JEE MAINS Sample Paper 2018 (Answer key \& Solutions)

Part - A (PHYSICS)

1. b	2. b	3. a	4. b	5. c	6. c	7. d	8. c	9. a	10. a
11. c	12. d	13. c	14. d	15. d	16. a	17. d	18. c	19. c	20. c
21. b	22.b	23. a	24. d	25. c	26. b	27. c	28. b	29. b	30. d

PART - B (CHEMISTRY)

31. b	32. a	33. b	34. a	35. d	36. a	37. c	38. b	39. c	40. d
41. d	42. c	43. d	44. a	45. a	46. a	47. b	48. a	49. d	50. c
51. d	52. d	53. c	54. a	55. a	56. d	57. b	58. d	59. a	60. b

PART - C (Mathematics)

61.b	62.c	63.b	64.c	65.b	66.a	67.d	68. a	69.c	70.a
71.b	72.d	73.d	74.a	75.b	76.a	77.c	78.c	79.c	80.a
81.c	82.d	83.d	84.b	85.a	86.b	87.a	88.d	89.c	90.c

1. Intensity at a distance x from point source is given by,
$\mathrm{I}=\frac{\mathrm{P}}{4 \pi \mathrm{x}^{2}}$
Consider an elemental shell of radius ' x ' and thickness dx , in this region, the energy contained is,
$\mathrm{dE}=\frac{\mathrm{I}}{\mathrm{C}}\left(4 \pi \mathrm{x}^{2} \mathrm{dx}\right)=\frac{P d x}{C}$
Let dn be the number of photons in this elemental shell,
Thendn $\times \frac{h C}{\lambda}=d E=\frac{P d x}{C}$
$\Rightarrow \mathrm{dn}=\frac{\mathrm{p} \lambda \mathrm{dx}}{\mathrm{hc}^{2}}$
Total no. of photons in the shell of inner radius ' r ' and outer radius $2 r$ is
$\mathrm{n}=\int \mathrm{dn}=\int_{\mathrm{r}}^{2 \mathrm{r}} \frac{\mathrm{P} \lambda \mathrm{dx}}{\mathrm{hC}^{2}}=\frac{\mathrm{P} \lambda \mathrm{r}}{\mathrm{hC}^{2}}$
2. The situation is as shown in the figure. At any time ' t ' its location is described by two parameters -ri.e, the distance from centre and θ, the angle rotated by spoke in time ' t '.
Velocity of bead at time $t, \vec{v}=u \hat{e}_{r}+r \omega \hat{e}_{t}$
Where $\hat{\mathrm{e}}_{\mathrm{r}} \& \hat{\mathrm{e}}_{\mathrm{t}}$ one unit vectors along radial and tangential
 directions

$$
\therefore \overrightarrow{\mathrm{v}}=\mathrm{u} \hat{\mathrm{e}}_{\mathrm{r}}+(\mathrm{ut}) \omega \hat{\mathrm{e}}_{\mathrm{t}} \text { where } \mathrm{r}=\mathrm{ut} \text { as } \frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{u}
$$

3. In LR growth circuit current grows to 63.2% of its maximum value, in one time constant, it means required time is
$\mathrm{t}=\mathrm{T}=\frac{\mathrm{L}}{\mathrm{R}}$
If the circuit is switched on at $t=0$,
$i(t)=\frac{E}{R}\left[1-e^{-t / T}\right]\left[T=\frac{L}{R}\right]$
$\therefore \mathrm{I}_{\text {max }}=\frac{\mathrm{E}}{\mathrm{R}}$

$\Rightarrow 3=\frac{8}{\mathrm{R}} \Rightarrow \mathrm{R}=\frac{8}{3} \Omega$
So, $t=T=\frac{L}{R}=\frac{6 \times 10^{-3}}{\frac{8}{3}}=\frac{9}{4} \mathrm{~ms}$
4. $\frac{d v}{d t}=v \frac{d v}{d x}=-K x^{2}$
$\Rightarrow V d v=-K x^{2} d x$

Let V_{1} and V_{2} be the velocities of the particle at locations x_{1} and x_{2} respectively. Then
$\frac{v_{2}^{2}-v_{1}^{2}}{2}=-K\left[\frac{\mathrm{x}_{2}^{3}-\mathrm{x}_{1}^{3}}{3}\right]$
So, loss in K.E a x^{3}
5. The given system can be redrawn as

The above simplification has been done by using series and parallel combinations of springs and the reduced mass concept.
In series, $\frac{1}{\mathrm{~K}_{\mathrm{eq}}}=\frac{1}{\mathrm{~K}_{1}}+\frac{1}{\mathrm{~K}_{2}}$, In parallel, $\mathrm{K}_{\mathrm{eq}}=\mathrm{K}_{1}+\mathrm{K}_{2}$. Reduced mass, $\mu=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
Required time period, $T=2 \pi \sqrt{\frac{\mu}{K_{e q}}}=3 \pi \sqrt{\frac{\mathrm{~m}}{7 \mathrm{k}}}$.
6. Temperature is decreasing we are going out, let at a distance ' x ' from the centre, the temperature gradient is $\frac{-\mathrm{dT}}{\mathrm{dx}}$

At this location, $\mathrm{K}=\mathrm{a}_{0} \mathrm{Tx}$
From $\mathrm{H}=-\mathrm{KA}\left(\frac{-\mathrm{dT}}{\mathrm{dx}}\right)$
$\Rightarrow H=\left(-\mathrm{a}_{0} T \mathrm{x}\right)\left(4 \pi \mathrm{x}^{2}\right)\left(\frac{\mathrm{dT}}{\mathrm{dx}}\right)$
$\Rightarrow \int_{R_{1}}^{R_{2}} \frac{H d x}{x^{3}}=-\int_{T_{1}}^{T_{2}} 4 \pi \mathrm{a}_{0} \mathrm{TdT}$
$\Rightarrow \mathrm{H}=\frac{4 \pi \mathrm{a}_{0} \mathrm{R}_{1}^{2} \mathrm{R}_{2}^{2}\left(\mathrm{~T}_{1}^{2}-\mathrm{T}_{2}^{2}\right)}{\mathrm{R}_{2}^{2}-\mathrm{R}_{2}^{2}}$
7. In this case, we can't take reference point for potential at infinity as wire itself is of infinite dimension and hence we can't define absolute potential due to infinite
(charged) wire. Only potential difference between two points can be found, provided none of the point lies on wire.
8. $\quad \overrightarrow{\mathrm{V}}_{\mathrm{cm}}=\frac{m_{1} \overrightarrow{\mathrm{~V}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{~V}}_{2}}{m_{1}+m_{2}}=\frac{6 \hat{\imath}+5 \hat{\jmath}}{5}$
$\overrightarrow{\mathrm{a}}_{\mathrm{cm}}=\frac{m_{1} \overrightarrow{\mathrm{a}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{a}}_{2}}{m_{1}+m_{2}}=\frac{6 \hat{i}+6 \hat{}}{5}$
As $\vec{V}_{\mathrm{cm}} \| \overrightarrow{\mathrm{a}}_{\mathrm{cm}}$, so centre of mass follows a straight line path.
9. The components ofvarious velocities are as shown in the figure below:
$\overrightarrow{\mathrm{V}}_{\mathrm{IM}_{1}}=(100 \hat{1}) \mathrm{cm} / \mathrm{s}$
$\overrightarrow{\mathrm{V}}_{\mathrm{IM}_{2}}$ is given by the vector sum of components of velocity of image w.r. to M_{2} along the normal and perpendicular to the normal
$\overrightarrow{\mathrm{V}}_{\mathrm{IM}_{2}}=\left[100 \sin ^{2} 37^{0} \hat{\imath}+\right.$

$\left.100 \sin 37^{0} \cos 37^{\circ} \mathrm{j}\right]+$

$$
\begin{aligned}
& \Rightarrow=\left(-100 \cos ^{2} 37^{0} \hat{\imath}+100 \sin 37^{0} \cos 37^{0} \mathrm{j}\right] \\
& \therefore \vec{V}_{\mathrm{IM}_{2}}-\overrightarrow{\mathrm{V}}_{\mathrm{IM}_{1}}=[-128 \hat{\imath}+48 \hat{\jmath}) \mathrm{cm} / \mathrm{s} \\
& \hline 8 \hat{\jmath}] \mathrm{cm} / \mathrm{s}
\end{aligned}
$$

10. Let a satellite of mass ' m ' is revolving around the earth of mass ' M ' in a circle of radius ' r '(> radius of earth), then its total mechanical energy in the orbit is given by,
$\mathrm{T} . \mathrm{E}=\mathrm{P} . \mathrm{E}+\mathrm{K} . \mathrm{E}=-\frac{G M m}{r}+\frac{G M m}{2 r}=-\frac{G M m}{2 r}=-(\mathrm{K} . \mathrm{E})$
So , T.E $=-\mathrm{E}_{\mathrm{K}} \quad$ (Given K.E=Eк)
Let ' x ' is the amount of energy supplied to the satellite in its orbit so that it goes to infinity where its total energy is zero.

Appling law of conservation of energy, $x+$ T.E $=0$
So, $x=-\left(\right.$ T.E) $=-\left(-E_{k}\right)=E_{\kappa}$.
11. Let the velocity of rod be ' V ' when it has been displaced by ' x ' due to motion of rod an emf, will be induced in rod given by $\mathrm{e}=\mathrm{BVL}$, due to this induced emf, charging of the capacitor takes place as a current, flows in the circuit [for very small time] as a result of this current, the rod experiences a magnetic force given by IBL.

From Newton's II $^{\text {nd }}$ law,
$L \operatorname{LBl}+\mathrm{Kx}=\mathrm{ma}$
$\Rightarrow \mathrm{I}=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{Q})=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{C} \times \mathrm{BvL})=\mathrm{CBl} \times \frac{\mathrm{dv}}{\mathrm{dt}}$
$\Rightarrow \quad \mathrm{a}=\frac{\mathrm{Kx}}{\mathrm{m}-\mathrm{B}^{2} \mathrm{~L}^{2} \mathrm{C}}=\omega^{2} \mathrm{X}$
12. Distance between two adjacent nodes is $\frac{\lambda}{2}=\frac{2 \pi / \mathrm{K}}{2}=\frac{\pi}{\mathrm{K}}$
13. $\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}=\mathrm{W}$
$\left(T_{A}\right)(x)=T_{B}(L-x)$
Solving the above equations
$T_{A}=\frac{w(L-x)}{L} ; T_{B}=\frac{W x}{L}$
Stress in ' A ' $=\frac{T_{A}}{A_{A}}$ Where A_{A} is cross section area wire ' A '.

Stress in ' B ' $=\frac{T_{B}}{A_{B}}$ where A_{B} is cross section area
 wire 'B'

It is given $A_{A}=\frac{A_{B}}{2}, \frac{T_{A}}{A_{A}}=\frac{T_{B}}{A_{B}} \Rightarrow x=\frac{2 L}{3}$
14. Electric potential of the common centre, is
$V=\frac{\mathrm{q}_{1}}{4 \pi \varepsilon_{0} \mathrm{r}_{1}}+\frac{\mathrm{q}_{2}}{4 \pi \varepsilon_{0} \mathrm{r}_{2}}$
$\Rightarrow \mathrm{v}=\frac{\sigma}{\varepsilon_{0}} \times \mathrm{r}_{1}+\frac{\sigma}{\varepsilon_{0}} \times \mathrm{r}_{2}=\frac{\sigma}{\varepsilon_{0}}\left[\mathrm{r}_{1}+\mathrm{r}_{2}\right]\left[\begin{array}{c}\because \mathrm{q}_{1}=\left(4 \pi r_{1}^{2}\right) \sigma \\ \mathrm{q}_{2}=\left(4 \pi r_{2}^{2}\right) \sigma\end{array}\right]$
15. Let both the blocks are moving together with same acceleration a , then
$\mathrm{a}=\frac{\mathrm{F}}{\mathrm{M}+\mathrm{m}}, \mathrm{f}=\mathrm{Ma}=\frac{\mathrm{MF}}{\mathrm{M}+\mathrm{m}}$
For $\stackrel{M}{\mathrm{M}+\mathrm{m}}$ relative motion to be there between the blocks, $\mathrm{f} \leq \mathrm{f}_{\mathrm{L}}$

i.e, $\frac{\mathrm{MF}}{\mathrm{M}+\mathrm{m}} \leq \mu \mathrm{mg} \Rightarrow \mathrm{F} \leq \frac{\mu \mathrm{m}(\mathrm{M}+\mathrm{m}) \mathrm{g}}{\mathrm{M}}$
16. $\quad \lambda_{n}=\frac{h}{P_{n}}=\frac{h}{\mathrm{mv}_{\mathrm{n}}}$
$J_{n}=\frac{n h}{2 \pi}$
We know $v_{n} \propto \frac{1}{n}$ i.e., $\lambda_{n} \propto n$ and $J_{n} \propto n$
So λ_{n} a J_{n}
17. The position of final image is independent of b only when the rays are incident parallel to principal axis on concave lens, which is possible only when the object is kept at focus of plano convex lens.
$\therefore \frac{1}{a}=\frac{1}{f_{1}}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$=\left(\frac{3}{2}-1\right)\left(\frac{1}{10}-\frac{1}{\infty}\right)$
$\Rightarrow \mathrm{a}=20 \mathrm{~cm}$.
18. When screen is parallel to line joining coherent sources S_{1} and S_{2}, then shape of fringe is hyperbolic but central bright fringe is straight line.
When screen is perpendicular to the line joining the sources S_{1} and S_{2}, then the shape of fringe is circular.
19. $\mathrm{T}=\mathrm{mg}$

Wave speed $C=\sqrt{\frac{T}{P A}}$
From the given equation of wave,
$\mathrm{C}=\frac{\mathrm{w}}{\mathrm{K}}$
$\therefore \frac{\mathrm{w}}{\mathrm{K}}=\sqrt{\frac{\mathrm{T}}{\mathrm{PA}}} \Rightarrow \frac{\mathrm{w}^{2}}{\mathrm{~K}^{2}}=\frac{\mathrm{T}}{\mathrm{pA}}$
$\therefore \mathrm{T}=\frac{\mathrm{pAw}^{2}}{\mathrm{~K}^{2}}$ or $\mathrm{mg}=\frac{\mathrm{pAw}^{2}}{\mathrm{~K}^{2}} \Rightarrow \mathrm{~m}=\frac{\mathrm{pAw}^{2}}{\mathrm{~K}^{2} \mathrm{~g}}$
20. $\mu=\tan 60^{\circ}=\sqrt{3}$
$\frac{\sin i}{\sin r}=\sqrt{3} \Rightarrow \sin r=\frac{\sin 45^{\circ}}{\sqrt{3}}=\frac{1}{\sqrt{6}}$
$\Rightarrow r=\sin ^{-1}\left(\frac{1}{\sqrt{6}}\right)$
21. only D_{1} and D_{4} are forward biased. So, $I=\frac{V}{R}=\frac{5}{50}=0.1 A$.
22. $N=N_{0} \mathrm{e}^{-\lambda t}$
$\therefore \mathrm{N}_{1}=\mathrm{N}_{0} \mathrm{e}^{-10 \lambda_{0} \mathrm{t}}$
$\mathrm{N}_{2}=\mathrm{N}_{0} \mathrm{e}^{-\lambda_{0} \mathrm{t}}$
$\therefore \frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{1}{\mathrm{e}}=\mathrm{e}^{-9 \lambda_{0} \mathrm{t}}$
$9 \lambda_{0} t=1$
$\Rightarrow t=\frac{1}{9} \lambda_{0}$.
23. ${ }_{92} \mathrm{U}^{238} \rightarrow{ }_{82} \mathrm{~Pb}^{214}+6{ }_{2} \mathrm{He}^{4}+2 \mathrm{e}^{-1}$

So 6α and 2β are possible.
24. $\quad \mathrm{U}_{\mathrm{i}}=\frac{1}{2} \mathrm{CV}^{2}+\frac{1}{2} \mathrm{CV}^{2}=\mathrm{CV}^{2}$
$\mathrm{U}_{\mathrm{f}}=\frac{1}{2} \mathrm{KCV}^{2}+\frac{1}{2}(\mathrm{KC}) \frac{\mathrm{V}^{2}}{\mathrm{~K}^{2}}=\frac{1}{2} \mathrm{CV}^{2}\left(\mathrm{~K}+\frac{1}{\mathrm{~K}}\right)$
$\therefore \frac{\mathrm{U}_{\mathrm{i}}}{\mathrm{U}_{\mathrm{f}}}=\frac{1}{\frac{1}{2}\left(\frac{\mathrm{~K}^{2}+1}{\mathrm{~K}}\right)}=\frac{2 \mathrm{~K}}{\mathrm{~K}^{2}+1}=\frac{6}{10}=\frac{3}{5}$
25. $\quad \mathrm{R}_{1}=\frac{\mathrm{V}^{2}}{\mathrm{P}_{1}} ; \mathrm{R}_{2}=\frac{\mathrm{V}^{2}}{\mathrm{P}_{2}}$

$$
P_{\text {net }}=\frac{V^{2}}{R_{\text {net }}}=\frac{V^{2}}{\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)}=\frac{V^{2}\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}
$$

$$
\Rightarrow P_{n e t}=\frac{\mathrm{V}^{2}\left(\frac{\mathrm{~V}^{2}}{\mathrm{P}_{1}}+\frac{\mathrm{V}^{2}}{\mathrm{P}_{2}}\right)}{\frac{\mathrm{V}^{2}}{\mathrm{P}_{1}} \times \mathrm{V}^{2}} \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}+\mathrm{P}_{2}
$$

26. $f=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}=\frac{1}{2 \pi \sqrt{5 \times 80 \times 10^{-6}}}$
$\Rightarrow \mathrm{f}=\frac{25}{\pi} \mathrm{~Hz}$
27. As relative velocity is doubled. $\frac{\mathrm{d} \phi}{\mathrm{dt}}$ is also doubled hence emf induced becomes doubled.
28.

$$
\begin{aligned}
& d w=n R d T \\
& \text { anddw }=P d V \\
& \therefore P d V=n R d T=(2)(R)(200) \\
& \Rightarrow P d V=400 R
\end{aligned}
$$

29. At $\mathrm{x}=\sqrt{\frac{2 \mathrm{E}}{\mathrm{K}}}$

Potential energy $U=0[\because x>0]$
Total energy is purely kinetic
$\therefore \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2} \Rightarrow \mathrm{v}=\sqrt{\frac{2 \mathrm{E}}{\mathrm{m}}}$
30. No friction is required for pure rolling of ring.

> PART - B (CHEMISTRY)

31. b	32. a	33. b	34. a	35. d	36. a	37. c	38. b	39. c	40. d
$41 . \mathrm{d}$	$42 . \mathrm{c}$	$43 . \mathrm{d}$	$44 . \mathrm{a}$	$45 . \mathrm{a}$	$46 . \mathrm{a}$	$47 . \mathrm{b}$	$48 . \mathrm{a}$	$49 . \mathrm{d}$	$50 . \mathrm{c}$
$51 . \mathrm{d}$	$52 . \mathrm{d}$	$53 . \mathrm{c}$	$54 . \mathrm{a}$	$55 . \mathrm{a}$	$56 . \mathrm{d}$	$57 . \mathrm{b}$	$58 . \mathrm{d}$	$59 . \mathrm{a}$	$60 . \mathrm{b}$

SOLUTION:

31. Sol: (b)

$$
\begin{array}{ll}
W_{\text {salt }}=1 g & \text { Let } \mathrm{W} t \% \text { of } \mathrm{H}=\mathrm{x} \\
W_{\text {Ag }}=0.5934 \mathrm{~g} & \text { Let } \mathrm{W} \mathrm{t} \% \text { of } \mathrm{C}=8 \mathrm{x} \\
& \text { Let } \mathrm{W} \mathrm{t} \% \text { of } \mathrm{O}=16 \mathrm{x}
\end{array}
$$

Since its dibasic acid
\therefore |mole of salt $=2$ moles of Ag
\therefore moles of $\mathrm{Ag}=\frac{0.5934}{108}$
\therefore moles of salt/Acid $=\frac{0.5934}{108} \times \frac{1}{2}$
Given amount of salt $=1 \mathrm{~g}$
\therefore Molecular amount of salt $=\frac{1}{0.5934} \times 108 \times 2$

$$
=364 \mathrm{~g} / \mathrm{mol}
$$

now $x+8 x+16 x=364$

$$
x=14.5 g
$$

\therefore moles of H $\oint 0=14.5$
Since $4+0$ are equal hence option b.
32. Sol: (a)

Orbital angular momentum $=\sqrt{l(l+1)} \frac{h}{2 \pi}$
For a d - orbital I = 2
Orbital angular momentum $=\sqrt{2(2+1)} \mathrm{h} / 2 \pi$

$$
=\frac{\sqrt{6} h}{2 \pi}
$$

33. Sol: (b)

Higher the cationic charge smaller the radius
Higher the anionic charge higher the radius for isoelectronic species.
34. Sol: (a)

Conceptual of VSEPR THEORY
35. Sol: (d)

Draw the Mo diagram and this will have unpaired e^{-}
36. Sol: (a)

$$
N_{1} V_{1}+N_{2} V_{2}=N V
$$

Where $V_{1}+V_{2}=1 \mathrm{~L}$
Or $\quad V_{2}=\left(1-V_{1}\right) L$
$10 \times V_{1}+4\left(1-V_{1}\right)=1 \times 7$
$10 V_{1}+4-4 V_{1}=7$
$6 V_{1}=3$

$$
V_{1}=\frac{3}{6}=0.5 \mathrm{~L}
$$

$V_{2}=0.5 \mathrm{~L}$
37. Sol: (c)

Vol of 1 mol of ideal gas at 273 K
and 1 atm is 22.4 L
\therefore Volat 373 K and 1 atm
$\mathrm{V}=\frac{R T}{P}=\frac{0.082 \times 373}{1}=30.6 \mathrm{~L}$
38. Sol: (b)

$$
\begin{aligned}
\Delta s(A & \rightarrow B)=\Delta s(A \rightarrow C)+\Delta s(C \rightarrow D)+\Delta s(D \rightarrow B) \\
& =50+30+(-20)=60 \mathrm{eV}
\end{aligned}
$$

39. Sol: (c) For $\mathrm{pH}=3$; $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-3}$

$$
\mathrm{pH}=4 ;\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-4}
$$

Moles of $\mathrm{H}_{3} \mathrm{O}^{+}$in 100 ml of solution $\mathrm{pH}=3=\frac{10^{-3}}{1000} \times 100=10^{-4}$
Moles of $\mathrm{H}_{3} \mathrm{O}^{+}$in 400 ml of solution of $\mathrm{pH}=4$
$=\frac{10^{-4}}{1000} \times 400=4 \times 10^{-5}$
Total moles of $\mathrm{H}_{3} \mathrm{O}^{+}$on mixing
$=10^{-4}+4 \times 10^{-5}=14 \times 10^{-5}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{14 \times 10^{-5} \times 1000}{500}=2.8 \times 10^{-4}$
$\mathrm{pH}=-\log \left(2.8 \times 10^{-4}\right)$
$=4-\log 2.8$
40. Sol: (d)

Initial com

$$
\begin{array}{rcc}
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \\
1 & 0 & 0
\end{array}
$$

At equation $\quad 1-\propto \propto \alpha / 2$
Total no of moles at eq ${ }^{\mathrm{b}}=1-\propto+\propto+\propto / 2$

$$
=1+\alpha / 2
$$

$\mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{1-\alpha}{1+\alpha / 2} \mathrm{P} \quad \mathrm{P}\left(\mathrm{O}_{2}\right)=\frac{\alpha / 2}{1+\alpha / 2} \mathrm{P}$
$\mathrm{P}\left(\mathrm{H}_{2}\right)=\frac{\alpha}{1+\alpha / 2} \mathrm{P}$
$K_{P}=\frac{\mathrm{P}\left(\mathrm{H}_{2}\right)\left(\mathrm{Po}_{2}\right)^{1 / 2}}{\left(\mathrm{PH}_{2} \mathrm{O}\right)}=\frac{\alpha^{3 / 2} \mathrm{P}^{1 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$
41. Sol: (d)

Conceptual
42. Sol: (c)

Very pure H_{2} (99.9\%) is prepared by the action of water on salt hydrides (eqNaH) $\mathrm{NaH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$
43. Sol: (d) Conceptual
44. Sol: (a)

Maximum covalency of Boron is 4 only
45. Sol: (a)

In (b), Ione pair of N is taking part in resonance
In (c), nitrogen is attached to electron with drawing group.
In (d), lone pair of nitrogen is in resonance with benzene ring
\therefore All these are less nucleophilic
46. Sol: (a) $\mathrm{Ph} \mathrm{C} \equiv \underset{\mathrm{n}^{+}, \mathrm{H}_{2} \mathrm{O}}{\mathrm{C}_{\mathrm{H}^{2} € \mathrm{H}_{3}}}$

$$
\text { 亿. } \quad \mathrm{Ph} \mathrm{C}(\mathrm{OH})=\mathrm{CHCH}_{3}
$$

Tautomerism

47. Sol: (b)

For each I^{-}ion, there are 2 tetrahedral voids since number of Ag^{+}ions is equal to I^{-}ion thus, only 50% tetrahedral voids are occupied by Ag^{+}ions.
48. Sol: (a) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightleftharpoons 3 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
$i=4$
$\Delta T f=\frac{i \times k f \times 1000 \times w_{2}}{W_{1} \times M_{2}}=\frac{4 \times 1.86 \times 1000 \times 0.1}{100 \times 329}$
f.pt $=0-2.3 \times 10^{-2}$
$=-2.3 \times 10^{-2} \mathrm{C}$
49. Sol: (d) $\propto=\frac{\Lambda}{\Lambda_{\infty}}=\frac{8}{100}=2 \times 10^{-2}$

Dissociation constant $\mathrm{K}=\propto^{2} C$
$\mathrm{K}=\left(2 \times 10^{-2}\right)^{2} \times \frac{1}{32}=1.25 \times 10^{-5}$
50. Sol: (c)

$$
\mathrm{pH}=2,\left[\mathrm{H}^{+}\right]=10^{-2} \quad \mathrm{pH}=1\left[\mathrm{H}^{+}\right]=10^{-1}
$$

Initial rate $(\text { rate })_{0}=K\left[\mathrm{H}^{+}\right]^{n}$

$$
(\text { rate })_{1}=K\left[10^{-2}\right]^{n} \quad(\text { rate })_{2}=K\left[10^{-1}\right]^{n}
$$

$\frac{\text { rate }_{2}}{\text { rate }_{1}}=100=\left[\frac{10^{-1}}{10^{-2}}\right]^{n}$
$100=10^{n}$ or $n=2$
51. Sol: (d)

Conceptual
52. Sol: (d)

In haematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ oxidation number of Fe is $2 \mathrm{x}+3(-2)=0 ; \mathrm{x}=3$
Magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ is an equimolar mixture of FeO of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
\therefore oxidationnumber of iron is FeO is 2 and in $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is 3
53. Sol: (c)
Br_{2} reacts with Nal only to give I_{2}
$2 \mathrm{NaI}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NaBr}+\mathrm{I}_{2}$
54. Sol: (a) Conceptual
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$

Colourless green
 gas solid

55. Sol: (a) Conceptual
56. Sol: (d)

57. Sol: (b)

58. Sol: (d)

59. Sol: (a)

Only treatment of amide with Br_{2} in aqNaOH or kOH will give amine with lesser number of carbon atoms
$\mathrm{R} \mathrm{CONH} 2 \frac{\mathrm{Br}_{2} / \mathrm{KOH}}{\Delta} \mathrm{RNH}_{2}$
60. Sol: (b)

Nucleic acid is a poly nucleotide which contains of Nitrogenous base, phosphoric acid and ribose sugar.

PART - C (MATHS)

61. b	62. c	63. b	64. c	65. b	66. a	67. d	68. a	69. c	70. a
71. b	72. d	73. d	74.a	75. b	76. a	77. c	78. c	79. c	80. a
81. c	82. d	83. d	84. b	85. a	86. b	87. a	88. d	89. c	90. c

61. Sol: (b)

$M=\left(a, \frac{a}{2}\right), \quad N=\left(\frac{a}{2}, a\right)$

Area $\Delta \mathrm{OMN}=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ a & a / 2 & 1 \\ a / 2 & a & 1\end{array}\right|=\frac{3 \mathrm{a}^{2}}{8}$, Area of square $=\mathrm{a}^{2}$
\therefore Ratio is $\mathrm{a}^{2}: \frac{3 \mathrm{a}^{2}}{8} \Rightarrow 8: 3$
62. Sol: (c)

The line $5 x-2 y+6=0$ cuts y-axis at $Q(0,3)$. Clearly $P Q$ is the length of the tangent drawn from Q on the circle
$x^{2}+y^{2}+6 x+6 y=2 \quad \Rightarrow P Q=\sqrt{0+9+6 \times 0+6 \times 3-2}=5$
63. Sol: (b)

Equation of tangent of slope m is $y=m x+\frac{1}{m}$ which passes through $(1,4) \Rightarrow m^{2}-$ $4 \mathrm{~m}+1=0$
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right| \Rightarrow \tan \theta=\frac{\sqrt{\left(m_{1}+\mathrm{m}_{2}\right)^{2}-4 \mathrm{~m}_{1} \mathrm{~m}_{2}}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}} \Rightarrow \tan \theta=\frac{\sqrt{16-4}}{2}=\sqrt{3}$
$\therefore \theta=60^{\circ}$
64. Sol: (c)

Sum of 100 items $=49 \times 100=4900$
Sum of items $=60+70+80=210$
Sum of items replaced $=40+20+50=110$
\therefore New sum $=4900-110+210=5000$
\therefore Correct mean $=\frac{5000}{100}=50$
65. Sol: (b)

Equation of the pair of Asymptotes is $3 x^{2}-y^{2}+k=0$ But passes through origin $\Rightarrow \mathrm{k}=0$
\therefore Asymptotes are $3 \mathrm{x}^{2}-\mathrm{y}^{2}=0$
\therefore Angle α between them $\alpha=2 \operatorname{Tan}^{-1}\left\{\frac{2 \sqrt{0+3}}{3-1}\right\}$

$$
\therefore \alpha=\frac{2 \pi}{3}
$$

66. Sol: (a)

$$
q_{p \rightarrow(q \vee r)} \text { is } F \Rightarrow P \text { is } T, q \vee r \text { is } F
$$

$$
\begin{aligned}
& \Rightarrow \mathscr{R} \text { is } T, q \text { is } F, r \text { is } F \\
& \Rightarrow q P \text { is } T, q \text { is } T, r \text { is } F
\end{aligned}
$$

67. (d) $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{(1-\cos x)\left(1+\cos x+\cos ^{2} x\right)}{\sin 3 x \cdot \sin 5 x}=\frac{3 / 2}{3.5}=\frac{1}{10}$

Sol:
68. (a) If $\operatorname{Sin}^{-1} x+\operatorname{Sin}^{-1} y=\pi / 2$, then $x=\sqrt{1-y^{2}}$

$$
\text { or } \begin{aligned}
& x^{2}+y^{2}=1 \quad \Rightarrow 2 x+2 y \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-x}{y}
\end{aligned}
$$

69.(c) $\frac{d y}{d x}=m=3 x^{2}-4 x=12-8=4$

$$
A T=\left|\frac{y_{1} \sqrt{1+\mathrm{m}^{2}}}{\mathrm{~m}}\right|=\frac{4 \cdot \sqrt{17}}{4}=\sqrt{17}
$$

70. (a) $\operatorname{acos} x+\frac{1}{3} \cdot 3 \cos 3 x=0$ for $x=\frac{\pi}{3}$
a $\frac{1}{2}+(-1)=0$

$$
a=2
$$

71. (b) Let $f(x)=a x^{3}+b x^{2}+c x$

$$
f(0)=0=f(1) \Rightarrow a+b+c=0
$$

72. (d) $\int e^{x}\left(\frac{x+2}{x+3}+\frac{1}{(x+3)^{2}}\right) d x=e^{x \cdot\left(\frac{x+2}{x+3}\right)+C}$
73. (d) $f(x)=\log \left(\frac{2-\sin x}{2+\sin x}\right)$ is an odd function

$$
\therefore \int_{-\pi / 2}^{\pi / 2} f(x) \mathrm{dx}=0
$$

74. (a)Required area is $2 \int_{0}^{\pi} \boldsymbol{\operatorname { s i n }} x \mathrm{dx}=4$ sq.units
75. (b)The given equation is the homogenous differential equation:

By using $y=v x$ we will get the required function as $\sin ^{-1}\left(\frac{y}{x}\right)=\log x$
$\Rightarrow \mathrm{y}=\mathrm{x}=\boldsymbol{e}^{\pi / 2}$
76. Sol: (a)
$\bar{a} \cdot \bar{b}>0 \Rightarrow 2 \lambda^{2}-3 \lambda+1>0 \Rightarrow \lambda<\frac{1}{2}$ or $\lambda>1$
$\overline{\boldsymbol{b}} \cdot \mathrm{i}<0, \overline{\boldsymbol{b}} \cdot \mathrm{j}<0, \overline{\boldsymbol{b}} \cdot \mathrm{k}<0 \Rightarrow \lambda<0$
Form (1) and (2), $\lambda \in(-\infty, 0)$
77. Sol: (c) $\overline{\mathbf{U}} \cdot(\overline{\mathbf{V}} \mathbf{x} \overline{\mathbf{W}})=\overline{\mathbf{U}} \cdot(3 \mathrm{i}-7 \mathrm{j}-\mathrm{k})$

$$
\begin{aligned}
& =|\overline{\mathbf{U}}||3 i-7 j-k| \cos \theta \\
& =\sqrt{59} \cos \theta
\end{aligned}
$$

\therefore Maximum value of $[\overline{\mathbf{U}}, \overline{\mathbf{V}}, \overline{\mathbf{W}}]=\sqrt{\mathbf{5 9}} . \quad(\because \cos \theta \leq 1)$
78. Sol: (c)

Equation of the plane is $3(x-1)+4(z-1)=0$

$$
\Rightarrow 3 x+4 z-7=0
$$

\therefore Dist. from the origin $=\frac{|-7|}{\sqrt{3^{2}+4^{2}}}=\frac{7}{5}$
79. Sol: (c)

Let P be the required point on $A B$. Let P divides $A B$ in the ratio λ : 1 $P=\left(\frac{11 \lambda-9}{\lambda+1}, \frac{4}{\lambda+1}, \frac{5-\lambda}{\lambda+1}\right), O P \perp A B \Rightarrow 20\left(\frac{11 \lambda-9}{\lambda+1}\right)-4\left(\frac{4}{\lambda+1}\right)-6\left(\frac{5-\lambda}{\lambda+1}\right)=0$ $\therefore \lambda=1 \Rightarrow P=(1,2,2)$
80. Sol: (a)

$$
\left|\begin{array}{lll}
3 & -2 & 1 \\
4 & -3 & 4 \\
2 & -1 & m
\end{array}\right|=0 \quad \Rightarrow m=-2
$$

81. Sol: (c)

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~s})=3^{5}=243 \\
& \mathrm{n}(\mathrm{E})=3\left({ }^{5} \mathrm{C}_{2} \cdot{ }^{3} \mathrm{C}_{2} \cdot{ }^{3} \mathrm{C}_{1}\right)+3\left({ }^{5} \mathrm{C}_{1} \cdot{ }^{4} \mathrm{C}_{1} \cdot{ }^{3} \mathrm{C}_{3}\right)=150 \\
& \mathrm{P}(\mathrm{E})=\frac{\mathbf{n}(\mathbf{E})}{\mathbf{n}(\mathbf{S})}=\frac{\mathbf{5 0}}{\mathbf{8 1}}
\end{aligned}
$$

82. Sol: (d)

$$
\begin{aligned}
& P(W)=\frac{1}{6}, P(L)=\frac{5}{6} \\
& P(A)=\frac{1}{6}+\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}+\left(\frac{5}{6}\right)^{4} \cdot \frac{1}{6}+\ldots .=\frac{6}{11}
\end{aligned}
$$

83. Sol: (d)

Sol: $\left(x^{2}+\left(x^{6}-1\right)^{1 / 2}\right)^{5}+\left(x^{2}-\left(x^{6}-1\right)^{1 / 2}\right)^{5}$

$$
=2\left({ }^{5} \mathrm{C}_{0}\left(\mathrm{x}^{2}\right)^{5}+{ }^{5} \mathrm{C}_{2}\left(\mathrm{x}^{2}\right)^{3}\left(\mathrm{x}^{6}-1\right)+{ }^{5} \mathrm{C}_{4} \mathrm{x}^{2}\left(\mathrm{x}^{6}-1\right)^{2}\right)
$$

Here last term is of 14 degree.
84. Sol. (b) $|z|=\left|z-\frac{4}{z}+\frac{4}{z}\right|$

$$
\begin{aligned}
& \leq\left|z-\frac{4}{z}\right|+\left|\frac{4}{z}\right|^{2} \\
& =\left|z-\frac{4}{z}\right|+\frac{4}{|z|} \\
& |z| \leq 2+\frac{4}{|z|} \\
& |z|^{2}-2|z| \leq 4 \\
& |z|^{2}-2|z|+1 \leq 5 \\
& \Rightarrow|z| \leq \sqrt{5}+1
\end{aligned}
$$

85. Ans. (a) $\left|\begin{array}{ccc}1 & \log _{y} y & \log _{z} z \\ \log _{y} x & 1 & \log _{y} z \\ \log _{z} x & \log _{z} y & 1\end{array}\right|$
$=\left(1-\log _{z} y \log _{y} z\right)-\log _{x} y\left(\log _{y} x-\log _{z} x \log _{y} z\right)+\log _{x} z\left(\log _{y} x \log _{z} y-\log _{z} x\right)$
$=(1-1)-\left(1-\log _{x} y \log _{y} x\right)+\left(\log _{x} z \log _{z} x-1\right)=0$
\{Since $\left.\log _{x} y \cdot \log _{y} x=1\right\}$.
86. Sol: (b)

Last digit is zero and the remaining from digits are 1,2,4,5. Number of arrangements $=4!=24$
87. Sol: (a)

$$
\begin{align*}
& x-\frac{2}{x-1}=1-\frac{2}{x-1}----- \tag{1}\\
& \Rightarrow x^{2}-x-2=x-1-2
\end{align*}
$$

$$
\begin{aligned}
& \Rightarrow x^{2}-2 x+1=0 \\
& \Rightarrow(x-1)^{2}=0 \\
& \Rightarrow x-1=0 \Rightarrow x=1
\end{aligned}
$$

But when $\mathrm{x}=1$ (1) is not defined.: No root
88. Sol: (d)

$$
\begin{aligned}
& \tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ} \\
& =\tan 9^{\circ}+\cot 9^{\circ}-\left(\tan 27^{\circ}+\cot 27^{\circ}\right) \\
& =\frac{1}{\sin 9^{\circ} \cdot \cos 9^{\circ}}-\frac{1}{\sin 27^{\circ} \cos 27^{\circ}} \\
& =\frac{2\left[\sin 54^{\circ}-\sin 18^{\circ}\right]}{\sin 18^{\circ} \cdot \sin 54^{\circ}}=4
\end{aligned}
$$

89. Sol: (c)

$$
\begin{aligned}
& 2^{78}=2^{3} \cdot 2^{75}=8\left(2^{5}\right)^{15}=8(1+31)^{15}=8\left\{{ }^{15} \mathrm{C}_{0}+{ }^{15} \mathrm{C}_{1} 31+\ldots \ldots \ldots+{ }^{15} \mathrm{C}_{15}(31)^{15}\right\} \\
& 2^{78}=8+\text { an integer multiple of } 31 \\
& \frac{2^{78}}{31}=\frac{8}{31}+\text { an integer }
\end{aligned}
$$

90. Sol: (c) $\left|\mathbf{z}_{1}+\mathbf{z}_{2}\right|^{2}=\left|\mathbf{z}_{1}-\mathbf{z}_{2}\right|^{2}$

$$
\Rightarrow \mathbf{z}_{1} \cdot \overline{\mathbf{z}}_{2}+\overline{\mathbf{z}}_{1} \mathbf{z}_{2}=0
$$

$$
\text { i.e } \mathbf{z}_{1} \cdot \overline{\mathbf{z}}_{2}+\overline{\mathbf{z}_{1} \cdot \overline{\mathbf{z}}_{2}}=0
$$

$$
\Rightarrow \operatorname{Re}\left(\mathbf{z}_{1} \cdot \overline{\mathbf{z}}_{2}\right)=0
$$

Let $z_{1}=r, e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}}$
$\Rightarrow \operatorname{Re} z_{1} \cdot \overline{\mathrm{z}}_{2}=\mathrm{r}_{1} \mathrm{r}_{2} \mathrm{e}^{\mathrm{i}\left(\theta_{1}-\theta_{2}\right)}=0$
$\Rightarrow \cos \left(\theta_{1}-\theta_{2}\right)=0$
$\Rightarrow \theta_{1}-\theta_{2}= \pm \frac{\pi}{2}$

