CLASSES
JEE MAINS SAMPLE PAPER PHYSICS

SOLUTIONS AND ANSWR KEY

1. a	2. b	3. a	4. b	5. a	6. a	7. a	8. c	9. c	10. b
11. a	12. a	13. a	14. b	15. b	16. a	17. a	18. c	19. a	20. d
21. a	22. a	23. b	24. c	25. a	26. c	27. b	28. d	29. d	30. a

1. Let $F \alpha P^{a} V^{b} T^{c}$

$$
\begin{aligned}
& \Rightarrow[\mathrm{F}]=[\mathrm{P}]^{\mathrm{a}}[\mathrm{~V}]^{\mathrm{b}}[\mathrm{~T}]^{\mathrm{c}} \\
& {[\mathrm{~F}]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]^{\mathrm{a}}\left[\mathrm{LT}^{-1}\right]^{\mathrm{b}}[\mathrm{~T}]^{\mathrm{c}}} \\
& {\left[\mathrm{MLT}^{-2}\right]=\left[\mathrm{M}^{\mathrm{a}} \mathrm{~L}^{-\mathrm{a}+\mathrm{b}} \mathrm{~T}^{-2 \mathrm{a}-\mathrm{b}+\mathrm{c}]}\right.} \\
& \text { Comparing, } \mathrm{a}=1, \\
& \quad-\mathrm{a}+\mathrm{b}=1 \Rightarrow \mathrm{~b}=2 \\
& -2 \mathrm{a}-\mathrm{b}+\mathrm{c}=-2 \Rightarrow-2-2+\mathrm{c}=-2 \Rightarrow \mathrm{c}=2 \\
& {[\mathrm{~F}]=\left[\mathrm{P}^{1} \mathrm{~V}^{2} \mathrm{~T}^{2}\right]}
\end{aligned}
$$

2. $\overrightarrow{\mathrm{u}}=(\hat{\imath}+2 \hat{\jmath}) \mathrm{ms}^{-1} \Rightarrow \mathrm{u}_{\mathrm{x}}=1 \mathrm{v}_{\mathrm{y}}=2$

$$
\Rightarrow \tan \theta=\frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{u}_{\mathrm{x}}}=2
$$

Range; $R=\frac{2 \mathrm{v}_{\mathrm{x}} \mathrm{V}_{\mathrm{y}}}{\mathrm{g}}$
$=\frac{2(1)(2)}{10}$
$=\frac{2}{5} \mathrm{~m}$
Trajectory,

$$
\begin{aligned}
& y=x \tan \theta\left(1-\frac{x}{R}\right) \\
& y=2 x\left(1-\frac{5 x}{2}\right) \\
& y=2 x-5 x^{2}
\end{aligned}
$$

3. $\mathrm{V}_{\mathrm{ang}}=\frac{\text { Total displacement }}{\text { Total time }}$

$$
V=\frac{d}{\frac{d}{2 V_{1}}+\frac{\mathrm{d}}{2 \mathrm{~V}_{2}}}
$$

After some rearranging we get

$$
\Rightarrow \frac{2}{\mathrm{~V}}=\frac{1}{\mathrm{~V}_{1}}+\frac{1}{\mathrm{~V}_{2}}
$$

4. For the system $\mathrm{a}=\frac{\mathrm{F}}{2 \mathrm{~m}}$

For the second block

$$
\begin{aligned}
\mathrm{T} & =\mathrm{ma} \\
& =\mathrm{m} \times \frac{\mathrm{F}}{2 \mathrm{~m}} \\
& =\frac{\mathrm{F}}{2}
\end{aligned}
$$

5. $\mathrm{F}=\frac{\mathrm{mv}_{\mathrm{f}}-\mathrm{mv}_{\mathrm{i}}}{\mathrm{t}}$

$$
\frac{0.1(0)-0.1(10)}{0.1}
$$

$=-10 \mathrm{~N}$ magnitude wise $\mathrm{F}=10 \mathrm{~N}$
6. $\mathrm{U}_{1}=\frac{1}{2} \mathrm{kx}_{1}^{2}$

$$
\begin{aligned}
= & \frac{1}{2}(240) \times\left(10 \times 10^{-2}\right)^{2} \\
= & 0.12 \mathrm{~J} \\
& U_{1}=\frac{1}{2} \mathrm{kx}_{1}^{2} \\
= & \frac{1}{2}(240) \times\left(10 \times 10^{-2}\right)^{2} \\
= & 0.12 \mathrm{~J} \\
& U_{1}-U_{2}=0
\end{aligned}
$$

7.The radius is r_{n} and the velocity is v_{n}. The de-broglie wavelength is

$$
\begin{aligned}
& \frac{r_{n}}{h}=\frac{m v_{n} r_{n}}{h} \\
& \text { But } m v_{n} r_{n}=\frac{n h}{2 \pi} \\
& \text { Therefore, } \frac{\frac{r_{n}}{h}}{m v_{n}}=\frac{n}{2 \pi}
\end{aligned}
$$

8. $f=30 \mathrm{~cm}$

$$
\mathrm{R}_{0}=10 \mathrm{c}
$$

$$
\begin{aligned}
& \frac{1}{\mathrm{f}}=(\mathrm{n}-1)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right) \\
& \frac{1}{30}=(\mathrm{n}-1)\left(\frac{1}{\infty}-\left(\frac{1}{-10}\right)\right) \\
& \Rightarrow \mathrm{n}-1=\frac{1}{3} \\
& \Rightarrow \mathrm{n}=\frac{4}{3}=1.33
\end{aligned}
$$

9. $\mathrm{E}_{\mathrm{k}}=\frac{1}{2} m \mathrm{u}^{2}$

At the highest point of the trajectory,

$$
\begin{aligned}
& U=m g \mathrm{H} \\
& =m g \times \frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 g} \\
& =\frac{1}{2} m v^{2} \sin ^{2} \theta \\
& =\mathrm{E}_{\mathrm{k}} \sin ^{2} \theta
\end{aligned}
$$

10. Initial energy $E_{1}=(1)(-80)+1(640)=560 \mathrm{cal}$

Let the final state be completely liquid state (water)

$$
\begin{aligned}
\mathrm{E}_{\mathrm{f}} & =m c t \\
& =(2)(1) \mathrm{t}
\end{aligned}
$$

$\Rightarrow 2 \mathrm{t}=560$
$\Rightarrow \mathrm{t}=280^{\circ} \mathrm{C}$. Water cannot exist at $280^{\circ} \mathrm{C}$. Thus all steam has not condensed. The final temperature is thus $100^{\circ} \mathrm{C}$.
11. The following is the reflection diagram.

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}_{\mathbf{i}}}=\frac{1}{2}(\hat{\imath}+\sqrt{3} \hat{\jmath}) \\
& \tan \theta=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3} \\
& \Rightarrow \theta=60^{\circ} \\
& i=30^{\circ}
\end{aligned}
$$

12. For every α particle emission neutrons and protons both decrease by two and for every positron emission proton number decreases by 1.
Initial neutron number: A-Z
Initial proton number: Z

$$
\mathrm{Z}^{\mathrm{X}^{\mathrm{A}}} \xrightarrow{3 \alpha} \mathrm{Z}-6^{\mathrm{X}^{\mathrm{A}-12}} \xrightarrow{2 \mathrm{ct}} \mathrm{Z}-4^{\mathrm{X}^{\mathrm{A}-12}}
$$

Number of neutrons is $A-12-(Z-4)=A-Z-8$
Number of protons is Z-4
13.

The forces acting at the lower most point are,

$$
\begin{aligned}
& \text { Where; } v=R \\
& k_{i}+U_{i}+W_{N C}=k_{f}+U_{f} \\
& O+m g R+O=\frac{1}{2} \times \frac{1}{2} m R^{2} \times\left(\frac{v}{R}\right)^{2}+O \\
& m g R=\frac{3}{4} m v^{2} \Rightarrow v^{2}=\frac{4 g R}{3} \\
& N=m g+\frac{m v^{2}}{R} \\
& =m g+\frac{m}{R} \times \frac{4}{3} g R \\
& =\frac{7}{3} m g
\end{aligned}
$$

14. The acceleration is; $=\frac{\mathrm{qE}}{\mathrm{m}}$

> Aslo, $v=u+a t$
> $v=0+\frac{q \mathrm{E}}{\mathrm{m}} \mathrm{t}$
> $\mathrm{v}=\frac{\mathrm{qE}}{\mathrm{m}} \mathrm{t}$

The kinetic energy is

$$
\begin{aligned}
& \mathrm{k}=\frac{1}{2} \mathrm{mv}^{2} \\
& =\frac{1}{2} \times m\left(\frac{\mathrm{qEt}}{\mathrm{~m}}\right)^{2} \\
& =\frac{\mathrm{q}^{2} \mathrm{E}^{2} \mathrm{t}^{2}}{2 \mathrm{~m}}
\end{aligned}
$$

15. Motorcyclist listens to two apparent frequencies police car:

$$
\begin{aligned}
& f_{1}=f_{01}\left(\frac{330+v}{330}\right) \\
& =165\left(\frac{330+v}{330}\right) \\
& =\left(\frac{330+v}{2}\right)
\end{aligned}
$$

Since no beats are present,

$$
\begin{aligned}
& f_{1}=f_{2} \\
& \frac{330-v}{2}=\frac{330+v}{2}
\end{aligned}
$$

$$
\Rightarrow v=22 \mathrm{~ms}^{-1}
$$

16. Since the voltage across the resistor is 40 V , we have

$$
20 i=40 \Rightarrow i=2 A
$$

Applying KVL to the loop
$-40-10 R-20+100=0$
$\Rightarrow \mathrm{R}=4 \Omega$
17. The intensity at a point on the screen where the path difference is Δx is given by

$$
\begin{aligned}
& I=I_{0} \cos ^{2}\left(\frac{\pi}{\lambda} \times \Delta x\right) \\
& I=I_{0} \cos ^{2}\left(\frac{\pi}{\lambda} \times \frac{\lambda}{6}\right) \\
& \Rightarrow \frac{I}{I_{0}}=\frac{3}{4}
\end{aligned}
$$

18. The emf induced in the element is,

$$
\begin{aligned}
& d \epsilon=B d x v \\
& \int d \in=B \int_{2 l}^{3 l} x d x \\
& \epsilon=\frac{5 B \quad l^{2}}{2}
\end{aligned}
$$

19. The initial angular velocity is 国 $_{0}=300 \times \frac{\pi}{30}$
$=10 \mathrm{rad} \mathrm{s}^{-1}$
We have,

$$
\begin{aligned}
& \text { T }{ }^{2}={ }_{0}^{2}+2 \\
& 0=(10 \pi)^{2}-2 \alpha(25 \times 2 \pi) \\
& \Rightarrow \alpha=\pi
\end{aligned}
$$

Also,

$$
\begin{aligned}
& =I \alpha \\
& =\frac{10}{\pi} \times \pi
\end{aligned}
$$

$$
=10 \mathrm{Nm}
$$

20. Using the expression for the reactances, we have

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{L}}=2 \pi f \mathrm{~L} \\
= & 2 \times \pi \times 50 \times \frac{200}{\pi} \times 10^{-3} \\
= & 20 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}=\frac{10^{3}}{\frac{50}{2}} \\
& =10 \Omega \\
& \mathrm{R}=10 \Omega
\end{aligned}
$$

We have $\tan \phi=\frac{\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}}{\mathrm{R}}$

$$
\begin{aligned}
& =\frac{20-10}{10} \\
& =1
\end{aligned}
$$

$$
\Rightarrow \phi=\frac{\pi}{4}
$$

21. $R=\frac{m V}{q B}=\frac{p}{q B}$

Since p remains the same for both
$\mathrm{R}_{\mathrm{e}^{-}}=\frac{\mathrm{p}}{\mathrm{e}_{\mathrm{B}}} \mathrm{R}_{\mathrm{p}}=\frac{\mathrm{p}}{\mathrm{e}_{\mathrm{B}}}$
$\therefore \mathrm{R}_{\mathrm{e}^{-}}=\mathrm{R}_{\mathrm{p}}$
22.

Chain has a mass ' m ' and length ' 1 '. Let a maximum length x of the chain project over the table. The length of the chain on the table is $\quad x$. Then the pulling force due to the length x should be balanced by the limiting friction acting to the left.

$$
\begin{aligned}
& \frac{\mathrm{m}}{1} \mathrm{xg}=\mu \frac{\mathrm{m}}{1}(1-x) \mathrm{g} \\
& \mathrm{x}=\frac{\mu \mathrm{R}}{1+\mu} \\
& =\frac{0.251}{1.25} \\
& =0.21
\end{aligned}
$$

Therefore, it is 20%.
23. For the open tube

$$
f_{0}=\frac{v}{2 l}
$$

For the closed tube

$$
\mathrm{f}_{0}^{1}=\frac{\mathrm{v}}{4\left(\frac{1}{2}\right)}=\mathrm{f}_{0}
$$

24. At $\mathrm{P}, \underset{R_{1}}{B}=0$
${ }_{\beta=0}^{B}=0$

$$
B_{2}=\frac{\mu_{0} i}{4 R}=\frac{\mu_{0} \pi i}{4 \pi R}
$$

25. A and B are axial points

$$
\begin{aligned}
\left|V_{\mathrm{A}}\right| & =\left|\mathrm{V}_{\mathrm{B}}\right|=\frac{\mathrm{kp}}{\mathrm{r}^{2}} \cos 0^{\circ} \\
& =\frac{\mathrm{kp}}{\mathrm{r}^{2}}
\end{aligned}
$$

C and D are equatorial points. Thus,

$$
\begin{aligned}
& V_{C}=V_{D}=\frac{\mathrm{kp}}{\mathrm{r}^{2}} \cos 90^{\circ} \\
& =0
\end{aligned}
$$

26. $\phi=\frac{\pi}{3}$

$$
\begin{aligned}
& V_{r m s}=\frac{100}{\sqrt{2}} \\
& i_{\text {rms }}=\frac{100}{\sqrt{2}} \\
& P_{\text {avg }}=V_{\text {rms }} i_{\text {rms }} \cos \phi \\
& =\frac{100}{\sqrt{2}} \times \frac{100}{\sqrt{2}} \times \frac{1}{2} \\
& =2500 \mathrm{~W}
\end{aligned}
$$

27. $\phi=8 t^{2}-4 t+1$

We have

$$
\epsilon=-\frac{d \phi}{d t}
$$

$$
\begin{aligned}
& =-16 \mathrm{t}+4 \\
\in \mathrm{I}_{\mathrm{t}=0.1 \mathrm{~s}} & =-1.6+4 \\
& =2.4 \mathrm{~V} \\
\mathrm{i} & =\frac{\epsilon}{\mathrm{R}} \\
& =\frac{2.4}{10} \\
& =0.24 \mathrm{~A}
\end{aligned}
$$

28. Using dimensional analysis, we have

$$
\begin{aligned}
& {\left[\frac{\mathrm{L}}{\mathrm{R}}\right]=[\mathrm{T}] \Rightarrow\left[\frac{\mathrm{R}}{\mathrm{~L}}\right]=\left[\mathrm{T}^{-1}\right]} \\
& {[\mathrm{RC}]=[\mathrm{T}] \Rightarrow\left[\frac{1}{\mathrm{RC}}\right]=\left[\mathrm{T}^{-1}\right]} \\
& {\left[\frac{1}{\sqrt{\mathrm{LC}}]=\left[\mathrm{T}^{-1}\right]}\right.} \\
& \text { Only }[\mathrm{RCL}] \neq\left[\mathrm{T}^{-1}\right]
\end{aligned}
$$

29. We can write the following truth table from the graph

A B C
$0 \quad 0 \quad 0$
$1 \quad 1 \quad 1$
$\begin{array}{lll}0 & 1 & 0\end{array}$

1
$0 \quad 0$

This truth table belongs to the AND gate
30. 15 years is three half lives

Thus, $N=\frac{N_{0}}{2^{3}}=\frac{N_{0}}{8}$

CHEMISTRY

SOLUTION AND ANSWER KEY

$31 . \mathrm{b}$	$32 . \mathrm{d}$	$33 . \mathrm{c}$	$34 . \mathrm{c}$	$35 . \mathrm{b}$	$36 . \mathrm{d}$	$37 . \mathrm{b}$	$38 . \mathrm{c}$	39.b	40.d
$41 . \mathrm{a}$	$42 . \mathrm{c}$	$43 . \mathrm{c}$	$44 . \mathrm{b}$	$45 . \mathrm{b}$	$46 . \mathrm{c}$	$47 . \mathrm{c}$	$48 . \mathrm{a}$	49.d	50.d
$51 . \mathrm{d}$	$52 . \mathrm{d}$	$53 . \mathrm{c}$	$54 . \mathrm{c}$	$55 . \mathrm{b}$	$56 . \mathrm{c}$	$57 . \mathrm{c}$	$58 . \mathrm{d}$	59.c	60.c

31. (b)

Sol: Conceptual
32. (d)

Sol: $\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2}$
or 64 g 26g
64kg ------------ 26kg
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}$
26 kg ------- 28 kg
$\therefore 64 \mathrm{~kg}$ of CaC_{2} gives 28 kg of ethylene or polyethylene
33. (c)

Sol: EWG increases reactivity towards nucleophilic substitution, EDG decreases reactivity towards nucleophilic substitution.
34. (c)

Sol: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{SOCl}_{2}-{ }^{\text {pyridine }} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{SO}_{2}+\mathrm{HCl}$
(A)
(B)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Na} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+1 / 2 \mathrm{H}_{2}$
(X)
(C)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{NaOC}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{NaCl}$
(B) (C)
35. (b)
36. (d)

Sol:

37. (b)

Sol:Acidity α-I effect
38. (c)

Sol: I $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}-^{\Delta} \quad \mathrm{CH}_{3} \mathrm{COCH}_{3}$
(A)

II

(B)

III $2 \mathrm{CH}_{3} \mathrm{COOH}{ }^{\mathrm{P}_{4} \mathrm{O}_{10}}\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
(C)
39. (b)

Sol:
(ii)

(iv)

Are primary amines
40. Ans: (d)

Sol: Rate $=\mathrm{K}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
$2.4 \times 10^{-5}=3 \times 10^{-5} \times\left[N_{2} O_{5}\right]$
$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\frac{2.4 \times 10^{-5}}{3 \times 10^{-5}}=0.8 \mathrm{~mol} / \mathrm{L}$

41. Ans: (a)

Sol: $\mathbf{d}=\frac{\sqrt{3}}{2} a \Rightarrow a=\frac{2}{\sqrt{3}} d=\frac{2}{1.732} \times 365.9=422.5 \mathrm{pm}$
For $b c c, Z=2$

$$
\begin{aligned}
& \int=\frac{z \times m}{a^{3} \times N_{A} \times 10^{-30}}=\frac{2 \times 23}{(422.5)^{3} \times\left(6.02 \times 10^{23}\right) \times 10^{-30}} \\
& =1.51 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

42. (c)

Sol: $\Delta H=\Delta u+\Delta n R T$

$$
\begin{aligned}
& \Delta \mathrm{H}=30 \mathrm{Kcal} \\
& 3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{II}) \\
& \Delta \mathrm{n}=3-0=3 \\
& \Rightarrow 30=\Delta \mathrm{V}) \\
& \Delta \mathrm{U}=27 \mathrm{Kcal}
\end{aligned}
$$

43.Ans: (c)

Sol: $\quad B r_{2}+2 e^{-} \rightarrow 2 B r^{\ominus}$ (reduction)

$$
\begin{aligned}
& \mathrm{Br}_{2} \rightarrow \mathrm{BrO}_{3}^{\ominus}+10 e^{-} s \text { (Oxidation) } \\
& E q \cdot w t=\frac{M}{2}+\frac{M}{10}
\end{aligned}
$$

44. (b)

Sol: $\mathrm{K}_{\mathrm{Agcl}}=\mathrm{K}_{\text {Agcl solution }}-\mathrm{K}_{\mathrm{H}_{2} \mathrm{O}}$

$$
=1.86 \times 10^{-6}-6 \times 10^{-8}=1.8 \times 10^{-6} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}
$$

$$
\begin{aligned}
\Lambda_{\mathrm{Agcl}}^{0} & =\frac{\mathrm{K} \times 1000}{\mathrm{~s}} \\
\mathrm{~s} & =\frac{\mathrm{K} \times 1000}{\Lambda_{\mathrm{Agcl}}^{0}}=\frac{1.86 \times 10^{-6} \times 1000}{137.2}=1.31 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

45. (b)

Sol:
46. (c)

Sol:Ionisation energy = -(energy of the $1^{\text {st }}$ orbit)

$$
\begin{aligned}
& \text { Energy of } 1^{\text {st }} \text { orbit of } \mathrm{Li}^{+2}=-13.6 \times 9 \quad\left(\because{\text { Zfor } \left.\mathrm{Li}^{+2}=3\right)} \begin{array}{l}
=-122.4 \mathrm{ev}
\end{array}\right. \\
& \text { Ionisation energy of } \mathrm{Li}^{+2}=-(-122.4)=122.4 \mathrm{ev}
\end{aligned}
$$

47.(C)

Sol:Ka= $K a_{1} \times K a_{2}=1 \times 10^{-5} \times 5 \times 10^{-10}=5 \times 10^{-15}$
48.(a)

Sol: $\frac{\mathrm{P}_{1} \mathrm{~d}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~d}_{2}}{\mathrm{~T}_{2}}$
49.(d)

Sol: $\quad\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is with $d s p^{2}$ hybridization and $\mu=0$
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right.$] is with $s p^{3}$ hybridization and $\mu=0 \mathrm{BM}$
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is with $d s p^{2}$ hybridization with $\mu=1.732 \mathrm{BM}$
$\left[\mathrm{Pd}(\mathrm{CI})_{4}\right]^{2-} \quad$ is with $d s p^{2}$ hybridization with $\mu=0 \mathrm{BM}$

50.Ans(d)

Sol: boiling point of $\mathrm{NH}_{3}>\mathrm{PH}_{3}$ due intermolecular hydrogen bonding

51. Ans(d)

Sol: Acidic nature of hydrides increases from $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{H}_{2} \mathrm{Te}$

52. Ans(d)

Sol: conceptual

53. Ans(c)

Sol: it is an application of micro cosmic salt

54. Ans:(c)

Sol: Conceptual

55. Ans(b)

Sol: acidic nature of oxides increases in a period from left to right

56. Ans(c)

Sol:Dichromate salts react with hydrogen peroxide in acid medium and gives blue colour

57. Ans (c)

Sol. 50,000
58. Ans (d)

Sol: Since it is obtained by condensation polymensation of only one type of monomer i.e., capvolactam.

59. Ans (c)

Sol: Conceptual

60. Ans (c)

Sol: Oxides of sulphur and nitrogen with dust and smoke combine with condensed water vapors andforms smog.

MATHEMATICS
 SOLUTION AND ANSWER KEY

61. b	62. c	63. b	64.c	65. b	66. a	67. d	68. a	$69 . \mathrm{c}$	70. a
71. b	72. d	73. d	74. a	75. b	76. a	77. c	78. c	79.c	80.a
81. c	82. d	83. d	84. b	85. a	86. b	87. a	88. d	$89 . \mathrm{c}$	90. c

61. Sol: (b)

$M=\left(a, \frac{a}{2}\right), \quad N=\left(\frac{a}{2}, a\right)$
Area $\triangle \mathrm{OMN}=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ a & a / 2 & 1 \\ a / 2 & a & 1\end{array}\right|=\frac{3 \mathrm{a}^{2}}{8}$, Area of square $=\mathrm{a}^{2}$
\therefore Ratio is $\mathrm{a}^{2}: \frac{3 \mathrm{a}^{2}}{8} \Rightarrow 8: 3$
62. Sol: (c)

The line $5 x-2 y+6=0$ cuts y-axis at $Q(0,3)$. Clearly $P Q$ is the length of the tangent drawn from Q on the circle
$x^{2}+y^{2}+6 x+6 y=2 \quad \Rightarrow P Q=\sqrt{0+9+6 \times 0+6 \times 3-2}=5$

63. Sol: (b)

Equation of tangent of slope m is $y=m x+\frac{1}{m}$ which passes through $(1,4) \Rightarrow m^{2}-4 m+1=0$
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right| \Rightarrow \tan \theta=\frac{\sqrt{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)^{2}-4 \mathrm{~m}_{1} \mathrm{~m}_{2}}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}} \Rightarrow \tan \theta=\frac{\sqrt{16-4}}{2}=\sqrt{3}$
$\therefore \theta=60^{\circ}$
64. Sol: (c)

Sum of 100 items $=49 \times 100=4900$
Sum of items $=60+70+80=210$
Sum of items replaced $=40+20+50=110$
\therefore New sum $=4900-110+210=5000$
\therefore Correct mean $=\frac{5000}{100}=50$

65. Sol: (b)

Equation of the pair of Asymptotes is $3 x^{2}-y^{2}+k=0$ But passes through origin
$\Rightarrow \mathrm{k}=0$
\therefore Asymptotes are $3 \mathrm{x}^{2}-\mathrm{y}^{2}=0$
\therefore Angle α between them $\alpha=2 \operatorname{Tan}^{-1}\left\{\frac{2 \sqrt{0+3}}{3-1}\right\}$
$\therefore \alpha=\frac{2 \pi}{3}$
66. Sol: (a)

$$
q p \rightarrow(\sim \vee r) \text { is } F \Rightarrow \beta \text { is } T, \sim \vee r \text { is } F
$$

$\Rightarrow P_{f}^{P} T$, \sim is F, r is F
$\Rightarrow q$ is T, is T, r is F
67. (d) $\operatorname{Lt}_{x \rightarrow 0} \frac{(1-\cos x)\left(1+\cos x+\cos ^{2} x\right)}{\sin 3 x \cdot \sin 5 x}=\frac{3 / 2}{3.5}=\frac{1}{10}$

Sol:
68. (a) $x^{2}+y^{2}=1 \quad \Rightarrow 2 x+2 y \frac{d y}{d x}=0$

$$
\Rightarrow \frac{d y}{d x}=\frac{-x}{y}
$$

69.(c) $\frac{d y}{d x}=m=3 x^{2}-4 x=12-8=4$

$$
A T=\left|\frac{y_{1} \sqrt{1+\mathrm{m}^{2}}}{m}\right|=\frac{4 \cdot \sqrt{17}}{4}=\sqrt{17}
$$

70. (a) $\operatorname{acos} x+\frac{1}{3} \cdot 3 \cos 3 x=0 \quad$ for $x=\frac{\pi}{3}$
a $\frac{1}{2}+(-1)=0$
$a=2$
71. (b) Let $f(x)=a x^{3}+b x^{2}+c x$
$\mathrm{f}(0)=0=\mathrm{f}(1) \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=0$
72. (d) $\int e^{x}\left(\frac{x+2}{x+3}+\frac{1}{(x+3)^{2}}\right) d x=e^{x} \cdot\left(\frac{x+2}{x+3}\right)+C$
73. (d) $f(x)=\log \left(\frac{2-\sin x}{2+\sin x}\right)$ is an odd function

$$
\therefore \int_{-\pi / 2}^{\pi / 2} f(x) \mathrm{dx}=0
$$

74. (a) Area $=4$
75. (b) $y=v x \Rightarrow \sin ^{-1}\left(\frac{y}{x}\right)=\log x$

$$
\Rightarrow \mathrm{y}=\mathrm{x}=e^{\pi / 2}
$$

76. Sol: (a)
$\bar{a} \cdot \bar{b}>0 \Rightarrow 2 \lambda^{2}-3 \lambda+1>0 \Rightarrow \lambda<\frac{1}{2}$ or $\lambda>1$
$\bar{b} \cdot \mathrm{i}<0, \bar{b} \cdot \mathrm{j}<0, \bar{b} \cdot \mathrm{k}<0 \Rightarrow \lambda<0$
Form (1) and (2), $\quad \lambda \in(-\infty, 0)$
77. Sol: (c)
$[\bar{U}, \bar{V}, \bar{W}]=\bar{U} \cdot(\bar{V} \cdot \bar{W})=\bar{U} \cdot(3 i-7 j-k)$

$$
=|\overline{\mathrm{U}}||3 i-7 j-k| \cos \theta
$$

$$
=\sqrt{59} \cos \theta
$$

\therefore Maximum value of $[\overline{\mathrm{U}}, \overline{\mathrm{V}}, \overline{\mathrm{W}}]=\sqrt{59} . \quad(\because \cos \theta \leq 1)$
78. Sol: (c)

Equation of the plane is $3(x-1)+(y-1)+4(z-1)=0$
$\Rightarrow 3 x+4 y-7=0$
\therefore Dist. from origin $=\frac{|-7|}{\sqrt{3^{2}+4^{2}}}=\frac{7}{5}$

79. Sol: (c)

Let P be the required point on $A B$. Let P divides $A B$ in the ratio $\lambda: 1$
$P=\left(\frac{11 \lambda-9}{\lambda+1}, \frac{4}{\lambda+1}, \frac{5-\lambda}{\lambda+1}\right), O P \perp A B \Rightarrow 20\left(\frac{11 \lambda-9}{\lambda+1}\right)-4\left(\frac{4}{\lambda+1}\right)-6\left(\frac{5-\lambda}{\lambda+1}\right)=0$
$\therefore \lambda=1 \Rightarrow P=(1,2,2)$
80. Sol: (a)

$$
\left|\begin{array}{ccc}
3 & -2 & 1 \\
4 & -3 & 4 \\
2 & -1 & m
\end{array}\right|=0 \quad \Rightarrow m=-2
$$

81. Sol: (c)

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~s})=3^{5}=243 \\
& \mathrm{n}(\mathrm{E})=3\left({ }^{5} \mathrm{C}_{2} \cdot{ }^{3} \mathrm{C}_{2} \cdot{ }^{3} \mathrm{C}_{1}\right)+3\left({ }^{5} \mathrm{C}_{1} \cdot{ }^{4} \mathrm{C}_{1} \cdot{ }^{3} \mathrm{C}_{3}\right)=150 \\
& \mathrm{P}(\mathrm{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{~S})}=\frac{50}{81}
\end{aligned}
$$

82. Sol: (d)

$$
\begin{aligned}
& P(W)=\frac{1}{6}, P(L)=\frac{5}{6} \\
& P(A)=\frac{1}{6}+\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}+\left(\frac{5}{6}\right)^{4} \cdot \frac{1}{6}+\ldots .=\frac{6}{11}
\end{aligned}
$$

83. Sol: (d)

Sol: $\left(x^{2}+\left(x^{6}-1\right)^{1 / 2}\right)^{5}+\left(x^{2}-\left(x^{6}-1\right)^{1 / 2}\right)^{5}$

$$
=2\left({ }^{5} C_{0}\left(x^{2}\right)^{5}+{ }^{5} C_{2}\left(x^{2}\right)^{3}\left(x^{6}-1\right)+{ }^{5} C_{4} x^{2}\left(x^{6}-1\right)^{2}\right)
$$

Here last term is of 14 degree.
84. Sol. (b) $|z|=\left|z-\frac{4}{2}+\frac{4}{2}\right|$

$$
\begin{aligned}
& \leq\left|\mathrm{Z}-\frac{4}{2}\right|+\left|\frac{4}{2}\right| \\
& =\left|\mathrm{Z}-\frac{4}{2}\right|+\frac{4}{|2|}
\end{aligned}
$$

$$
|z| \leq 2+\frac{4}{|2|}
$$

$$
|z|^{2}-2|2| \leq 4
$$

$$
|z|^{2}-2|2|+1 \leq 5
$$

$$
\Rightarrow|\mathrm{z}| \leq \sqrt{5}+1
$$

85. Ans. (a)
$\left|\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 1 & \log _{y} z \\ \log _{z} x & \log _{z} y & 1\end{array}\right|$

$$
=\left(1-\log _{z} y \log _{y} z\right)-\log _{x} y\left(\log _{y} x-\log _{z} x \log _{y} z\right)
$$

$+\log _{x} z\left(\log _{y} x \log _{z} y-\log _{z} x\right)$

$$
=(1-1)-\left(1-\log _{x} y \log _{y} x\right)+\left(\log _{x} z \log _{z} x-1\right)=0
$$

$\left\{\right.$ Since $\left.\log _{x} y \cdot \log _{y} x=1\right\}$.
86. Sol: (b)

Last digit is zero and the remaining from digits are 1,2,4,5. Number of arrangements $=4!=24$
87. Sol: (a)

$$
\begin{aligned}
& x-\frac{2}{x-1}=1-\frac{2}{x-1}-----(1) \\
& \Rightarrow x^{2}-x-2=x-1-2 \\
& \Rightarrow x^{2}-2 x+1=0 \\
& \Rightarrow(x-1)^{2}-0 \\
& \Rightarrow x-1=0 \Rightarrow x=1
\end{aligned}
$$

But when $x=1(1)$ is not divined \therefore No root
88. Sol: (d)

$$
\begin{aligned}
& \tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ} \\
& =\tan 9^{\circ}+\cot 9^{\circ}-\left(\tan 27^{\circ}+\cot 27^{\circ}\right) \\
& =\frac{1}{\sin 9^{\circ} \cdot \cos 9^{\circ}}-\frac{1}{\sin 27^{\circ} \cos 27^{\circ}} \\
& =\frac{2\left[\sin 54^{\circ}-\sin 18^{\circ}\right]}{\sin 18^{\circ} \cdot \sin 54^{\circ}}=4
\end{aligned}
$$

89. Sol: (c)

$$
\begin{aligned}
& 2^{78}+2^{3} \cdot 2^{75}=8\left(2^{5}\right)^{15}=8(1+31)^{15}=8\left\{^{15} \mathrm{C}_{0}+{ }^{15} \mathrm{C}_{1} 31+\ldots \ldots \ldots+{ }^{15} \mathrm{C}_{15}(31)^{15}\right\} \\
& 2^{78}=8+\text { an integer multiple of } 31 \\
& \frac{2^{78}}{31}=\frac{8}{31}+\text { an integer }
\end{aligned}
$$

90. Sol: (c) $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}-z_{2}\right|^{2}$

$$
\Rightarrow \mathrm{z}_{1} \cdot \overline{\mathrm{z}}_{2}+\overline{\mathrm{z}}_{1} \mathrm{z}_{2}=0
$$

$$
\text { i.ez } \cdot \bar{z}_{2}+\overline{z_{1} \cdot \bar{z}_{2}}=0
$$

$$
\Rightarrow \operatorname{Re}\left(\mathrm{z}_{1} \cdot \overline{\mathrm{z}}_{2}\right)=0
$$

$$
\begin{aligned}
& \text { Cut } z_{1}=r, e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}} \\
& \Rightarrow \operatorname{Re} z_{1} \cdot \bar{z}_{2}=r_{1} r_{2} e^{i\left(\theta_{1}-\theta_{2}\right)}=0 \\
& \Rightarrow \operatorname{can}\left(\theta_{1}-\theta_{2}\right)=0 \\
& \Rightarrow \theta_{1}-\theta_{2}= \pm \frac{\pi}{2}
\end{aligned}
$$

