JEE ADVANCED PAPER-I SOLUTIONS

PHYSICS

1.(AD) Net external force acting on the system along the x -axis is zero.
$\therefore \quad$ Along the x -axis
Momentum is conserved
$\Rightarrow \quad m v=M V$
From conservation of energy

Loss in GPE of particle of mass $m=$ Gain in kinetic energy of both the masses.

$$
\begin{aligned}
& \Rightarrow \quad m g h=\frac{1}{2} m v^{2}+\frac{1}{2} M V^{2} \quad \Rightarrow \quad m g h=\frac{1}{2} m v^{2}+\frac{1}{2} M\left(\frac{m v}{M}\right)^{2} \\
& \Rightarrow \quad 2 g h=\left(1+\frac{m}{M}\right) v^{2} \quad \Rightarrow \quad v=\sqrt{\frac{2 g h}{1+\frac{m}{M}}} \text { hence option (A) is correct. } \\
& V=\frac{m}{M} v=\frac{m \sqrt{2 g h}}{\sqrt{M(m+M)}} \text { along -ve x-axis }
\end{aligned}
$$

Hence option [B] is incorrect.
Since the location of center of mass does not change along the x -axis

$$
\begin{aligned}
& m \Delta x_{m / G}+M \Delta x_{M / G}=0 \quad \Rightarrow \quad m(R-x)-M x=0 \mathrm{f} \\
& x=\frac{m R}{m+M} . \\
& \Delta x_{M / G}=\frac{-m R}{m+M}
\end{aligned}
$$

Hence option (D) is correct.

$$
\Delta x_{m / G}=R-x=\frac{M R}{M+m}
$$

Final position of $m=-x=-\frac{m R}{m+M}$
Hence option (C) is incorrect.
2.(AC) At

$$
\omega \sim 0, \quad X_{L} \sim 0 \text { and } X_{C} \rightarrow \infty
$$

$\therefore \quad$ Current will be nearly zero.
At $\quad \omega \gg 10^{6}, X_{L} \gg 1$ and $X_{C} \rightarrow 0$
Hence circuit does not behave like a capacitor.
At resonance frequency $\left(\omega_{0}\right)$ i.e. when $X_{C}=X_{L}$ current will be in phase with voltage and frequency is independent of R.
Resonant frequency $\omega_{0}=\frac{1}{\sqrt{L C}}=10^{6} \mathrm{rad} / \mathrm{s}$

3.(ABD/BD)

Velocity of the wave depends upon the tension in the rope and mass per unit length of the rope.
$\Rightarrow \quad$ Velocity is independent of frequency and wavelength

Option (B) is correct
Since tension at the mid point is same, therefore speeds at that point will also be same. Option (A) is correct. Since the direction of motion of pulses is opposite, velocities will be equal and opposite. With this point of view A will be incorrect.

Since the velocities at position is dependent only on tension at every point ($\mu=$ constant) therefore time taken for the wave the reach A from O and O from A will be same.

$$
T_{O A}=T_{A O}
$$

Option (D) is correct

$$
v=\lambda \nu
$$

Since v depends on source

$$
\Rightarrow \quad \lambda \propto v \quad \Rightarrow \quad \lambda \propto \sqrt{T}
$$

Tension decreases as we move from O to A, therefore λ becomes shorter. Option (C) is incorrect.
4.(ACD) Molecules hitting the forward and rear surfaces will bounce back with speeds given above. Let mass of one molecule be m_{0}. Then,

$$
\begin{aligned}
& \Delta P_{0}(\text { forward })=2 m_{0}(u+v) \\
& \Delta P_{0}(\text { Rear })=2 m_{0}(u-v)
\end{aligned}
$$

Let the rates of collision with front and rear surfaces be R_{1} and R_{2} respectively
So, $\quad R_{1} \propto(u+v)$

$$
R_{2} \alpha(u-v)
$$

Force $=\Delta P . R$.
So, $\quad F_{1}=R_{1 .} 2 m_{0}(u+v), \quad F_{2}=R_{2} .2 m_{0}(u-v)$
So, $\quad F_{1}-F_{2} \propto 2 m_{0}(u+v)^{2}-2 m_{0}(u-v)^{2}$
$\alpha 2 m_{0}[4 u v]$
$\alpha u v \mathrm{so},(\mathrm{A})$ is correct
Clearly, the net force due to gas is proportion to v, i.e. it is variable hence acceleration of plate is variable.
Finally the plate will start moving with terminal velocity.
Hence (C) is correct.
Resistive force $=\Delta P . A \propto V$
$\Rightarrow \quad$ Hence (D) is correct.
5.(A or ACD) \quad Net power radiated $=\sigma a\left(T^{4}-T_{0}^{4}\right)$

For small temperature difference, $\Delta T=T-T_{0}$
$\mathrm{P}(\mathrm{Net})=\sigma A\left[\left(T_{0}+\Delta T\right)^{4}-T_{0}^{4}\right]=\sigma A T_{0}^{4}\left[\left(1+\frac{\Delta T}{T_{0}}\right)^{4}-1\right] \square \sigma A T_{0}^{4}\left[\frac{4 \Delta T}{T_{0}}\right]$
$\therefore \quad \mathrm{P}(\mathrm{Net})=4 \sigma A T_{0}^{3}\left(T-T_{0}\right)$
(A) From the above result, $\mathrm{P}(\mathrm{Net})$ decreases with A
(B) Peak shits to shorter wave lengths for rise in temperature.
(C) $\quad \mathrm{P}($ Radiated $)=\sigma A T^{4}=\sigma A\left(T_{0}+10\right)^{4}>460$ watt

Hence (C) is incorrect
If $\mathrm{P}(\mathrm{Net})$ is taken, then (C) will be correct
(D) Energy radiated by a body is dependent only on its own temperature, not the temperature of surroundings. Hence (D) is incorrect. If $\mathrm{P}(\mathrm{Net})$ is taken, then from the calculation shown
above, (D) will also be correct.
6.(ACD) Angular deviation : $\delta=i_{1}+i_{2}-A$

For min deviation: $i_{1}=i_{2}$ so, $i_{1}=A$
Also, $\quad r_{1}+r_{2}=A$
i.e. $\quad r_{1}=\frac{A}{2}$
$\therefore \quad r_{1}=\frac{i_{1}}{2} \quad$ (A is correct)
By Snell's law, $\quad \sin i_{1}=\mu \sin r_{1}$
i.e. $\quad \sin A=\mu \sin \left(\frac{A}{2}\right)$
$\Rightarrow \quad 2 \cos \left(\frac{A}{2}\right)=\mu$

$$
A=2 \cos ^{-1}\left(\frac{\mu}{2}\right)
$$

Hence (B) is incorrect
(C) is obviously correct

For tangential emergence, $\quad i_{2} \rightarrow 90^{\circ}$.
So, $\quad \mu \sin r_{2}=1$

$$
\cos r_{2}=\sqrt{1-\frac{1}{\mu^{2}}}
$$

Also, $\quad r_{1}=A-r_{2}$
$\sin r_{1}=\sin A \cos r_{2}-\cos A \sin r_{2}$
$=(\sin A) \frac{\sqrt{\mu^{2}-1}}{\mu}-(\cos A) \frac{1}{\mu}$
By Snell's law on 1st surface,

$$
\begin{aligned}
& \sin i_{1} \\
&=\mu \sin r_{1} \\
& \Rightarrow \quad \sin i_{1}=\sin A\left(\mu^{2}-1\right)^{1 / 2}-\cos A \quad \Rightarrow \quad i_{1}=\sin ^{-1}\left(\sin A \sqrt{4 \cos ^{2} \frac{A}{2}-1}-\cos A\right)
\end{aligned}
$$

i.e. (D) is correct
7.(AB) The angle that area vector makes with \vec{B} at time t is $\theta=\omega t$.

$$
\begin{aligned}
& \left|\phi_{1}\right|=B A \cos \omega t \quad \Rightarrow\left|\varepsilon_{1}\right|=B A \omega \sin (\omega t) \\
& \left|\phi_{2}\right|=2 B A \cos (\omega t) \Rightarrow\left|\varepsilon_{2}\right|=2 B A \omega \sin (\omega t)
\end{aligned}
$$

Due to orientation of loops, the two EMFs will work against each other.
So, $\quad \mid \varepsilon($ net $) \mid=B A \omega \sin (\omega t)$
So, (A) is correct.
We can see that $\varepsilon_{\text {net }}$ is maximum when $\theta=\frac{\pi}{2}$. So, (B) is correct. Obviously, (C) is incorrect. (D) is incorrect as the EMF is proportional to difference in areas.
8.(5) $\quad V \propto \frac{1}{n^{2}}$

So, $\frac{V_{i}}{V_{f}}=\left(\frac{n_{f}}{n_{i}}\right)^{2}=6.25 \quad \therefore \quad \frac{n_{f}}{n_{i}}=2.5=\frac{5}{2}$
Minimum integral value of n_{f} is 5 .
9.(8) We know that for the given case, $\mu \sin \theta=$ constant

So, $\quad 1.6 \sin \left(30^{\circ}\right)=(n-m \Delta n) \sin 90^{\circ}$
i.e.
$0.8=n-m \Delta n$
Solving, $m=8$
10.(5) $A=A_{0} e^{-\lambda t}$

Here, $\quad \lambda=\frac{\ln 2}{8}(\text { days })^{-1}$

$$
t=12 \mathrm{hrs}=\frac{1}{2} \mathrm{day}
$$

So, $\quad A=A_{0} / \exp \left[\frac{\ln 2}{8} \cdot \frac{1}{2}\right] \cong \frac{A_{0}}{2\left(1+\frac{1}{16}\right)}$

$$
A \square \frac{A_{0}}{2}\left(\frac{16}{17}\right)
$$

If the volume of blood be $V(\mathrm{ml})$, then

$$
\begin{aligned}
& 115=A \cdot\left(\frac{2.5}{V}\right) \\
& 115=\frac{A_{0}}{2}\left(\frac{16}{17}\right) \cdot\left(\frac{2.5}{V}\right)
\end{aligned}
$$

Solving $V \square 5$ liters
11(6)

Frequency received by car $=\left[\frac{330+2}{330}\right] 492=\frac{332}{330} \times 492 \square 495 \mathrm{~Hz}$
Frequency received by source $=\frac{330}{330-2} \times 495 \square 498 \mathrm{~Hz}$
Original frequency $f_{1}=492 \mathrm{~Hz}$
Final frequency $f_{2}=498 \mathrm{~Hz}$
Beat frequency $=\left|f_{1}-f_{2}\right|=6 \mathrm{~Hz}$
12.(6) $\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi r^{3} \times K$
(Conservation of volume)
$\mathrm{R}=$ radius of bigger drop
$\mathrm{r}=$ radius of smaller drop

$$
\begin{aligned}
& R^{3}=r^{3} \times K \\
& U_{i}=S\left(4 \pi R^{2}\right) \\
& U_{f}=K S\left(4 \pi r^{2}\right) \\
& K S\left(4 \pi r^{2}\right)-S \times 4 \pi R^{2}=10^{-3} \\
& 4 \pi S\left[K r^{2}-R^{2}\right]=10^{-3} \\
& K^{\frac{1}{3}} R^{2}-R^{2}=10^{-2} \\
& 10^{\alpha / 3}-1=100 \\
& 10^{\alpha / 3}=101 \\
& \alpha \approx 6
\end{aligned}
$$

13.(D) For constant velocity, acceleration of particle should be zero, Hence net force should be zero.

$$
q V B=q E \quad \Rightarrow \quad V=\frac{E}{B}(\text { For } a=0)
$$

Electric field and magnetic field should be perpendicular.

Option (D) : $\quad \bar{V}=\frac{E_{0}}{B_{0}} \hat{y}, \bar{E}=-E_{0} \hat{x}, \bar{B}=B_{0} \hat{z} \quad$ (for electron)

$$
\begin{aligned}
& \bar{F}_{B}=q(\bar{V} \times \bar{B})=-e\left(\frac{E_{0}}{B_{0}} \hat{y} \times B_{0} \hat{z}\right)=-E_{0} \hat{x} \\
& F_{E}=E_{0} \hat{x}
\end{aligned}
$$

14.(B) $\bar{V}=0, \bar{E}=-E_{0} \hat{y}, \quad \bar{B}=B_{0} \hat{y} \quad$ (Proton)
$F_{B}=0$ only force along -y axis is acting due to electric field alone.
15.(D) $\bar{V}=2 \frac{E_{0}}{B_{0}} \hat{x} ; \bar{E}=E_{0} \hat{z} ; \bar{B}=B_{0} \hat{z} \quad$ (Proton)
$F_{B}=$ along -y axis
$F_{E}=$ along +z axis
So condition for helical path is satisfied
16.(C) (Please note that $W_{1 \rightarrow 2}$ is work done on the gas).

Process 1 to 2 represents isobaric process

$$
\begin{aligned}
& W_{1 \rightarrow 2}=P\left(V_{1}-V_{2}\right)=P V_{1}-P V_{2} \\
& \Delta U=\Delta Q-P \Delta V \text { is correct. }
\end{aligned}
$$

No other combination is possible.

17.(A) Laplace correction is done is correction in the determination of the speed of sound in an ideal gas, which states that the process assumed was not Isothermal but it is Adiabatic .

$$
W_{\text {adiabatic } 1 \rightarrow 2}=\frac{1}{\gamma-1}\left(P_{2} V_{2}-P_{1} V_{1}\right)
$$

Corresponding graph is

18.(B) (A) Incorrect since in Isochoric process $W=0$
(B) Correct as $W_{\text {isochoric }}=0$

Graph is also correct.
(C) Not correct combination since $W_{1 \rightarrow 2}=-P V_{2}+P V_{1}$ is wrong for Adiabatic process.
(D) Incorrect combination of graph and process

CHEMISTRY

19.(BC)

* $\quad \mathrm{Z}$ represent vapour pressure of pure liquid L and as $\chi_{\mathrm{L}} \rightarrow 1$, the given graph is merging with ideal graph of p_{L}. Hence Option (C) is correct
* Since, vapour pressure of liquid $\mathrm{L}\left(\mathrm{p}_{\mathrm{L}}\right)$ is higher than the ideal values so $\mathrm{L}-\mathrm{M}$ interactions are weaker than L-L \& M-M interactions. Hence Option (B) is correct choice.

20.(ABC)

\Rightarrow In oxoacids acidic strength increases with increase in number of double bonded oxygen atoms because of greater resonance stabilization of conjugate base. Hence HClO_{4} is more acidic than HClO .

$\Rightarrow \quad$ Central atom in both HClO_{4} and HClO is sp^{3} hybridized.
$\Rightarrow \quad \mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{ClO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
This equilibrium remain shifted in forward direction hence ClO_{4}^{-}is weaker base than $\mathrm{H}_{2} \mathrm{O}$. Because such equilibrium remain shifted towards weaker acid or weaker base side.

$$
\Rightarrow \quad \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HCl}+\mathrm{HOCl}
$$

21.(AC) IUPAC name of the given compound is 1 - chloro-4-methylbenzene or 4-chlorotoluene
22.(ABD)

Pink

* $\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \rightarrow\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}[1: 3$ electrolyte $]$
$\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}+\underset{\text { Excess }}{2 \mathrm{HCl}} \xrightarrow[\text { Temp }]{\text { Room }}\left[\mathrm{MCl}_{4}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}_{3} \mathrm{O}^{+}$
(X)
Pink
(Z)

Blue
If M is Co then $\mathrm{X}:\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$
$\mathrm{Y}:\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
$\mathrm{Z}:\left[\mathrm{CoCl}_{4}\right]^{2-}$
$\Rightarrow \quad \mu_{\mathrm{x}}=3.87$ due to presence of three unpaired electron in X

$\mathrm{H}_{2} \mathrm{O}$ is weak field ligand hence no pairing

Hybridization state is $\mathrm{sp}^{3} \mathrm{~d}^{2}$.

$$
\begin{aligned}
& \Rightarrow \quad \mu_{\mathrm{z}}=3.87 \mathrm{BM} \text { due to presence of three unpaired electron in } \mathrm{Z} \text {. }
\end{aligned}
$$

Cl^{-}is weak a field ligand and coordination number is four hence hybridization state is sp^{3}.

$$
\begin{array}{ll}
\Rightarrow & {\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}+3 \mathrm{AgNO}_{3} \rightarrow\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{NO}_{3}^{-}+3 \mathrm{AgCl}(\mathrm{~s})} \\
\Rightarrow & {\left[\underset{\text { Pink }}{\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}}\right]^{2+} 4 \mathrm{Cl}^{-} \text {日㫓 }\left[\mathrm{CoCl}_{4}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}: \Delta \mathrm{H}>0} \\
& \text { Blue }
\end{array}
$$

(As octahedral complex changes to tetrahedral complex with $\mathrm{H}_{2} \mathrm{O}$ ligands replaced by Cl^{-})
At $0^{\circ} \mathrm{C}$, equilibrium shifts in reverse direction hence colour of the solution is pink due to $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
23.(CD)
(i)

(ii)

(O)

(P)

* Bromination (addition of Br_{2}) proceeds through trans-addition in both the reactions
* (M and O) and (N and P) are two pairs of diastereomers
24.(ACD)
$\underset{\left(\mathrm{p}_{1}, \mathrm{~V}_{1}, \mathrm{~T}_{1}\right)}{\text { State-1 }} \xrightarrow{\text { Expansion }} \xrightarrow[\left(\mathrm{p}_{2}, \mathrm{~V}_{2}, \mathrm{~T}_{2}\right)]{\text { State-2 }}$
$\Rightarrow \quad$ Work done in reversible compression process is smaller than the work done in irreversible compression process.
$\Rightarrow \quad \Delta \mathrm{U}=0$ for reversible isothermal expansion.
$\Delta \mathrm{U}<0$ for reversible adiabatic expansion.
$\Rightarrow \quad$ For free expansion $q=0, w=0$ and $\Delta \mathrm{U}=0$ hence it is simultaneously both isothermal $(\Delta \mathrm{U}=0)$ as well as adiabatic ($\mathrm{q}=0$).
$\Rightarrow \quad$ Work done in reversible adiabatic expansion is less than the work done in reversible isothermal expansion as shown in figure.

$\mathrm{I} \longrightarrow$ Reversible isothermal
$\| \longrightarrow$ Reversible adiabatic
25.(BC) Electronic configuration of F_{2} molecule is $\sigma_{1 \mathrm{~s}}^{2}, \sigma_{1 \mathrm{~s}}^{* 2}, \sigma_{2 \mathrm{~s}}^{2}, \sigma_{2 \mathrm{~s}}^{* 2}, \sigma_{2 \mathrm{p}_{\mathrm{z}}}^{2}, \pi_{2 p_{\mathrm{x}}}^{2} \pi_{2 \mathrm{p}_{\mathrm{y}}}^{2}, \pi_{2 \mathrm{px}}^{* 2} \pi_{2 p_{\mathrm{y}}}^{* 2}, \sigma_{2 p_{\mathrm{z}}}^{*}$
$\Rightarrow \quad$ Similar electronic configuration for other X_{2} molecules.
$\Rightarrow \quad \pi_{\mathrm{p}_{\mathrm{x}}}^{*}$ and $\pi_{\mathrm{p}_{\mathrm{y}}}^{*}$ are highest energy occupied molecular orbital (HUMO) and $\sigma_{\mathrm{p}_{\mathrm{z}}}^{*}$ is lowest energy unoccupied molecular orbital (LUMO).
$\Rightarrow \quad$ Colour of X_{2} molecules of group 17 elements is due to transition of electrons from π^{*} to σ^{*}.
26.(6) Number of electrons around central atom $(N)=\frac{V+M \pm C}{2}$

$$
\begin{aligned}
& \mathrm{V}=\text { Valence electrons of central atom } \\
& \mathrm{M}=+1 \text { for every monovalent atom } \\
& \\
& \quad-1 \text { for every trivalent atom } \\
& \mathrm{C}=\text { cationic or anionic charge }
\end{aligned}
$$

$\left[\mathrm{TeBr}_{6}\right]^{2-}: \quad \mathrm{N}=\frac{6+6+2}{2}=7$
Number of $\mathrm{bp}=6$
Number of $\ell \mathrm{p}=1$

$\left[\mathrm{BrF}_{2}\right]^{+}: \quad \mathrm{N}=\frac{7+2-1}{2}=4$
Number of $\mathrm{bp}=2$

$$
\text { Number of } \ell \mathrm{p}=2
$$

$\mathrm{SNF}_{3} \quad: \quad \mathrm{N}=\frac{6-1+3}{2}=4$
Number of $\mathrm{bp}=4$
Number of $\ell \mathrm{p}=0$

$\left[\mathrm{XeF}_{3}\right]^{-}: \quad \mathrm{N}=\frac{8+3+1}{2}=6$
Number of $\mathrm{bp}=3$
Number of $\ell \mathrm{p}=3$

The sum of the number of lone pairs of electrons on each central atom $=1+2+0+3=6$
27.(6) $\because \quad \Lambda_{\mathrm{m}}^{\mathrm{c}}=\left(\frac{1000 \mathrm{~K}}{\mathrm{M}}\right)$

$$
\begin{array}{llll}
& \mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-} & & \\
& \mathrm{c} \alpha=0.0015 \times \alpha=10^{-4} & & \\
\Rightarrow \quad & \alpha=\left(\frac{1}{15}\right) & \because & \mathrm{R}=\rho\left(\frac{l}{\mathrm{~A}}\right) \\
\Rightarrow \quad & \frac{1}{\rho}=\left(\frac{1}{\mathrm{R}}\right)\left(\frac{l}{\mathrm{~A}}\right) \\
& \mathrm{K}=6.0 \times 10^{-5} & \Rightarrow & \mathrm{~K}=5 \times 10^{-7}\left(\frac{120}{1}\right) \\
\text { And } \quad & \Lambda_{\mathrm{m}}^{\mathrm{c}}=\frac{1000 \times 6.0 \times 10^{-5}}{1.5 \times 10^{-3}} & & \\
& & & \\
& \Lambda_{\mathrm{m}}^{\mathrm{c}}=40 & \ddots & \alpha=\frac{\Lambda_{\mathrm{m}}^{\mathrm{c}}}{\Lambda_{\mathrm{m}}^{0}} \Rightarrow \Lambda_{\mathrm{m}}^{0}=40 \times 15=6.0 \times 10^{2}=\mathrm{z} \times 10^{2}
\end{array}
$$

So $\quad z=6.0$
28.(5) Compound having a close loop of $(4 n+2) \pi$ electrons is aromatic compound.
1.

Not aromatic due to non planar tub shape structure
2.
 Antiaromatic due to close loop of $4 \pi \mathrm{e}^{-}$
3.
 Aromatic due to close loop of $2 \pi \mathrm{e}^{-}$
4.
 Not aromatic due to absence of close loop of electrons
5.
 Aromatic due to close loop of $6 \pi \mathrm{e}^{-}$
6.

7.

8.
 Aromatic due to close loop of $6 \pi \mathrm{e}^{-}$
9.

Aromatic due to close loop of $14 \pi \mathrm{e}^{-}$

Number of aromatic compounds is five i. e. 3, 5, 7, 8 and 9.
29.(6) $\quad \mathrm{H}_{2} \rightarrow$ Diamagnetic $\sigma_{1 \mathrm{~s}}^{2}$
$\mathrm{He}_{2}^{+} \rightarrow$ Paramagnetic $\sigma_{1 \mathrm{~s}}^{2}, \sigma_{1 \mathrm{l}}^{* 1}$
$\mathrm{Li}_{2} \rightarrow$ Diamagnetic $\sigma_{1 \mathrm{~s}}^{2}, \sigma_{1 \mathrm{~s}}^{* 2}, \sigma_{2 \mathrm{~s}}^{2}$
$\mathrm{Be}_{2} \rightarrow$ Diamagnetic $\sigma_{1 \mathrm{~s}}^{2}, \sigma_{1 \mathrm{~s}}^{* 2}, \sigma_{2 \mathrm{~s}}^{2}, \sigma_{2 \mathrm{~s}}^{* 2}$
$\mathrm{B}_{2} \rightarrow$ Paramagnetic $\sigma_{1 \mathrm{~s}}^{2}, \sigma_{1 \mathrm{~s}}^{* 2}, \sigma_{2 \mathrm{~s}}^{2}, \sigma_{2 \mathrm{~s}}^{* 2}, \pi_{2 \mathrm{p}_{\mathrm{x}}}^{1} \pi_{2 \mathrm{p}_{\mathrm{y}}}^{1}$
$\mathrm{C}_{2} \rightarrow$ Diamagnetic $\sigma_{1 \mathrm{~s}}^{2}, \sigma_{1 \mathrm{~s}}^{* 2}, \sigma_{2 \mathrm{~s}}^{2}, \sigma_{2 \mathrm{~s}}^{* 2}, \pi_{2 p_{\mathrm{x}}}^{2} \pi_{2 \mathrm{p}_{\mathrm{y}}}^{2}$
$\mathrm{N}_{2} \rightarrow$ Diamagnetic $\sigma_{1 \mathrm{~s}}^{2}, \sigma_{1 \mathrm{~s}}^{* 2}, \sigma_{2 \mathrm{~s}}^{2}, \sigma_{2 \mathrm{~s}}^{* 2}, \pi_{2 \mathrm{p}_{\mathrm{x}}}^{2} \pi_{2 \mathrm{p}_{\mathrm{y}}}^{2}, \sigma_{2 p_{\mathrm{z}}}^{2}$
$\mathrm{O}_{2}^{-} \rightarrow$ Paramagnetic $\sigma_{1 \mathrm{~s}}^{2}, \sigma_{1 \mathrm{~s}}^{* 2}, \sigma_{2 \mathrm{~s}}^{2}, \sigma_{2 \mathrm{~s}}^{* 2}, \sigma_{2 p_{\mathrm{z}}}^{2}, \pi_{2 \mathrm{p}_{\mathrm{x}}}^{2}, \pi_{2 \mathrm{p}_{\mathrm{y}}}^{2}, \pi_{2}^{* 2}{ }_{\mathrm{p}_{\mathrm{x}}}, \pi_{2}^{* 1}{ }_{\mathrm{p}_{\mathrm{y}}}$
$\mathrm{F}_{2} \rightarrow$ Diamagnetic $\sigma_{1 \mathrm{~s}}^{2}, \sigma_{1 \mathrm{~s}}^{* 2}, \sigma_{2 \mathrm{~s}}^{2}, \sigma_{2 \mathrm{~s}}^{* 2}, \sigma_{2 \mathrm{p}_{\mathrm{z}}}^{2}, \pi_{2 p_{\mathrm{x}}}^{2} \pi_{2 p_{\mathrm{y}}}^{2}, \pi_{2 \mathrm{px}}^{* 2} \pi_{2 \mathrm{py}}^{* 2}$
The number of diamagnetic species is 6 i.e. $\mathrm{H}_{2}, \mathrm{Li}_{2}, \mathrm{Be}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}$ and F_{2} are diamagnetic species
30.(2) $\mathrm{a}=400 \mathrm{pm}$
$\mathrm{d}=8 \mathrm{~g} \mathrm{~cm}^{-3}$
$\mathrm{w}=256 \mathrm{~g}$
$\mathrm{d}=\frac{\mathrm{z} \times \mathrm{M}_{0}}{\mathrm{a}^{3} \times \mathrm{N}_{\mathrm{A}}}$
$\mathrm{M}_{0}=\frac{\mathrm{d} \times \mathrm{a}^{3} \times \mathrm{N}_{\mathrm{A}}}{\mathrm{z}}=\frac{8 \times\left(400 \times 10^{-10}\right)^{3} \times 6.023 \times 10^{23}}{4}=77.09 \mathrm{~g} / \mathrm{mol}$
Number of atoms $=\frac{256}{77.09} \times 6.023 \times 10^{23}=\mathrm{N} \times 10^{24}$

$$
\begin{aligned}
& 2 \times 10^{24}=\mathrm{N} \times 10^{24} \\
& \mathrm{~N}=2
\end{aligned}
$$

31-33. The correct matching in column 1, column 2 and column 3 are

Column 1

(I)
(II)
(III)
(IV)

Column 2

(i)
(ii)
(iii) (iv)
-

Column 3
(Q) (R) (S)
(P) (Q) (R) (S)
(S)
(Q) (S)
31.(A) Incorrect combination is (I) (iii) (R) because in the expression of $\psi_{\mathrm{n}, \ell, \mathrm{m}_{\ell}}$ for 1 s -orbital, the exponential part must have $\mathrm{e}^{-\frac{\mathrm{Zr}}{\mathrm{a}_{0}}}$.
$\therefore \quad[\mathrm{A}]$
32.(D) The correction combination is (I) (i) (s) as $\psi_{\mathrm{n}, \ell, \mathrm{m}_{\ell}}$ in the column 2 (i) has exponential part as $\mathrm{e}^{-\frac{\mathrm{Zr}}{\mathrm{a}_{0}}}$.
$\frac{\mathrm{E}_{4}-\mathrm{E}_{2}}{\mathrm{E}_{6}-\mathrm{E}_{2}}=\frac{\frac{13.6 \mathrm{Z}^{2}}{16}(4-1)}{\frac{13.6 \mathrm{Z}^{2}}{36}(9-1)}=\frac{\frac{3 \times 13.6 \mathrm{Z}^{2}}{16}}{\frac{8 \times 13.6 \mathrm{Z}^{2}}{16}}=\frac{27}{32}$
$\therefore \quad[\mathrm{D}]$
33.(C) The correct combination for any hydrogen - like species is [II] (ii) (P).

2 s -orbital has one radial node and $\psi_{\mathrm{n}, \ell, \mathrm{m}_{\ell}} \mathrm{v} / \mathrm{s} \mathrm{r}$ plot will start from a finite value and sign changes once from +ve to -ve .
$\therefore \quad[\mathrm{C}]$
34.(B)

35.(A)

36.(B)

MATHS

37.(AC) $\frac{a z+b}{z+1}-\frac{a \bar{z}+b}{\bar{z}+1}=2 i y$

$$
\begin{aligned}
& \frac{a z \bar{z}+a z+b \bar{z}+b-(a z \bar{z}+b z+a \bar{z}+b)}{(z+1)(\bar{z}+1)}=2 i y \\
& \frac{(a-b) z-\bar{z}(a-b)}{(z+1)(\bar{z}+1)}=2 i y
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{(a-b) 2 i y}{(z+1)(\bar{z}+1)}=2 i y & \\
(z+1)(\bar{z}+1)=1 & \\
x+y^{2}+2 x+1=1 & \\
x^{2}+2 x+1=1-y^{2} & \\
(x+1)= \pm \sqrt{1-y^{2}} & x+1=-\sqrt{1-y^{2}} \\
x+1=\sqrt{1-y^{2}} & x=-1-\sqrt{1-y^{2}} .
\end{array}
$$

38.(CD) (A) $\quad f_{1}(x)=e^{x}-\int_{0}^{x} f(t) \sin t d t$

$$
\begin{aligned}
& f_{1}(0)=1 \\
& 0<f(x)<1 \\
& 0<f(x) \sin x<1
\end{aligned}
$$

$$
f^{\prime}(x)=e^{x}-f(x) \sin x>0
$$

(B) $\quad f(x)+\int_{0}^{\pi / 2} f(t) \sin t d t>0 \forall x \in(0,1)$
(C) $g(x)=x-\int_{0}^{\frac{\pi}{2}-x} f(t) \cos t d t$

$$
\begin{aligned}
& g(0)=-\int_{0}^{\pi / 2} f(t) \cos t d t<0 \\
& g(1)=1-\int_{0}^{\frac{\pi}{2}-1} f(t) \cos t d t>0
\end{aligned}
$$

(D) $\quad g(x)=x^{9}-f(x)$

$$
g(0)=-f(0)<0
$$

$$
g(1)=1-f(1)>0
$$

39.(AC) $P(X)=1 / 3$

$$
\begin{gather*}
P(X / Y)=1 / 2=\frac{P(X \cap Y)}{P(4)} . \tag{i}\\
P(Y / X)=2 / 5=\frac{P(Y \cap X)}{P(X)} . \\
\frac{2}{5}=\frac{P(X \cap Y)}{1} .3 \\
P(X \cap Y)=\frac{2}{15}
\end{gather*}
$$

(ii) $\Rightarrow \frac{1}{2}=\frac{\frac{2}{15}}{P(Y)}=P(Y)=\frac{2.2}{15.1}=\frac{4}{15}$

$$
P(X \cup Y)=P(X)+P(Y)-P(X \cap Y)=\frac{1}{3}+\frac{4}{15}-\frac{2}{15}=\frac{5+4-2}{15}=\frac{7}{15}
$$

$$
P(\bar{X} / Y)=\frac{P(\bar{X} \cap Y)}{P(Y)}=\frac{P(Y)-P(X \cap Y)}{P(Y)}=1-\frac{2}{15} \times \frac{15}{4}=1 / 2
$$

40.(ABD)

$$
\begin{aligned}
\underset{x \rightarrow-1^{+}}{L t} & =(-1+h) \cos (\pi(-1+h)+[-1+h]) \\
& \equiv(-1+h) \cos [\pi(-1+h-1)]=(-1+h) \cos [\pi(-2+h)] \\
& \equiv(-1+h) \cos [2 \pi-\pi h] \equiv(-1+h) \cos \pi h \equiv-1 \\
\underset{x \rightarrow 0^{-}}{L t} & =(-h) \cos [\pi(-h-1)]=-h \cos [\pi h+\pi] \equiv 0 \\
\underset{x \rightarrow 0^{+}}{L t} & =h \cos [\pi h]=0 \\
\underset{x \rightarrow 2^{-}}{L t} & \equiv(2-h) \cos [\pi(2-h+1)] \equiv(2-h) \cos [3 \pi-\pi h] \equiv-(2-h) \cdot \cos \pi h \equiv-2 \\
\underset{x \rightarrow 2^{+}}{L t} & =(2+h) \cos [\pi(2+h+2)]=(2+h) \cos [4 \pi+\pi h]=(2+h) \cos \pi h \equiv 2
\end{aligned}
$$

41.(ABD)

$$
\begin{aligned}
& 2 x-y+1=0 \\
& y=2 x+1 \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1 \\
& c^{2}=a^{2} m^{2}-b^{2} \\
& 1=a^{2} \cdot 4-16 \\
& a^{2}=\frac{17}{4} \\
& a=\frac{\sqrt{17}}{2} .
\end{aligned}
$$

42. (AB) For (A) and $(B) \operatorname{det}\left(A^{2}\right)=-1$,
and for (C)

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right|=-1=\left|\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right| \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -2 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -2 \\
0 & 1 & -1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

For (C): $I^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
43.(B) $y^{2}=16 x$

Equation of a chord with a given middle point (h, k) is $T=S_{1}$

$$
\begin{array}{lll}
k y-8(x+h)=k^{2}-16 h & \\
k y-8 x+8 h-k^{2}=0 & \\
2 x+y-p=0 \\
-\frac{8}{2}=\frac{k}{1}=\frac{8 h-k^{2}}{-p} \quad \Rightarrow \quad k=-4 \\
-\frac{4}{1}=\frac{8 h-16}{-p} \\
4 p=8 h-16 \quad \Rightarrow & p=2 h-4
\end{array}
$$

$$
h=3 \quad p=2
$$

44.(2) $g(x)=\left[f((t) \operatorname{cosect}]_{x}^{\pi / 2}=g(x)=3-f(x) \operatorname{cosec}(x)\right.$
$\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0}\left(3-\frac{f(x)}{\sin x}\right)=3-1=2=2$
45.(5) $x=10$!
$y={ }^{10} C_{9} \times{ }^{9} C_{1} \times \frac{10!}{2!}$
46.(6) $a-d, a, a+d \quad a>0$
$(a+d)^{2}=a^{2}+(a-d)^{2}$
$a^{2}+d^{2}+2 a d=2 a^{2}-2 a d+d^{2}$
$a^{2}=4 a d \quad a \neq 0$
$a=4 d$
$3 d \quad 4 d \quad 5 d$
$A=\frac{1}{2} \times 3 d \times 4 d=24$
$6 d^{2}=24$
$d^{2}=4 \quad d=-2$ Rejected
$d=2$
$a=8$
$6, \quad 8, \quad 10$
47.(2) Case I: Touching x-axis

$$
\begin{aligned}
& \\
& \\
& \text { When } \quad \\
& \\
& \\
& \left.x^{2}+2 x+1\right)^{2}+(y+2)^{2}=4 \\
& \\
& \\
& y^{2}+4 y+1=0 \\
& \\
& D>0 \quad \text { (Two real root) } \\
& \\
& p=-1
\end{aligned}
$$

Case II : Touching y-axis

$$
\begin{aligned}
& (x+1)^{2}+(y+2)^{2}=1 \\
& x^{2}+y^{2}+2 x+4 y+4=0 \\
& y=0 \\
& x^{2}+2 x+4=0 \\
& D<0 \quad \text { (None real root) Rejected }
\end{aligned}
$$

Case III : $\quad x^{2}+y^{2}+2 x+4 y=0$
$p=0$
48.(1) $\left|\begin{array}{ccc}1 & \alpha & \alpha^{2} \\ 1 & 1 & \alpha \\ 1 & \alpha & 1\end{array}\right|=\left(\alpha^{2}-1\right)^{2}=0$

$$
\alpha^{2}=1
$$

$$
\alpha= \pm 1
$$

$$
\alpha=1 \text { (two planes are parallel) (Rejected) }
$$

$$
\alpha=-1 \text { (two planes are coincident) }
$$

49.(D) $y=x+8$

$$
y^{2}=32 x, y=m x+\frac{a}{m},\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)
$$

50.(A) $a=\sqrt{2}$

$$
x^{2}+y^{2}=a^{2}, \quad y=m x \pm a \sqrt{1+m^{2}},\left(\frac{-m a^{2}}{c}, \frac{a^{2}}{m}\right)
$$

$$
x^{2}+y^{2}=2 \text { tangent at }(-1,1)-x+y=2 \text { or } y=x+2
$$

51.(C) $3+\frac{a^{2}}{4}=a^{2}$

$$
\begin{aligned}
\Rightarrow \quad & a^{2}=4 \\
& x^{2}+y^{2}=4 \\
& \sqrt{3} x+2 y=4
\end{aligned}
$$

52-54. 52.(D) 53.(A) 54.(B)

$$
\begin{aligned}
& f(x)=x+\ln x-x \ln x \\
& f(x) \\
& f^{\prime}(x)= n \in(0, \infty) \\
& \ln x=\frac{1}{x}-x \cdot \frac{1}{x}-\ln x=\frac{1}{x}-\ln x=\frac{1-x \ln x}{x}=0 \\
& f(1)=f(x)=1 \\
& f\left(0^{+}\right)=-\infty \\
& f^{\prime \prime}(x)=-\frac{1}{x^{2}}-\frac{1}{x}<0
\end{aligned}
$$

