BYJU'S

CLASSES

JEE MAINS SAMPLE PAPER

PHYSICS

1. a	2. c	3. b	4. d	5. b	6. c	7. b	8. d	9. b	10.	c
11. d	12. c	13. c	14. b	15. c	16. d	17. d	18. b	19. c	20.	c
21. b	22. d	23. a	24. b	25. d	26. d	27. d	28. c	29.	30.	a

1. We have

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{i}}+\mathrm{U}_{\mathrm{i}}+\mathrm{W}_{\mathrm{NC}}=\mathrm{K}_{\mathrm{f}}+\mathrm{U}_{\mathrm{f}} \\
& \frac{1}{2} m v^{2}+0+0=\frac{1}{2} m\left(\frac{v}{2}\right)^{2}+\frac{1}{2} k x^{2} \\
& \Rightarrow \frac{3}{8} m v^{2}=\frac{1}{2} k x^{2} \\
& \Rightarrow \mathrm{k}=\frac{3 \mathrm{mv}^{2}}{4 \mathrm{x}^{2}}
\end{aligned}
$$

2. Work is done by the tension in the chord.

$$
\begin{aligned}
& T-M g=\frac{-M g}{4} \\
T= & \frac{3 M g}{4}
\end{aligned}
$$

T is upwards and displacement is downwards.
Thus,

$$
\mathrm{W}=\mathrm{Td} \cos 180^{\circ}
$$

$$
=-T d
$$

$$
=\frac{-3 \mathrm{Mg}}{4} \mathrm{~d}
$$

3. Change in kinetic energy (Δk) is nothing but workdone (w)

We have, $P=3 t^{2}-2 t+1$

```
\[
\frac{d w}{d t}=3 t^{2}-2 t+1
\]
\[
\int \mathrm{dw}=3 \int_{2}^{4} \mathrm{t}^{2} \mathrm{dt}-2 \int_{2}^{4} \mathrm{t} \mathrm{dt}+\int_{2}^{4} \mathrm{dt}
\]
\[
\mathrm{w}=\left.3 \frac{\mathrm{t}^{3}}{3}\right|_{2} ^{2}-\left.2 \frac{\mathrm{t}^{2}}{2}\right|_{2} ^{4}+\left.\mathrm{t}\right|_{2} ^{4}
\]
\[
W=(64-8)-(16-4)+(4-2)
\]
\[
\mathrm{W}=46 \mathrm{~J}
\]
```

4. The two bodies will exchange velocities. Thus option (d) is not possible.
5. Given $m_{1} v_{1}=m_{2} v_{2}$. Let $m_{1}>m_{2} \Rightarrow v_{2}>v_{1}$
$a_{1}=\frac{F}{m_{1}}$ anda $_{2}=\frac{F}{m_{2}}$, where F is the applied force.
we have,
$\mathrm{O}=\mathrm{v}_{1}-\mathrm{a}_{1} \mathrm{t}_{1} \Rightarrow \mathrm{t}_{1}=\frac{\mathrm{v}_{1}}{\mathrm{a}_{1}}=\frac{\mathrm{m}_{1} \mathrm{v}_{1}}{\mathrm{f}}$
$\mathrm{O}=\mathrm{v}_{2}-\mathrm{a}_{2} \mathrm{t}_{2} \Rightarrow \mathrm{t}_{2}=\frac{\mathrm{v}_{2}}{\mathrm{a}_{2}}=\frac{\mathrm{m}_{2} \mathrm{v}_{2}}{\mathrm{f}}$
$\Rightarrow \mathrm{t}_{1}=\mathrm{t}_{2}$
Also, $\mathrm{O}=\mathrm{v}_{1}^{2}-2 \mathrm{a}_{1} \mathrm{~s}_{1} \Rightarrow \mathrm{~s}_{1}=\frac{\mathrm{v}_{1}^{2}}{2 \mathrm{a}_{1}}=\left(\frac{\mathrm{m}_{1} \mathrm{v}_{1}}{2 \mathrm{~F}}\right) \mathrm{v}_{1}$
$\mathrm{O}=\mathrm{v}_{2}^{2}-2 \mathrm{a}_{2} \mathrm{~s}_{2} \Rightarrow \mathrm{~s}_{2}=\frac{\mathrm{v}_{2}^{2}}{2 \mathrm{a}_{2}}=\left(\frac{\mathrm{m}_{2} \mathrm{v}_{2}}{2 \mathrm{~F}}\right) \mathrm{v}_{2}$
$s_{2}>s_{1}$ since $v_{2}>v_{1}$
6. From the graph

$$
\begin{aligned}
& x=-\sin t \\
& v=\frac{d x}{d t} \\
& =-\cos t
\end{aligned}
$$

7.

N is the force exerted by B on A

FBD of A

$10-N=2 a$

$$
\begin{equation*}
N=3 a \tag{2}
\end{equation*}
$$

$$
\text { From (1) and (2) a }=2 \mathrm{~ms}^{-1} \Rightarrow \mathrm{~N}=6 \mathrm{~N}
$$

8. w.r.t the horizontal the angles of projection are θ and $90-\theta$. Thus, the range will be the same. If $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and $\mathrm{H}_{1}, \mathrm{H}_{2}$ are the times of flight and maximum heights reached, then

$$
\begin{aligned}
& \mathrm{T}_{1}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{~g}} \\
& \mathrm{~T}_{2}=\frac{2 \mathrm{u} \cos \theta}{\mathrm{~g}} \\
& \mathrm{H}_{1}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}} \\
& \mathrm{H}_{2}=\frac{\mathrm{u}^{2} \cos ^{2} \theta}{2 \mathrm{~g}}
\end{aligned}
$$

If $\theta=45^{\circ}$, then $T_{1}=T_{2}$ and $H_{1}=H_{2}$ because $\sin \theta=\cos \theta . \therefore$ their times of flight may be the same and maximum heights may be the same.
9. $\mathrm{V}_{\mathrm{AB}}=10-(-15)=25 \mathrm{~ms}^{-1}$

To cross B entirely A has to travel a distance 100 m with a speed $25 \mathrm{~ms}^{-1}$ w.r.t B . Therefore,

$$
t=\frac{100}{25}=4 \mathrm{~s}
$$

10. $a_{x}=6 \mathrm{~ms}^{-1} \Rightarrow x=0+\frac{1}{2} \times 6 \times 4^{2}=48 \mathrm{~m}$

$$
a_{y}=8 \mathrm{~ms}^{-1} \Rightarrow y=0+\frac{1}{2} \times 8 \times 4^{2}=64 m
$$

The distance from the origin is
$r=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}} \quad, \quad=\sqrt{48^{2}+64^{2}} \quad=80 \mathrm{~m}$
11. We have $\mathrm{mg}-\mathrm{T}=\mathrm{ma}$ \qquad (1)

Where,
$s=u t+\frac{1}{2} a t^{2}$
$5=0+\frac{1}{2} \times a \times 4$
$\mathrm{a}=\frac{5}{2} \mathrm{~ms}^{-2}$ \qquad
(2) in (1) gives,

$$
20-T=5 \Rightarrow T=15 N
$$

For the wheel,

$T R=I_{0} \alpha$
Where $\mathrm{a}=\mathrm{R} \alpha$
Therefore,
$\mathrm{T}=\frac{\mathrm{I}_{0} \alpha}{\mathrm{R}^{2}} \Rightarrow \mathrm{I}_{0}=\frac{\mathrm{TR}^{2}}{\mathrm{a}}$
$\therefore \mathrm{I}_{0}=\frac{15 \times(0.5)^{2}}{\frac{5}{2}}$
$=1.5 \mathrm{~kg} \mathrm{~m}^{2}$
12. During vaporization the body absorbs heat from 20 s to 30 s i.e., for 10 s. Total energy absorbed is
$\mathrm{E}=42 \times 10^{3} \times 10=420 \times 10^{3} \mathrm{~J}$, for 5 kg mass .
For 1 kg
$\mathrm{L}=\frac{\mathrm{E}}{5}=\frac{420}{5} \times 10^{3} \mathrm{~J}=84 \mathrm{~kJ} \mathrm{~kg}^{-1}$
13. Length (I) and area (A) of all rods are the same. Rods with conductivities k_{1} and k_{2} are in series and their combination is in parallel with rod of conductivity k_{3}. Since heat flow rate (H) are the same.
$\frac{\mathrm{l}}{\mathrm{k}_{3} \mathrm{~A}}=\frac{\mathrm{l}}{\mathrm{k}_{1} \mathrm{~A}}+\frac{\mathrm{l}}{\mathrm{k}_{2} \mathrm{~A}}$
$\Rightarrow \mathrm{k}_{3}=\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}$

14. We have from I law of thermodynamics,

$$
\begin{aligned}
& d \theta=d U+d W \\
& d \theta=d U+P d v
\end{aligned}
$$

\qquad (1)

But according to the problem

$$
\begin{equation*}
d \theta=-d U \tag{2}
\end{equation*}
$$

\qquad
From (1) and (2)
$-2 d U=P d v$
Using $d V=n_{C_{V}} d T$ and $P v=n R T$ we have

$$
-2 \mathrm{n}_{\mathrm{C}_{\mathrm{V}}} \mathrm{dT}=\frac{\mathrm{nRT}}{\mathrm{~V}} \mathrm{dV} \quad\left(\mathrm{C}_{\mathrm{V}}=\frac{5}{2} \mathrm{R} \text { for distomic gas }\right)
$$

We have, $-5 \frac{\mathrm{dT}}{\mathrm{T}}=\frac{\mathrm{dV}}{\mathrm{V}}$
On integrating
$-5 \ln (\mathrm{~T})=\ln (\mathrm{V})+\ln (\mathrm{K})$
(K: constant)
Or $\ln \left(\frac{\mathrm{VT}^{5}}{\mathrm{~K}}\right)=\ln (1)$
$\Rightarrow \mathrm{VT}^{5}=\mathrm{R}$ or $\mathrm{TV}^{\frac{1}{5}}=\mathrm{k}^{\prime}$
$\therefore \mathrm{n}=\frac{1}{5}$
15. Excess pressure is $\Delta P=\frac{4 T}{R}$ for the bubble. The pressure inside the bubble having smaller radius will be more, thus air flows from smaller to the bigger bubble.
16. During steady state the current through the capacitor is zero. We have,

$$
\text { Therefore, } \mathrm{i}=\frac{\mathrm{V}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

V_{1} is the voltage across R_{2} and also across the capacitor.

$$
\begin{aligned}
& V_{1}=i R_{2} \\
& =\frac{V R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

17. Given $X_{L}=R$

The phase difference is given by

$$
\begin{aligned}
& \tan \phi=\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}=\frac{\mathrm{R}}{\mathrm{R}}=1 \\
& \Rightarrow \phi=\frac{\pi}{4}
\end{aligned}
$$

18. Applying the potential method,

$C_{\text {eff }}=5 C=\frac{5 \epsilon_{0} \mathrm{~A}}{d}$
19. In a magnetic field the particle performs uniform circular motion. \vec{v} and \vec{a} are perpendicular to each other.Thus,
$\vec{v} \cdot \vec{a}=0$

$$
\begin{gathered}
6(2)+(3)(-2 x)=0 \\
6 x=12 \\
x=2
\end{gathered}
$$

20. The magnetic field due to a loop is $B=\frac{\mu_{0} n i}{R}$.

We have
$B_{1}=\frac{\mu_{0} i}{R}$

$$
B_{2}=\frac{\mu_{0}(2) \mathrm{i}}{\mathrm{R}^{1}}
$$

Where $\left(2 \pi R^{1}\right) 2=2 \pi R \Rightarrow R^{1}=\frac{R}{2}$
Therefore $B_{2}=\frac{4 \mu_{0} i}{R}=4 B_{1}$.
21. The entire image will be formed, but the light from the lower part will be missing. Thus intensity of the image reduces.
22. $2 \mu \mathrm{~F}$ gets charged to a potential V . When connected to the $8 \mu \mathrm{~F}$ capacitor, the common potential is

$$
\begin{array}{r}
V_{\text {COM }}=\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}=\frac{2 \mathrm{~V}+8(0)}{10}=\frac{\mathrm{V}}{5} \\
\mathrm{U}_{\mathrm{i}}=\frac{1}{2} \times 2 \times 10^{-6} \times \mathrm{v}^{2}=\mathrm{v}^{2} \times 10^{-6} \\
\mathrm{U}_{\mathrm{f}}=\frac{1}{2} \times 10 \times 10^{-6} \times \frac{\mathrm{v}^{2}}{25}=0.2 \mathrm{v}^{2} \times 10^{-6}
\end{array}
$$

Thus 80% of the energy is dissipated.
23. We have $\epsilon_{i n d}=-\frac{d}{d t} \phi$. The flux lines are coming out of the plane of the loop (using right hand rule) and hence ϕ is + ve as the current is increasing $\frac{d}{d t}$ is also + ve. Thus
$\epsilon_{\text {ind }}=-(+)(+)=-$
Since $\epsilon_{\text {ind }}$ is - ve the induced current is clockwise.
24. $\mathrm{E}_{\mathrm{x}}=5 \times 10^{5} \times \cos 37^{\circ}=4 \times 10^{5} \mathrm{NC}^{-1}$
$\mathrm{E}_{\mathrm{y}}=5 \times 10^{5} \times \cos 37^{\circ}=3 \times 10^{5} \mathrm{NC}^{-1}$
We have,

$$
\begin{aligned}
V & =\int E_{x} d x \int E_{y} d x \\
& =4 \times 10^{5} \int_{0}^{6 c m} d x \quad 3 \times 10^{5} \int_{0}^{4 c m} d y
\end{aligned}
$$

? $=36 \mathrm{kV}$.
25. The path difference at a point above the centre of the screen is

$$
\Delta x=\left(\mathrm{SS}_{2}-\mathrm{SS}_{1}\right)+\frac{\mathrm{yd}}{\mathrm{D}}
$$

For maxima,

$$
\left(\mathrm{SS}_{2}-\mathrm{SS}_{1}\right)+\frac{\mathrm{yd}}{\mathrm{D}}=\mathrm{n} \lambda
$$

For central maxima $n=0$

$$
\therefore \mathrm{y}=-\frac{\mathrm{D}}{\mathrm{~d}}\left(\mathrm{SS}_{2}-\mathrm{SS}_{1}\right)
$$

y is negative since $\mathrm{SS}_{2}-\mathrm{SS}_{1}$ is positive. Thus the fringe pattern shifts downwards, whereas the fringe width remains the same.
26. At D we have,

$$
\frac{3}{2} \sin 60^{\circ}=\mu \sin 90^{\circ}
$$

27. The intensity at a point on the screen is

$$
I=4 I_{0} \cos ^{2}\left(\frac{\pi y}{\beta}\right)
$$

A and B are consecutive points which have 75% of $4 I_{0}$ i.e., $3 I_{0}$
$\therefore 3 \mathrm{I}_{0}=4 \mathrm{I}_{0} \cos ^{2}\left(\frac{\pi y}{\beta}\right)$
$\Rightarrow \cos \left(\frac{\pi y}{\beta}\right)=\frac{\sqrt{3}}{2}$
$\Rightarrow \cos \frac{\pi y}{\beta}=\frac{\pi}{6}$
$\Rightarrow y=\frac{\beta}{6}$

$$
\begin{aligned}
2 y & =\frac{6 \times 10^{-7} \times 1}{3 \times 10^{-3}} \\
& =2 \times 10^{-4} \mathrm{~m} \\
& =0.2 \mathrm{~mm}
\end{aligned}
$$

28. As the point source moves away, the intensity decreases but the frequency remains the same. Thus the stopping potential does not change.
29. We have

$$
N=\frac{N_{0}}{(2)^{\mathrm{t} / \mathrm{T}}} \text { where } \mathrm{t} \text { is the elapsed time and } \mathrm{T} \text { is the half life. Therefore, }
$$

$$
N_{1}=\frac{N_{0}}{(2)^{2 / 2}}
$$

$$
=\frac{\mathrm{N}_{0}}{2}
$$

$$
N_{2}=\frac{N_{0}}{(2)^{2 / 4}}=\frac{N_{0}}{\sqrt{2}}
$$

Also,

$$
\frac{d N_{1}}{d t}=-\lambda_{1} N_{1}
$$

$$
=\frac{0.693}{2} \frac{\mathrm{~N}_{0}}{2}
$$

$$
\frac{d N_{2}}{d t}=-\lambda_{2} N_{2}
$$

$$
=\frac{0.693}{4} \frac{\mathrm{~N}_{0}}{\sqrt{2}}
$$

$$
\frac{\mathrm{dN}_{1}}{\mathrm{dt}}: \frac{\mathrm{dN}}{\mathrm{dt}}=\frac{1}{4}: \frac{1}{4 \sqrt{2}}=\sqrt{2}: 1
$$

30. Ground state has the least P.E and Total energy but maximum K.E.

PART - B

CHEMISTRY

31. b	32.d	33. b	34. c	35. b	36. a	37. b	38. c	39.d	40. c
41.a	$42 . \mathrm{d}$	43. b	$44 . \mathrm{c}$	$45 . \mathrm{b}$	$46 . \mathrm{c}$	$47 . \mathrm{d}$	$48 . \mathrm{b}$	$49 . \mathrm{b}$	$50 . \mathrm{c}$
51. c	$52 . \mathrm{d}$	$53 . \mathrm{c}$	$54 . \mathrm{c}$	$55 . \mathrm{c}$	$56 . \mathrm{b}$	$57 . \mathrm{b}$	$58 . \mathrm{d}$	$59 . \mathrm{c}$	$60 . \mathrm{d}$

31. (b)

Sol: Homologous series
32. (d)

Sol:

$\mathrm{C}-\mathrm{H} 4 \quad \mathrm{Sp}^{3}-\mathrm{s} \quad \sigma$ bonds
$\mathrm{C}=\mathrm{C} \quad 1 \quad \mathrm{Sp}^{2}-\mathrm{sp}^{2} \quad \sigma$ bond
$1 P_{x}-P_{y} \quad \pi$ bond
33.(b)

Sol: $-\mathrm{NO}_{2}$ group is meta directing group
34. (c)

Sol: $1^{\circ} R-X>2^{\circ} R-X>3^{\circ} R-X$
35. (b) $B \quad \alpha \quad \beta$

Sol:

36. (a)

Sol: $\mathrm{R}-\mathrm{O}-\mathrm{R} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} 2 \mathrm{R}-\mathrm{OH}$
37. (b)

Sol: Aldehydes containing no α-hydrogen atom gives cannizaro's reaction
38. (c)

Sol: $\mathrm{CH}_{3} \mathrm{CN}+2 \mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{CH}=\mathrm{NH} \xrightarrow[\text { Boiling }]{\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{NH}_{3}$
39. (d)

Sol: $\mathrm{R}-\mathrm{C} \equiv \mathrm{N}_{-}^{\mathrm{Sncl}_{2} / \mathrm{HCl}} \underset{2(\mathrm{H})}{ } \mathrm{R}-\mathrm{CH}=\mathrm{NH} . \mathrm{HCl} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{R}-\mathrm{CHO}+\mathrm{NH}_{4} \mathrm{Cl}$
40. Ans: (c)

Solution: Conceptual

41. Ans: (a)

Solution: 1 mole of Nacl is doped with $\mathrm{GacI}_{3}=\frac{10^{-3}}{100}=10^{-5} \mathrm{~mol}$

Concentration of cation vacancy $=2 \times 10^{-5} \times 6.023 \times 10^{23} \mathrm{~mole}^{-1}$

$$
=1.2046 \times 10^{-19} \mathrm{~mole}^{-1}
$$

42. (d)

Sol: $C p=\left(\frac{d H}{d T}\right)_{p}$ since at constant $T, d T=0$

$$
\therefore C p=\infty
$$

43. Ans: (b)

Solution: $\quad 4 e^{-}+\mathrm{BrO}_{3}^{\ominus} \rightarrow \mathrm{BrO}^{\ominus}$

$$
\begin{array}{ll}
X-6=-1 & x-2=-1 \\
X=+5 & x=+1
\end{array}
$$

The reaction undergoes reduction, i.e it acts as oxidising agent so it requires a reducing agent.
44. (c)

Sol: $\begin{aligned} \mathrm{E}_{\mathrm{ox}} & =\mathrm{E}_{\mathrm{ox}}^{0}-\frac{0.0591}{n} \log \frac{\left[\mathrm{H}^{+}\right]}{\mathrm{p}_{\mathrm{H}_{2}}} \\ & =0-\frac{0.0591}{1} \quad \log \frac{\left[10^{-10}\right]}{1}=0.59 \mathrm{v}\end{aligned}$

45. Ans (b)

Sol: Due to chloroxylenol
46. (c)

Sol: $\frac{\mathrm{h}}{\sqrt{2 \mathrm{Em}}}$ Where $\mathrm{E}=$ Kinetic energy.

47. (d)

Sol: Correct option:
48. (b)

Sol: $Z=\frac{\text { Vreal }}{\text { Videal }}$ It $Z<1$ then $V_{\text {real }}<V_{\text {ideal }}$ (i.e., 22.4 L at STP)
49. Ans: (b)

Solution:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{A}}=\frac{2}{5}, \mathrm{X}_{\mathrm{B}}=\frac{3}{5} \\
& \mathrm{P}_{\text {Total }}=\mathrm{P}_{\mathrm{A}}^{\circ} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{\circ} \mathrm{X}_{\mathrm{B}} \\
& =100\left(\frac{2}{5}\right)+150\left(\frac{3}{5}\right) \\
& =40+90 \\
& =130 \mathrm{~mm}
\end{aligned}
$$

50. Ans(c)

Sol: conceptual
51. Ans(c)

Sol: conceptual

52. Ans(d)

Sol: conceptual
53. Ans(c)

Sol: conceptual
54. Ans(c)

Sol: $H_{4} P_{2} O_{6}$ contains P-P bond but not P-O-P bond
55. Ans:(c)

Sol: conceptual

56. Ans(b)

Solution: conceptual
57. Ans: (b)

Sol: $\mathrm{N}_{2} \mathrm{O}, \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{NH}_{4}^{+}, \mathrm{HNO}_{3}, \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$ have dative bonds.

58. Ans(d)

Sol. Due to low charge on the cation
59. (c)

Sol. 6.3 gr
60. Ans (d)

Sol: All statements are connect

PART - C

MATHEMATICS

61. c	62. a	63. a	64. c	65. a	66. a	67. b	68. c	69. a	70. d
71. c	72.b	73. c	74. a	75. c	76. d	77. b	78. c	79. a	80. c
81. c	82. d	83. a	84. a	85. a	86. c	87. b	88. c	89. d	90. d

61. Sol: (c)

$$
\begin{aligned}
& \cos \angle A D C=\frac{(A D)^{2}+(C D)^{2}-(A C)^{2}}{2 A D \cdot C D}<0 \\
& \Rightarrow(P-1)^{2}+4^{2}+(5-1)^{2}+(6-4)^{2}<(P-5)^{2}+6^{2} \\
& \Rightarrow 8 P<24 \quad \Rightarrow P<3 \quad \Rightarrow P=2
\end{aligned}
$$

62. Sol: (a)

Equation of the common chord of the given circles is

$$
\begin{align*}
& 4 x+4 y+k+15=0 \quad \ldots(1) \tag{1}\\
& \text { Since } x^{2}+y^{2}+6 x-2 y+k=0 \text { bisects the circumference of } x^{2}+y^{2}+2 x-6 y=15
\end{align*}
$$

$\therefore(1)$ is the diameter of $x^{2}+y^{2}+2 x-6 y=15$

$$
\Rightarrow 4(-1)+4(3)+k+15=0 \quad \Rightarrow k=-23
$$

63. Sol: (a)

$$
y^{2}-6 y+4 x+9=0 \quad \Rightarrow(y-3)^{2}=-4(x-0)
$$

\therefore Focus is $(-1,3)$ and equation of directrix is $x-1=0$
But the chord of contact of tangents drawn from any point on the directrix always passes through the focus.
\therefore required pt is $(-1,3)$

64. Sol: (c)

Mode $=3$ (Median) -2 (Mean)
$18=3($ Median $)-2(24) \Rightarrow$ Median $=22$
65. Sol: (a)

$$
\begin{aligned}
& \left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{5}\right)^{2}=\frac{9}{4}\left(\frac{3 x+4 y-7}{5}\right)^{2} \\
& \therefore \text { focus at }\left(\frac{1}{2}, \frac{1}{5}\right), \text { directrix is } \frac{3 x+4 y-7}{5}=0 \\
& \therefore \text { Equation of latus rectum is } y-\frac{1}{5}=-\frac{3}{4}\left(x-\frac{1}{2}\right)
\end{aligned}
$$

66. Sol: (a)

negation of $P \rightarrow(\sim p v)$
$\Rightarrow \sim[p \rightarrow(\sim p \vee)]=p \wedge \sim(\sim p v) q$

$$
\begin{aligned}
& \equiv p \wedge(p \wedge \sim q) \\
& \equiv(p \wedge \sim q)
\end{aligned}
$$

67. diff \Rightarrow cont.

$$
\begin{aligned}
& \therefore a+1=1+a+b \\
& b=0 \\
& 2 a=a+2 \\
& \Rightarrow a=2
\end{aligned}
$$

68. $g(f(x))=x$

$$
\begin{aligned}
& g^{\prime}(f(x)) \cdot f^{\prime}(x)=1 \\
& \therefore g^{\prime}(f(c))=\frac{1}{f^{\prime}(c)}
\end{aligned}
$$

69. $\frac{d y}{d x}=\frac{\sin \theta}{\cos \theta}$

Normal is : $x \cos \theta+y \sin \theta=a$
Dist. from $(0,0)=|a|$
70. Area $=2 a b=2(4)(3)=24$
71. $f^{\prime}(\mathrm{c})=\frac{\mathrm{f}(5)-\mathrm{f}(2)}{5-2}=\frac{\frac{1}{2}-\frac{1}{5}}{3}=\frac{3}{10 \cdot 3}=\frac{1}{10}$
72. $\int \cos 2 x d x=\frac{1}{2} \sin 2 x+c \Rightarrow k=\frac{1}{2}$
73. $\underset{x \rightarrow 0}{L t} \frac{\sin ^{2} \mathrm{x} \cos \mathrm{x}}{3 \mathrm{x}^{2}}=\frac{1}{3}$
74. $\mathrm{A}=4 \int_{0}^{1 / 2} x d x=2 \mathrm{x}^{2} \int_{0}^{1 / 2}=\frac{1}{2}$
75. $\frac{d y}{y}=\frac{2 x d x}{1+x^{2}}$

$$
\begin{aligned}
& \Rightarrow y=c\left(1+x^{2}\right) \\
& x=0, y=1 \\
& \Rightarrow c=1 \\
& x=1 \quad \Rightarrow y=2
\end{aligned}
$$

76. Sol: (d)

Let $\overline{O P}=\bar{a}+\bar{b}, \overline{O Q}=\bar{a}-\bar{b}, \overline{O R}=\bar{a}+\lambda \bar{b}$ $\overline{P Q}=-2 \bar{b}, \quad \overline{P R}=(\lambda-1) \bar{b} \Rightarrow$ many values of λ

77. Sol: (b)

Let A be the origin. $\overline{A B}=\bar{b}, \quad \overline{A C}=\bar{c}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2}(\bar{b} \times \bar{c})$

$$
\overline{A F}=\frac{\overline{\mathrm{b}}}{2}, \overline{A E}=\frac{\overline{\mathrm{c}}}{2} \Rightarrow \overline{F E}=\frac{\overline{\mathrm{c}}}{2}-\frac{\overline{\mathrm{b}}}{2}, \quad \overline{F C}=\bar{c}-\frac{\overline{\mathrm{b}}}{2}
$$

area of $\triangle \mathrm{FCE}=\frac{1}{2}\left(\frac{\overline{\mathrm{c}}}{2}-\frac{\overline{\mathrm{b}}}{2}\right) \times\left(\overline{\mathrm{C}}-\frac{\overline{\mathrm{b}}}{2}\right)=\frac{1}{8}|\bar{b} \times \bar{c}|=\frac{1}{4} \cdot \Delta \mathrm{ABC}$
78. Sol: (c)

$$
\begin{aligned}
& \bar{n}_{1}=2 \mathrm{i}-\mathrm{k}+\mathrm{k}, \bar{n}_{2}=\mathrm{i}+\lambda \mathrm{j}+2 \mathrm{k} \\
& \cos \frac{\pi}{3}=\frac{\overline{\mathrm{n}}_{1} \cdot \overline{\mathrm{n}}_{2}}{\left|\overline{\mathrm{n}}_{1}\right|\left|\overline{\mathrm{n}}_{2}\right|} \quad \Rightarrow \lambda^{2}+16 \lambda-17=0 \quad \Rightarrow \lambda=-17,1
\end{aligned}
$$

79. Sol: (a)

Any point on $\mathrm{L} 1=(\lambda, \lambda-1, \lambda)$, any point on $\mathrm{L} 2=(2 \mu-1, \mu, \mu)$
$\therefore \frac{2 \mu-1-\lambda}{2}=\frac{\mu-\lambda+1}{1}=\frac{\mu-\lambda}{2} \Rightarrow \lambda=3, \mu=1$
$\therefore A=(3,2,3), \quad B=(1,1,1), \quad A B=3$
80. Sol: (c)

Equation of a line through $p(2,3,4)$ and parallel to the given line is
$\frac{x-2}{3}=\frac{y-3}{6}=\frac{z-4}{2} \lambda$ (say)

Let $\mathrm{Q}(3 \lambda+2,6 \lambda+3,2 \lambda+4)$ is the point of intersection with the plane.
$\therefore Q$ lies in the plane $\quad \Rightarrow \lambda=-1 \quad \Rightarrow Q=(-1,-3,2)$
$\therefore P Q=7$
81. Sol: (c)

$$
\begin{aligned}
& n(\mathrm{~s})=90 \\
& \mathrm{n}(E)=\mathrm{n}\{6,6,4 \text { or } 5,5,6\}=6 \\
& P(E)=\frac{6}{90}=\frac{1}{15}
\end{aligned}
$$

82. Sol: (d)

Let X be no. of heads.
$P(X \geq 1)=1-P(X=0)=1-{ }^{n} C_{0}\left(\frac{1}{2}\right)^{n}=1-\left(\frac{1}{2}\right)^{n}$
Given that $1-\frac{1}{2^{n}} \geq 0.8 \Rightarrow 2^{n} \geq 5$
\therefore Least value of n is 3
83. Ans: (a)

Sol. Required Coefficient

$$
={ }^{2 n} C_{0}+{ }^{2 n} C_{2}+{ }^{2 n} C_{4}+\ldots \ldots \ldots \ldots+{ }^{2 n} C_{2 n}=\frac{2^{2 n}}{2}=2^{2 n-1}
$$

84. Ans. (a)

Sol: $z=x+i y$

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{i z+1}{i z-1}\right)=2 \\
& \Rightarrow x^{2}+y^{2}+4 y+3=0 \\
& \text { Radies }=\sqrt{2^{2}-3}=1
\end{aligned}
$$

85. Ans. (a)

Sol. $\Delta=-\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$

$$
\begin{gathered}
=-(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \\
=-\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]
\end{gathered}
$$

which is clearly negative because of the given conditions
86. Sol:(c)

No. of ways A and B together $=n-2_{C_{10}}$ No. of 7 ways C, D, E together $=n-3 C_{10}$
$\Rightarrow \mathrm{n}-2_{C_{10}}=3\left(\mathrm{n}-3_{C_{9}}\right) \Rightarrow n=32$
87. Sol: (b)

```
\(x^{2}+(1-2 \lambda) x+\left(\lambda^{2}-\lambda-2\right)=0\)
\(a=1\) of \(\alpha, \beta\) are roots of (1),
if \(\alpha<3<\beta \Rightarrow a . f(3)<0\)
\(\Rightarrow f(3)<0\)
\(\Rightarrow 9+(1-2 \lambda) 3+\lambda^{2}-\lambda-2<0\)
\(\Rightarrow \lambda \in(2,5)\)
```

88. Sol: (c)If $A+B=45^{\circ} \Rightarrow(1+\tan A)(1+\tan B)=2$
$\therefore\left(1+\tan 1^{\circ}\right)\left(1+\tan 2^{\circ}\right) \ldots \ldots\left(1+\tan 45^{\circ}\right)=2^{23}$

89. Sol: (d)

Apply $R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}$
$\Delta=2+\operatorname{Cos} 2 x \Rightarrow 1 \leq 2+\operatorname{Cos} 2 x \leq 3 \therefore \alpha=3, \beta=1$
90. Sol: (d)

```
\(x y z=24\)
    \& \(24=2^{3} \times 3^{1}\) (prime factors \()\)
\(X y z=2^{3} \times 3^{1}\)
No. 7 the division are \(\left(3_{C_{1}}+2.3_{c_{2}}+3_{C_{3}}\right)\left(3_{C_{1}}\right)\)
\(=(3+6+1)(3)=30\)
```

