BYJU'S JEE Mains Sample Paper 2018

Time Duration: 3 Hours

Maximum Marks: 360

Topics Covered:

Physics	:Full Syllabus
Chemistry	:Full Syllabus
Mathematics	:Full Syllabus

Important Instruction:

1. Attempting all the questions are compulsory.
2. Use Blue / Black Ball point pen only.
3. There are three sections of equal weightage in the question paper A, B, C (Physics, Chemistry and

Mathematics) Having 30 questions each.
4. For marking scheme, +4 marks for each correct answer and -1 marks for each incorrect answer.
5. Use of calculator and other electronic devices is not allowed during the exam.
6. No extra sheets will be provided for any kind of work.

Name of the Student:
Class:

Father's Name:

Signature:
Branch Name:
Contact No:

PART - A (PHYSICS)

1. A point source of light of power ' P ' and wavelength ' λ ' is emitting light in all directions. The number of photons present in a spherical region of radius ' r ' to radius ' $2 r$ ' with centre at source, is
(a) $\frac{P \lambda}{4 \pi r^{2} h c}$
(b) $\frac{\mathrm{P} \lambda \mathrm{r}}{\mathrm{hc}{ }^{2}}$
(c) $\frac{\mathrm{P} \lambda}{4 \pi \mathrm{rhc}}{ }^{2}$
(d) $\frac{\mathrm{P} \lambda \mathrm{r}}{2 \mathrm{hc}}{ }^{2}$
2. A bead moves outwards with constant speed ' u ' along the spoke of a wheel and wheel rotating about its axis
with constant angular velocity ' ω '. The bead leaves the centre of the wheel at $t=0$. The velocity of the bead as
a function of time is given by (where \hat{e}_{r} and \hat{e}_{t} are unit vectors along radial and tangential directions, respectively)
(a) $-u \hat{e}_{r}$
(b) u $\hat{e}_{r}+(u t \omega) \hat{e}_{t}$
(c) u $\hat{e}_{r}+u \omega \hat{e}_{t}$
(d) utw \hat{e}_{t}
3. In a series LR growth circuit, the maximum current and maximum induced emf in an inductor of 6 mHare 3 A and 8 V respectively. In how much time the current in the circuit grows to 63.2% of its final value?
(a) ${ }_{4}^{9} \mathrm{~ms}$
(b) $\frac{4}{9} \mathrm{~ms}$
(c) 16 ms
(d) $\frac{1}{10} \mathrm{~ms}$
4. A particle moves in a straight line with retardation proportional to square of its displacement. Its loss of kinetic energy for any displacement ' x ' is proportional to
(a) x^{2}
(b) x^{3}
(c) $\log _{e} x$
(d) e^{x}
5. For the system shown in the given figure, the surface on which the blocks are placed is smooth. If the two
blocks are displaced by small amount, then determine the time period of oscillation of resulting motion of two
blocks.

(a) $2 \pi \sqrt{\frac{3 \mathrm{~m}}{7 \mathrm{k}}}$
(b) $2 \pi \sqrt{\frac{7 \mathrm{~m}}{2 \mathrm{k}}}$
(c) $3 \pi \sqrt{\frac{\mathrm{~m}}{7 \mathrm{k}}}$
(d) $2 \pi \sqrt{\frac{3 \mathrm{~m}}{4 \mathrm{k}}}$
6. A spherical shell of inner radius ' $R 1$ ' and outer radius ' R_{2} ' is having variable thermal conductivity given by $\mathrm{K}=$
$\left(a_{0} T\right) r$ where a_{0} is constant, ' T ' is temperature in Kelvin and ' r ' is the distance from the centre. Two surfaces of
shell are maintained at temperature T_{1} (inner surface) and T_{2} (outer surface), respectively ($T_{1}>T_{2}$). The heat
current flowing through the shell would be
(a) $\frac{4 \pi a_{0}\left(T_{1}^{2}-T_{2}^{2}\right) \times R_{1} R_{2}}{R_{2}-R_{1}}$
(b) $\frac{4 \pi \mathrm{a}_{0}\left(T_{1}-T_{2}\right) R_{1} R_{2}}{R_{2}-R_{1}}$
(c) $\frac{4 \pi a_{0} R_{1}^{2} \mathrm{R}_{2}^{2}\left(\mathrm{~T}_{1}^{2}-\mathrm{T}_{2}^{2}\right)}{\mathrm{R}_{2}^{2}-\mathrm{R}_{1}^{2}}$
(d) $\frac{4 \pi a_{0}\left(T_{1}^{2}-T_{2}^{2}\right)\left(R_{1}+R_{2}\right)^{2}}{R_{2}-R_{1}}$
7. A uniformly charged infinite long wire carries linear charge density ' λ '. The electric potential at point ' p ' is
(a) $\frac{\lambda}{4 \pi \varepsilon_{0}}$
(b) $\frac{\lambda}{2 \pi \varepsilon_{0}}$
(c) $\frac{\lambda}{\pi \varepsilon_{0}}$
(d) Can't be found

8. Two particles of masses 3 kg and 2 kg are moving the velocities $\vec{V}_{1}=2 \hat{\imath}$ and $\vec{V}_{2}=3 \hat{\jmath}$, respectively. The first
particle of mass 3 kg has an acceleration of $\vec{a}_{1}=2 \hat{\imath}+2 \hat{\jmath}$ while acceleration of the second
particle is zero. The
centre of mass of these two particles follow a
(a) Parabolic path
(b) Circular path
(c) Straight line path
(d) Elliptical path
9. Two plane mirrors are placed as shown in the figure below:

A point object is approaching the intersection point of mirrors with a
speed of $100 \mathrm{~cm} / \mathrm{s}$. The velocity of the image of object formed by M_{2}
w.r.to velocity of image of object formed by M_{1}, is

(a) $-128 \hat{\imath}+48 \hat{\jmath}(\mathrm{~cm} / \mathrm{s})$
(b) $-28 \hat{\imath}+48 \hat{\jmath}(\mathrm{~cm} / \mathrm{s})$
(c) $128 \hat{\imath}-48 \hat{\jmath}(\mathrm{~cm} / \mathrm{s})$
(d) $100 \hat{\imath}-48 \hat{\jmath}(\mathrm{~cm} / \mathrm{s})$
10. A satellite in a circular orbit around the earth has kinetic energy E_{k}. Minimum amount of energy that has to be
given to satellite so that it escapes from the earth's gravitational influence, is
(a) E_{k}
(b) $\frac{\mathrm{E}_{\mathrm{k}}}{2}$
(c) $2 \mathrm{E}_{\mathrm{k}}$
(d) $\frac{\mathrm{E}_{\mathrm{k}}}{4}$
11. A conducting rod $P Q$ of mass ' m ' and of length ' ℓ ' is placed on two long
parallel(smooth and conducting) rails connected to a capacitor as shown

below. The rod $P Q$ is connected to a non-conducting spring constant ' k ',
which is initially in relaxed state. The entire arrangement is placed in a magnetic field perpendicular to the plane of figure.
Neglect the resistance of rails and rod. Now, the rod is imparted a velocity v_{0} towards right, then acceleration of the rod as a function of its displacement ' x ' is given by.
(a) $\frac{\mathrm{kx}}{\mathrm{m}}$
(b) $\frac{\mathrm{kx}}{\mathrm{m}+\mathrm{B}^{2} \ell^{2} \mathrm{c}}$
(c) $\frac{\mathrm{kx}}{\mathrm{m}-\mathrm{B}^{2} \mathrm{e}^{2} \mathrm{c}}$
(d) None of these
12. Two travelling waves $y_{1}=A \sin [K(x+c t)]$ and $y_{2}=A \sin [K(x-c t)]$ are superposed on a string. The distance between the adjacent nodes will be
(a) $\frac{\mathrm{ct}}{\pi}$
(b) $\frac{\mathrm{ct}}{2 \pi}$
(c) $\frac{\pi}{2 k}$
(d) $\frac{\pi}{k}$
13. A light rod of length ' L ' is suspended from a support horizontally by means of two vertical wires A and B of equal length as shown. Crosssection area of ' A ' is
half that of B. A weight ' w ' is hung on the rod as shown. The value of ' x ' so that the stress in ' A ' is same as that in ' B ', is
(a) $\frac{\mathrm{L}}{3}$
(b) $\frac{\mathrm{L}}{2}$
(c) $\frac{2 \mathrm{~L}}{3}$
(d) $\frac{3 \mathrm{~L}}{4}$

14. Two concentric spheres of radii r_{1} and r_{2} carry charges q_{1} and q_{2} respectively. If the surface charge density (σ)
is the same for both the spheres, the electric potential at the common centre will be
(a) $\frac{\sigma}{\varepsilon_{0}} \times r_{1} r_{2}$
(b) $\frac{\sigma}{\varepsilon_{0}} \times \frac{r_{2}}{r_{1}}$
(c) $\frac{\sigma}{\varepsilon_{0}}\left(r_{1}-r_{2}\right)$
(d) $\frac{\sigma}{\varepsilon_{0}}\left(r_{1}+r_{2}\right)$
15. The coefficient of static friction between the two blocks shown in the figure is ' μ ' and the table is smooth. The maximum value of ' F ' so that both blocks moves together, is

(a) $\mu(M+m) g$
(b) $\mu \mathrm{mg}$
(c) $\mu \mathrm{Mg}$
(d) $\frac{\mu m(M+m) g}{M}$
16. If de-Broglie wavelength of an electron in the nth Bohr orbit is λ_{n} and angular momentum is J_{n}, then
(a) $\lambda_{n} \propto J_{n}$
(b) $\lambda_{n} \propto \frac{1}{J_{n}}$
(c) $\lambda_{n} \propto J_{n}^{2}$
(d) $\lambda_{n} \propto \sqrt{J_{n}}$
17. A plano convex lens $\left(\mu=\frac{3}{2}\right)$ has radius of curvature $R=10 \mathrm{~cm}$, and is placed at a distance of ' b ' from a concave lens of focal length 20 cm as shown in the figure.
At what distance ' a ' should a point object be placed from plano

convex lens, so that position of the final image is independent of ' b '?
(a) 40 cm
(b) 60 cm
(c) 30 cm
(d) 20 cm
18. Two coherent sources S_{1} and S_{2} are situated on the x-axis,
screen ' S ' is in $y-z$ plane(as shown). The shape of the fringe on the screen is
(a) straight line
(b) elliptical
(c) circular
(d) rectangular
19. A transverse wave is passing through a light string shown in the figure.
The equation of wave is $y=A \sin (\omega t-k x)$. The area of cross section of string
is ' A ' and density is ' ρ '. The hanging mass is:

(a) $A \omega$
(b) $\frac{\omega}{\mathrm{kg}}$
(c) $\frac{\rho A \omega^{2}}{k^{2} g}$
(d) $\frac{\rho \omega}{\mathrm{kg}}$
20. A beam of light is incident on a glass plate at an angle of incidence 60°. The reflected ray is polarized. The angle of refraction when the angle of incidence is 45° is
(a) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(b) $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(c) $\sin ^{-1}\left(\frac{1}{\sqrt{6}}\right)$
(d) $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
21. Four silicon diodes are connected as shown in the figure. Assume the diodes Ω to be ideal. The current through the resistor ' R ' is

(a) 0.2 A
(b) 0.1 A
(c) 0.3 A
(d) 0.5 A
22. Two radioactive materials A 1 and A 2 have decay constants of $10 \lambda 0$ and $\lambda 0$. If initially they have same number of nuclei, the ratio of number of their decayed nuclei will be $\left(\frac{1}{\mathrm{e}}\right)$ after a time
(a) $\frac{1}{\lambda_{0}}$
(b) $\frac{1}{9 \lambda_{0}}$
(c) $\frac{1}{10 \lambda_{0}}$
(d) 1
23. α and β particles emitted when uranium nucleus ${ }_{92} U^{238}$ decays to ${ }_{82} \mathrm{~Pb}^{214}$ are
(a) 6 - α particles and $2-\beta$ particles
(b) $4-\alpha$ particles and $2-\beta$ particles
(c) $2-\alpha$ particles and $6-\beta$ particles
(d) 2 - a particles and $4-\beta$ particles
24. Figure shows two identical parallel plate capacitors connected to a
battery. The switch is now opened and the free space between the

plates of capacitors is filled with a dielectric of $\mathrm{k}=3$. The ratio of the total electrostatic energy stored in both the capacitors before and after the introduction of the dielectric is
(a) $\frac{3}{4}$
(b) $\frac{4}{5}$
(c) $\frac{2}{3}$
(d) $\frac{3}{5}$
25. Two electric bulbs rated P_{1} watt $-V$ volt and P_{2} watt $-V$ volt are connected in parallel and V volt are applied
to it. The total power will be
(a) $\frac{P_{1} P_{2}}{P_{1}+P_{2}}$
(b) $\sqrt{P_{1} P_{2}}$ Watt
(c) $\left(P_{1}+P_{2}\right)$ Watt
(d) $\frac{P_{1}+P_{2}}{P_{1} P_{2}}$ Watt
26. From figure shown below a series $\mathrm{L}-\mathrm{C}-\mathrm{R}$ circuit connected to a variable frequency 200 V source. $\mathrm{L}=5 \mathrm{H}, \mathrm{C}=80 \mu \mathrm{~F}$ and $\mathrm{R}=40 \Omega$. Then the source frequency which drive the circuit at resonance is

(a) 25 Hz
(b) $\frac{25}{\pi} \mathrm{~Hz}$
(c) 50 Hz
(d) $\frac{50}{\pi} \mathrm{~Hz}$
27. A magnet is moving towards the coil along the axis and the emf induced in the coil is ' e '. If the coil also starts moving towards the magnet with the same speed, the induced emf will be
(a) $\frac{\mathrm{e}}{2}$
(b) e
(c) 2 e
(d) 4 e
28. Two moles of helium gas are taken over the cycle ABCDA, as
shown in the $P-T$ diagram
Assuming the gas to be ideal the work done ' W ' on the gas in
taking it from A to B is
(a) 300 R
(b) 400 R
(c) 500 R
(d) 200 R

29. The potential energy of a particle of mass ' m ' is given by $U=\frac{1}{2} k x^{2}$ for $x<0$ and $U=0$ for $x \geq 0$. If total
mechanical energy of the particle is E. Then its speed for positive value of ' x ' is
(a) zero
(b) $\sqrt{\frac{2 \mathrm{E}}{\mathrm{m}}}$
(c) $\sqrt{\frac{\mathrm{E}}{\mathrm{m}}}$
(d) $\sqrt{\frac{E}{2 m}}$
30. A ring of mass ' m ' and radius ' R ' rolls on a horizontal rough surface without slipping due to an applied force ' F '. The friction force acting on the ring is

(a) $\frac{\mathrm{F}}{3}$
(b) $\frac{2 \mathrm{~F}}{3}$
(c) $\frac{\mathrm{F}}{4}$
(d) zero

PART - B
(CHEMISTRY)
31. 1 g of the Ag salt of an organic dibasic acid yields, on strong heating, 0.5934 g of silver. If the weight \% of
carbon in it is 8 times the weight \% of hydrogen and half the weight percentage of oxygen, determine the
molecular formula of the acid [Awt of $\mathrm{Ag}=108$]
(a) $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$
(b) $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$
(c) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$
(d) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$
32. For a d - electron the orbital angular momentum is
(a) $\sqrt{6} h / 2 \pi$
(b) $\frac{\sqrt{2} h}{2 \pi}$
(c) $h / 2 \pi$
(d) $2 \mathrm{~h} / \pi$
33. The correct order of ionic radius.
(a) $\mathrm{Na}^{+}>\mathrm{F}^{-1}>\mathrm{Mg}^{2+}>\mathrm{O}^{2-}>\mathrm{Al}^{3+}$
(b) $\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$
(c) $\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}>\mathrm{F}^{-}>\mathrm{O}^{2-}$
(d) $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}>\mathrm{O}^{2-}>\mathrm{F}^{-}$
34. Incorrect matching amongst the following is
(i) linear $\rightarrow \mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2}$
(iii) see - saw shaped $\rightarrow \mathrm{SF}_{4}, \mathrm{TeCl}_{4}$
(ii)v - shaped $\rightarrow: \mathrm{CH}_{2}, \mathrm{SnCl}_{2}$
$\begin{array}{ll}\text { (a) Only (i) } & \text { (b) both (i) \& (ii) }\end{array}$
(iv) T - shaped $\rightarrow \mathrm{ICl}_{3}, \mathrm{ClF}_{3}$
(c) Only (iii)
(d) both (iii) \& (iv)
35. Which of the following is paramagnetic?
(a) CN^{-}
(b) NO^{+}
(c) CO
(d) O_{2}^{-}
36. The volume of $10 \mathrm{~N} \& 4 \mathrm{~N} \mathrm{HCl}$ required to make 1 L of 7 N HCL are
(a) 0.5 L of 10 N HCl and 0.5 L of 4 N HCl
(b) 0.6 L of 10 N HCl of 0.4 L of 4 N HCl
(c) 0.8 L of $10 \mathrm{~N} \mathrm{HCI} \& 0.2 \mathrm{~L}$ of 4 N HCl
(d) 0.75 L of 10 N HCl of 0.25 L of 4 N HCl
37. Which of the following $\vee-\mathrm{T}$ plots represents the behavior of one mole of an ideal gas at one atmosphere?
(a)

(b)

(c)

(d) $\quad(22.4 \mathrm{~L})$
$T(K)$
38. The reaction A to B is not feasible but on changing entropy through a easier of steps:
$\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{B}$
$\Delta s(A \rightarrow C)=50 \mathrm{eV}$
$\Delta s(C \rightarrow D)=30 \mathrm{eV}$
$\Delta s(B \rightarrow D)=20 \mathrm{eV}$

The entropy change for $\mathrm{A} \rightarrow \mathrm{B}$ would be
(a) 100 eV
(b) 60 eV
(c) -60 eV
(d) -100 eV
39. The pH of the solution obtained by mixing 100 ml of a solution of $\mathrm{pH}=3$ with 400 mL of a solution of $\mathrm{pH}=4$ is
(a) $3-\log 2.8$
(b) $7-\log 2.8$
(c) $4-\log 2.8$
(d) $5-\log 2.8$
40. The equilibrium constant $\left(\mathrm{K}_{\mathrm{p}}\right)$ for the decomposition of a gaseous water:
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Is related to degree of dissociation at total pressure ' p ' is given by
(a) $\mathrm{K}_{\mathrm{P}}=\frac{\alpha^{3} \mathrm{P}^{1 / 2}}{(1+\alpha)(2+\alpha)^{1 / 2}}$
(b) $\frac{\alpha^{3} \mathrm{P}^{3 / 2}}{(1+\alpha)(2+\alpha)^{1 / 2}}=\mathrm{K}_{\mathrm{P}}$
(c) $K_{P}=\frac{\alpha^{3 / 2} \mathrm{P}^{2}}{(1+\alpha)(2+\alpha)^{1 / 2}}$
(d) $K_{P}=\frac{\alpha^{3 / 2} P^{1 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$
41. $\mathrm{aK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{bKCI}+\mathrm{c} \mathrm{H}_{2} \mathrm{SO}_{4}^{-}$
$x \mathrm{CrO}_{2} \mathrm{Cl}_{2}+\mathrm{y} \mathrm{KHSO}_{4}+\mathrm{zH} \mathrm{H}_{2} \mathrm{O}$
\leftarrow
(a) $a=2 b=4 c=6$ of $x=2 y=6 z=3$
(b) $\mathrm{a}=2 \mathrm{~b}=2 \mathrm{c}=6$ of $\mathrm{x}=2 \mathrm{y}=2 \mathrm{z}=3$
(c) $a=6 b=4 c=2$ of $\quad x=6 y=3 z=2$
(d) $a=1 \quad b=4 \quad c=6$ of $\quad x=2 \quad y=6 \quad z=3$
42. Very pure hydrogen (99.9%) can be made by which of the following processes?
(a) Mixing natural hydrocarbons of high molecular weight. (b) Electrolysis of water
(c) Reaction of salt like hydrides with water
(d) Reaction of methane with steam.
43. Among the following, the least thermally stable is
(a) $\mathrm{K}_{2} \mathrm{CO}_{3}$
(b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(c) BaCO_{3}
(d) $\mathrm{Li}_{2} \mathrm{CO}_{3}$
44. Boron cannot form which one of the following anions?
(a) BF_{6}^{3-}
(b) BH_{4}^{-}
(c) $\mathrm{B}(\mathrm{OH})_{4}^{-}$
(d) BO_{2}^{-}
45. Which one of the following has the most nucleophlic nitrogen ?
(a)

(b)

(c)

(d)

46. Ph C $\equiv \mathrm{C}-\mathrm{CH}_{3} \xrightarrow{\mathrm{Hg}^{2+}, \mathrm{H}^{+}} \mathrm{A}$
(a)

(b)

(c)

(d)

47. If Ag I crystallize in zinc blende structure with I^{-}ions at lattice points, what fraction of tetrahedral voids is occupied by Ag^{+}ions?
(a) 25%
(b) 50%
(c) 100%
(d) 75%
48. The F .pt $\left(\mathrm{in}^{\circ} \mathrm{C}\right)$ of a solution containing 0.1 g of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](\mathrm{mol} w t=329)$ in 100 g of water $(k f=1.86 \mathrm{Kkg} / \mathrm{mol})$ is
(a) -2.3×10^{-2}
(b) -5.7×10^{-2}
(c) -5.7×10^{-3}
(d) $-1.2 \times$ 10^{-2}
49. The equivalent conductance of $\mathrm{M} / 32 \mathrm{sol}^{n}$ of a weak monobasic acid is $8 \mathrm{mhocm}{ }^{2}$ and at infinite dilution is
$400 \mathrm{mho} \mathrm{cm}^{2}$. The dissociation constant of this acid is
(a) 1.25×10^{-6}
(b) 6.25×10^{-4}
(c) 1.25×10^{-4}
(d) 1.25 $\times 10^{-5}$
50. The rate of a reaction is given by rate $\mathrm{r}=\mathrm{K}\left[\mathrm{H}^{+}\right]^{n}$ if the rate becomes 100 times when the pH changes from 2 to 1 , the order of the reaction is
(a) 0
(b) 1
(c) 2
(d) 3
51. According to Freundlich adsorption isotherm, which of the following is correct?
(a) $\frac{x}{m} \propto p^{1}$
(b) $\frac{x}{m} \propto p^{1 / n}$
(c) $\frac{x}{m} \propto p^{0}$
(d) All the above are correct for different ranges of pressure
52. Oxidation states of the metal in the minerals hematite and magnetite, respectively are.
(a) II, III hematite and III in magnetite
(b) II, III in hematite and II, III in magnetite
(c) II in hematite and II, III is magnetite in magnetite
(d) III in hematite and II \& III 53. When Br_{2} is treated with aqsol ${ }^{\mathrm{n}}$ of $\mathrm{NaF}, \mathrm{NaCl} \&$ Nalresperately.
(a) $\mathrm{F}_{2}, \mathrm{Cl}_{2} \& \mathrm{I}_{2}$ are liberated
(b) only $\mathrm{F}_{2} \& \mathrm{Cl}_{2}$ are liberated
(c) Only I_{2} is liberated
(d) only Cl_{2} is liberated
54. The orange solid on heating gives a colourless gas and a green solid which can be reduced to metal by aluminium powder. Then the orange and the green solids are resp.
(a) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \& \mathrm{Cr}_{2} \mathrm{O}_{3}$
(b) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \& \mathrm{Cr}_{2} \mathrm{O}_{3}$
(c) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \& \mathrm{CrO}_{3}(\mathrm{~d})\left(\mathrm{NH}_{4}\right)_{2}$ $\mathrm{CrO}_{4} \& \mathrm{CrO}_{3}$
55. The complex $\left[\mathrm{Pt}(\mathrm{Py})\left(\mathrm{NH}_{3}\right) \mathrm{BrCl}\right]$ will have how many geometrical isomers?
(a) 3
(b) 4
(c) 0
(d) 2
56. Find the product of the given reaction

(a)

(b)

(c)

(d)

57. The major product of the following reaction is

(a) Hemiacetal
(b)anacetal
(c) an ether
(d) an ester
58. In a set of reaction acetic acid generates product D

The structure of D would be
(a)

(b)

(c)

(d)

59. Which one of the following gives amine on heating with amide?
(a) Br_{2} in aq KOH
(b) Br_{2} in alc KOH
(c) Cl_{2} in sodium
(d) sodium in ether
60. Which one is not a constituent of nucleic acid
(a) Uracil
(b) Guanidine
(c) Phosphoric acid
d) Ribose Sugar

PART - C
(MATHS)
61. OPQR is a square and M, N are the middle points of the sides $P Q$ and $Q R$ respectively, then the
ratio of the areas of the square and the triangle OMN is
(a) $4: 1$
(b) $8: 3$
(c) $2: 1$
(d) $4: 3$
62. If the tangent at the point P on the circle $x^{2}+y^{2}+6 x+6 y=2$ meets the line $5 x-2 y+6$ $=0$ at a point

Q on the y -axis, then length of $\mathrm{PQ}=$ \qquad
(a) 4
(b) $5 \sqrt{5}$
(c) 5
(d) $4 \sqrt{5}$
63. The angle between the tangents drawn from the point $(1,4)$ to the parabola $y^{2}=4 x$ is
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$
64. Mean of 100 items is 49 . It was discovered that three items which should have been 60 , 70, 80 were
wrongly read as $40,20,50$ respectively. Correct mean will be
(a) 48
(b) $82 \frac{1}{2}$
(c) 50
(d) 80
65. Angle between asymptotes of the hyperbola $3 x^{2}-y^{2}=3$ is
(a) $\frac{\pi}{3}$
(b) $\frac{2 \pi}{3}$
(c) $\frac{\pi}{6}$
(d) $\frac{3 \pi}{4}$
66. $p \rightarrow(q \vee r)$ is false, then the true valves of p, q, r respectively are
(a) T, T, F
(b) T, F, T
(c) F,T,T
(d) F, F, T
67. $\operatorname{Lt} \frac{1-\cos ^{3} x}{\sin 3 x \sin 5 x}=$
(a) $\frac{1}{15}$
(b) $\frac{2}{15}$
(c) $\frac{1}{30}$
(d) $\frac{1}{10}$
68. $\operatorname{Sin}^{-1} x+\operatorname{Sin}^{-1} y=\pi / 2$ then $\frac{d y}{d x}=$
(a) $-x / y$
(b) $-y / x$
(c) x / y
(d) y / x
69. The tangent at $A(2,4)$ on $y=x^{3}-2 x^{2}+4$ cuts the x axis at T then $A T=$
(a) $4 \sqrt{17}$
(b) $\sqrt{17} / 4$
(c) $\sqrt{17}$
(d) 17
70. The value of ' a ' for which the function $f(x)=a \sin x+\frac{1}{3} \sin 3 x$ has an extremum at $x=$ $\pi / 3$ is
(a) 2
(b) -2
(c) $2 / 3$
(d) $-2 / 3$
71. The quadratic equation $3 a x^{2}+2 b x+c=0$ has at least one root between 0 and 1 if
(a) $a+b+c=1$
(b) $a+b+c=0$
(c) $3 \mathrm{a}+2 \mathrm{ab}+\mathrm{c}=0$
(d) $6 \mathrm{a}+2 \mathrm{~b}=0$
72. $\int e^{x}\left(\frac{x^{2}+5 x+7}{(x+3)^{2}}\right) d x=e^{x} f(x)+c$ then $f(x)=$
(a) $\frac{1}{x+3}$
(b) $-\frac{1}{x+3}$
(c) $-\left(\frac{x+2}{x+3}\right)$
(d) $\frac{x+2}{x+3}$
$\pi / 2$
73. $\int \ln \left(\frac{2-\sin x}{2+\sin x}\right) d x=$ \qquad $-\pi / 2$
(a) $-\pi \log 2$
(b) $-\frac{\pi}{2} \log 2$
(c) $\frac{\pi}{2} \log 2$
(d) 0
74. The area enclosed by the curves $y=|\sin x|, x$ axis and $|x|=\pi$ is (in sq units)
(a) 4
(b) 2
(c) 8
(d) $3 / 2$
75. $x d y-y d x=\sqrt{x^{2}-y^{2}} d x$ and $y(1)=0$ then $y\left(e^{\pi / 2}\right)=$
(a) $\pi / 2$
(b) $e^{\pi / 2}$
(c) 1
(d) e
76. If the angle between $\bar{a}=\lambda \hat{\imath}-3 \hat{\jmath}-\mathrm{k}, \bar{b}=2 \lambda \hat{\imath}+\lambda \hat{\jmath}-\mathrm{k}$, is acute and \bar{b} makes obtuse angle with the axes of its coordinates, then $\lambda \in$
(a) $(-\infty, 0)$
(b) $\left(-\infty, \frac{1}{2}\right)$
(c) $\left(-\infty, \frac{1}{2}\right) \cup(1, \infty)$
(d) $(1, \infty)$
77. Let $\bar{V}=2 \mathrm{i}+\mathrm{j}-\mathrm{k}, \bar{W}=\mathrm{i}+3 \mathrm{k}$, if \bar{U} is a unit vector then the maximum value of $\overline{\mathrm{U}} .(\overline{\mathrm{V}} \times \overline{\mathrm{W}})$ is
(a) $\sqrt{33}$
(b) 7
(c) $\sqrt{59}$
(d) not defined
78. The distance of the plane passing through $(1,1,1)$ and perpendicular to the line $\frac{x-1}{3}=$ $\frac{y-1}{0}=\frac{z-1}{4}$ from the origin is
(a) $\frac{3}{4}$
(b) $\frac{4}{5}$
(c) $\frac{7}{5}$
(d) 0
79. The point in which the line joining of $A(-9,4,5)$ and $B(11,0,-1)$ is met by the perpendicular drawn from the origin is
(a) $(2,2,1)$
(b) $(2,1,2)$
(c) $(1,2,2)$
(d) $(2,2,2)$
80. The value of ' m ' for which the straight line $3 x-2 y+z+3=0=4 x-3 y+4 z+1$ is parallel to the plane

$$
2 x-y+m z-2=0 \text { is }
$$

(a) -2
(b) 8
(c) 4
(d) 2
81. If 5 different things are placed at random in 3 different boxes, then the probability of placing them
such that no box remains empty is
(a) $\frac{30}{81}$
(b) $\frac{20}{81}$
(c) $\frac{50}{81}$
(d) $\frac{40}{81}$
82. Two person A and B toss a die one after another. The person who throws 6 wins. If A starts the game, then the probability of his winning is
(a) $\frac{4}{11}$
(b) $\frac{3}{11}$
(c) $\frac{5}{11}$
(d) $\frac{6}{11}$
83. The Expansion $\left[x^{2}+\left(x^{6}-1\right)^{1 / 2}\right]^{5}+\left[x^{2}-\left(x^{6}-1\right)^{1 / 2}\right]^{5}$ is a polynomial of degree.
(a) 8
(b) 10
(c) 13
(d) 14
84. If $\left|z-\frac{4}{z}\right|=2$, then the maximum value of $|z|$ is
a) $\sqrt{3}+1$
b) $\sqrt{5}+1$
c) $\sqrt{5}-1$
d) $\sqrt{3}-1$
85. For positive numbers x, y and z the numerical value of the determinant $\left|\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 1 & \log _{y} z \\ \log _{z} x & \log _{z} y & 1\end{array}\right|$ is
(a) 0
(b) 1
(c) $\log _{e} x y$
(d) $-\log x y z$
86. A five digit number divisible by 30 is to be formed using the digits $0,1,2,3,4,5$ without repetition of
the digits. The number of ways it can be done is
(a) 36
(b) 24
(c) 48
(d) 60
87. The Equation $\mathrm{x}-\frac{2}{x-1}=1-\frac{2}{x-1}$ has
(a) no root
(b) one root
(c) two roots
(d) infinitely many
88. $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}=$
(a) 1
(b) 2
(c) 3
(d) 4
89. Fractional part $\frac{2^{78}}{31}$ is
(a) $\frac{2}{31}$
(b) $\frac{4}{31}$
(c) $\frac{8}{31}$
(d) $\frac{10}{31}$
90. If $\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$ then $\arg z_{1}-\arg z_{2}=$
a) 0
b) $\pm \frac{\pi}{4}$
c) $\pm \frac{\pi}{2}$
d) π

