ICSE Question Paper (2012)

MATHEMATICS

SECTION A [40 Marks]

(Answer all questions from this Section.)

Question 1.

(a) If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find $A^2 - 5A + 7I$. [3]

- (b) The monthly pocket money of Ravi and Sanjeev are in the ratio 5 : 7. Their expenditures are in the ratio 3 : 5. If each saves ₹ 80 every month, find their monthly pocket money.
- (c) Using the Remainder Theorem factorise completely the following polynomial :

$$3x^3 + 2x^2 - 19x + 6$$
 [4]

Solution :

(a)	Let	$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \text{ and } \mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
	than	$\mathbf{A}^2 = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$	
		$= \begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$	
		$A^{2} - 5A + 7I = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - 5 \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
		$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$	
		$= \begin{bmatrix} 8 - 15 + 7 & 5 - 5 + 10 \\ -5 + 5 + 0 & 3 - 10 + 7 \end{bmatrix}$	
		$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$	Ans.
(b)	Let n	conthly pocket money of Ravi is $5x$ and Sanjeev is $7x$.	

$$\frac{5x - 80}{7x - 80} = \frac{3}{5}$$

$$\Rightarrow 25x - 400 = 21x - 240$$

$$4x = 160$$

$$x = 40$$
Ravi's pocket money = $5 \times 40 = \sqrt{200}$
Sanjeev's pocket money = $7 \times 40 = \sqrt{280}$
Ans.
(c) Let $f(x) = 3x^3 + 2x^2 - 19x + 6$
Using hit and trial method,
$$f(1) = 3 + 2 - 19 + 6 \neq 0$$

$$f(-1) = -3 + 2 + 19 + 6 \neq 0$$

$$f(2) = 24 + 8 - 38 + 6 = 0$$

$$\therefore (x - 2) \text{ is a factor of } f(x).$$
Now,

$$3x^2 + 8x - 3$$

$$x - 2) \ 3x^3 + 2x^2 - 19x + 6$$

$$3x^3 - 6x^2$$

$$8x^2 - 19x$$

$$8x^2 - 19x$$

$$8x^2 - 16x$$

$$-3x + 6$$

$$-3x + 6$$

$$x$$
To factorise

$$3x^2 + 8x - 3$$

$$= 3x^2 + 9x - x - 3$$

$$= 3x(x + 3) - 1(x + 3)$$

$$= (3x - 1)(x + 3)$$
Hence

$$3x^3 + 2x^2 - 19x + 6 = (x - 2)(3x - 1)(x + 3)$$
Ans.

Question 2.

- (a) On what sum of money will the difference between the compound interest and simple interest for 2 years be equal to ₹ 25 if the rate of interest charged for both is 5% p.a. ?
 [3]
- (b) ABC is an isosceles right angled triangle with $\angle ABC =$ 90°. A semi-circle is drawn with AC as the diameter. If AB = BC = 7 cm, find the area of the shaded region. $\left(Take \ \pi = \frac{22}{7}\right)$ [3]
- (c) Given a line segment AB joining the points A (-4, 6) and B (8, -3). Find :
 - (i) the ratio in which AB is divided by the y-axis.
 - (ii) find the coordinates of the point of intersection.
 - (iii) the length of AB.

Solution :

(a) Let the principal be $\overline{\mathbf{x}} \mathbf{P}$.

 $Given: \mathbf{R} = 5\%, \mathbf{T} = 24$ years

C.I. for 2 years =
$$P\left(1 + \frac{5}{100}\right)^2 - P$$

S.I. for 2 years = $\frac{P \times 5 \times 2}{100} = \frac{P}{10}$

∴ Difference between C.I. and S.P. = ₹25

$$P\left(1+\frac{5}{100}\right)^2 - P - \frac{P}{10} = 25$$

[4]

 $\frac{441 P}{400} - \frac{11P}{10} = 25$ $\frac{441P - 440P}{400} = 25$ P = 10,000

Hence, the principle be 10,000

(b) Let ABC is a right angled triangle. So

 $AC^2 = AB^2 + BC^2$ $= (7)^2 + (7)^2 = 2(7)^2$ AC = $7\sqrt{2}$ Area of semi circle = $\frac{1}{2} \times \frac{22}{7} \times \left(\frac{7\sqrt{2}}{2}\right)^2$ $=\frac{1}{2}\times\frac{22}{7}\times\frac{49\times2}{4}$ $= 38.5 \text{ cm}^2$ Area of \triangle ABC = $\frac{1}{2} \times 7 \times 7 = 24.5 \text{ cm}^2$ Area of shaded region = Area of semi circle – Area of \triangle ABC. $= 38.5 - 24.5 = 14 \text{ cm}^2$. Ans. (c) Let P be the point at which (i) AB intersect y-axis Let AP:PB = m:nB (8, ~ 3) $x = \frac{mx_1 + nx_2}{m + n}$ P (0, y) $y = \frac{my_1 + ny_2}{m + n}$ $0 = \frac{m \cdot 8 + n (-4)}{m + n}$ C A (-4, 6) and $\frac{8m-4n}{m+n} = 0$ 8m = 4nm: n = 1: 2Ans. $y = \frac{my_2 + ny_1}{m + n}$ (ii) $1 \times (-3) + 2 \times 6$ 1 + 2Using the above ratio, $y = \frac{-3+12}{1+2} = 3$ \therefore Point of P be (0, 3) Ans.

(iii)

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-4 - 8)^2 + (6 + 3)^2}$$

$$= \sqrt{144 + 81} = 15 \text{ units.}$$
Ans.

Ans.

Question 3.

(a) In the given figure O is the centre of the circle and AB is a tangent at B. If AB =15 cm and AC = 7.5 cm. Calculate the radius of the circle. [3]

(b) Evaluate without using trigonometric tables :

$$\cos^2 26^\circ + \cos 64^\circ \sin 26^\circ + \frac{\tan 36^\circ}{\cot 54^\circ}$$
 [3]

(c) Marks obtained by 40 students in a short assessment is given below, where a and b are two missing data.

Marks	5	6	7	8	9
No. of students	6	a	1 6	13	ь
If the mean of the distribu	ition is 7.2, find	l a and b.	,		[4]

If the mean of the distribution is 7.2, find a and b.

Solution :

(a) Applying intercept theorem

$$AC \times AD = AB^2$$

7.5 × (7.5 + 2R) = 15²

$$\times (7.5 + 2R) = 15^2$$

where R is the radius of the circle

(7.5 + 2R) =
$$\frac{15 \times 15}{7.5}$$
 = 30
2R = 22.5
R = 11.25 cm. Ans.
(b) Given : $\cos^2 26^\circ + \cos 64^\circ \sin 26^\circ + \frac{\tan 36^\circ}{1.5.40}$

$$= \cos^2 26^\circ + \cos (90^\circ - 26^\circ) \cdot \sin 26^\circ + \frac{\tan (90^\circ - 54^\circ)}{\cot 54^\circ}$$

$$= (\cos^2 26^\circ + \sin^2 26^\circ) + \frac{\cot 54^\circ}{\cot 54^\circ}$$

= 1 + 1 = 2 Ans.

(c) Let 6 + a + 16 + 13 + b = 40a+b = 5...(i) ⇒ $\frac{1}{r} = \Sigma f x$

Mean

$$x = \sum f$$

$$7 \cdot 2 = \frac{30 + 6a + 112 + 104 + 9b}{40}$$

$$246 + 6a + 9b = 288$$

$$6a + 9b = 42$$

$$2a + 3b = 14$$
...(ii)

Solving (i) and (ii), we get

Question 4.

(a) Kiran deposited ₹ 200 per month for 36 months in a bank's recurring deposit account. If the bank pays interest at the rate of 11% per annum, find the amount she gets on maturity.
 [3]

[8]

[4]

- (b) Two coins are tossed once. Find the probability of getting :
 - (i) 2 heads
 - (ii) at least 1 tail.

(c) Using graph paper and taking
$$1 \text{ cm} = 1$$
 unit along both x-axis and y-axis.

- (i) Plot the points A(-4, 4) and B (2, 2)
- (ii) Reflect A and B in the origin to get the images A' and B' respectively.
- (iii) Write down the co-ordinates of A' and B'.
- (iv) Give the geometrical name for the figure ABAB'.
- (v) Draw and name its lines of symmetry.

Solution :

(a) Given : P per month = ₹200, Time (n) = 36 months, R = 11%.

Equivalent principal for 36 months =
$$200 \times \frac{n(n+1)}{2}$$

= $200 \times \frac{36 \times 37}{2}$
= $36 \times 37 \times 100$
Interest = $\frac{PRT}{100}$
= $\frac{36 \times 37 \times 100 \times 11 \times 1}{100 \times 12}$
= $\boxed{1221}$
Maturity Amount = Pn + Interest
= $200 \times 36 + 1221$
= $\boxed{8421}$. Ans.

(b) If two coins are tossed once, then

Sample Space (S) = {H H, HT, TH, TT} n (S) = 4 (i) E : getting two heads = {H H} n(E) = 1 $P(E) = \frac{n(E)}{n(S)} = \frac{1}{4}$ Ans. (ii) E : At least one tail = {HT, TH, TT} n(E') = 3 $P(E') = \frac{n(E')}{n(S)} = \frac{3}{4}$ Ans.

- (c) (i) Please See Graph.
 - (ii) Please See Graph.

- (iii) A' (4, -4) B' (-2, -2)
- (iv) Rhombus
- (v) Two lines of symmetry.Both diagonals, AA' and BB'

SECTION B [40 Marks]

Answer any four Questions in this Section.

Question 5.

(a) In the given figure, AB is the diameter of a circle with centre O.

 $\angle BCD = 130^{\circ}$. Find : (i) $\angle DAB$, (ii) $\angle DBA$

- **(b)** Given $\begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix} X = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$. Write :
 - (i) the order of the matrix X
 - (ii) the matrix X.

(c) A page from the Savings Bank Account of Mr. Prateek is given below :

Date	Particulars	Withdrawal	Deposit	Balances
		(In 🎝	(In 🎝	(In 🕄
Jan. 1 st 2006	B/F	_	_	1,270
Jan. 7 th 2006	By Cheque	<u> </u>	2,310	3,580
March 9 th 2006	To Self	2,000	_	1,580
March 26 th 2006	By Cash		6,200	7,780
June 10 th 2006	To Cheque	4,500		3,280
July 15 th 2006	By Clearing		2,630	5,910
October 18th 2006	To Cheque	530	_	5,380
October 27th 2006	To Self	2,690	_	2,690
November 3 rd 2006	By Cash	_	1,500	4,190
December 6 th 2006	To Cheque	950	_	3,240
December 23 rd 2006	By Transfer	_	2,920	6,160

[8]

If he receives ₹ 198 as interest on 1st January, 2007, find the rate of interest paid by the bank. [4]

Solution :

(a) On joining BD, \angle ADB is in the semicircle.

$$\angle ADB = 90^{\circ}$$

(Angle in a simicircle is right angle)

(i) Let ABCD is a cyclic quadilateral.

$$\angle BCD + \angle DAB = 180^{\circ}$$

$$130^{\circ} + \angle DAB = 180^{\circ}$$

$$\angle DAB = 180^{\circ} - 130^{\circ} = 50^{\circ}$$
(ii) Now, $\angle BAD + \angle BDA + \angle DBA = 180^{\circ}$

$$90^{\circ} + 50^{\circ} + \angle DBA = 180^{\circ}$$

$$\angle DBA = 40^{\circ}$$
Ans.
(b) (i) Order of matrix X is 2 × 1.

(ii) Let
$$X = \begin{bmatrix} a \\ b \end{bmatrix}$$
$$\begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
$$\begin{bmatrix} 2a + b \\ -3a + 4b \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
$$2a + b = 7$$
$$-3a + 4b = 6$$
$$\dots \dots \dots (1)$$
$$\dots \dots (2)$$
Solving (1) and (2), we get
$$a = 2, b = 3$$

$$a = 2, b = 3$$
$$X = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$

Ans.

(c)	Months	Minimum Balance
	January	3,580
	February	3,580
	March	1,580
	April	7,780
	May	7,780
	June	3,280
	July	3,280
	August	5,910
	September	5,910
	October	2,690
	November	4,190
	December	3,240
	Total	₹ 52,800

Now,

Principal =
$$₹ 52,800$$

Time = 1 month = $\frac{1}{12}$ year,
Interest = $₹ 198$
I = $\frac{PRT}{100}$
 $52,800 \times R \times 1$
 100×12 = 198
R = 4.5%. Ans.

Question 6.

- (a) The printed price of an article is ₹ 60,000. The wholesaler allows a discount of 20% to the shopkeeper. The shopkeeper sells the article to the customer at the printed price. Sales tax (under VAT) is charged at the rate of 6% at every stage. Find :
 - (i) the cost to the shopkeeper inclusive of tax.
 - (ii) VAT paid by the shopkeeper to the Government.
 - (iii) the cost to the customer inclusive of tax.
- (b) Solve the following inequation and represent the solution set on the number line :

$$4x - 19 < \frac{3x}{5} - 2 \le \frac{-2}{5} + x, \ x \in R$$
^[3]

[3]

(c) Without solving the following quadratic equation, find the value of 'm' for which the given equation has real and equal roots.

$$x^{2} + 2(m-1)x + (m+5) = 0$$
 [3]

Solution :

(a) (i) Printed price of the article = $\mathbf{\overline{\xi}}$ 60,000 Given : discount = 20% of ₹ 60,000 and $= \frac{20}{100} \times 60,000 = ₹ 12,000$ Sale price of the article = 60,000 - 12,000 = ₹48,000Sales tax paid by the shopkeeper = 6% of ₹ 48,000 $= \frac{6}{100} \times 48,000 = ₹2,880$. The cost of the shopkeeper inclusive of tax = 48,000 + 2,880= ₹ 50,880. Ans. VAT paid by shopkeeper = Tax charged - Tax paid (ii) $= 60,000 \times \frac{6}{100} - 48,000 \times \frac{6}{100}$ = ₹720 Ans. Sales tax paid by the customer = 6% of ₹ 60,000(iii) = $\frac{6}{100}$ × 60,000 = ₹ 3,600 The cost to the customer inclusive of tax : = 60,000 + 3,600

(b) Given :

$$4x - 19 < \frac{3x}{5} - 2 \text{ and } \frac{3x}{5} - 2 \le -\frac{2}{5} + x$$

$$\frac{17x}{5} < 17 \text{ and } -\frac{2x}{5} \le \frac{8}{5}$$

$$x < 5 \implies x \ge -4$$
Solution set = $\{x : 5 > x \ge -4\}$

 $4x - 19 < \frac{3x}{5} - 2 \le -\frac{2}{5} + x$

-4-3-2-1 0 1 2 3 4 5 6

(c) Given : $x^2 + 2(m-1)x + (m+5) = 0$ For real and equal roots,

.

$$b^2 - 4ac = 0$$
$$b^2 = 4ac$$

Comparing given equation (i) with $ax^2 + bx + c = 0$, we get

$$a = 1, b = 2(m - 1), c = (m + 5)$$

$$4 (m - 1)^{2} = 4 (m + 5)$$

$$m^{2} - 3m - 4 = 0$$

$$m^{2} - 4m + m - 4 = 0$$

$$m (m - 4) + 1 (m - 4) = 0$$

$$m = 4 \text{ or } m = -1$$
Ans.

Question 7.

- (a) A hollow sphere of internal and external radii 6 cm and 8 cm respectively is melted and recast into small cones of base radius 2 cm and height 8 cm. Find the number of cones.
 [3]
- (b) Solve the following equation and give your answer correct to 3 significant figures:

$$5x^2 - 3x - 4 = 0$$
 [3]

...(i)

(c) As observed from the top of a 80 m tall lighthouse, the angles of depression of two ships on the same side of the light house in horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest metre.

Solution :

(a) Given : External Radius R = 8 cm, Internal Radius = 6 cm,

Volume of hollow spheres
$$=\frac{4}{3}\pi (\mathbb{R}^3 - r^3)$$
.
Volume of hollow spheres $=\frac{4}{3}\pi [8^3 - 6^3]$
 $=\frac{4}{3}\pi [512 - 216] = \frac{4}{3}\pi (296)$
Volume of cones $=\frac{1}{3}\pi r^2 h$
 $=\frac{1}{3}\pi (2)^2 (8)$

A

Number of cones =
$$\frac{\text{Volume of sphere}}{\text{Volume of cones}} = \frac{\frac{4}{3}\pi [296]}{\frac{1}{3}\pi \times 4 \times 8}$$

= $\frac{296}{8} = 37 \text{ cones.}$ Ans.

(b) Given : $5x^2 - 3x - 4 = 0$

Comparing given equation with $ax^2 + bx + c = 0$, we get a = 5, b = -3, c = -4

Let

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{3 \pm \sqrt{(-3)^2 - 4 \times 5 \times (-4)}}{2 \times 5}$$

$$x = \frac{3 \pm \sqrt{9 + 80}}{10} = \frac{3 \pm \sqrt{89}}{10} = \frac{3 \pm 9 \cdot 43}{10}$$

Taking +ve sign

$$x = \frac{3 + 9.43}{10} = 1.243$$

and taking – ve sign

$$x = \frac{3 - 9 \cdot 43}{10}$$

= $\frac{-6 \cdot 43}{10}$
= $-0 \cdot 643$
 $x = 1 \cdot 243 \text{ or } x = -0 \cdot 643$ Ans.
(c) In \triangle ABC, $\tan 50^{\circ} = \frac{BC}{80}$
BC = $80 \times 1 \cdot 1918$
BC = $95 \cdot 34 \text{ m}$
In \triangle ABD, $\tan 60^{\circ} = \frac{BD}{80}$
BD = $80 \sqrt{3}$
BD = $138 \cdot 56 \text{ m}$
CD = BD - BC
= $138 \cdot 66 - 95 \cdot 34$
= $43 \cdot 2 \text{ m}$. Ans.

Question 8.

- (a) A man invests ♥ 9,600 on ♥ 100 shares at ♥ 80. If the company pays him 18% dividend find
 - (i) the number of shares he buys.
 - (ii) his total dividend.
 - (iii) his percentage return on the shares.

(b) In the given figure \triangle ABC and \triangle AMP are right С angled at B and M respectively. Given AB = 10 cm, AP = 15 cm and PM = 12 cm. Prove $\triangle ABC \sim \triangle AMP$. (i) (ii) Find AB and BC. [3] B (c) If $x = \frac{\sqrt{a+1} + \sqrt{a-1}}{\sqrt{a+1} - \sqrt{a-1}}$, using properties of proportion show that $x^2 - 2ax + 1$ *≈ 0.* [4] Solution : (a) Given : Investment = ₹ 9,600, N.V. = ₹ 100, M.V. = ₹ 80, Div. % = 18% Investment (i) $=\frac{9600}{80}=120$ shares Ans. Total dividend = $\frac{18}{100} \times 120 \times 100$ (ii) = ₹2,160 Ans. $N.V \times Div\% = M.V. \times Return\%$ (iii) Since Return % = $\frac{100 \times 189}{80}$ = 22.5% Ans. (b) (i) In \triangle ABC and \triangle APM, 1 $\angle ABC = \angle AMP = 90^{\circ}$ \angle BAC = \angle PAM (Common) $\triangle ABC \sim \triangle APM$ AC BC (ii) Also, AP = PM 10 BC 15 = 12 BC = 8 cm. Ans. $\therefore \Delta$ ABC is right angled Δ . Applying Pythagorous,

(c) Given:

$$AB^2 = AC^2 - BC^2$$

 $= 10^2 - 8^2$
 $AB = 6 \text{ cm.}$
 $\frac{x}{1} - \frac{\sqrt{a+1} + \sqrt{a-1}}{\sqrt{a+1} - \sqrt{a-1}}$

Using componendo and dividendo,

$$x+1 = \frac{\sqrt{a+1}}{\sqrt{a-1}}$$

Squaring both sides,
$$(x+1)^2 = \frac{a+1}{a-1}$$

again using componendo and dividendo,
$$\frac{x^2+1}{2x} = \frac{a}{1}$$
$$x^2 - 2ax + 1 = 0$$

Hence Proved

Question 9.

(a) The line through A (-2, 3) and B (4, b) is perpendicular to the line 2x - 4y = 5. Find the value of b. [3]

(b) Prove that
$$\frac{\tan^2 \theta}{(\sec \theta - 1)^2} = \frac{1 + \cos \theta}{1 - \cos \theta}$$
[3]

(c) A car covers a distance of 400 km at a certain speed. Had the speed been 12 km/h more, the time taken for the journey would have been 1 hour 40 minutes less. Find the original speed of the car. [4]

•••

Solution :

(a)
Slope of AB
$$(m_1) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{b - 3}{4 + 2} = \frac{b - 3}{6}$$

Equation of given line
 $2x - 4y = 5$
 $4y = 2x - 5$
 $y = \frac{1}{2}x - \frac{5}{4}$
Slope of given line $(m_2) = \frac{1}{2}$
As per the question, line are perpendicular.
 $m_1 m_2 = -1$

$$m_{1} \cdot m_{2} = -1$$

$$\frac{b-3}{6} \times \frac{1}{2} = -1$$

$$b-3 = -12$$

$$b = -9$$
Ans.
(b)
$$L.H.S. = \frac{\tan^{2} \theta}{(\sec \theta - 1)^{2}}$$

$$= \frac{\sec^{2} \theta - 1}{(\sec \theta - 1)^{2}}$$

$$= (\sec \theta - 1)(\sec \theta + 1)$$

$$(\sec \theta - 1)^{2}$$

$$= \frac{\sec \theta + 1}{\sec \theta - 1} - \frac{1}{\cos \theta} + 1$$

$$= \frac{1 + \cos \theta}{1 - \cos \theta} = R.H.S.$$
Hence Proved

(c) Let the original speed of car be x km/hr.

Usual time = $\frac{400}{x}$, New speed = x + 12, New time = $\frac{400}{x+1}$ According to the condition :

$$\frac{400}{x} \frac{400}{x+12} = \frac{5}{3}$$
$$\frac{x+12-x}{x(x+12)} = \frac{1}{240}$$
$$x^2 + 12x - 2880 = 0$$
$$x^2 + 60x - 48x - 2880 = 0$$
$$x(x+60) - 48(x+60) = 0$$
$$x = -60 \text{ or } x = 48$$
can not be negative.

But speed can not be negative Origin

Question 10.

- (a) Construct a triangle ABC in which base BC = 6 cm, AB = 5.5 cm and $\angle ABC = 120^{\circ}$.
 - (i) Construct a circle circumscribing the triangle ABC.
 - (ii) Draw a cyclic quadrilateral ABCD so that D is equidistant from B and C.

[3]

(b) The following distribution represents the height of 160 students of a school.

Height (in cm)	No. of students	
140-145	12	
145-150	20	
150-155	30	
155-160	38	
<i>160-165</i>	24	
165-170	16	
170-175	12	1
175-180	8	

Draw an ogive for the given distribution taking 2 cm = 5 cm of height on one axis and 2 cm = 20 students on the other axis. Using the graph, determine :

- (i) The median height.
- (ii) The interquartile range.
- (iii) The number of students whose height is above 172 cm.

[8]

Solution :

(a) (i) Steps of constructions :

- (1) Draw a line segment BC = 6 cm.
- (2) Construct \angle CBP = 120°.
- (3) Cut BA = 5.5 cm from BP.
- (4) Join A to C.
- (5) Construct perpendicular bisectors of AB and BC, intersecting at O. Join AO.
- (6) Taking as the centre and OA as radius draw a circle, passing through, A, B, and C.

- (ii) (1) Extend the right bisector of BC intersecting the circle at D.
 - (2) Join A to D and C to D.
 - (3) ABCD is required cyclic quadrilateral.

(iii) No. of students above 172 cm = 160 - 144 = 16. Question 11.

(a) In triangle PQR, PQ = 24 cm, QR = 7 cm and $\angle PQR = 90^{\circ}$.

Find the radius of the inscribed circle.

(b) Find the mode and median of the following frequency distribution :

x	10	11	12	13	14	15
f	1	-4	7	5 ·	9	3

Ans.

[3]

[3]

- (i) Write the slope of the line.
- (ii) Write the equation of the line.
- (iii) Find the co-ordinates of Q.

Solution :

(a) Given :
$$\triangle$$
 PQR is right angled.

$$PR^{2} = PQ^{2} + QR^{2}$$
$$= (24)^{2} + (7)^{2}$$
$$= 576 + 49 = 625$$

$$PR = 25 cm$$

Draw $\perp r$ from O on PQ and PR and mark as B and C respectively.

$$\angle OBQ = \angle OAQ = \angle OCR$$

= 90°

(\angle between radius and tangent is 90°)

All \angle 's of OAQB are 90° and QA = QB

(Since the tangent to a circle from an exterior point are equal in length).

У

Ans.

 \therefore OAQB is a square.

$$QA = QB = x$$

$$AR = 7 - x = RC$$

$$BP = 12 - x = PC$$

$$PC + RC = PR$$

$$7 - x + 12 - x = 25$$

$$x = 3 \text{ cm}$$

$$(: AR = RC) \text{ Tangents from ext.}$$

$$(: PB = PC) \text{ point are equal}$$

(b) Mode is the value of the highest frequency.

$$Mode = 14$$

. Median is the middle most value.

$$M_{e} = \left(\frac{N+1}{2}\right)^{th} \text{ observation}$$
$$= \left(\frac{29+1}{2}\right)^{th} = 15 \text{ th observation} = 13 \qquad \text{ Ans}$$

(c) (i) Slope of line $PQ = \tan 45^\circ = 1$ (ii) Equation of line PQ: $y - y_1 = m(x - x_1)$ Ans.

$$y - y_1 = m(1 - x_1)$$

 $y - 3 = 1(x - 5)$
 $y = x - 2$ Ans.

(iii) Put x = 0 in equation of line PQ. y = -2

Coordinate of
$$Q = (0, -2)$$
 Ans