$
$\Rightarrow 2 \mathrm{x}=-4 \quad$ and $2 \mathrm{y}=8$
$\Rightarrow \mathrm{x}=-2 \quad$ and $\mathrm{y}=4$
Hence, the coordinates of B are $(-2,4)$.
(c)

Data in ascending order:
$13,35,43,46, x, x+4,55,61,71,80$
Median $=48$
Number of observations $=\mathrm{n}=10$ (even)
\therefore Median $=\frac{\left(\frac{\mathrm{n}}{2}\right)^{\text {th }} \text { term }+\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }} \text { term }}{2}$
$\Rightarrow 48=\frac{\left(\frac{10}{2}\right)^{\text {th }} \text { term }+\left(\frac{10}{2}+1\right)^{\text {th }} \text { term }}{2}$
$\Rightarrow 48=\frac{5^{\text {th }} \text { term }+6^{\text {th }} \text { term }}{2}$
$\Rightarrow 48=\frac{x+x+4}{2}$
$\Rightarrow 48=\frac{2 x+4}{2}$
$\Rightarrow 48=x+2$
$\Rightarrow x=46$
$\Rightarrow x+4=46+4=50$
Thus, the observations are $13,35,43,46,46,50,55,61,71,80$
Observation 46 is appearing twice.
Hence, the mode of the data is 46.
4.
(a)

Let the number to be subtracted from the given polynomial be k .
Let $\mathrm{f}(\mathrm{y})=16 \mathrm{x}^{3}-8 \mathrm{x}^{2}+4 \mathrm{x}+7-\mathrm{k}$
It is given that $(2 x+1)$ is a factor of $f(y)$.
$\therefore \mathrm{f}\left(-\frac{1}{2}\right)=0$
$\Rightarrow 16\left(-\frac{1}{2}\right)^{3}-8\left(-\frac{1}{2}\right)^{2}+4\left(-\frac{1}{2}\right)+7-\mathrm{k}=0$
$\Rightarrow 16 \times\left(-\frac{1}{8}\right)-8 \times \frac{1}{4}-2+7-\mathrm{k}=0$
$\Rightarrow-2-2-2+7-\mathrm{k}=0$
$\Rightarrow 1-\mathrm{k}=0$
$\Rightarrow \mathrm{k}=1$
Thus, 1 should be subtracted from the given polynomial.
(b)

Length of a rectangle $=$ Radius of two semi-circles + Diameter of a circle

$$
\begin{aligned}
& =5+5+10 \\
& =20 \mathrm{~cm}
\end{aligned}
$$

Breadth of a rectangle $=$ Diameter of a circle $=2 \times 5=10 \mathrm{~cm}$
\therefore Area of a rectangle $=$ Length \times Breadth

$$
\begin{aligned}
& =20 \times 10 \\
& =200 \mathrm{sq} . \mathrm{cm}
\end{aligned}
$$

Area of a circle $=\frac{22}{7} \times 5 \times 5=78.571$ sq. cm
And, area of two semi-circles each of radius $5 \mathrm{~cm}=2\left(\frac{1}{2} \times 78.571\right)=78.571 \mathrm{sq} . \mathrm{cm}$
Now,
Area of shaded region $=$ Area of a rectangle - Area of a circle - Area of two semi-circles

$$
\begin{aligned}
& =200-78.571-78.571 \\
& =200-157.142 \\
& =42.858 \mathrm{sq} . \mathrm{cm}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& -8 \frac{1}{2}<-\frac{1}{2}-4 x \leq 7 \frac{1}{2}, x \in I \\
& \Rightarrow-\frac{17}{2}<-\frac{1}{2}-4 x \leq \frac{15}{2}, x \in I
\end{aligned}
$$

Take $\quad-\frac{17}{2}<-\frac{1}{2}-4 \mathrm{x} \quad-\frac{1}{2}-4 \mathrm{x} \leq \frac{15}{2}$

$$
\begin{array}{rlr}
-\frac{17}{2}+\frac{1}{2}<-4 \mathrm{x} & -4 \mathrm{x} \leq \frac{15}{2}+\frac{1}{2} \\
-\frac{16}{2}<-4 \mathrm{x} & -4 \mathrm{x} \leq \frac{16}{2} \\
-8<-4 \mathrm{x} & -4 \mathrm{x} \leq 8 \\
2>\mathrm{x} & \mathrm{x} \geq-2
\end{array}
$$

Thus, on simplifying, the given inequation reduces to $-2 \leq x<2$.
Since $x \in I$, the solution set is $\{-2,-1,0,1\}$.
The required graph on number line is as follows:

SECTION B (40 Marks)

Attempt any four questions from this section
5.
(a)

$$
\text { Given : } B=\left[\begin{array}{ll}
1 & 1 \\
8 & 3
\end{array}\right] \text { and } X=B^{2}-4 B
$$

Now, $B^{2}=B \times B$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
1 & 1 \\
8 & 3
\end{array}\right] \times\left[\begin{array}{ll}
1 & 1 \\
8 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 \times 1+1 \times 8 & 1 \times 1+1 \times 3 \\
8 \times 1+3 \times 8 & 8 \times 1+3 \times 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+8 & 1+3 \\
8+24 & 8+9
\end{array}\right] \\
& =\left[\begin{array}{cc}
9 & 4 \\
32 & 17
\end{array}\right] \\
& \mathrm{X}=\mathrm{B}^{2}-4 \mathrm{~B}=\left[\begin{array}{cc}
9 & 4 \\
32 & 17
\end{array}\right]-4\left[\begin{array}{cc}
1 & 1 \\
8 & 3
\end{array}\right]=\left[\begin{array}{cc}
9 & 4 \\
32 & 17
\end{array}\right]-\left[\begin{array}{cc}
4 & 4 \\
32 & 12
\end{array}\right]=\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right] \\
& \text { Now, } X\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right]=\left[\begin{array}{c}
5 \\
50
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right]=\left[\begin{array}{c}
5 \\
50
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
5 a+0 b \\
0 a+5 b
\end{array}\right]=\left[\begin{array}{c}
5 \\
50
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
5 \mathrm{a} \\
5 \mathrm{~b}
\end{array}\right]=\left[\begin{array}{c}
5 \\
50
\end{array}\right] \\
& \Rightarrow 5 \mathrm{a}=5 \text { and } 5 \mathrm{~b}=50 \\
& \Rightarrow \mathrm{a}=1 \text { and } \mathrm{b}=10
\end{aligned}
$$

(b)

Since Dividend on 1 share $=10 \%$ of Rs. $50=\frac{10}{100} \times$ Rs. $50=$ Rs. 5
\therefore Number of shares bought $=\frac{\text { Total dividend }}{\text { Dividend on } 1 \text { share }}=\frac{\text { Rs. } 450}{\text { Rs. } 5}=90$
Since market value of each share $=$ Rs. 60
\therefore Sum invested by the man $=90 \times$ Rs. $60=$ Rs. 5,400
Percentage return $=\frac{\text { Total return }}{\text { Sum invested }} \times 100 \%=\frac{\text { Rs. } 450}{\text { Rs. } 5400} \times 100 \%=8.33 \%=8 \%$
(c)

Outcomes: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Total number of all possible outcomes $=16$
(i) When the selected card has a vowel, the possible outcomes are $\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}$.

$$
\text { Number of favourable outcomes }=4
$$

\therefore Required probability $=\frac{4}{16}=\frac{1}{4}$
(ii) When the selected card has a consonant,

Number of favourable outcomes $=16-4=12$
\therefore Required probability $=\frac{12}{16}=\frac{3}{4}$
(iii)When the selected card has none of the letters from the word median, the possible outcomes are b, c, f, g, h, j, k, l, o, p.
Number of favourable outcomes $=10$
\therefore Required probability $=\frac{10}{16}=\frac{5}{8}$
6.
(a) Steps of construction:
(i) Draw line $\mathrm{AC}=5 \mathrm{~cm}$ and $\angle \mathrm{CAB}=60^{\circ}$. Cut off $\mathrm{AB}=7 \mathrm{~cm}$. Join $\mathrm{BC}, \triangle \mathrm{ABC}$ is the required triangle.
(ii) Draw angle bisectors of $\angle \mathrm{A}$ and $\angle B$.
(iii) Bisector of $\angle \mathrm{B}$ meets AC at M and bisector of $\angle \mathrm{A}$ meets BC at N .
(iv) Similarly, draw the angle bisector of $\angle \mathrm{C}$ which meets AB at D .
(v) P is the point which is equidistant from $A B, B C$ and $A C$.
(vi) With DP as the radius, draw a circle touching the three sides of the triangle (incircle.)

(b)

Let h be the height and r be the radius of the base of the conical tent.
According to the given information,
$77 \times 16=\frac{1}{3} \pi r^{2} h$
$\Rightarrow 77 \times 16=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times h$
$\Rightarrow 77 \times 16=\frac{1}{3} \times 22 \times 7 \times \mathrm{h}$
$\Rightarrow \mathrm{h}=\frac{77 \times 16 \times 3}{22 \times 7} \Rightarrow \mathrm{~h}=24 \mathrm{~m}$
Now, $l^{2}=r^{2}+h^{2}$
$\Rightarrow l^{2}=7^{2}+24^{2}=625$
$\Rightarrow \mathrm{l}=25 \mathrm{~m}$
\therefore Curved surface area $=\pi \mathrm{rl}=\frac{22}{7} \times 7 \times 25=550 \mathrm{~m}^{2}$
Hence, the height of the tent is 24 m and the curved surface area of the tent is $550 \mathrm{~m}^{2}$.
(c)
(i) $\frac{7 m+2 n}{7 m-2 n}=\frac{5}{3}$

By Componendo - Divinendo, we get
$\frac{7 m+2 n+(7 m-2 n)}{7 m+2 n-(7 m-2 n)}=\frac{5+3}{5-3}$
$\Rightarrow \frac{14 \mathrm{~m}}{4 \mathrm{n}}=\frac{8}{2}$
$\Rightarrow \frac{7 \mathrm{~m}}{2 \mathrm{n}}=\frac{4}{1}$
$\Rightarrow \frac{\mathrm{m}}{\mathrm{n}}=\frac{8}{7}$
$\Rightarrow \mathrm{m}: \mathrm{n}=8: 7$
(ii) $\frac{\mathrm{m}}{\mathrm{n}}=\frac{8}{7} \Rightarrow \frac{\mathrm{~m}^{2}}{\mathrm{n}^{2}}=\frac{8^{2}}{7^{2}}$

ApplyingComponendo - Divinendo, we get
$\Rightarrow \frac{\mathrm{m}^{2}+\mathrm{n}^{2}}{\mathrm{~m}^{2}-\mathrm{n}^{2}}=\frac{8^{2}+7^{2}}{8^{2}-7^{2}}$
$\Rightarrow \frac{\mathrm{m}^{2}+\mathrm{n}^{2}}{\mathrm{~m}^{2}-\mathrm{n}^{2}}=\frac{64+49}{64-49}$
$\Rightarrow \frac{\mathrm{m}^{2}+\mathrm{n}^{2}}{\mathrm{~m}^{2}-\mathrm{n}^{2}}=\frac{113}{15}$

7.

(a) Principal for the month of Jan = Rs. 5600

Principal for the month of Feb = Rs. 4100
Principal for the month of Mar $=$ Rs. 4100
Principal for the month of Apr = Rs. 2000
Principal for the month of May = Rs. 8500
Principal for the month of June = Rs. 10000
Total Principal for one month = Rs. 34300
Rate of interest $=6 \% \mathrm{pa}$
(i) Simple interest $=\frac{\text { PRT }}{100}=\frac{34300 \times 6 \times 1}{100 \times 12}=$ Rs. 171.50
(ii) Totalamount $=$ Rs. $10000+$ Rs. $171.50=$ Rs. 10171.50
(b)

The image of point (x, y) on Y -axis has the coordinates $(-\mathrm{x}, \mathrm{y})$.
Thus, we have
Coordinates of $\mathrm{B}^{\prime}=(-2,3)$
Coordinates of $C^{\prime}=(-1,1)$
Coordinates of $\mathrm{D}^{\prime}=(-2,0)$
Since, Y -axis is the line of symmetry of the figure formed, the equation of the line of symmetry is $\mathrm{X}=0$.
8.
(a) Let the assumed mean $\mathrm{A}=25$

Marks	Mid-value x	f	$\mathrm{d}=\mathrm{x}-\mathrm{A}$	$\mathrm{t}=\frac{\mathrm{x}-\mathrm{A}}{\mathrm{i}}=\frac{\mathrm{x}-25}{10}$	ft
$0-10$	5	10	-20	-2	-20
$10-20$	15	9	-10	-1	-9
$20-30$	25	25	0	0	0
$30-40$	35	30	10	1	30
$40-50$	45	16	20	2	32
$50-60$	55	10	30	3	30
		$\sum \mathrm{f}=100$			$\sum \mathrm{ft}=63$

\therefore Mean $=\mathrm{A}+\frac{\sum \mathrm{ft}}{\sum \mathrm{f}} \times \mathrm{i}=25+\frac{63}{100} \times 10=25+\frac{63}{10}=25+6.3=31.3$
(b)

(i) $\angle \mathrm{BAQ}=30^{\circ}$

Since $A B$ is the bisector of $\angle C A Q$
$\Rightarrow \angle \mathrm{CAB}=\angle \mathrm{BAQ}=30^{\circ}$
AD is the bisector of $\angle \mathrm{CAP}$ and $-\mathrm{A}-\mathrm{Q}$,
$\angle \mathrm{DAP}+\angle \mathrm{CAD}+\angle \mathrm{CAQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{CAD}+\angle \mathrm{CAD}+60^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{CAD}=60^{\circ}$
So, $\angle \mathrm{CAD}+\angle \mathrm{CAB}=60^{\circ}+30^{\circ}=90^{\circ}$
Since angle in a semi-circle $=90^{\circ}$
\Rightarrow Angle made by diameter to any point on the circle is 90°
So, BD is the diameter of the circle.
(ii) SinceBD is the diameter of the circle, so it will pass through the centre.

By Alternate segment theorem,
$\angle \mathrm{ABD}=\angle \mathrm{DAP}=60^{\circ}$
So, in $\triangle B M A$,
$\angle A M B=90^{\circ} \ldots .$. (Use AngleSum Property)
We know that perpendicular drawn from the centre to a chord of a circle bisects the chord.
$\Rightarrow \angle \mathrm{BMA}=\angle \mathrm{BMC}=90^{\circ}$
In $\triangle \mathrm{BMA}$ and $\triangle \mathrm{BMC}$,
$\angle \mathrm{BMA}=\angle \mathrm{BMC}=90^{\circ}$
$\mathrm{BM}=\mathrm{BM}$ (common side)
$\mathrm{AM}=\mathrm{CM}$ (perpendicular drawn from the centre to a chord of a circle bisects the chord.)
$\Rightarrow \triangle \mathrm{BMA} \cong \triangle \mathrm{BMC}$
$\Rightarrow \mathrm{AB}=\mathrm{BC}$ (SAS congruence criterion)
$\Rightarrow \triangle \mathrm{ABC}$ is an isosceles triangle.
(c)
(i) Printed price of an air conditioner $=$ Rs. 45000

Discount $=10 \%$
\therefore C.P. of the air conditioner $=$ Rs. $\frac{45000 \times(100-10)}{100}$
$=$ Rs. $\frac{45000 \times 90}{100}$
$=$ Rs. 40500
$\operatorname{VAT}(12 \%)=40500 \times \frac{12}{100}=$ Rs. 4860
So, the shopkeeper paid VAT of Rs. 4860 to the government.
(ii) Discount $=5 \%$ of the marked price
\therefore C.P. of the air conditioner $=$ Rs. $\frac{45000 \times(100-5)}{100}$

$$
=\text { Rs. } \frac{45000 \times 95}{100}
$$

$$
=\text { Rs. } 42750
$$

$\operatorname{VAT}(12 \%)=42750 \times \frac{12}{100}=$ Rs. 5130
So, the total amount paid by the customer inclusive of tax
$=$ Rs. 42750 + Rs. 5130
$=$ Rs. 47880
9.
(a)
(i) $\angle \mathrm{DAE}=70^{\circ} \quad$....(given)
$\angle \mathrm{BAD}+\angle \mathrm{DAE}=180^{\circ} \quad$....(linear pair)
$\Rightarrow \angle \mathrm{BAD}+70^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{BAD}=110^{\circ}$
Since $A B C D$ is a cyclic quadrilateral, sum of the measures of the opposite angles are supplementary.

$$
\begin{aligned}
& \text { So }, \angle \mathrm{BCD}+\angle \mathrm{BAD}=180^{\circ} \\
& \Rightarrow \angle \mathrm{BCD}+110^{\circ}=180^{\circ} \\
& \Rightarrow \angle \mathrm{BCD}=70^{\circ}
\end{aligned}
$$

(ii) $\angle \mathrm{BOD}=2 \angle \mathrm{BCD}$ (Inscribed angle theorem)
$\Rightarrow \angle \mathrm{BOD}=2\left(70^{\circ}\right)=140^{\circ}$
(iii) $\operatorname{In} \triangle O B D$,
$\mathrm{OB}=\mathrm{OD} \quad$....(radii of same circle)
$\Rightarrow \angle \mathrm{OBD}=\angle \mathrm{ODB}$
By Angle Sum property,
$\angle \mathrm{OBD}+\angle \mathrm{ODB}+\angle \mathrm{BOD}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{OBD}+\angle \mathrm{BOD}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{OBD}+140^{\circ}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{OBD}=40^{\circ}$
$\Rightarrow \angle \mathrm{OBD}=20^{\circ}$
(b)

Given vertices: $A(-1,3), B(4,2)$ and $C(3,-2)$
(i) Coordinates of the centroid G of $\triangle \mathrm{ABC}$ are given by

$$
\mathrm{G}=\left(\frac{-1+4+3}{3}, \frac{3+2-2}{3}\right)=\left(\frac{6}{3}, \frac{3}{3}\right)=(2,1)
$$

(ii) Since the line through G is parallel to AC , the slope of the lines are the same.
$\Rightarrow \mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{-2-3}{3-(-1)}=\frac{-5}{4}$
So, equation of the line passing through $G(2,1)$ and with slo pe $\frac{-5}{4}$ is given by,
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow \mathrm{y}-1=\frac{-5}{4}(\mathrm{x}-2)$
$\Rightarrow 4 \mathrm{y}-4=-5 \mathrm{x}+10$
$\Rightarrow 5 x+4 y=14$ is the required equation.
(c)

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos { }^{3} \theta-\cos \theta} \\
& =\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)} \\
& =\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left[2\left(1-\sin ^{2} \theta\right)-1\right]} \\
& =\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2-2 \sin ^{2} \theta-1\right)} \\
& =\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(1-2 \sin ^{2} \theta\right)} \\
& =\tan \theta \\
& =\text { R.H.S. (proved) }
\end{aligned}
$$

10.

(a)

Let Vivek's age be x years and Amit's age be (47-x) years.
According to the given information,

$$
\begin{aligned}
& x(47-x)=550 \\
& \Rightarrow 47 x-x^{2}=550 \\
& \Rightarrow x^{2}-47 x+550=0 \\
& \Rightarrow(x-25)(x-22)=0 \\
& \Rightarrow x=25 \text { or } x=22
\end{aligned}
$$

So, Vivek's age is 25 years and Amit's age is 22 years.
(b)

The cumulative frequency table of the given distribution is as follows:

Wages in Rs.	Upper Limit	No. of workers	Cumulative frequency
$400-450$	450	2	2
$450-500$	500	6	8
$500-550$	550	12	20
$550-600$	600	18	38
$600-650$	650	24	62
$650-700$	700	13	75
$700-750$	750	5	80

The ogive is as follows:

Number of workers $=\mathrm{n}=80$
(i) Median $=\left(\frac{\mathrm{n}}{2}\right)^{\text {th }}$ term $=40^{\text {th }}$ term

Through mark 40 on the Y-axis, draw a horizontal line which meets the curve at point A . Through point A , on the curve draw a vertical line which meets the X -axis at point B .
The value of point B on the X-axis is the median, which is 605 .
(ii) Lower quartile $\left(Q_{1}\right)=\left(\frac{80}{4}\right)^{\text {th }}$ term $=20^{\text {th }}$ term $=550$
(ii) Through mark of 625 on X-axis, draw a verticle line which meets the graph at point C .

Then through point C, draw a horizontal line which meets the Y-axis at the mark of 50.
Thus, number of workers that earn more than Rs. 625 daily $=80-50=30$
11.
(a)

Let PQ be the lighthouse.
$\Rightarrow \mathrm{PQ}=60$
In $\triangle \mathrm{PQA}$,
$\tan 60^{\circ}=\frac{\mathrm{PQ}}{\mathrm{AQ}}$
$\Rightarrow \sqrt{3}=\frac{60}{\mathrm{AQ}}$
$\Rightarrow A Q=\frac{60}{\sqrt{3}}$
$\Rightarrow \mathrm{AQ}=\frac{20 \times 3}{\sqrt{3}}$
$\Rightarrow \mathrm{AQ}=\frac{20 \times \sqrt{3} \times \sqrt{3}}{\sqrt{3}}$
$\Rightarrow A Q=20 \sqrt{3} \mathrm{~m}$
In $\triangle P Q B$,
$\tan 45^{\circ}=\frac{\mathrm{PQ}}{\mathrm{QB}}$
$\Rightarrow 1=\frac{60}{\mathrm{QB}}$
$\Rightarrow Q B=60 \mathrm{~m}$
Now,

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{AQ}+\mathrm{QB} \\
& =20 \sqrt{3}+60 \\
& =20 \times 1.732+60 \\
& =94.64 \\
& =95 \mathrm{~m}
\end{aligned}
$$

(b)
(i) In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{SPR}$, we have
$\angle \mathrm{QPR}=\angle \mathrm{PSR} \quad$....(given)
$\angle \mathrm{PRQ}=\angle \mathrm{PRS} \quad$....(common)
So, by AA-axiom similarity, we have
$\triangle \mathrm{PQR} \sim \Delta \mathrm{SPR} \quad$....(proved)
(ii) Since $\triangle P Q R \sim \Delta S P R \quad$....(proved)
$\Rightarrow \frac{P Q}{S P}=\frac{Q R}{P R}=\frac{P R}{S R}$
Consider $\frac{\mathrm{QR}}{\mathrm{PR}}=\frac{\mathrm{PR}}{\mathrm{SR}} \quad \ldots . .[$ From (1)]
$\Rightarrow \frac{\mathrm{QR}}{6}=\frac{6}{3}$
$\Rightarrow \mathrm{QR}=\frac{6 \times 6}{3}=12 \mathrm{~cm}$
Also, $\frac{P Q}{S P}=\frac{P R}{S R}$
$\Rightarrow \frac{8}{\mathrm{SP}}=\frac{6}{3}$
$\Rightarrow \frac{8}{\mathrm{SP}}=2$
$\Rightarrow \mathrm{SP}=\frac{8}{2}=4 \mathrm{~cm}$
(iii) $\frac{\text { Area of } \triangle \mathrm{PQR}}{\text { Area of } \triangle \mathrm{SPR}}=\frac{\mathrm{PQ}^{2}}{\mathrm{SP}^{2}}=\frac{8^{2}}{4^{2}}=\frac{64}{16}=4$
(c)
(i) Let the deposit per month $=$ Rs. P

Number of months (n) $=36$
Rate of interest (r) $=7.5 \%$ p.a.
\therefore S.I. $=\mathrm{P} \times \frac{\mathrm{n}(\mathrm{n}+1)}{2 \times 12} \times \frac{\mathrm{r}}{100}$
$\Rightarrow 8325=\mathrm{P} \times \frac{36 \times 37}{2 \times 12} \times \frac{7.5}{100}$
$\Rightarrow 8325=\mathrm{P} \times \frac{3 \times 37}{2} \times \frac{7.5}{100}$
$\Rightarrow \mathrm{P}=\frac{8325 \times 2 \times 100}{3 \times 37 \times 7.5}=$ Rs. 2000
(ii) Maturity value $=\mathrm{P} \times \mathrm{n}+$ S.I. $=$ Rs. $(2000 \times 36+8325)=$ Rs. 80,325

