PART-B : CHEMISTRY

HINTS AND SOLUTIONS

Oxidation state of P is getting changed from -3 to +5 during this conversion. That is, P in Cu₃P is getting oxidized to H₃PO₄.

32. (C)

(B)

31.

 PH_3 is a Drago's compound in which bond angle is approximately 90°.

33. (B)

Here Mn is in highest oxidation state (+7), so no d-electrons are there. So the color arises from ligand to metal charge transfer transition.

34. (D)

Because Bi do not show +5 oxidation state, because of Inert Pair Effect.

35. (A)

Due to the formation of tetraamminezinc(II) complex: $Zn^{2+} + NH_4OH \longrightarrow [Zn(NH_3)_4]^{2+}$

36. (C)

$$CHCl_{3} \xrightarrow{\bigcirc} OH \xrightarrow{\bigcirc} CCl_{3} \xrightarrow{\frown} Cl_{2} \xrightarrow{} Cl_{2}$$

$$Acts as an$$
Electrophil

Electrophile

37. (C)

In Williamson's synthesis,

$$R - O^{\ominus} + R' - X \longrightarrow R - O - R' + X^{\ominus}$$

Thus, it involves S_N2 mechanism.

38. (C)

39. (D)

Miliequivalents of
$$H^+ = 75 \times \frac{1}{5} = 15$$

Miliequivalents of $^-OH = 25 \times \frac{1}{5} = 5$
Net Miliequivalents of $H^+ = 10$
Concentration of $H^+ = \frac{10}{100} = 0.1 = 10^{-1}$
 $pH = -log [H^+]$
 $= -log (0.1)$
 $= 1$

40. (D)

Due to backbonding in N(SiH₃)₃, it has planar structure. In BCl₃; B and in CO_3^{2-} C has sp² hybridisation.

41. (B)

42. (C)

43. (C)

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log P$$

$$\log \frac{x}{m} = 0.699 + (\tan 45^\circ) \ (\log \ (0.5))$$

$$\log \frac{x}{m} = 0.3979 = 0.40$$

$$\frac{x}{m} = 2.5$$

$$x = 2.5 \text{ g/g adsorbent}$$

44. (D)

Cerussite (PbCO₃) undergoes calcination.

45. (A)
ICN(s)
$$\longrightarrow$$
 $I_2CN^+ + I(CN)_2^-$
 (sp^3) (sp^3d)

47. (C)

$$550 = \left(\frac{1}{4}\right) \left(P_{X}^{0}\right) + \left(\frac{3}{4}\right) \left(P_{Y}^{0}\right)$$

$$2200 = P_{X}^{0} + 3P_{Y}^{0} \qquad \dots \dots (A)$$

$$560 = \left(\frac{1}{5}\right) \left(P_{X}^{0}\right) + \left(\frac{4}{5}\right) \left(P_{Y}^{0}\right)$$

$$2800 = P_{X}^{0} + 4P_{Y}^{0} \qquad \dots (B)$$

On solving A and B, we get,

$$P_{X}^{0} = 400 \text{ and } P_{Y}^{0} = 600$$

48. (D)

49. (C) $\frac{Q}{F} = \text{moles} \cdot n_{f}$ $\frac{i \times t}{F} = \text{moles} \cdot n_{f}$ $\frac{2 \times 5 \times 3600}{96500} = \frac{22.2}{177} \cdot n_{f}$ $\Rightarrow n_{f} = 3$ Thus, oxidation state of metal in the metal salt is +3.

- 50. (B)
 - CaF₂ has fluorite type structure in which coordination number of Ca²⁺ is 8 and of F^- it is 4.
- 51. (C)

52. (A)

Effect of densities and temperature will nullify each other and pressure will be same for both.

$$d = \frac{PM}{RT}$$

So $P = \frac{dRT}{M}$

53. (B)

$$pH = \frac{pK_1 + pK_2}{2}$$
$$= \frac{2.15 + 7.2}{2} = 4.675$$

54. (C)

More the electronegative elements attached on P, more is the partial positive charge, more is the extent of back-bonding, more is the planarity. Since, F is the most electronegative among these, so $P_3N_3F_6$ is most planar.

55. (A)

56. (C)

Steric inhibition of resonance is expected in case of substitution at ortho-position. So, (C) is correct.

57. (A)

58. (B)

59. (B)

60. (B)

Hence, O denoted by β is more basic due to negative charge.

