HINTS AND SOLUTIONS

PART-B : CHEMISTRY
31. (B)

Oxidation state of P is getting changed from -3 to +5 during this conversion. That is, P in $\mathrm{Cu}_{3} \mathrm{P}$ is getting oxidized to $\mathrm{H}_{3} \mathrm{PO}_{4}$.
32. (C)
PH_{3} is a Drago's compound in which bond angle is approximately 90°.
33. (B)

Here Mn is in highest oxidation state (+7), so no d-electrons are there. So the color arises from ligand to metal charge transfer transition.
34. (D)

Because Bi do not show +5 oxidation state, because of Inert Pair Effect.
35. (A)

Due to the formation of tetraamminezinc(II) complex:
$\mathrm{Zn}^{2+}+\mathrm{NH}_{4} \mathrm{OH} \longrightarrow\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
36. (C)

Acts as an
Electrophile
37. (C)

In Williamson's synthesis,
$\mathrm{R}-\mathrm{O}^{\ominus}+\mathrm{R}^{\prime}-\mathrm{X} \longrightarrow \mathrm{R}-\mathrm{O}-\mathrm{R}^{\prime}+\mathrm{X}^{\ominus}$
Thus, it involves $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
38. (C)
39. (D)

Miliequivalents of $\mathrm{H}^{+}=75 \times \frac{1}{5}=15$
Miliequivalents of ${ }^{-} \mathrm{OH}=25 \times \frac{1}{5}=5$
Net Miliequivalents of $\mathrm{H}^{+}=10$
Concentration of $\mathrm{H}^{+}=\frac{10}{100}=0.1=10^{-1}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log (0.1)$
= 1
40. (D)

Due to backbonding in $\mathrm{N}\left(\mathrm{SiH}_{3}\right)_{3}$, it has planar structure.
In $\mathrm{BCl}_{3} ; \mathrm{B}$ and in $\mathrm{CO}_{3}{ }^{2-} \mathrm{C}$ has sp^{2} hybridisation.
41. (B)

Due to inter electronic repulsions
42. (C)

43. (C)
$\log \frac{x}{m}=\log k+\frac{1}{n} \log P$
$\log \frac{x}{m}=0.699+\left(\tan 45^{\circ}\right)(\log (0.5))$
$\log \frac{x}{m}=0.3979=0.40$
$\frac{x}{m}=2.5$
$\mathrm{x}=2.5 \mathrm{~g} / \mathrm{g}$ adsorbent
44. (D)

Cerussite $\left(\mathrm{PbCO}_{3}\right)$ undergoes calcination.
45. (A)

46. (B)
47. (C)
$550=\left(\frac{1}{4}\right)\left(\mathrm{P}_{\mathrm{X}}{ }^{0}\right)+\left(\frac{3}{4}\right)\left(\mathrm{P}_{\mathrm{Y}}{ }^{0}\right)$
$2200=\mathrm{P}_{\mathrm{X}}{ }^{0}+3 \mathrm{P}_{\mathrm{Y}}{ }^{0}$
$560=\left(\frac{1}{5}\right)\left(\mathrm{P}_{\mathrm{X}}{ }^{0}\right)+\left(\frac{4}{5}\right)\left(\mathrm{P}_{\mathrm{Y}}{ }^{0}\right)$
$2800=\mathrm{P}_{\mathrm{X}}{ }^{0}+4 \mathrm{P}_{\mathrm{Y}}{ }^{0}$
On solving A and B, we get,
$\mathrm{P}_{\mathrm{X}}{ }^{0}=400$ and $\mathrm{P}_{\mathrm{Y}}{ }^{0}=600$
48. (D)
49. (C)
$\frac{\mathrm{Q}}{\mathrm{F}}=$ moles $\cdot \mathrm{n}_{\mathrm{f}}$
$\frac{\mathrm{i} \times \mathrm{t}}{\mathrm{F}}=$ moles $\bullet \mathrm{n}_{\mathrm{f}}$
$\frac{2 \times 5 \times 3600}{96500}=\frac{22.2}{177} \cdot \mathrm{n}_{\mathrm{f}}$
$\Rightarrow \mathrm{n}_{\mathrm{f}}=3$
Thus, oxidation state of metal in the metal salt is +3 .
50. (B)
CaF_{2} has fluorite type structure in which coordination number of Ca^{2+} is 8 and of F^{-}it is 4 .
51. (C)

52. (A)

Effect of densities and temperature will nullify each other and pressure will be same for both.
$\mathrm{d}=\frac{\mathrm{PM}}{\mathrm{RT}}$
So $\mathrm{P}=\frac{\mathrm{dRT}}{\mathrm{M}}$
53. (B)
$\mathrm{pH}=\frac{\mathrm{pK}_{1}+\mathrm{pK}_{2}}{2}$
$=\frac{2.15+7.2}{2}=4.675$
54. (C)

More the electronegative elements attached on P , more is the partial positive charge, more is the extent of back-bonding, more is the planarity. Since, F is the most electronegative among these, so $\mathrm{P}_{3} \mathrm{~N}_{3} \mathrm{~F}_{6}$ is most planar.
55. (A)

56. (C)

Steric inhibition of resonance is expected in case of substitution at ortho-position. So, (C) is correct.
57. (A)

58. (B)

59. (B)
60. (B)

Hence, O denoted by β is more basic due to negative charge.

