

- 7. If p, q, r be three statement, then  $(p \rightarrow (q \rightarrow r)) \leftrightarrow ((p \land q) \rightarrow r)$  is a (A) Tautology (B) Fallacy (C) Neither tautology nor fallacy (D) None of these
- 68. The odds against an event is 4:5 and the odds in favour of another event is 3:7. If both the events are independent, then the probability that at least one of the event will happen is
  - (A)  $\frac{31}{45}$  (B)  $\frac{77}{90}$  (C)  $\frac{1}{6}$  (D)  $\frac{5}{6}$
- 69.  $\lim_{x \to \infty} \left( \frac{2x^2 + 3x 5}{3x^2 4x + 1} \right)^{x+1} \text{ is equal to}$ (A)  $\frac{2}{3}$  (B) 1 (C)  $e^{\frac{2}{3}}$  (D) 0





70. If  $f(x) = |x-2|, g(x) = \begin{cases} 3-x, & x < 1 \\ x+3, & x \ge 1 \end{cases}$ , then the set of values of a, such that the equation f(g(x)) = a has exactly one negative solution is

(A)  $a \in (1, 2)$  (B)  $a \in (0, 3)$  (C)  $a \in (-1, 1)$  (D)  $a \in \phi$ 71. The sum of infinite series  $\frac{5}{|3|} + \frac{19}{|5|} + \frac{41}{|7|} + \frac{71}{|9|} + \dots$  is (A)  $\frac{3}{2}$  (B) 1 (C)  $\frac{9}{2}$  (D) 2

72. If  $\sin^3 x - 2\sin^2 x - (K+1)\sin x + 2 - K = 0$ ;  $\sin x \neq -1$  posses a solution for finite integral values of K only, then the number of positive integral value of K are equal to (A) 4 (B) 5 (C) 6 (D) 7

73. Let PQRST be a pentagon in which the sides PQ and RS are parallel and sides TP and QR are parallel. If PQ : RS is 3 : 1 and TP : QR is 1 : 2 and diagonals PS and QT meet at M, then PM : MS equals

(A) 
$$3:1$$
 (B)  $1+\sqrt{10}:3$  (C)  $2:1$  (D)  $1:2$ 

74. For integer n > 1, the digit at units place in the number  $\sum_{r=0}^{100} |\underline{r} + 2^{2^n}$  is (A) 0 (B) 1 (C) 2 (D) 4

75.  $\lim_{x \to 0} \left( \frac{x - \sin x}{x} \right) \sin \left( \frac{1}{x} \right) \text{ is}$ (A) Non-existent (B) 1 (C) -1 (D) 0

76. Let  $f''(x) > 0 \ \forall \ x \in \mathbb{R}$  and g(x) = f(2-x) + f(4+x). Then g(x) is increasing in<br/>(A)  $(-\infty, -1)$ (B)  $(-\infty, 0)$ (C)  $(-1, \infty)$ (D)  $(1, \infty)$ 

77. The solution of differential equation  $y dx + (2\sqrt{xy} - x) dy = 0$  is (A)  $cy = e^{\sqrt{x/y}}$  (B)  $cy = e^{-\sqrt{x/y}}$  (C)  $cy = e^{x/y}$  (D)  $cy = e^{\sqrt{2x/y}}$ 

78. If  $f(x) = \int_{0}^{\cot x} \tan^{-1}(t) dt + \int_{0}^{\tan x} \cot^{-1} t dt$ , if  $0 < x < \frac{\pi}{2}$ , then  $f\left(\frac{\pi}{4}\right)$  is equal to (A)  $\frac{\pi}{2}$  (B)  $-\frac{\pi}{2}$  (C)  $\frac{\pi}{4}$  (D)  $-\frac{\pi}{4}$ 

79. If 
$$\frac{d}{dx}f(x) = \frac{e^{\sin x}}{x}$$
,  $x > 0$  and  $\int_{1}^{4} \frac{3e^{\sin x^{3}}}{x} dx = f(k) - f(1)$  then one possible value of k is  
(A) 64 (B) 32 (C) 16 (D) 8





| 80. | The value of $\tan \alpha + 2 \tan 2\alpha + 4 \tan 4\alpha + 8 \tan 8\alpha + 16 \cot 16\alpha$ is |                   |                    |                    |
|-----|-----------------------------------------------------------------------------------------------------|-------------------|--------------------|--------------------|
|     | (A) $\cot \alpha$                                                                                   | (B) $\cos \alpha$ | (C) $\cot 2\alpha$ | (D) $\tan 2\alpha$ |

81. The number of common tangents for circles  $x^2 + y^2 = 4$  and  $x^2 + y^2 - 8x - 6y - 24 = 0$  is (A) 1 (B) 2 (C) 3 (D) 4

82. Let A be a matrix of order 3 × 3 and matrices B, C, D are related such that B = adj(A), C = adj(adj A), D = adj (adj(adj(adj(adj(adj(ABCD)))))) is A<sup>k</sup> then k
(A) is less than 256 (B) has 21 divisors (C) greater than 256 (D) is an odd number

83. If  $\int_{-5}^{5} \frac{25^{-\sum_{r=0}^{49} \left[x + \frac{r}{50}\right]}}{5^{-100x}} dx$  is equal to ([.] denotes greatest integer function) (A)  $\frac{120}{\ln 5}$  (B)  $\frac{240}{\ln 5}$  (C)  $\frac{60}{\ln 5}$  (D)  $\frac{250}{\ln 5}$ 

84. Let C be the curve  $y^3 - 3xy + 2 = 0$ . Let m be the number of points on C at which tangents are horizontal and n be the number of point on C at which tangents is vertical then 'm + n' is equal to (A) 4 (B) 3 (C) 2 (D) 1

85. The area under the curve  $2\{y\} = [x] + 1$ ,  $0 \le y < 1$  (where {.} and [.] are the fractional part and greatest integer functions respectively) and the x axis is (in square units)

(A) 
$$\frac{1}{2}$$
 (B) 1 (C) 0 (D)  $\frac{3}{2}$ 

86. If f(1) = 3, f'(1) = 2 and f''(1) = 4 and let  $f^{-1}(x) = g(x)$ , then g''(3) is equal to

(A) -2 (B) 2 (C) 
$$-\frac{1}{2}$$
 (D)  $\frac{1}{4}$ 

87.  $f(x) = \{x\} + \{x + 1\} + \{x + 2\} + \dots + \{x + 999\}$  then  $\left\lfloor f\left(\sqrt{2}\right) \right\rfloor$  (where {.} denotes fractional part of x and [.] denotes greatest integer of x) is equal to (A) 999 × 500 (B) 414 (C) 4140 (D) 510101

88. If system of equations ax + y + z = a, x + by + z = b and x + y + cz = c is inconsistent, then which of the following is correct?

(A) abc - a - b - c + 2 = 0
(B) abc - a - b - c + 3 = 0
(C) abc - a - b - c + 3 = 0, a = 1

(B) abc - a - b - c + 3 = 0
(D) abc - a - b - c + 2 = 0, a ≠ 1, b ≠ 1, c ≠ 1

89. If the sides a, b, c of a triangle ABC are the roots of the equation  $x^3 - 13x^2 + 54x - 72 = 0$ , then the value of  $\frac{\cos A}{2} + \frac{\cos B}{b} + \frac{\cos C}{c}$  is equal to

(A) 
$$\frac{59}{144}$$
 (B)  $\frac{61}{144}$  (C)  $\frac{61}{72}$  (D)  $\frac{32}{5}$ 

90. The shortest distance from the line 3x + 4y = 25 to the circle  $x^2 + y^2 - 6x + 8y = 0$  is equal to (in units)

(A)  $\frac{7}{5}$  (B)  $\frac{9}{5}$  (C)  $\frac{12}{5}$  (D)  $\frac{32}{5}$ 



