ICSE Question Paper (2013)

MATHEMATICS

SECTION A [40 Marks]

(Answer all questions from this Section.)

Question 1.

- (a) Given $A = \begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix}, B = \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix}, C = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}.$
 - Find the matrix X such that A + 2X = 2B + C.
- (b) At what rate % p.a. will a sum of ₹ 4000 yield ₹ 1324 as compound interest in 3 years ?
 [3]

[8]

(c) The median of the following observations 11, 12, 14, (x - 2), (x + 4), (x + 9), 32, 38, 47 arranged in ascending order is 24. Find the value of x and hence find the mean.

Solution :

(a) Given:
$$A = \begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$
 $A + 2X = 2B + C$

Putting the given values, we get

$$\begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix} + 2X = 2\begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$$

$$2X - \begin{bmatrix} -6 + 4 & 4 + 0 \\ 8 + 0 & 0 + 2 \end{bmatrix} - \begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix}$$

$$X = \frac{1}{2} \begin{bmatrix} -4 & 10 \\ 6 & 2 \end{bmatrix}$$

$$X = \begin{bmatrix} -2 & 5 \\ 3 & 1 \end{bmatrix}$$

(b) Given : Principal = \P 4,000, C.I. = \P 1,324,
Amount = P + C.I.

$$= \P (4,000 + 1,324) = \P 5,324$$

Time = 3 years
We know that,

$$A = P \left(1 + \frac{r}{100} \right)^T$$

$$5,324 = 4,000 \left(1 + \frac{r}{100} \right)^3$$

$$5,324 = 4,000 \left(1 + \frac{r}{100} \right)^3$$

$$\frac{1,331}{1,000} = \left(1 + \frac{r}{100}\right)^3$$

$$\left(\frac{11}{10}\right)^3 = \left(1 + \frac{r}{100}\right)^3$$
Therefore,
$$1 + \frac{r}{100} = \frac{11}{10}$$

$$\frac{r}{100} = \frac{11}{10} - 1$$

$$\frac{r}{100} = \frac{1}{10}$$

$$r = \frac{100}{10}$$

$$r = 10\%$$
Ans.

(c) Given observation are 11, 12, 14, (x - 2), (x + 4), (x + 9), 32, 38, 47 and median = 24.

$$n = 9 \text{ (odd)}$$
Median = $\frac{n+1}{2}$ th term
= $\frac{9+1}{2}$ th term
24 = 5th term
x + 4 = 24
x = 24 - 4
x = 20
11, 12, 14, (20 - 2), (20 + 4), (20 + 9), 32, 38, 47

= 11, 12, 14, 18, 24, 29, 32, 38, 47

Now

Therefore,

Mean =
$$\frac{\Sigma r}{n}$$

= $\frac{11 + 12 + 14 + 18 + 24 + 29 + 32 + 38 + 47}{9}$
= $\frac{225}{9} = 25$ Ans

Question 2.

- (a) What number must be added to each of the number 6, 15, 20 and 43 to make them proportional?
 [3]
- (b) If (x 2) is a factor of the expression $2x^3 + ax^2 + bx 14$ and when the expression is divided by (x 3), it leaves a remainder 52, find the values of a and b. [3]
- (c) Draw a histogram from the following frequency distribution and find the mode from the graph : [4]

Class	0-5	5-10	10–15	15-20	20-25	25 -3 0
Frequency	2	5	18	14	8	5

Solution :

(a) Let the number must be added be x, then

the new number
$$= 6 + x$$
, $15 + x$, $20 + x$, $43 + x$

These are proportionals.

	6+x:15+x:20+x:43+x	
or	(6+x)(43+x) = (15+x)(20+x)	
ÕГ	$258 + 6x + 43x + x^2 = 300 + 20x + 15x + x^2$	
or	49x - 35x = 300 - 258	
or	14x = 42	
ог	x = 3.	Ans.
Tab	(

(b) Let (x-2) is a factor of the given expression.

$$\begin{array}{rcl} x-2 &=& 0\\ x & \stackrel{\cdot}{=}& 2 \end{array}$$

Given expression,

 $2x^3 + ax^2 + bx - 14 = 0$ $2(2)^{3} + a(2)^{2} + b(2) - 14 = 0$ 16 + 4a + 2b - 14 = 04a + 2b + 2 = 04a + 2b = -22a+b = -1...(i)

-

and when given expression is divided by (x - 3)

$$\begin{array}{rcl} x-3 &= 0\\ x &= 3\\ 2x^3+ax^2+bx-14 &= 52\\ 2\,(3)^3+a(3)^2+b(3)-66 &= 0\\ 54+9a+3b-66 &= 0\\ 9a+3b &= 12\\ 3a+b &= 4 & \dots (ii) \end{array}$$

Solving equation (i) and (ii),

$$2a + b = -1$$

$$3a + b = 4$$

(-) (-) (+)

$$-a = -5$$

$$a = 5$$

$$3 \times 5 + b = 4$$

$$b = 4 - 15$$

.

from (ii),

$$x 5 + b = 4$$

 $b = 4 - 15$
 $b = -11$
 $a = 5$ and $b = -11$ Ans.

Question 3.

(c)

(a) Without using tables evaluate 3 cos 80°. Cosec 10° + 2 sin 59° sec 31°.

(b) In the given figure,

```
\angle BAD = 65^{\circ},\angle ABD = 70^{\circ},\angle BDC = 45^{\circ}
```

(i) Prove that AC is a diameter of the circle.

(ii) Find ∠ ACB.

(c) AB is a diameter of a circle with centre C = (-2, 5). If A = (3, -7). Find : 1

- (i) The length of radius AC
- (ii) The coordinates of B.

Solution :

(a) Given:

3 cos 80° cosec 10° + 2 sin 59° sec 31°

- = $3\cos 80^{\circ} \csc (90^{\circ} 80^{\circ}) + 2\sin 59^{\circ} \sec (90^{\circ} 59^{\circ})$
- = 3 cos 80° sec 80° + 2 sin 59° cosec 59°

$$= 3\cos 80^{\circ} \times \frac{1}{\cos 80^{\circ}} + 2\sin 59^{\circ} \times \frac{1}{\sin 59^{\circ}}$$

$$= 3 + 2 = 5.$$

- (b) Given : $\angle BAD = 65^\circ$, $\angle ABD = 70^\circ$, $\angle BDC = 45^\circ$
 - (i) ∴ ABCD is a cyclic quadrilateral. In △ ABD,
 ∠ BDA + ∠ DAB + ∠ ABD = 180°
 ∴ ∠ BDA = 180° - (65° + 70°)
 = 180° - 135°

$$= 45^{\circ}$$

Ans.

Ans.

[3]

B

13

[4]

Now from \triangle ACD,

$$\angle ADC = \angle ADB + \angle BDC$$

= 45° + 45° (`.' $\angle BDA = \angle ADB = 45°$)
= 90°

Hence, $\angle D$ makes right angle belongs in semi-circle therefore AC is a diameter of the circle.

(ii)
$$\angle ACB = \angle ADB$$
 (Angles in the same segment of a circle)
 $\angle ACB = 45^{\circ}$ ($\therefore \angle ADB = 45^{\circ}$) Ans.
(c) (i) The length of radius AC = $\sqrt{(-2-3)^2 + (5+7)^2}$
 $= \sqrt{(-5)^2 + (12)^2}$
 $= \sqrt{25+144}$ (3, -7) ($(-2, 5)$) B
 $= \sqrt{169}$
 $= 13.$ Ans.

(ii) Let the point of B be (x, y).

Given C is the mid-point of AB. Therefore

	$-2 = \frac{3+x}{2}$
⇒	3+x = -4
⇒	x = -4 - 3 = -7
and	$5 = \frac{-7+y}{2}$
⇒	10 = -7 + y
	y = 17

Hence, the co-ordinate of B (-7, 17).

Question 4.

(a) Solve the following equation and calculate the answer correct to two decimal places :

$$x^2 - 5x - 10 = 0.$$
 [3]

- (b) In the given figure, AB and DE are per- A pendicular to BC.
 - (i) Prove that $\triangle ABC \sim \triangle DEC$
 - (ii) If AB = 6 cm, DE = 4 cm and AC = 15 cm. Calculate CD.

- (iii) Find the ratio of the area of Δ ABC : area of Δ DEC. [3]
- (c) Using graph paper, plot the points A(6, 4) and B(0, 4).
 - (i) Reflect A and B in the origin to get the images A' and B'.
 - (ii) Write the co-ordinates of A' and B'.
 - (iii) State the geometrical name for the figure ABA \mathcal{B}' .
 - (iv) Find its perimeter.

[4]

Ans.

Solution :

(a) Given : $x^2 - 5x - 10 = 0$ Here, a = 1, b = -5 and c = -10 $\mathbf{D} = b^2 - 4ac$... $= (-5)^2 - 4 \times 1 \times -10$ D = 25 + 40 = 65 $x = \frac{-b \pm \sqrt{D}}{2a}$ $= \frac{5 \pm \sqrt{65}}{2 \times 1} = \frac{5 \pm 8.06}{2}$ $=\frac{5+8.06}{2},\frac{5-8.06}{2}$ $=\frac{13.06}{2},-\frac{3.06}{2}$ x = 6.53, -1.53Ans. From \triangle ABC and \triangle DEC, (b) (i) $\angle ABC = \angle DEC = 90^{\circ}$ (Given) $\angle ACB = \angle DCE = Common$ and $\triangle ABC \sim \triangle DEC$ (By AA similarity) In \triangle ABC and \triangle DEC, (ii) $\triangle ABC \sim \triangle DEC$ (proved in (i) part) $\frac{AB}{DE} = \frac{AC}{CD}$... Given : AB = 6 cm, DE = 4 cm, ACA = 15 cm, 15 cm $\frac{6}{4} = \frac{15}{CD}$ D ... 6 cm $6 \times CD = 15 \times 4$ = 4 cm $CD = \frac{60}{6}$ в C = E CD = 10 cm. Ans. = Area of & ABC AB^2 (iii) $\overline{\text{Area of } \Delta \text{ DEC}} = \overline{\text{DE}^2}$ $(: \Delta ABC - \Delta DEC)$ $=\frac{(6)^2}{(4)^2}$ $=\frac{3\cdot 6}{16}=\frac{9}{4}$

 $\therefore \text{ Area of } \triangle \text{ ABC} : \text{ Area of } \triangle \text{ DEC} = 9 : 4.$ Ans.

(c) (i) Please See Graph:

- (iii) The geometrical name for the figure AB A'B' is a parallelogram.
- From the graph, AB = 6 cm, BB' = 8 cm. (iv) In $\triangle A BB'$

$$(AB')^2 = AB^2 + (BB')^2$$

= $(6)^2 + (8)^2 = 36 + 64$
= 100
 $AB' = 10 = A'B$ (AB A' B' is a parallelogram)
Perimeter of AB A'B' = A'B' + AB' + AB + A'B
= $6 + 10 + 6 + 10$
= 32 units. Ans.

SECTION B [40 Marks]

Answer any four Questions in this Section.

Question 5.

(ii)

(a) Solve the following inequation, write the solution set and represent it on the number line :

$$-\frac{x}{3} \le \frac{x}{2} - 1\frac{1}{3} < \frac{1}{6}, x \in R$$
 [3]

(b) Mr. Britto deposits a certain sum of money each month in a Recurring Deposit Account of a bank. If the rate of interest is of 8% per annum and Mr. Britto gets ₹ 8088 from the bank after 3 years, find the value of his monthly instalment.

[3]

- (c) Salman buys 50 shares of face value ₹ 100 available at ₹ 132.
 - (i) What is his investment?
 - (ii) If the dividend is 7.5%, what will be his annual income ?
 - (iii) If he wants to increase his annual income by \mathbf{R} 150, how many extra shares should he buy ? [4]

Solution:

 $-\frac{x}{3} \le \frac{x}{2} - 1\frac{1}{3} < \frac{1}{6}$ (a) Given: Taking L.C.M. of 3, 2 and 6 is 6. $-\frac{x}{3} \times 6 \le \frac{x}{2} \times 6 - \frac{4}{3} \times 6 < \frac{1}{6} \times 6$ $-2x \leq 3x - 8 < 1$ 3x - 8 < 1 $-2x \leq 3x-8$ and => $8 \leq 3x + 2x$ 3x < 1 + 8⇒ \Rightarrow $8 \leq 5x$ 3x < 9=> $\frac{1}{5} \leq x$ x < 3⇒ ⇒ \therefore The solution set is $\{x : 1 \cdot 6 \le x \le 3, x \in \mathbb{R}\}$ Number line (b) Let the monthly instalment be $\overline{\mathbf{x}}$ Given : Maturity amount = \$ 8,088, Time (n) = 3 years = 3×12 months = 36 months, Rate (R) = 8% p.a. Principle for one month = $P \times \frac{n(n+1)}{2}$ $=\frac{x\times 36\times 37}{2}$ $= 18 \times 37 x$ $Interest = \frac{18 \times 37x \times 8 \times 1}{100 \times 12}$ $\therefore I = \frac{PRT}{100}$ $=\frac{444 \pi}{100}$ 1 Actual sum deposited = 36 xMaturity amount = Interest + Actual sum deposited $8,088 = \frac{444 x}{100} + 36 x$ $8,088 = \frac{4,044 x}{100}$ $x = \frac{8,088 \times 100}{4,044} = 200$ Hence, the monthly instalment be $\mathbf{\overline{C}}$ 200. Ans. Number of shares = 50(c) Face value of each share = ₹ 100Market value of each share = **7**132 Total face value = \mathbf{R} 100 × 50 = ₹5,000 (i) Total investment = $\mathbf{\overline{\xi}} 132 \times 50$ = ₹6,600 Апв.

(ii)

Rate of dividend = 7.5%
Annual income =
$$\frac{5,000 \times 7.5}{100}$$

= $\frac{375}{375}$

(iii) Let extra share should he buy be x.

then total number of shares = 50 + x

To

...

...

Total face value =
$$₹ 100 \times (50 + x)$$

Annual income = $₹ \frac{100 \times (50 + x) \times 7.5}{100}$
= $(50 + x) \times 7.5$
 $(50 + x) \times 7.5 = 375 + 150$
 $50 + x = \frac{525}{7.5} = 70$
 $x = 70 - 50$
 $x = 20$

Hence, the extra shares should be buy = 20. Question 6.

(a) Show that
$$\sqrt{\frac{1-\cos A}{1+\cos A}} \frac{\sin A}{1+\cos A}$$
 [3]

(b) In the given circle with centre O, $\angle ABC = 100^\circ$, $\angle ACD = 40^\circ$ and CT is a tangent to the circle at C. Find $\angle ADC$ and $\angle DCT$. [3]

(c) Given below are the entries in a Savings Bank A/c pass book :

Date	Particulars	Withdrawals	Deposit	Balance
Feb. 8.	B/F	<u> </u>		₹ 8,500
Feb. 18	To self	₹4,000	(
April 12	By cash	-	₹2,230	
June 15	To self	₹ 5,000	_	_
July 8	By cash		₹ 6,000	-

Calculate the interest for six months from February to July at 6% p.a. [4] Solution :

(a) L.H.S. =
$$\sqrt{\frac{1 - \cos A}{1 + \cos A}}$$

Multiplying by $\sqrt{1 + \cos A}$ in numerator and denominator

$$= \sqrt{\frac{1-\cos A}{1+\cos A}} \times \sqrt{\frac{1+\cos A}{1+\cos A}}$$

Ans.

Ans.

$$= \sqrt{\frac{(1 - \cos A)(1 + \cos A)}{(1 + \cos A)}}$$

= $\sqrt{\frac{(1 - \cos^2 A)}{(1 + \cos A)^2}}$
= $\sqrt{\frac{1 - \cos^2 A}{(1 + \cos A)^2}}$
= $\sqrt{\frac{\sin^2 A}{(1 + \cos A)^2}}$
= $\frac{\sin A}{1 + \cos A} = R.H.S.$ Proved
 $\alpha : \angle ABC = 100^{\circ}$

(b) Giver

We know that,

....

$$\angle ABC + \angle ADC = 180^{\circ}$$
 (The sum of opposite angles in

$$100^{\circ} + \angle ADC = 180^{\circ}$$
 a cyclic quadrilateral = 180°)

$$\angle ADC = 180^{\circ} - 100^{\circ}$$

$$\angle ADC = 80^{\circ}$$

Join OA and OC, we have a isosceles $\triangle OAC$,

. OA = OC(Radii of a circle) $\angle AOC = 2 \times \angle ADC$ (by theorem) $\angle AOC = 2 \times 80^\circ = 160^\circ$ or In \triangle AOC, B 60° D 100° $\angle AOC + \angle OAC + \angle OCA = 180^{\circ}$ $160^\circ + \angle \text{OCA} + \angle \text{OCA} = 180^\circ$ [: $\angle \text{OAC} = \angle \text{OCA}$] $2 \angle OCA = 20^{\circ}$ $\angle \text{OCA} = 10^{\circ}$ $\angle \text{OCA} + \angle \text{OCD} = 40^{\circ}$ k $10^\circ + \angle \text{OCD} = 40^\circ$ di. $\angle \text{OCD} = 30^{\circ}$ $\angle \text{OCD} + \angle \text{DCT} = \angle \text{OCT}$ Hence, • • $\angle OCT = 90^{\circ}$

(The tangent at a point to circle is \perp to the radius through the point to contant) $30^\circ + \angle DCT = 90^\circ$

	•	
	~ \	
• •	~ ~	

<u>;</u>	$\angle DCT = 60^{\circ}$			Ans	
Date	Particulars	Withdrawals	Deposit	Balance	
Feb. 8	B/F			8,500	
Feb. 18	To self	4,000		4,500	
April 12	By cash	—	2,230	₹ 6,730	
une 15	To self	\$ 5,000		1,730	
uly 8	By cash	<u> </u>	₹ 6,000	7,730	

Principal for the month of Feb. = **₹** 4,500

Principal for the month of March = ₹4,500 Principal for the month of April = ₹ 4,500

Principal for the month of May = \mathbf{R} 6,730

Principal for the month of June = ₹ 1,730

Principal for the month of July = 7,730

Total principal from the month of Feb. to July = ₹ 29,690

Time =
$$\frac{1}{12}$$
 years

Rate of interest
$$= 6\%$$

Interest =
$$\frac{P \times R \times T}{100}$$

= $\frac{29690 \times 6 \times 1}{100 \times 12}$
= $\overline{148.45}$

Question 7.

- (a) In △ ABC, A(3, 5), B(7, 8) and C(1, -10). Find the equation of the median through A.
 [3]
- (b) A shopkeeper sells an article at the listed price of ₹ 1,500 and the rate of VAT is 12% at each stage of sale. If the shopkeeper pays a VAT of ₹ 36 to the Government, what was the price, inclusive of Tax, at which the shopkeeper purchased the article from the wholesaler ? [3]
- (c) In the figure given, from the top of a building AB = 60 m high, the angles of depression of the top and bottom of a vertical lamp post CD are observed to be 30° and 60° respectively. Find :
 - (i) The horizontal distance between AB and CD.
 - (ii) The height of the lamp post.

Solution :

(a) Here D is mid point of BC.

The co-ordinate of D =
$$\left(\frac{7+1}{2}, \frac{8-10}{2}\right)$$

= (4, -1)

Now equation of median AD,

$$y-y_1 = \frac{y_2-y_1}{x_2-x_1}(x-x_1)$$

Here, $x_1 = 3$, $y_1 = 5$, $x_2 = 4$, $y_2 = -1$

$$y-5 = \frac{-1-5}{4-3}(x-3)$$

$$y-5 = \frac{-6}{1}(x-3)$$

$$y-5 = -6x + 18$$

[4] B

n

$$y = -6x + 18 + 5$$

$$y = -6x + 23$$

$$6x + y - 23 = 0$$
(b) Listed price of an article = ₹ 1,500
Rate of VAT = 12%
VAT on the article = $\frac{12}{100} \times 1500$

$$= ₹ 180$$

Let C.P. of this article be x, then

 $VAT = \frac{12}{100} \times x$ $= \mathbf{\overline{\xi}} \frac{12x}{100}$ If the shopkeeper pays a VAT = ₹36 $180 - \frac{12x}{100} = 36$ Then $\frac{18000 - 12x}{100} = 36$

...

$$12x = 18000 - 3600 = 14,400$$
$$x = ₹ 1,200$$

18000 - 12x = 3600

: The price at which the shopkeeper purchased the article inclusive of sales tax

$= 1,200 + \frac{12}{100} \times 1,200$	
= 1,200 + 144	1
= ₹1,344	

(c) Given : AB = 60 m

 $\angle PAC = 60^{\circ}$ $\angle PAC = \angle BCA$ (i)

 $\sqrt{3}$ BC = 60 ⇒ $BC = \frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ ⇒ H

BC =
$$\frac{60\sqrt{3}}{3} = 20\sqrt{3}$$

Hence, the horizontal distance between AB and CD = $20\sqrt{3}$ m.

Ans.

Ans.

Let AE = x and proved above BC = $20\sqrt{3}$ m (ii) BC = ED = $20\sqrt{3}$ ÷.

Now in $\triangle AED$,

$$\tan 30^{\circ} = \frac{AE}{ED}$$

$$\frac{1}{\sqrt{3}} = \frac{AE}{20\sqrt{3}}$$

$$\Rightarrow \qquad \sqrt{3} AE = 20 \sqrt{3}$$

$$\Rightarrow \qquad AE = 20 m$$
now
$$EB = AB - AE$$

$$\therefore \qquad EB = 60 - 20 \Rightarrow 40 m$$

$$\therefore \qquad EB = CD$$

$$\therefore \qquad CD = 40 m$$

Hence, the height of the lamp post = 40 m.

Question 8.

(a) Find x and y if
$$\begin{bmatrix} x & 3x \\ y & 4y \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$
 [3]

(b) A solid sphere of radius 15 cm is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate the number of cones recast.

[3]

Ans.

(c) Without solving the following quadratic equation, find the value of 'p' for which the given equation has real and equal roots :

$$x^{2} + (p-3)x + p = 0$$
 [4]

Solution:

 $\begin{bmatrix} x & 3x \\ y & 4y \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 12 \end{bmatrix}$ $\begin{bmatrix} 2x + 3x \\ 2y + 4y \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 5 \end{bmatrix}$ (a) Given : 5x $5x = 5 \Rightarrow$. x = 1 $6y = 12 \Rightarrow y = 2$ and Hence, x = 1 and y = 2Ans. Radius of a solid sphere, r = 15 cm **(b)** Volume of a solid sphere = $\frac{4}{3}\pi r^3$ $=\frac{4}{3} \times \pi (15)^3 \text{ cm}^3.$ radius of right circular cone = 2.5 cm. Now, and height, h = 8 cm. Volume of right circular cone = $\frac{1}{3}\pi r^2 h$ $=\frac{1}{9}\pi(2.5)^2\times 8$

12.2

$$= \frac{\frac{4}{3}\pi \times (15)^3}{\frac{1}{3}\pi (2 \cdot 5)^2 \times 8}$$
$$= \frac{15 \times 15 \times 15}{2 \cdot 5 \times 2 \cdot 5 \times 2}$$
$$= 270$$

Ans.

(c) Given equation $x^2 + (p-3)x + p = 0$

: Roots are real and equal, then

$$b^2-4ac=0$$

Here we compare the coefficients of a, b and c with the equation $ax^2 + bx + c = 0$.

$$a = 1, b = p - 3$$
 and $c = p$

Now putting the values of a, b and c in equation

 $(p-3)^{2}-4 \times 1 \times p = 0$ $p^{2}+9-6p-4p = 0$ $p^{2}+9-10p = 0$ $p^{2}-10p+9 = 0$ $p^{2}-9p-p+9 = 0$ p(p-9)-1(p-9) = 0 (p-9)(p-1) = 0

Hence,

p = 9 or 1

Ans.

[4]

Question 9.

=

...

-1

- (a) In the figure alongside, OAB is a quadrant of a circle. The radius OA = 3.5 cm and OD = 2 cm. Calculate the area of the shaded portion. $\left(Take \ \pi = \frac{22}{7}\right)$ [3]
- B D E C O 3.5 cm
- (b) A box contains some black balls and 30 white balls. If the probability of drawing a black ball is two-fifths of a white ball, find the number of black balls in the box. [3]
- (c) Find the mean of the following distribution by step deviation method :

Class Interval	20-30	30-40	40-50	50-60	60-70	70-80
Frequency	10	6	8	12	5	9

Solution :

(a) Radius of quadrant OACB, r = 3.5 cm Area of quadrant OACB = $\frac{1}{4}\pi r^2$ $= \frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5$ $= 9.625 \text{ cm}^2$. $\angle AOD \approx 90^{\circ}$ Here, area of \triangle AOD = $\frac{1}{2} \times$ base \times height Then Base = 3.5 cm and height = 2 cm $=\frac{1}{2} \times 3.5 \times 2 = 3.5 \text{ cm}^2.$ Area of shaded portion = Area of quadrant - Area of triangle = 9.625 - 3.5 $= 6.125 \text{ cm}^2$. Ans. (b) Let the number of black balls be x, then Total number of balls = 30 + xthe prabability of black balls = $\frac{x}{30+x}$. Thus, the probability of white balls = $\frac{30}{30+x}$ and Probability of black ball = $\frac{2}{5} \times \text{probability of white ball}$ Given : $\frac{x}{30+x} = \frac{2}{5} \times \frac{30}{x+30}$ 5x = 60x = 12Ans. Hence, the number of black balls = 12.

(c)	C.I.	Frequency (f _i)	Mid-value (x)	$d_i = \frac{x-a}{h}$	$f_i d_i$
	2030	10	25	-2	-20
	30-40	6	35	1	-6
	40-50	8	45	0	0
	5060	12	55	1	12
	60–70	5	65	2	10
	7080	9	75	3	27
		$\Sigma f_i = 50$			$\Sigma f_i d_i = 23$

Here, a = 45 and h = 10

Mean =
$$a + \frac{\sum f_i d_i}{\sum f_i} \times h$$

= $45 + \frac{23}{50} \times 10$
= $45 + 4 \cdot 6 = 49 \cdot 6$. Ans.

Question 10.

- (a) Using a ruler and compasses only :
 - (i) Construct a triangle ABC with the following data : $AB = 3.5 \text{ cm}, BC = 6 \text{ cm} \text{ and } \angle ABC = 120^{\circ}$
 - (ii) In the same diagram, draw a circle with BC as diameter. Find a point P on the circumference of the circle which is equidistant from AB and BC.
 - (iii) Measure ∠ BCP.

Marks	No. of Students
0–10	5
10-20	9
20–30	16
30-40	22
40–50	26
50-60	18
60–70	11
70-80	6
80–90	4
90–100	3

(b) The mark obtained by 120 students in a test are given below :

Draw an ogive for the given distribution on a graph sheet.

Using suitable scale for ogive to estimate the following :

- (i) The median.
- (ii) The number of students who obtained more than 75% marks in the test.
- (iii) The number of students who did not pass the test if minimum marks required to pass is 40.

Solution :

(a) Steps of Construction :

- (i) Draw a line BC = 6 cm.
- (ii) With the help of the point B, draw $\angle ABC = 120^{\circ}$
- (iii) Taking radius 3.5 cm cut BA = 3.5 cm.
- (iv) Join A to C.
- (v) $Draw \perp bisector MN of BC.$
- (vi) Draw a circle O as centre and OC as radius.
- (vii) Draw angle bisector of \angle ABC which intersects circle at P.
- (viii) Join BP and CP.
- (ix) Now, $\angle BCP = 30^{\circ}$.

[3]

(b)	Marks	No. of Students (f)	Cumulative Frequency
	0–10	5	5
	10-20	9	14
	20-30	16	30
	30-40	22	52
	40-50	26	78
	50-60	18	96
2	60-70	11	107
	70-80	6	113
	80-90	4	117
	90–100	3	120
		n = 120	

On the graph paper, we plot the following points :

(10, 5), (20, 14), (30, 30), (40, 52), (50, 78), (60, 96), (70, 107), (80, 113), (90, 117), (100, 120).

(iii) The number of students who did not pass the test if the minimum pass marks 40 = 52.

(i)

(ii)

Question 11.

(a) In the figure given below, the line segment AB meets X-axis at A and Y-axis at B. The point P(-3, 4) on AB divides it in the ratio 2 : 3. Find the coordinates of A and B.

(b) Using the properties of proportion, solve for x, given

$$\frac{x^4+1}{2x^2} = \frac{17}{8}$$
 [3]

- (c) A shopkeeper purchases a certain number of books for ₹ 960. If the cost per book was ₹ 8 less, the number of books that could be purchased for ₹ 960 would be 4 more. Write an equation, taking the original cost of each book to be ₹ x, and solve it to find the original cost of the books. [4]
- Solution :
- (a) Let the co-ordinates of A and B be (x, 0) and (0, y)

The co-ordinates of a point P (-3, 4) on AB divides it in the ratio 2 : 3.

AP:PB = 2:3

i.e.,

By using section formula, we get

$$-3 = \frac{2 \times 0 + 3 \times x}{2 + 3} \qquad \left[\because x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} \right]$$
$$-3 = \frac{3x}{5} \implies 3x = -15$$
$$x = -5$$
$$4 = \frac{2 \times y + 3 \times 0}{2 + 3} \qquad \left[\because y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \right]$$
$$4 = \frac{2y}{5} \implies 2y = 20$$
$$y = 10$$

⇒

⇒

and

Hence, the co-ordinates of A and B are (-5, 0) and (0, 10).

Ans.

1

-

(b) Given: $\frac{x^4+1}{2x^2} = \frac{17}{8}$

By using componendo and dividendo, we get

$$\frac{x^4 + 1 + 2x^2}{x^4 + 1 - 2x^2} = \frac{17 + 8}{17 - 8}$$

	$\left(\frac{x^2}{x^2-1}+\frac{1}{1}\right)^2 =$	25 9			
	$\left(\frac{x^2}{x^2-1}\frac{1}{1}\right)^2 =$	$\left(\frac{5}{3}\right)^2$			
	Taking square root on both sides, we	get			
	$x^2 + 1$	5			
	$x^2 - 1 =$	3			
	$\Rightarrow 5x^2 - 5 =$	3x ² + 3			
	$\Rightarrow \qquad 5x^2 - 3x^2 =$	3 + 5			
	\Rightarrow $2x^2 =$	8 ⇒	$x^2 = 4$		
	\Rightarrow $x =$	±2			Ans.
(c)	Given the original cost of each book b	e ₹ x.			
	Total cost =	₹ 960			(Given)
	Number of books for 960 =	960			
	If the cost per book was $\mathbf{\overline{\xi}}$ 8 less, (<i>i.e.</i> ,	x-8) the	n		
	Number of books =	$\frac{960}{x-8}$			
	According to question,				
	$\frac{960}{x-8} =$	$\frac{960}{x} + 4$			
	$\frac{960}{r-8} - \frac{960}{r} =$	4			
	$960 \begin{bmatrix} x - x + 8 \\ x (x - 8) \end{bmatrix} =$	4			
	8	1			
	$x^2 - 8x =$	240			
	\Rightarrow $x^2 - 8x =$	1,920			
	$x^2 - 8x - 1,920 =$	0			Ans.
	$\Rightarrow \qquad x^2 - 48x + 40x - 1,920 =$	0			
	$\Rightarrow \qquad x(x-48)+40(x-48) =$	0			
	$\Rightarrow \qquad (x-48)(x+40) =$	0			
	x - 48 =	0	or x + 40	= 0	
	<i>x</i> =	48	ог х	= -40	
	. – 40 is not possible.				

Hence, the original cost of each book = $\mathbf{\overline{\xi}}$ 48.

Ans