PART-C : MATHEMATICS

61. If the range of the function $f(x)=\tan ^{-1}\left(3 x^{2}+b x+d\right)$ is $\left[0, \frac{\pi}{2}\right)$ then
(A) $b^{2}=3 c$
(B) $4 c=b^{2}$
(C) $b^{2}=12 c$
(D) $b^{2}=c$
62. Let $x \in\left(0, \frac{\pi}{2}\right)$ and $\log _{24 \sin x}(24 \cos x)=\frac{3}{2}$, then the value of $\operatorname{cosec}^{2} x$ is equal to
(A) 3
(B) 6
(C) 8
(D) 9
63. If $|z-1-i|=1$ and $|w-1+i|=2$ where, $w, z \in C$ then maximum value of $\frac{1}{|4 z-1|^{2}}+\frac{1}{|3 w+1|^{2}}$ is equal to
(A) 1
(B) 3
(C) 2
(D) 4
64. Let the relation between x and y be defined implicitly by the equation $x+5 y-y^{5}=0$. Find the area of the triangle formed by tangent and normal at $x=0$ such that $|y|$ is minimum and line $y=5$.
(A) 65 sq. units
(B) 70 sq. units
(C) 75 sq. units
(D) 85 sq. units
65. If three angles A, B, C are such that $\cos A+\cos B+\cos C=0$ and if $\cos A \cos B \cos C=\lambda(\cos 3 A+\cos 3 B+\cos 3 C)$, then λ is equal to:
(A) $\frac{1}{12}$
(B) $\frac{1}{8}$
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
66. Let R be a relation defined by $R=\{(a, b) \mid a \geq b ; a, b \in R\}$, then R is
(A) only reflexive
(B) both reflexive and transitive
(C) symmetric, transitive but not reflexive
(D) neither transitive nor reflexive but symmetric
67. If $\mathrm{p}, \mathrm{q}, \mathrm{r}$ be three statement, then $(\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})) \leftrightarrow((\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r})$ is a
(A) Tautology
(B) Fallacy
(C) Neither tautology nor fallacy
(D) None of these
68. The odds against an event is $4: 5$ and the odds in favour of another event is $3: 7$. If both the events are independent, then the probability that at least one of the event will happen is
(A) $\frac{31}{45}$
(B) $\frac{77}{90}$
(C) $\frac{1}{6}$
(D) $\frac{5}{6}$
69. $\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}+3 x-5}{3 x^{2}-4 x+1}\right)^{x+1}$ is equal to
(A) $\frac{2}{3}$
(B) 1
(C) $\mathrm{e}^{\frac{2}{3}}$
(D) 0
70. If $f(x)=|x-2|, g(x)=\left\{\begin{array}{ll}3-x, & x<1 \\ x+3, & x \geq 1\end{array}\right.$, then the set of values of a, such that the equation $f(g(x))=a$ has exactly one negative solution is
(A) $\mathrm{a} \in(1,2)$
(B) $a \in(0,3)$
(C) $\mathrm{a} \in(-1,1)$
(D) $a \in \phi$
71. The sum of infinite series $\frac{5}{\left\lfloor\frac{1}{3}\right.}+\frac{19}{\left\lfloor\frac{5}{\boxed{L}}\right.}+\frac{41}{\boxed{7}}+\frac{71}{\underline{9}}+\ldots \ldots$ is
(A) $\frac{3}{2}$
(B) 1
(C) $\frac{9}{2}$
(D) 2
72. If $\sin ^{3} x-2 \sin ^{2} x-(K+1) \sin x+2-K=0$; $\sin x \neq-1$ posses a solution for finite integral values of K only, then the number of positive integral value of K are equal to
(A) 4
(B) 5
(C) 6
(D) 7
73. Let PQRST be a pentagon in which the sides PQ and RS are parallel and sides TP and QR are parallel. If PQ : RS is 3 : 1 and TP : QR is $1: 2$ and diagonals PS and QT meet at M , then PM : MS equals
(A) $3: 1$
(B) $1+\sqrt{10}: 3$
(C) $2: 1$
(D) $1: 2$
74. For integer $\mathrm{n}>1$, the digit at units place in the number $\sum_{\mathrm{r}=0}^{100} \mathrm{r}+2^{2^{n}}$ is
(A) 0
(B) 1
(C) 2
(D) 4
75. $\lim _{x \rightarrow 0}\left(\frac{x-\sin x}{x}\right) \sin \left(\frac{1}{x}\right)$ is
(A) Non-existent
(B) 1
(C) -1
(D) 0
76. Let $\mathrm{f}^{\prime \prime}(\mathrm{x})>0 \forall \mathrm{x} \in \mathrm{R}$ and $\mathrm{g}(\mathrm{x})=\mathrm{f}(2-\mathrm{x})+\mathrm{f}(4+\mathrm{x})$. Then $\mathrm{g}(\mathrm{x})$ is increasing in
(A) $(-\infty,-1)$
(B) $(-\infty, 0)$
(C) $(-1, \infty)$
(D) $(1, \infty)$
77. The solution of differential equation $y d x+(2 \sqrt{x y}-x) d y=0$ is
(A) $c y=e^{\sqrt{x / y}}$
(B) $c y=\mathrm{e}^{-\sqrt{x / y}}$
(C) $c y=e^{x / y}$
(D) $c y=e^{\sqrt{2 x / y}}$
78. If $f(x)=\int_{0}^{\cot x} \tan ^{-1}(t) d t+\int_{0}^{\tan x} \cot ^{-1} t d t$, if $0<x<\frac{\pi}{2}$, then $f\left(\frac{\pi}{4}\right)$ is equal to
(A) $\frac{\pi}{2}$
(B) $-\frac{\pi}{2}$
(C) $\frac{\pi}{4}$
(D) $-\frac{\pi}{4}$
79. If $\frac{d}{d x} f(x)=\frac{e^{\sin x}}{x}, x>0$ and $\int_{1}^{4} \frac{3 e^{\sin x^{3}}}{x} d x=f(k)-f(1)$ then one possible value of k is
(A) 64
(B) 32
(C) 16
(D) 8
80. The value of $\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \tan 8 \alpha+16 \cot 16 \alpha$ is
(A) $\cot \alpha$
(B) $\cos \alpha$
(C) $\cot 2 \alpha$
(D) $\tan 2 \alpha$
81. The number of common tangents for circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-8 x-6 y-24=0$ is
(A) 1
(B) 2
(C) 3
(D) 4
82. Let A be a matrix of order 3×3 and matrices B, C, D are related such that $B=\operatorname{adj}(A), C=\operatorname{adj}(\operatorname{adj} A), D=\operatorname{adj}$ $(\operatorname{adj}(\operatorname{adj}(\mathrm{A})))$. If $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{ABCD}))))|$ is A^{k} then k
(A) is less than 256
(B) has 21 divisors
(C) greater than 256
(D) is an odd number
83. If $\int_{-5}^{5} \frac{25^{-\sum_{r=0}^{49}\left[x+\frac{r}{50}\right]}}{5^{-100 x}} d x$ is equal to ([.] denotes greatest integer function)
(A) $\frac{120}{\ln 5}$
(B) $\frac{240}{\ln 5}$
(C) $\frac{60}{\ln 5}$
(D) $\frac{250}{\ln 5}$
84. Let C be the curve $y^{3}-3 x y+2=0$. Let m be the number of points on C at which tangents are horizontal and n be the number of point on C at which tangents is vertical then ' $m+n$ ' is equal to
(A) 4
(B) 3
(C) 2
(D) 1
85. The area under the curve $2\{y\}=[x]+1,0 \leq y<1$ (where $\{$.$\} and [.] are the fractional part and greatest integer functions$ respectively) and the x axis is (in square units)
(A) $\frac{1}{2}$
(B) 1
(C) 0
(D) $\frac{3}{2}$
86. If $f(1)=3, f^{\prime}(1)=2$ and $f^{\prime \prime}(1)=4$ and let $f^{-1}(x)=g(x)$, then $g^{\prime \prime}(3)$ is equal to
(A) -2
(B) 2
(C) $-\frac{1}{2}$
(D) $\frac{1}{4}$
87. $f(x)=\{x\}+\{x+1\}+\{x+2\}+\ldots . .+\{x+999\}$ then $[f(\sqrt{2})]$ (where $\{$.$\} denotes fractional part of x$ and [.] denotes greatest integer of x) is equal to
(A) 999×500
(B) 414
(C) 4140
(D) 510101
88. If system of equations $a x+y+z=a, x+b y+z=b$ and $x+y+c z=c$ is inconsistent, then which of the following is correct?
(A) $a b c-a-b-c+2=0$
(B) $a b c-a-b-c+3=0$
(C) $a b c-a-b-c+3=0, a=1$
(D) $\mathrm{abc}-\mathrm{a}-\mathrm{b}-\mathrm{c}+2=0, \mathrm{a} \neq 1, \mathrm{~b} \neq 1, \mathrm{c} \neq 1$
89. If the sides a, b, c of a triangle $A B C$ are the roots of the equation $x^{3}-13 x^{2}+54 x-72=0$, then the value of $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}$ is equal to
(A) $\frac{59}{144}$
(B) $\frac{61}{144}$
(C) $\frac{61}{72}$
(D) $\frac{32}{5}$
90. The shortest distance from the line $3 x+4 y=25$ to the circle $x^{2}+y^{2}-6 x+8 y=0$ is equal to (in units)
(A) $\frac{7}{5}$
(B) $\frac{9}{5}$
(C) $\frac{12}{5}$
(D) $\frac{32}{5}$
