

JEE MAINS SAMPLE PAPER PHYSICS

1.	а	2.	С	3.	b	4.	d	5.	b	6.	С	7.	b	8. 0	d	9.	b	10.	С
11.	d	12.	С	13.	С	14.	b	15.	С	16.	d	17.	d	18.	b	19.	С	20.	С
21.	b	22.	d	23.	а	24.	b	25.	d	26.	d	27.	d	28.	c	29.	С	30.	а

Μ

Mg

g/4

1. We have

$$K_i + U_i + W_{NC} = K_f + U_f$$

$$\frac{1}{2} mv^{2} + 0 + 0 = \frac{1}{2} m \left(\frac{v}{2}\right)^{2} + \frac{1}{2} kx^{2}$$
$$\Rightarrow \frac{3}{8} mv^{2} = \frac{1}{2} kx^{2}$$
$$\Rightarrow k = \frac{3mv^{2}}{4x^{2}}$$

2. Work is done by the tension in the chord.

$$T - Mg = \frac{-Mg}{4}$$

$$T = \frac{3Mg}{3}$$

T is upwards and displacement is downwards.

Thus, W = T d cos 180°

 $=\frac{-3Mg}{4}d$

3. Change in kinetic energy (Δk) is nothing but workdone (w)

```
We have, P = 3t^2 - 2t + 1
```

```
\frac{dw}{dt} = 3t^{2} - 2t + 1
\int dw = 3 \int t^{2} dt - 2 \int t dt + \int dt
2 \quad 2 \quad 2
W = 3 \frac{t^{3}}{3} \Big|_{2}^{4} - 2 \frac{t^{2}}{2} \Big|_{2}^{4} + t \Big|_{2}^{4}
W = (64 - 8) - (16 - 4) + (4 - 2)
W = 46 J
```

- 4. The two bodies will exchange velocities. Thus option (d) is not possible.
- 5. Given $m_1v_1 = m_2v_2$. Let $m_1 > m_2 \Rightarrow v_2 > v_1$

$$a_{1} = \frac{F}{m_{1}} \operatorname{and} a_{2} = \frac{F}{m_{2}}, \text{ where F is the applied force.}$$
we have,

$$O = v_{1} - a_{1}t_{1} \Rightarrow t_{1} = \frac{v_{1}}{a_{1}} = \frac{m_{1}v_{1}}{f}$$

$$O = v_{2} - a_{2}t_{2} \Rightarrow t_{2} = \frac{v_{2}^{2}}{a_{2}} = \frac{m_{2}v_{2}}{f}$$

$$\Rightarrow t_{1} = t_{2}$$
Also, $O = v_{1}^{2} - 2 a_{1}s_{1} \Rightarrow s_{1} = \frac{v_{1}^{2}}{2a_{1}} = \left(\frac{m_{1}v_{1}}{2F}\right)v_{1}$

$$O = v_{2}^{2} - 2 a_{2}s_{2} \Rightarrow s_{2} = \frac{v_{2}^{2}}{2a_{2}} = \left(\frac{m_{2}v_{2}}{2F}\right)v_{2}$$

$$s_{2} > s_{1} \operatorname{sinc} v_{2} > v_{1}$$
6. From the graph

$$x = -\sin t$$

$$v = \frac{dx}{dt}$$

$$= -\cos t$$
7.

FBD of A
$$2 \text{ kg } \xrightarrow{a}$$

$$N \leftarrow D = 10 \quad 10 - N = 2a_{1}(1)$$
FBD of B
$$3 \text{ kg } \xrightarrow{a}$$

$$N = 3a_{2}(2)$$

From (1) and (2) a = 2 ms⁻¹ \Rightarrow N = 6N

8. w.r.t the horizontal the angles of projection are θ and 90 – θ . Thus, the range will be the same. If T₁, T₂ and H_1 , H_2 are the times of flight and maximum heights reached, then

$$T_{1} = \frac{2u \sin \theta}{g}$$
$$T_{2} = \frac{2u \cos \theta}{g}$$
$$H_{1} = \frac{u^{2} \sin^{2} \theta}{2g}$$
$$H_{2} = \frac{u^{2} \cos^{2} \theta}{2g}$$

7.

If θ = 45°, then T₁ = T₂ and H₁ = H₂ because sin θ = cos θ . \therefore their times of flight may be the same and maximum heights may be the same.

9.
$$V_{AB} = 10 - (-15) = 25 \text{ ms}^{-1}$$

A 50 m
B
C
10 ms^{-1}
B
(-15) = 25 ms^{-1}
A 50 m
B

To cross B entirely A has to travel a distance 100m with a speed $25ms^{-1}$ w.r.t B. Therefore,

$$t = \frac{100}{25} = 4s$$
10. $a_x = 6 \text{ ms}^{-1} \Rightarrow x = 0 + \frac{1}{2} \times 6 \times 4^2 = 48\text{m}$
 $a_y = 8 \text{ ms}^{-1} \Rightarrow y = 0 + \frac{1}{2} \times 8 \times 4^2 = 64\text{m}$
The distance from the origin is
 $r = \sqrt{x^2 + y^2}$, $= \sqrt{48^2 + 64^2}$ = 80m
11. We have mg – T = ma (1)
Where,
 $s = ut + \frac{1}{2} at^2$
 $5 = 0 + \frac{1}{2} \times a \times 4$
 $a = \frac{5}{2} \text{ ms}^{-2}$ (2)
(2) in (1) gives,
 $20 - T = 5 \Rightarrow T = 15\text{N}$
For the wheel,
 $\text{TR} = l_0 \alpha$
Where $a = R\alpha$
Therefore,
 $T = \frac{l_0 \alpha}{R^2} \Rightarrow l_0 = \frac{TR^2}{a}$
 $\therefore l_0 = \frac{15 \times (0.5)^2}{\frac{5}{2}}$
 $= 1.5 \text{ kg m}^2$

12. During vaporization the body absorbs heat from 20s to 30s i.e., for 10s. Total energy absorbed is $E = 42 \times 10^3 \times 10 = 420 \times 10^3$ J, for 5kg mass. For 1 kg

$$L = \frac{E}{5} = \frac{420}{5} \times 10^3 \text{ J} = 84 \text{ kJ kg}^{-1}$$

13. Length (I) and area (A) of all rods are the same. Rods with conductivities k_1 and k_2 are in series and their combination is in parallel with rod of conductivity k_3 . Since heat flow rate (H) are the same.

- 15. Excess pressure is $\Delta P = \frac{4T}{R}$ for the bubble. The pressure inside the bubble having smaller radius will be more, thus air flows from smaller to the bigger bubble.
- 16. During steady state the current through the capacitor is zero. We have,

 V_1

Therefore,
$$i = \frac{V}{R_1 + R_2}$$

is the voltage across R_2 and also across the capacitor.
 $V_1 = i R_2$
 $= \frac{VR_2}{R_1 + R_2}$

17. Given $X_L = R$

The phase difference is given by

1

$$\tan \phi = \frac{X_{\rm L}}{R} = \frac{R}{R} =$$
$$\Rightarrow \phi = \frac{\pi}{4}$$

18. Applying the potential method,

 $C_{eff} = 5C = \frac{5 \epsilon_0 A}{d}$

19. In a magnetic field the particle performs uniform circular motion. \vec{v} and \vec{a} are perpendicular to each other. Thus,

 $\vec{v} \cdot \vec{a} = 0$ 6(2) + (3) (-2x) = 0 6x = 12 x = 2

20. The magnetic field due to a loop is B = $\frac{\mu_0 ni}{R}$.

We have

 $B_1 = \frac{\mu_0 i}{R}$

 $B_2 = \frac{\mu_0(2)i}{R^1}$

Where $(2\pi R^1)2 = 2\pi R \Rightarrow R^1 = \frac{R}{2}$

Therefore
$$B_2 = \frac{4\mu_0 i}{R} = 4 B_1$$
.

21. The entire image will be formed, but the light from the lower part will be missing. Thus intensity of the image reduces.

22. 2µF gets charged to a potential V. When connected to the 8µF capacitor, the common potential is

$$V_{COM} = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2} = \frac{2V + 8(0)}{10} = \frac{V}{5}$$
$$U_i = \frac{1}{2} \times 2 \times 10^{-6} \times v^2 = v^2 \times 10^{-6}$$
$$U_f = \frac{1}{2} \times 10 \times 10^{-6} \times \frac{v^2}{25} = 0.2 v^2 \times 10^{-6}$$

Thus 80% of the energy is dissipated.

23. We have $\in_{ind} = -\frac{d}{dt}\phi$. The flux lines are coming out of the plane of the loop (using right hand rule)

and hence φ is + ve as the current is increasing $\frac{d}{dt}$ is also + ve. Thus

 $\epsilon_{ind} = -(+)(+) = -$ Since ϵ_{ind} is – ve the induced current is clockwise.

24. $E_x = 5 \times 10^5 \times \cos 37^\circ = 4 \times 10^5 \text{NC}^{-1}$ $E_y = 5 \times 10^5 \times \cos 37^\circ = 3 \times 10^5 \text{NC}^{-1}$ We have, $V = \int E_x dx \int E_y dx$ $= 4 \times 10^5 \int_{0}^{6cm} dx \quad 3 \times 10^5 \int_{0}^{4cm} dy$ $\boxed{2} = 36kV.$

25. The path difference at a point above the centre of the screen is

$$\Delta x = (SS_2 - SS_1) + \frac{yd}{D}$$
For maxima,

$$(SS_2 - SS_1) + \frac{yd}{D} = n\lambda$$
For central maxima n = 0

$$\therefore y = -\frac{D}{d} (SS_2 - SS_1)$$

y is negative since $SS_2 - SS_1$ is positive. Thus the fringe pattern shifts downwards, whereas the fringe width remains the same.

26. At D we have,

Byju's Classes | 6.5 lakh + likes on 1. India's most liked Educational Company | Contact: 9900012400

27. The intensity at a point on the screen is

$$=4I_0\cos^2\left(\frac{\pi y}{\beta}\right)$$

A and B are consecutive points which have 75% of $4I_0$ i.e., $3I_0$

$$\therefore 3I_0 = 4I_0 \cos^2\left(\frac{\pi y}{\beta}\right)$$
$$\Rightarrow \cos\left(\frac{\pi y}{\beta}\right) = \frac{\sqrt{3}}{2}$$
$$\Rightarrow \cos\frac{\pi y}{\beta} = \frac{\pi}{6}$$

I

$$\Rightarrow y = \frac{\beta}{\epsilon}$$

Distance between A and B is $2y = \frac{\beta}{3} = \frac{\lambda D}{3d}$

m

$$2y = \frac{6 \times 10^{-7} \times 1}{3 \times 10^{-3}}$$
$$= 2 \times 10^{-4}$$
$$= 0.2 \text{ mm}$$

- 28. As the point source moves away, the intensity decreases but the frequency remains the same. Thus the stopping potential does not change.
- 29. We have

 $N = \frac{N_0}{(2)^{1/T}}$ where t is the elapsed time and T is the half life. Therefore, $N_1 = \frac{N_0}{(2)^{2/2}}$ $= \frac{N_0}{2}$ $N_2 = \frac{N_0}{(2)^{2/4}} = \frac{N_0}{\sqrt{2}}$ Also, $\frac{dN_1}{dt} = -\lambda_1 N_1$ $= \frac{0.693}{2} \frac{N_0}{2}$ $\frac{dN_2}{dt} = -\lambda_2 N_2$ $= \frac{0.693}{4} \frac{N_0}{\sqrt{2}}$ $\frac{dN_1}{dt} : \frac{dN_2}{dt} = \frac{1}{4} : \frac{1}{4\sqrt{2}} = \sqrt{2} : 1$

30. Ground state has the least P.E and Total energy but maximum K.E.

<u>PART – B</u> CHEMISTRY

31. b	32. d	33. b	34. c	35. b	36. a	37. b	38. c	39. d	40. c
41. a	42. d	43. b	44. c	45. b	46. c	47. d	48. b	49. b	50. c
51. c	52. d	53. c	54.c	55. c	56. b	57. b	58. d	59. c	60. d

31. (b)

Sol: Homologous series

32. (d)	H /H	С – Н	4	Sp ³ – s	σ bonds
Sol:	`c=ć	C = C	1	$Sp^2 - sp^2$	σ bond
	H H		1	$P_x - P_y$	π bond

33.(b)

Sol: -NO₂ group is meta directing group

34. (c)

Sol: $1^{\circ}R - X > 2^{\circ}R - X > 3^{\circ}R - X$

35. (b) B α β **Sol:** $CH_3 - CH - CH_2 - CH_3 - CH_3 - CH = CH - CH_3$ |Br $\beta - H - elimination according to "saytzeff's rule".$

36. (a)

Sol: $R - O - R \frac{H_2O}{2} 2R - OH$

37. (b) Sol: Aldehydes containing no α -hydrogen atom gives cannizaro's reaction

38. (c)

Sol: CH₃CN + 2H
$$\rightarrow$$
 CH₃CH = NH $\xrightarrow{H_2O}$ CH₃CHO + NH₃
X Y

39. (d)

Sol: $R - C \equiv N \sum_{2(H)}^{Sncl_2/HCl} R - CH = NH.HCl \frac{H_2O}{R} - CHO + NH_4Cl$

40. Ans: (c) Solution: Conceptual

41. Ans: (a) Solution: 1 mole of Nacl is doped with $GacI_3 = \frac{10^{-3}}{100} = 10^{-5} mol$ Concentration of cation vacancy = $2 \times 10^{-5} \times 6.023 \times 10^{23} mole^{-1}$

 $= 1.2046 \times 10^{-19} mole^{-1}$

42. (d) Sol: Cp = $\left(\frac{dH}{dT}\right)_p$ since at constant T, dT=0 ∴Cp=∞

43. Ans: (b)

Solution:

 $4e^{-} + BrO_{3}^{\ominus} \longrightarrow BrO^{\ominus}$ $X - 6 = -1 \qquad x - 2 = -1$ $X = +5 \qquad x = +1$

The reaction undergoes reduction, i.e it acts as oxidising agent so it requires a reducing agent.

44. (c)

Sol: $E_{ox} = E_{ox}^{0} - \frac{0.0591}{n} \log \frac{[H^{+}]}{p_{H_{2}}}$ = $0 - \frac{0.0591}{1} \log \frac{[10^{-10}]}{1} = 0.59v$

45. Ans (b)

Sol: Due to chloroxylenol

46. (c) Sol: $\frac{h}{\sqrt{2Em}}$ Where E = Kinetic energy.

47. (d) Sol: Correct option:

48. (b)

Sol: $Z = \frac{Vreal}{Videal}$ It Z<1 then $V_{real} < V_{ideal}$ (i.e., 22.4L at STP)

49. Ans: (b)

Solution:

$$X_{A} = \frac{2}{5}, X_{B} = \frac{3}{5}$$

$$P_{Total} = P_{A}^{\circ} X_{A} + P_{B}^{\circ} X_{E}$$

$$= 100 \left(\frac{2}{5}\right) + 150 \left(\frac{3}{5}\right)$$

$$= 40 + 90$$

$$= 130 \text{ mm}$$

50. Ans(c) Sol: conceptual 51. Ans(c) Sol: conceptual

52. Ans(d) Sol: conceptual

53. Ans(c) Sol: conceptual

54. Ans(c) Sol: $H_4P_2O_6$ contains P-P bond but not P-O-P bond

55. Ans:(c) Sol: conceptual

56. Ans(b) Solution: conceptual

57. Ans: (b) Sol: N_2O_3 , N_2O_5 , NH_4^+ , HNO_3 , $B_3N_3H_6$ have dative bonds.

58. Ans(d)Sol. Due to low charge on the cation

59. (c) Sol. 6.3 gr

60. Ans (d) Sol: All statements are connect

> PART – C MATHEMATICS

61. c	62. a	63. a	64. c	65. a	66. a	67. b	68. c	69. a	70. d
71. c	72. b	73. c	74. a	75. c	76. d	77. b	78. c	79. a	80. c
81. c	82. d	83. a	84. a	85. a	86. c	87. b	88. c	89. d	90. d

$$\cos \angle ADC = \frac{(AD)^2 + (CD)^2 - (AC)^2}{2AD \cdot CD} < 0$$

⇒ $(P-1)^2 + 4^2 + (5-1)^2 + (6-4)^2 < (P-5)^2 + 6^2$
⇒ $8P < 24$ ⇒ $P < 3$ ⇒ $P = 2$

62. Sol: (a)

Equation of the common chord of the given circles is 4x + 4y + k + 15 = 0(1) Since $x^2 + y^2 + 6x - 2y + k = 0$ bisects the circumference of $x^2 + y^2 + 2x - 6y = 15$ \therefore (1) is the diameter of $x^2 + y^2 + 2x - 6y = 15$ $\Rightarrow 4(-1) + 4(3) + k + 15 = 0$ $\Rightarrow k = -23$

63. Sol: (a)

$$y^{2} - 6y + 4x + 9 = 0 \qquad \Rightarrow (y - 3)^{2} = -4(x - 0)$$

: Focus is (-1, 3) and equation of directrix is x - 1 = 0

But the chord of contact of tangents drawn from any point on the directrix always passes through the focus.

 \therefore required pt is (-1, 3)

Mode = 3(Median) - 2(Mean)18 = $3(Median) - 2(24) \Rightarrow Median = 22$

65. Sol: (a)

$$\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{5}\right)^2 = \frac{9}{4} \left(\frac{3x + 4y - 7}{5}\right)^2$$

: focus at
$$\left(\frac{1}{2}, \frac{1}{5}\right)$$
, directrix is $\frac{3x + 4y - 7}{5} = 0$

: Equation of latus rectum is
$$y - \frac{1}{5} = -\frac{3}{4}\left(x - \frac{1}{2}\right)$$

66. Sol: (a)

negation of $P \rightarrow (\sim p v)$

$$\Rightarrow \sim [b \rightarrow (\sim b \land)]_{\pm} b \lor (\sim b \land) \downarrow_{\pm}$$
$$\equiv b \lor (b \lor \sim \uparrow)$$
$$\equiv (b \lor \sim \downarrow)$$

67. diff \Rightarrow cont.

$$\therefore a + 1 = 1 + a + b$$

$$b = 0$$

$$2a = a + 2$$

$$\Rightarrow a = 2$$

68.
$$g(f(x)) = x$$

 $g'(f(x)) \cdot f'(x) = 1$
 $\therefore g'(f(c)) = \frac{1}{f'(c)}$

69. $\frac{dy}{dx} = \frac{\sin\theta}{\cos\theta}$

Normal is : $x \cos\theta + y \sin\theta = a$ Dist. from (0, 0) = |a|

70. Area = 2ab = 2(4)(3) = 24
71. f'(c) =
$$\frac{f(5) - f(2)}{5 - 2} = \frac{\frac{1}{2} - \frac{1}{5}}{3} = \frac{3}{10 \cdot 3} = \frac{1}{10}$$

72.
$$\int \cos 2x \, dx = \frac{1}{2} \sin 2x + c \Rightarrow k = \frac{1}{2}$$

73.
$$\frac{Lt}{x \to 0} \frac{\sin^2 x \cos x}{3x^2} = \frac{1}{3}$$

74. A = 4
$$\int_0^{1/2} x \, dx = 2x^2 \int_0^{1/2} = \frac{1}{2}$$

 $75. \frac{\mathrm{dy}}{\mathrm{y}} = \frac{2\mathrm{x}\,\mathrm{dx}}{1+\mathrm{x}^2}$

$$\Rightarrow y = c(1 + x^{2})$$

x = 0, y = 1
$$\Rightarrow c = 1$$

x = 1
$$\Rightarrow y = 2$$

76. **Sol: (d)**

Let $\overline{OP} = \overline{a} + \overline{b}$, $\overline{OQ} = \overline{a} - \overline{b}$, $\overline{OR} = \overline{a} + \lambda \overline{b}$ $\overline{PQ} = -2\overline{b}$, $\overline{PR} = (\lambda - 1) \overline{b} \Rightarrow$ many values of λ

77. Sol: (b)
Let A be the origin.
$$\overline{AB} = \overline{b}$$
, $\overline{AC} = \overline{c}$
Area of $\triangle ABC = \frac{1}{2} (\overline{b} \times \overline{c})$
 $\overline{AF} = \frac{\overline{b}}{2}$, $\overline{AE} = \frac{\overline{c}}{2} \Rightarrow \overline{FE} = \frac{\overline{c}}{2} - \frac{\overline{b}}{2}$, $\overline{FC} = \overline{c} - \frac{\overline{b}}{2}$

area of
$$\Delta FCE = \frac{1}{2} \left(\frac{\overline{c}}{2} - \frac{\overline{b}}{2} \right) \times \left(\overline{c} - \frac{\overline{b}}{2} \right) = \frac{1}{8} \left| \overline{b} \times \overline{c} \right| = \frac{1}{4} \cdot \Delta ABC$$

78. Sol: (c) $\bar{n}_1 = 2i - k + k, \ \bar{n}_2 = i + \lambda j + 2k$

$$\cos \frac{\pi}{3} = \frac{\overline{n}_1 \cdot \overline{n}_2}{|\overline{n}_1| |\overline{n}_2|} \qquad \Rightarrow \lambda^2 + 16\lambda - 17 = 0 \quad \Rightarrow \lambda = -17, 1$$

79. Sol: (a)

Any point on L1 = $(\lambda, \lambda - 1, \lambda)$, any point on L2 = $(2\mu - 1, \mu, \mu)$ $\therefore \frac{2\mu - 1 - \lambda}{2} = \frac{\mu - \lambda + 1}{1} = \frac{\mu - \lambda}{2} \Rightarrow \lambda = 3, \mu = 1$

∴A = (3, 2, 3), B = (1, 1, 1), AB = 3

80. Sol: (c)

Equation of a line through p(2, 3, 4) and parallel to the given line is $\frac{x-2}{3} = \frac{y-3}{6} = \frac{z-4}{2}\lambda(say)$

Let Q $(3\lambda + 2, 6\lambda + 3, 2\lambda + 4)$ is the point of intersection with the plane.

 \therefore Q lies in the plane $\Rightarrow \lambda = -1$ \Rightarrow Q = (-1, -3, 2) \therefore PQ = 7

81. Sol: (c)

n(s) = 90 n(E) = n{6,6, 4 or 5, 5, 6} = 6 P(E) = $\frac{6}{90} = \frac{1}{15}$

82. Sol: (d)

Let X be no. of heads.

$$P(X \ge 1) = 1 - P(X = 0) = 1 - {}^{n}C_{0}\left(\frac{1}{2}\right)^{11} = 1 - \left(\frac{1}{2}\right)^{11}$$

Given that
$$1 - \frac{1}{2^n} \ge 0.8 \implies 2^n \ge 5$$

 \therefore Least value of n is 3

83. Ans: (a)

Sol. Required Coefficient

$$= {}^{2n}C_0 + {}^{2n}C_2 + {}^{2n}C_4 + \dots + {}^{2n}C_{2n} = \frac{2^{2n}}{2} = 2^{2n-1}$$

84. Ans. (a) Sol: z=x +i y

Re
$$\left(\frac{iz+1}{iz-1}\right)$$
=2
⇒x²+y²+4y+3=0
Radies= $\sqrt{2^2 - 3}$ =1

85. Ans. (a)

Sol. $\Delta = -(a^3 + b^3 + c^3 - 3abc)$ $= -(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$ $= -\frac{1}{2}(a + b + c)[(a - b)^2 + (b - c)^2 + (c - a)^2],$

which is clearly negative because of the given conditions

86. Sol:(c)

No. of ways A and B together = $n - 2_{C_{10}}$ No. of 7 ways C, D, E together = $n - 3_{C_{10}}$

 $\Rightarrow n - 2_{C_{10}} = 3(n - 3_{C_9}) \Rightarrow n = 32$ 87. Sol: (b) $x^2 + (1 - 2\lambda)x + (\lambda^2 - \lambda - 2) = 0 - - - - - (1)$ $a = 1 \text{ of } \propto, \beta \text{ are roots of } (1),$ $if \propto < 3 < \beta \Rightarrow a.f(3) < 0$ $\Rightarrow f(3) < 0$ $\Rightarrow 9 + (1 - 2\lambda)3 + \lambda^2 - \lambda - 2 < 0$ $\Rightarrow \lambda \in (2, 5)$

88. Sol: (c) If A + B = 45° ⇒ (1 + tan A)(1 + tan B) = 2 ∴ (1 + tan 1°)(1 + tan 2°).....(1 + tan 45°) = 2²³

89. Sol: (d)

```
Apply R_1 \rightarrow R_1 - R_2, R_2 \rightarrow R_2 - R_3

\Delta = 2 + \cos 2x \Rightarrow 1 \le 2 + \cos 2x \le 3 : \alpha = 3, \beta = 1
```

90. Sol: (d)

x y z = 24 Xyz = $2^3 \times 3^1$ (prime factors) Xyz = $2^3 \times 3^1$ No. 7 the division are $(3_{c_1} + 2.3_{c_2} + 3_{c_3})(3_{c_1})$ = (3 + 6 + 1)(3) = 30