ICSE Question Paper (2013)

 MATHEMATICS

 MATHEMATICS}

SECTION A [40 Marks]
(Answer all questions from this Section.)

Question 1.

(a) Given $A=\left[\begin{array}{rr}2 & -6 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{ll}-3 & 2 \\ 4 & 0\end{array}\right], C=\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right]$.

Find the matrix X such that $A+2 X=2 B+C$.
(b) At what rate $\%$ p.a. will a sum of $₹ 4000$ yield $₹ 1324$ as compound interest in 3 years?
(c) The median of the following observations 11, 12, 14, $(x-2),(x+4),(x+9), 32$, 38,47 arranged in ascending order is 24 . Find the value of x and hence find the mean.
Solution :
(a) Given:

$$
A=\left[\begin{array}{rr}
2 & -6 \\
2 & 0
\end{array}\right], B=\left[\begin{array}{rr}
3 & 2 \\
4 & 0
\end{array}\right] \text { and } C=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
$$

$$
A+2 X=2 B+C
$$

Putting the given values, we get

$$
\begin{aligned}
{\left[\begin{array}{rr}
2 & -6 \\
2 & 0
\end{array}\right]+2 X } & =2\left[\begin{array}{rr}
-3 & 2 \\
4 & 0
\end{array}\right]+\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right] \\
2 X & =\left[\begin{array}{rr}
-6+4 & 4+0 \\
8+0 & 0+2
\end{array}\right]-\left[\begin{array}{rr}
2 & -6 \\
2 & 0
\end{array}\right] \\
X & =\frac{1}{2}\left[\begin{array}{rr}
-4 & 10 \\
6 & 2
\end{array}\right] \\
X & =\left[\begin{array}{rr}
-2 & 5 \\
3 & 1
\end{array}\right]
\end{aligned}
$$

Ans.
(b) Given: \quad Principal $=$ P 4,000, C.I. $=$ 1,324,

$$
\begin{aligned}
\text { Amount } & =\text { P + C.I. } \\
& =₹(4,000+1,324)=₹ 5,324
\end{aligned}
$$

Time $=3$ years
We know that,

$$
\mathrm{A}=\mathrm{P}\left(1+\frac{r}{100}\right)^{T}
$$

$$
5,324=4,000\left(1+\frac{r}{100}\right)^{9}
$$

$$
\begin{aligned}
& 5,324 \\
& 4,000
\end{aligned}=\left(1+\begin{array}{c}
r \\
100
\end{array}\right)^{3}
$$

$$
\begin{aligned}
& \frac{1,331}{1,000}=\left(1+\frac{r}{100}\right)^{3} \\
& \left(\frac{11}{10}\right)^{3}=\left(1+\frac{r}{100}\right)^{3}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& 1+\frac{r}{100}=\begin{array}{l}
11 \\
r
\end{array} \\
& 10 \\
& 100=11 \\
& r 10^{-1} \\
& 100=1 \\
& r=10 \\
& r=100 \\
& r=10 \%
\end{aligned}
$$

Ans.
(c) Given observation are $11,12,14,(x-2),(x+4),(x+9), 32,38,47$ and median $=24$.

$$
\begin{aligned}
n & =9 \text { (odd) } \\
\text { Median } & =\frac{n+1}{2} \text { th term } \\
& =\frac{9+1}{2} \text { th term } \\
24 & =5 \text { th term } \\
x+4 & =24 \\
x & =24-4 \\
x & =20
\end{aligned}
$$

Therefore, $11,12,14,(20-2),(20+4),(20+9), 32,38,47$

$$
=11,12,14,18,24,29,32,38,47
$$

Now

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma x}{n} \\
& =\frac{11+12+14+18+24+29+32+38+47}{9} \\
& =\frac{225}{9}=25 \quad \text { Ans. }
\end{aligned}
$$

Question 2.

(a) What number must be added to each of the number 6, 15, 20 and 43 to make them proportional?
(b) If $(x-2)$ is a factor of the expression $2 x^{3}+a x^{2}+b x-14$ and when the expression is divided by $(x-3)$, it leaves a remainder 52, find the values of a and b. [3]
(c) Draw a histogram from the following frequency distribution and find the mode from the graph :
[4]

Class	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$
Frequency	2	5	18	14	8	5

Solution :

(a) Let the number must be added be x, then

$$
\text { the new number }=6+x, 15+x, 20+x, 43+x
$$

\because These are proportionals.
or

$$
6+x: 15+x:: 20+x: 43+x
$$

$$
\text { or } \quad(6+x)(43+x)=(15+x)(20+x)
$$

or

$$
258+6 x+43 x+x^{2}=300+20 x+15 x+x^{2}
$$

$$
49 x-35 x=300-258
$$

or

$$
14 x=42
$$

or

$$
x=3 .
$$

Ans.
(b) Let $(x-2)$ is a factor of the given expression.

$$
\begin{aligned}
x-2 & =0 \\
x & =2
\end{aligned}
$$

Given expression,

$$
\begin{align*}
2 x^{3}+a x^{2}+b x-14 & =0 \\
2(2)^{3}+a(2)^{2}+b(2)-14 & =0 \\
16+4 a+2 b-14 & =0 \\
4 a+2 b+2 & =0 \\
4 a+2 b & =-2 \\
2 a+b & =-1 \tag{i}
\end{align*}
$$

and when given expression is divided by $(x-3)$

$$
\Rightarrow \quad \begin{align*}
x-3 & =0 \\
x & =3 \\
2 x^{3}+a x^{2}+b x-14 & =52 \\
2(3)^{3}+a(3)^{2}+b(3)-66 & =0 \\
54+9 a+3 b-66 & =0 \\
9 a+3 b & =12 \\
3 a+b & =4 \tag{ii}
\end{align*}
$$

Solving equation (i) and (ii),

$$
\begin{aligned}
2 a+b & =-1 \\
3 a+b & =4 \\
(-)(-) & (+) \\
-a & =-5 \\
a & =5
\end{aligned}
$$

from (ii),

$$
\begin{aligned}
3 \times 5+b & =4 \\
b & =4-15 \\
b & =-11 \\
a=5 & \text { and } b=-11
\end{aligned}
$$

Ans.
(c)

From the Histogram the value of Mode is 13-8.
Ans.

Question 3.

(a) Without using tables evaluate $3 \cos 80^{\circ} . \operatorname{Cosec} 10^{\circ}+2 \sin 59^{\circ} \sec 31^{\circ}$.
[3]
(b) In the given figure,

$$
\begin{aligned}
& \angle B A D=65^{\circ}, \\
& \angle A B D=70^{\circ}, \\
& \angle B D C=45^{\circ}
\end{aligned}
$$

(i) Prove that $A C$ is a diameter of the circle.
(ii) Find $\angle A C B$.

(c) $A B$ is a diameter of a circle with centre $C=(-2,5)$. If $A=(3,-7)$. Find:
(i) The length of radius $A C$
(ii) The coordinates of B.

Solution:

(a) Given:
$3 \cos 80^{\circ} \cdot \operatorname{cosec} 10^{\circ}+2 \sin 59^{\circ} \sec 31^{\circ}$
$=3 \cos 80^{\circ} \operatorname{cosec}\left(90^{\circ}-80^{\circ}\right)+2 \sin 59^{\circ} \sec \left(90^{\circ}-59^{\circ}\right)$
$=3 \cos 80^{\circ} \sec 80^{\circ}+2 \sin 59^{\circ} \operatorname{cosec} 59^{\circ}$
$=3 \cos 80^{\circ} \times \frac{1}{\cos 80^{\circ}}+2 \sin 59^{\circ} \times \frac{1}{\sin 59^{\circ}}$
$=3+2=5$.
Ans.
(b) Given: $\angle \mathrm{BAD}=65^{\circ}, \angle \mathrm{ABD}=70^{\circ}, \angle \mathrm{BDC}=45^{\circ}$
(i) $\because \mathrm{ABCD}$ is a cyclic quadrilateral.

In $\triangle \mathrm{ABD}$,

$$
\angle \mathrm{BDA}+\angle \mathrm{DAB}+\angle \mathrm{ABD}=180^{\circ} \quad \text { By using sum property of } \Delta^{s}
$$

$$
\therefore \quad \angle \mathrm{BDA}=180^{\circ}-\left(65^{\circ}+70^{\circ}\right)
$$

$$
=180^{\circ}-135^{\circ}
$$

$$
=45^{\circ}
$$

Now from $\triangle A C D$,

$$
\begin{aligned}
\angle \mathrm{ADC} & =\angle \mathrm{ADB}+\angle \mathrm{BDC} \\
& =45^{\circ}+45^{\circ} \\
& =90^{\circ}
\end{aligned} \quad\left(\because \angle \mathrm{BDA}=\angle \mathrm{ADB}=45^{\circ}\right)
$$

Hence, $\angle \mathrm{D}$ makes right angle belongs in semi-circle therefore AC is a diameter of the circle.
(ii)

$$
\begin{array}{lrlr}
\angle \mathrm{ACB}=\angle \mathrm{ADB} & \text { (Angles in the same segment of a circle) } \\
\angle \mathrm{ACB}=45^{\circ} & \left(\because \angle \mathrm{ADB}=45^{\circ}\right) \text { Ans. }
\end{array}
$$

(c) (i) The length of radius $\mathrm{AC}=\sqrt{(-2-3)^{2}+(5+7)^{2}}$

$$
\begin{aligned}
& =\sqrt{(-5)^{2}+(12)^{2}} \\
& =\sqrt{25+144} \\
& =\sqrt{169} \\
& =13 . \quad \text { Ans. }
\end{aligned}
$$

(ii) Let the point of B be (x, y).

Given C is the mid-point of $A B$. Therefore

$$
\begin{array}{rlrl}
& & -2 & =\frac{3+x}{2} \\
\Rightarrow & & 3+x & =-4 \\
\Rightarrow & x & =-4-3=-7 \\
& \text { and } & 5 & =\frac{-7+y}{2} \\
\Rightarrow & 10 & =-7+y \\
& y & =17
\end{array}
$$

Hence, the co-ordinate of $B(-7,17)$.
Ans.

Question 4.

(a) Solve the following equation and calculate the answer correct to two decimal places:

$$
\begin{equation*}
x^{2}-5 x-10=0 \tag{3}
\end{equation*}
$$

(b) In the given figure, $A B$ and $D E$ are perpendicular to BC.
(i) Prove that $\triangle A B C \sim \triangle D E C$
(ii) If $A B=6 \mathrm{~cm}, D E=4 \mathrm{~cm}$ and $A C$ $=15 \mathrm{~cm}$. Calculate CD.
(iii) Find the ratio of the area of Δ $A B C$: area of $\triangle D E C$.
[3]

(c) Using graph paper, plot the points $A(6,4)$ and $B(0,4)$.
(i) Reflect A and B in the origin to get the images A^{\prime} and B^{\prime}.
(ii) Write the co-ordinates of A^{\prime} and B^{\prime}.
(iii) State the geometrical name for the figure $A B A B$ '.
(iv) Find its perimeter.

Solution :

(a) Given: $x^{2}-5 x-10=0$

Here, $a=1, b=-5$ and $c=-10$

$$
\therefore \quad \begin{aligned}
\mathrm{D} & =b^{2}-4 a c \\
& =(-5)^{2}-4 \times 1 \times-10 \\
\mathrm{D} & =25+40=65 \\
x & =\frac{-b \pm \sqrt{\mathrm{D}}}{2 a} \\
& =\frac{5 \pm \sqrt{65}}{2 \times 1}=\frac{5 \pm 8.06}{2} \\
& =\frac{5+8.065-8.06}{2}, \frac{2}{2} \\
& =\frac{13.06}{2},-\frac{3.06}{2} \\
x & =6.53,-1.53
\end{aligned}
$$

Ans.
(b) (i) From $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEC}$,

$$
\begin{array}{ll}
& \angle \mathrm{ABC}=\angle \mathrm{DEC}=90^{\circ} \tag{Given}\\
\text { and } & \angle \mathrm{ACB}=\angle \mathrm{DCE}=\text { Common } \\
\therefore & \triangle \mathrm{ABC}-\triangle \mathrm{DEC}
\end{array}
$$

(ii) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEC}$,

$$
\begin{aligned}
& \triangle \mathrm{ABC} & \sim \Delta \mathrm{DEC} \\
\therefore & \frac{\mathrm{AB}}{\mathrm{DE}} & =\frac{\mathrm{AC}}{\mathrm{CD}}
\end{aligned}
$$

Given : $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{DE}=4 \mathrm{~cm}, \mathrm{AC}$ $=15 \mathrm{~cm}$,

$$
\begin{aligned}
\therefore & \frac{6}{4} & =\frac{15}{\mathrm{CD}} \\
\Rightarrow & 6 \times \mathrm{CD} & =15 \times 4 \\
\Rightarrow & \mathrm{CD} & =\frac{60}{6} \\
\Rightarrow & \mathrm{CD} & =10 \mathrm{~cm} .
\end{aligned}
$$

Ans.
(iii)

$$
\begin{aligned}
\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEC}} & =\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}} \\
& =\frac{(6)^{2}}{(4)^{2}} \\
& =\frac{3 \cdot 6}{16}=\frac{9}{4}
\end{aligned}
$$

$$
(\because \triangle \mathrm{ABC}-\triangle \mathrm{DEC})
$$

\therefore Area of $\triangle A B C:$ Area of $\triangle D E C=9: 4$.
Ans.
(c) (i) Please See Graph:

(ii) Reflection of A^{\prime} and B^{\prime} in the origin $=A^{\prime}(-6,4)$ and $B^{\prime}(0,-4)$
(iii) The geometrical name for the figure $\mathrm{AB} A \mathrm{~B}^{\prime}$ is a parallelogram.
(iv) From the graph, $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BB}^{\prime}=8 \mathrm{~cm}$.

In $\triangle A_{B B}^{\prime}$

$$
\begin{aligned}
\left(\mathrm{AB}^{\prime}\right)^{2} & =\mathrm{AB}^{2}+\left(\mathrm{BB}^{\prime}\right)^{2} \\
& =(6)^{2}+(8)^{2}=36+64 \\
& =100
\end{aligned}
$$

$$
\mathrm{AB}^{\prime}=10=\mathrm{A}^{\prime} \mathrm{B} \quad\left(\mathrm{AB} \mathrm{~A}^{\prime} \mathrm{B}^{\prime} \text { is a parallelogram }\right)
$$

Perimeter of $A B A^{\prime} B^{\prime}=A^{\prime} B^{\prime}+A B^{\prime}+A B+A^{\prime} B$

$$
=6+10+6+10
$$

$$
=32 \text { units. }
$$

Ans.

SECTION B [40 Marks]

Arswer any four Questions in this Section.

Question 5.

(a) Solve the following inequation, write the solution set and represent it on the number line:

$$
\begin{equation*}
-\frac{x}{3} \leq \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}, x \in R \tag{3}
\end{equation*}
$$

(b) Mr. Britto deposits a certain sum of money each month in a Recurring Deposit Account of a bank. If the rate of interest is of 8% per annum and Mr. Britto gets ₹ 8088 from the bank after 3 years, find the value of his monthly instalment.
(c) Salman buys 50 shares of face value ₹ 100 available at $₹ 132$.
(i) What is his investment?
(ii) If the dividend is 7.5%, what will be his annual income?
(iii) If he wants to increase his annual income by $₹ 150$, how many extra shares should he buy?

Solution :

(a) Given:

$$
-\frac{x}{3} \leq \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}
$$

Taking L.C.M. of 3, 2 and 6 is 6 .

$$
\begin{array}{cccc}
& -\frac{x}{3} \times 6 \leq \frac{x}{2} \times 6-\frac{4}{3} \times 6 & <\frac{1}{6} \times 6 \\
& -2 x \leq 3 x-8<1 \\
\Rightarrow & -2 x \leq 3 x-8 & \text { and } & 3 x-8<1 \\
\Rightarrow & 8 \leq 3 x+2 x & \Rightarrow & 3 x<1+8 \\
\Rightarrow & 8 \leq 5 x & 3 x<9 \\
\Rightarrow & -5 \leq x & \Rightarrow & x<3
\end{array}
$$

\therefore The solution set is $\{x: 1.6 \leq x \leq 3, x \in R\}$

${ }^{4}$| \dagger | \dagger | \dagger | \dagger | \dagger | \dagger | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1 | 0 | 1 | 2 | 3 | 4 | |\quad Number line

(b) Let the monthly instalment be $\mathrm{P}_{\mathrm{x}} \mathrm{x}$

Given: Maturity amount $=\mathbf{₹} 8,088$, Time $(n)=3$ years $=3 \times 12$ months $=36$ months, Rate $(\mathrm{R})=8 \%$ p.a.

$$
\begin{array}{rlr}
\text { Principle for one month } & =\mathrm{P} \times \begin{array}{l}
n(n+1) \\
2
\end{array} \\
& =\begin{array}{c}
x \times 36 \times 37 \\
2
\end{array} \\
& =18 \times 37 x \\
\text { Interest } & =\begin{array}{c}
18 \times 37 x \times 8 \times 1 \\
100 \times 12
\end{array} \\
& =\begin{array}{l}
444 x \\
100
\end{array} & {\left[\because \mathrm{I}=\frac{\mathrm{PRT}}{100}\right]}
\end{array}
$$

Actual sum deposited $=36 x$
Maturity amount $=$ Interest + Actual sum deposited
$8,088=\frac{444 x}{100}+36 x$
$8,088=\begin{gathered}4,044 x \\ 100\end{gathered}$

$$
x=\begin{gathered}
8,088 \times 100 \\
4,044
\end{gathered}=200
$$

Hence, the monthly instalment be $₹ 200$.
Ans.
(c)

$$
\text { Number of shares }=50
$$

Face value of each share $=\boldsymbol{₹} 100$
Market value of each share $=\boldsymbol{₹} 132$
Total face value $=$ ₹ 100×50

$$
=₹ 5,000
$$

(i)

Total investment $=\mathbf{₹} 132 \times 50$

$$
=₹ 6,600
$$

Ans.
(ii)

$$
\begin{aligned}
\text { Rate of dividend } & =7.5 \% \\
\text { Annual income } & =₹ \frac{5,000 \times 7.5}{100} \\
& =₹ 375
\end{aligned}
$$

Ans.
(iii) Let extra share should he buy be x.

$$
\begin{aligned}
\text { then total number of shares } & =50+x \\
\text { Total face value } & =₹ 100 \times(50+x) \\
\therefore \quad \text { Annual income } & =₹ \frac{100 \times(50+x) \times 7 \cdot 5}{100} \\
& =(50+x) \times 7 \cdot 5 \\
\therefore \quad & \\
(50+x) \times 7 \cdot 5 & =375+150 \\
50+x & =\frac{525}{7 \cdot 5}=70 \\
x & =70-50 \\
x & =20
\end{aligned}
$$

Hence, the extra shares should be buy $=20$.
Ans.

Question 6.

(a) Show that $\sqrt{\frac{1-\cos A}{1+\cos A}-\frac{\sin A}{1+\cos A}}$
(b) In the given circle with centre $O, \angle A B C=100^{\circ}, \angle A C D=40^{\circ}$ and $C T$ is a tangent to the circle at C. Find $\angle A D C$ and $\angle D C T$.

(c) Given below are the entries in a Savings Bank A/c pass book:

Date	Particulars	Withdrawals	Deposit	Balance
Feb. 8.	B/F	-	-	$₹ 8,500$
Feb. 18	To self	$₹ 4,000$	-	-
April 12	By cash	-	$₹ 2,230$	-
June 15	To self	$₹ 5,000$	-	-
July 8	By cash	-	$₹ 6,000$	-

Calculate the interest for six months from February to July at 6\% p.a.

Solution :

(a) L.H.S. $=\sqrt{\frac{1-\cos A}{1+\cos A}}$

Multiplying by $\sqrt{1+\cos A}$ in numerator and denominator

$$
=\sqrt{\frac{1-\cos A}{1+\cos A}} \times \sqrt{1+\cos A}
$$

$$
\begin{aligned}
& =\sqrt{\frac{(1-\cos A)(1+\cos A)}{(1+\cos A)(1+\cos A)}} \\
& =\sqrt{\frac{1-\cos ^{2} A}{(1+\cos A)^{2}}} \\
& =\sqrt{\frac{\sin ^{2} A}{(1+\cos A)^{2}}} \\
& =\frac{\sin A}{1+\cos A}=\text { R.H.S. }
\end{aligned}
$$

Proved
(b) Given: $\angle \mathrm{ABC}=100^{\circ}$

We know that,

$$
\therefore \quad \begin{array}{rlrl}
\angle \mathrm{ABC}+\angle \mathrm{ADC} & =180^{\circ} & \text { (The sum of opposite angles in } \\
100^{\circ}+\angle \mathrm{ADC} & =180^{\circ} & \text { a cyclic quadrilateral }=180^{\circ} \text {) } \\
\angle \mathrm{ADC} & =180^{\circ}-100^{\circ} & \\
\angle \mathrm{ADC} & =80^{\circ} & &
\end{array}
$$

Join OA and OC, we have a isosceles \triangle OAC,

$$
\begin{array}{rlrl}
\because & O A & =O C & \text { (Radii of a circle) } \\
\therefore & \angle A O C & =2 \times \angle A D C \quad \text { (by theorem) } \\
\text { or } & \angle A O C & =2 \times 80^{\circ}=160^{\circ} \\
\text { In } \triangle \mathrm{AOC}, & & \\
\angle \mathrm{AOC}+\angle \mathrm{OAC}+\angle \mathrm{OCA} & =180^{\circ} \\
160^{\circ}+\angle \mathrm{OCA}+\angle \mathrm{OCA} & =180^{\circ}[\because \angle \mathrm{OAC}=\angle \mathrm{OCA}] \\
& \angle \mathrm{OCA} & =20^{\circ} \\
\angle \mathrm{OCA} & =10^{\circ} \\
\angle \mathrm{OCA}+\angle \mathrm{OCD} & =40^{\circ} \\
\therefore \quad 10^{\circ}+\angle \mathrm{OCD} & =40^{\circ} \\
& \angle \mathrm{OCD} & =30^{\circ}
\end{array}
$$

Hence, $\quad \angle \mathrm{OCD}+\angle \mathrm{DCT}=\angle \mathrm{OCT}$

$$
\angle O C T=90^{\circ}
$$

(The tangent at a point to circle is 1 to the radius through the point to contant)

$$
30^{\circ}+\angle \mathrm{DCT}=90^{\circ}
$$

(c)

Principal for the month of Feb. $=₹ 4,500$
Principal for the month of March $=₹ 4,500$

| Principal for the month of April $=₹$ | 4,500 |
| ---: | :--- | ---: |
| Principal for the month of May $=₹$ | 6,730 |
| Principal for the month of June $=₹$ | 1,730 |
| Principal for the month of July $=₹$ | 7,730 |

$$
\begin{aligned}
\text { Time } & =\frac{1}{12} \text { years } \\
\text { Rate of interest } & =6 \% \\
\text { Interest } & =\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100} \\
& =\frac{29690 \times 6 \times 1}{100 \times 12} \\
& =₹ 148.45
\end{aligned}
$$

Ans.

Question 7.

(a) In $\triangle A B C, A(3,5), B(7,8)$ and $C(1,-10)$. Find the equation of the median through A.
(b) A shopkeeper sells an article at the listed price of ₹ 1,500 and the rate of VAT is 12% at each stage of sale. If the shopkeeper pays a VAT of ₹ 36 to the Government, what was the price, inclusive of Tax, at which the shopkeeper purchased the article from the wholesaler?
(c) In the figure given, from the top of a building $A B=60 \mathrm{~m}$ high, the angles of depression of the top and bottom of a vertical lamp post $C D$ are observed to be 30° and 60° respectively. Find:
(i) The horizontal distance between $A B$ and $C D$.
(ii) The height of the lamp post.
[4]

Solution :

(a) Here D is mid point of $B C$.

$$
\begin{aligned}
\therefore \quad \text { The co-ordinate of } \mathrm{D} & =\left(\frac{7+1}{2}, \frac{8-10}{2}\right) \\
& =(4,-1)
\end{aligned}
$$

Now equation of median AD ,

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

Here, $x_{1}=3, y_{1}=5, x_{2}=4, y_{2}=-1$

$$
\begin{aligned}
& y-5=\frac{-1-5}{4-3}(x-3) \\
& y-5=\frac{-6}{1}(x-3) \\
& y-5=-6 x+18
\end{aligned}
$$

$$
\begin{aligned}
y & =-6 x+18+5 \\
y & =-6 x+23 \\
6 x+y-23 & =0
\end{aligned}
$$

Ans.
(b)

$$
\begin{aligned}
\text { Listed price of an article } & =₹ 1,500 \\
\text { Rate of VAT } & =12 \% \\
\text { VAT on the article } & =\frac{12}{100} \times 1500 \\
& =₹ 180
\end{aligned}
$$

Let C.P. of this article be x, then

$$
\begin{aligned}
\text { VAT } & =\frac{12}{100} \times x \\
& =₹ \frac{12 x}{100}
\end{aligned}
$$

If the shopkeeper pays a VAT $=\mathbf{₹} 36$
Then

$$
\text { Then } \begin{aligned}
180-\frac{12 x}{100} & =36 \\
\frac{18000-12 x}{100} & =36 \\
\therefore \quad 18000-12 x & =3600 \\
12 x & =18000-3600=14,400 \\
x & =₹ 1,200
\end{aligned}
$$

\therefore The price at which the shopkeeper purchased the article inclusive of sales tax

$$
\begin{aligned}
& =1,200+\frac{12}{100} \times 1,200 \\
& =1,200+144 \\
& =₹ 1,344
\end{aligned}
$$

Ans.
(c) Given: $\mathrm{AB}=60 \mathrm{~m}$

\because	$\angle \mathrm{PAC}=60^{\circ}$
\therefore	$\angle \mathrm{PAC}=\angle \mathrm{BCA}$

(i) Now in $\triangle A B C$,

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{A B}{\mathrm{BC}} \\
\sqrt{3} & =\frac{60}{\mathrm{BC}} \\
\Rightarrow \quad \sqrt{3} \mathrm{BC} & =60 \\
\Rightarrow \quad \mathrm{BC} & =\frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
\mathrm{BC} & =\frac{60 \sqrt{3}}{3}=20 \sqrt{3}
\end{aligned}
$$

Hence, the horizontal distance between AB and $\mathrm{CD}=20 \sqrt{3} \mathrm{~m}$. Ans.
(ii) Let $\mathrm{AE}=x$ and proved above $\mathrm{BC}=20 \sqrt{3} \mathrm{~m}$

$$
\therefore \quad \mathrm{BC}=\mathrm{ED}=20 \sqrt{3}
$$

Now in \triangle AED,

$$
\begin{array}{rlrl}
& & \tan 30^{\circ} & =\frac{\mathrm{AE}}{\mathrm{ED}} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{\mathrm{AE}}{20 \sqrt{3}} \\
\Rightarrow & \sqrt{3} \mathrm{AE} & =20 \sqrt{3} \\
\Rightarrow & \mathrm{AE} & =20 \mathrm{~m} \\
\text { now } & \mathrm{EB} & =\mathrm{AB}-\mathrm{AE} \\
\therefore & & \mathrm{~EB} & =60-20 \quad \Rightarrow \\
\because & & \mathrm{~EB} & =\mathrm{CD} \\
\therefore & & \mathrm{CD} & =40 \mathrm{~m} \\
& & & \mathrm{~m}
\end{array}
$$

Hence, the height of the lamp post $=40 \mathrm{~m}$.
Ans.

Question 8.

(a) Find x and y if $\left[\begin{array}{ll}x & 3 x \\ y & 4 y\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{r}5 \\ 12\end{array}\right]$
[3]
(b) A solid sphere of radius 15 cm is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm . Calculate the number of cones recast.
[3]
(c) Without solving the following quadratic equation, find the value of ' p ' for which the given equation has real and equal roots :

$$
\begin{equation*}
x^{2}+(p-3) x+p=0 \tag{4}
\end{equation*}
$$

Solution :

(a) Given: $\quad\left[\begin{array}{ll}x & 3 x \\ y & 4 y\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{r}5 \\ 12\end{array}\right]$

$$
\begin{aligned}
{\left[\begin{array}{l}
2 x+3 x \\
2 y+4 y
\end{array}\right] } & =\left[\begin{array}{r}
5 \\
12
\end{array}\right] \\
{\left[\begin{array}{l}
5 x \\
6 y
\end{array}\right] } & =\left[\begin{array}{r}
5 \\
12
\end{array}\right]
\end{aligned}
$$

$$
\therefore \quad 5 x=5 \Rightarrow x=1
$$

$$
\text { and } \quad 6 y=12 \Rightarrow y=2
$$

Hence, $x=1$ and $y=2$
Ans.
(b)

Radius of a solid sphere, $r=15 \mathrm{~cm}$

$$
\begin{aligned}
\text { Volume of a solid sphere } & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \times \pi(15)^{3} \mathrm{~cm}^{3} .
\end{aligned}
$$

Now, radius of right circular cone $=2.5 \mathrm{~cm}$
and height, $h=8 \mathrm{~cm}$.
Volume of right circular cone $=\frac{1}{3} \pi r^{2} h$

$$
=\frac{1}{3} \pi(2.5)^{2} \times 8
$$

$$
\begin{aligned}
\therefore \quad \text { The number of cones } & =\frac{\text { Volume of a sphere }}{\text { Volume of a cone }} \\
& =\frac{\frac{4}{3} \pi \times(15)^{3}}{\frac{1}{3} \pi(2.5)^{2} \times 8} \\
& =\frac{15 \times 15 \times 15}{2.5 \times 2.5 \times 2} \\
& =270
\end{aligned}
$$

Ans.
(c) Given equation

$$
x^{2}+(p-3) x+p=0
$$

\because Roots are real and equal, then

$$
b^{2}-4 a c=0
$$

Here we compare the coefficients of a, b and c with the equation $a x^{2}+b x+c=$ 0.

$$
a=1, b=p-3 \text { and } c=p
$$

Now putting the values of a, b and c in equation

$$
\left.\begin{array}{rl}
& \left.\begin{array}{rl}
(p-3)^{2}-4 \times 1 \times p & =0 \\
p^{2}+9-6 p-4 p & =0 \\
p^{2}+9-10 p & =0 \\
p^{2}-10 p+9 & =0 \\
p^{2}-9 p-p+9 & =0 \\
p(p-9)-1(p-9) & =0 \\
\Rightarrow & (p-9)(p-1)
\end{array}\right)=0 \\
\text { Hence, } & p
\end{array}\right)=9 \text { or } 1
$$

Ans.

Question 9.

(a) In the figure alongside, $O A B$ is a quadrant of a circle. The radius $O A=3.5 \mathrm{~cm}$ and $O D=2 \mathrm{~cm}$. Calculate the area of the shaded portion. $\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$
(b) A box contains some black balls and 30 white balls. If the probability of drawing a black ball is two-fifths of a white ball, find the number of black balls in the box.
[3]

(c) Find the mean of the following distribution by step deviation method:
[4]

Class Interval	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	10	6	8	12	5	9

Solution :

(a) Radius of quadrant $\mathrm{OACB}, r=3.5 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area of quadrant OACB } & =\frac{1}{4} \pi r^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5 \\
& =9.625 \mathrm{~cm}^{2} . \\
\angle \mathrm{AOD} & =90^{\circ} \\
\text { area of } \triangle A O D & =\frac{1}{2} \times \text { base } \times \text { height }
\end{aligned}
$$

Here,
Then
Base $=3.5 \mathrm{~cm}$ and height $=2 \mathrm{~cm}$

$$
=\frac{1}{2} \times 3.5 \times 2=3.5 \mathrm{~cm}^{2} .
$$

Area of shaded portion $=$ Area of quadrant - Area of triangle

$$
\begin{aligned}
& =9.625-3.5 \\
& =6.125 \mathrm{~cm}^{2} .
\end{aligned}
$$

Ans.
(b) Let the number of black balls be x, then

Total number of balls $=30+x$
Thus, \quad the prabability of black balls $=30+x$ and the probability of white balls $=\frac{30}{30+x}$
Given : \quad Probability of black ball $=\frac{2}{5} \times$ probability of white ball

$$
\begin{aligned}
\frac{x}{30+x} & =\frac{2}{5} \times \frac{30}{x+30} \\
5 x & =60 \\
x & =12
\end{aligned}
$$

Ans.
Hence, the number of black balls $=12$.
(c) C.I. Frequency Mid-value

$\left(f_{i}\right)$

20-30
30-40
40-50
50-60
60-70
70-80
10
6
8
12
5
9
$\Sigma f_{i}=50$
(x)
25
35
45
55
65
75
3
27
$\Sigma f_{i} d_{i}=23$

Here, $a=45$ and $h=10$

$$
\begin{aligned}
\text { Mean } & =a+\frac{\Sigma f_{i} d_{i}}{\sum f_{i}} \times h \\
& =45+\frac{23}{50} \times 10 \\
& =45+4 \cdot 6=49 \cdot 6 .
\end{aligned}
$$

Ans.

Question 10.

(a) Using a ruler and compasses only:
(i) Construct a triangle $A B C$ with the following data:
$A B=3.5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\angle A B C=120^{\circ}$
(ii) In the same diagram, draw a circle with $B C$ as diameter. Find a point P on the circumference of the circle which is equidistant from $A B$ and $B C$.
(iii) Measure $\angle B C P$.
(b) The mark obtained by 120 students in a test are given below :

Marks	No. of Students
$0-10$	5
$10-20$	9
$20-30$	16
$30-40$	22
$40-50$	26
$50-60$	18
$60-70$	11
$70-80$	6
$80-90$	4
$90-100$	3

Draw an ogive for the given distribution on a graph sheet.
Using suitable scale for ogive to estimate the following :
(i) The median.
(ii) The number of students who obtained more than 75% marks in the test.
(iii) The number of students who did not pass the test if minimum marks required to pass is 40 .
Solution:
(a) Steps of Construction :
(i) Draw a line $\mathrm{BC}=6 \mathrm{~cm}$.
(ii) With the help of the point B , draw $\angle \mathrm{ABC}=120^{\circ}$
(iii) Taking radius 3.5 cm cut $\mathrm{BA}=3.5$ cm.
(iv) Join A to C.
(v) Draw \perp bisector MN of BC.
(vi) Draw a circle O as centre and $O C$ as radius.
(vii) Draw angle bisector of $\angle \mathrm{ABC}$ which intersects circle at P.
(viii) Join BP and CP.
(ix) Now, $\angle \mathrm{BCP}=30^{\circ}$.
(b)

Marks	No. of Students (f)	Cumulative Frequency
$0-10$	5	5
$10-20$	9	14
$20-30$	16	30
$30-40$	22	52
$40-50$	26	78
$50-60$	18	96
$60-70$	11	107
$70-80$	6	113
$80-90$	4	117
$90-100$	3	120
	$n=120$	

On the graph paper, we plot the following points :
$(10,5),(20,14),(30,30),(40,52),(50,78),(60,96),(70,107),(80,113),(90$, 117), (100, 120).

(i)

$$
\begin{aligned}
\text { Median } & =\left(\frac{n}{2}\right)^{\text {th }} \text { term } \quad[\because n=120, \text { even }] \\
& =\frac{120}{2}=60^{\text {th }} \text { term }
\end{aligned}
$$

From the graph 60th term $=42$
Ans.
(ii) The number of students who obtained more than 75% marks in test

$$
\begin{aligned}
& =120-110 \\
& =10 .
\end{aligned}
$$

Ans.
(iii) The number of students who did not pass the test if the minimum pass marks $40=52$.

Ans.

Question 11.

(a) In the figure given below, the line segment $A B$ meets X-axis at A and Y-axis at B. The point $P(-3,4)$ on $A B$ divides it in the ratio 2:3. Find the coordinates of A and B.

(b) Using the properties of proportion, solve for x, given

$$
\begin{equation*}
\frac{x^{4}+1}{2 x^{2}}=\frac{17}{8} \tag{3}
\end{equation*}
$$

(c) A shopkeeper purchases a certain number of books for ₹ 960 . If the cost per book was $₹ 8$ less, the number of books that could be purchased for $₹ 960$ would be 4 more. Write an equation, taking the original cost of each book to be $₹ x$, and solve it to find the original cost of the books.
[4]
Solution :
(a) Let the co-ordinates of A and B be $(x, 0)$ and $(0, y)$
\because The co-ordinates of a point $P(-3,4)$ on AB divides it in the ratio $2: 3$.
i.e.,

$$
\mathrm{AP}: \mathrm{PB}=2: 3
$$

By using section formula, we get

$$
\begin{array}{rlrl}
& & -3 & =\frac{2 \times 0+3 \times x}{2+3} \\
\Rightarrow & -3 & =\frac{3 x}{5} \Rightarrow 3 x=-15 \\
\text { and } & x & =-5 \\
& & 4 & =\frac{2 \times y+3 \times 0}{2+3} \\
\Rightarrow & & 4 & =\frac{2 y}{5} \Rightarrow 2 y=20 \\
m_{1}+m_{2}
\end{array} \quad\left[\because y=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1} y_{2}+m_{2} y_{1}} m_{1}+m_{2}\right]
$$

Hence, the co-ordinates of A and B are ($-5,0$) and (0,10).
Ans.
(b) Given:

$$
\frac{x^{4}+1}{2 x^{2}}=\frac{17}{8}
$$

By using componendo and dividendo, we get

$$
\frac{x^{4}+1+2 x^{2}}{x^{4}+1-2 x^{2}}=\frac{17+8}{17-8}
$$

$$
\begin{aligned}
& \left(\frac{x^{2}}{x^{2}}+\frac{1}{1}\right)^{2}=\frac{25}{9} \\
& \left(\frac{x^{2}}{x^{2}}+\frac{1}{1}\right)^{2}=\left(\frac{5}{3}\right)^{2}
\end{aligned}
$$

Taking square root on both sides, we get

$$
\begin{array}{rlrl}
& & x^{2}+1 & =\frac{5}{3} \\
\Rightarrow & x^{2}-1 & \\
\Rightarrow & 5 x^{2}-5 & =3 x^{2}+3 \\
\Rightarrow & 5 x^{2}-3 x^{2} & =3+5 \\
\Rightarrow & & 2 x^{2} & =8 \quad \Rightarrow \quad x^{2}=4
\end{array}
$$

Ans.
(c) Given the original cost of each book be $₹ x$.

$$
\text { Total cost }=\mathbf{₹} 960
$$

$$
\text { Number of books for } 960=960
$$

If the cost per book was $₹ 8$ less, (i.e., $x-8$) then

$$
\text { Number of books }=\frac{960}{x-8}
$$

According to question,

$$
\begin{array}{rlrl}
\frac{960}{x-8} & =\frac{960}{x}+4 \\
\frac{960}{x-8}-\frac{960}{x} & =4 \\
960\left[\begin{array}{c}
x-x+8 \\
x(x-8)
\end{array}\right] & =4 \\
8 & =1 \\
x^{2}-8 x & =240 \\
x^{2}-8 x & =1,920 \\
\Rightarrow \quad & & \\
\Rightarrow \quad x^{2}-8 x-1,920 & =0 \\
\Rightarrow \quad & x^{2}-48 x+40 x-1,920 & =0 \\
\Rightarrow \quad x(x-48)+40(x-48) & =0 & \\
(x-48)(x+40) & =0 & & \\
x-48 & =0 & \text { or } x+40 & =0 \\
x & =48 & \text { or } \quad x & =-40
\end{array}
$$

Ans.
$\because-40$ is not possible.
Hence, the original cost of each book $=\mathbf{₹} 48$.

