			2014
SUBJECT : P	HYSICS	nd to depe	A physical quantity of is found
SESSION : MO	ORNING	TIME :	10.30 A.M. TO 11.50 A.M.
MAXIMUM MARKS	TOTAL DURATION	MAX	IMUM TIME FOR ANSWERING
60	80 MINUTES		70 MINUTES
MENTION YOU CET NUMBER		TION BO	OKLET DETAILS SERIAL NUMBER
	A	vector 1	ton ai gniv 548417
 DAMAGED / MUTILATE The 3rd Bell rings at 10.40 Do not remove the pa Do not look inside thi Do not start answering IMPO This question booklet control (Four different options / check that this booklet does a complete test booklet. Refarmed to the subsequent 70 merces and the subsequent 70 merces and the control of th	ARKS PRINTED ON THE D/SPOILED. a.m., till then; per seal present on the right s question booklet. g on the OMR answer sheet. RTANT INSTRUCTION tains 60 questions and each oices.) 10.40 a.m. , remove the paper is not have any unprinted or to ad each item and start answer ninutes: carefully. Inswer from out of the four ement. shade the relevant circle we number on the OMR ans	HE OMR A hand side of ONS TO question will er seal on the orn or missing ering on the O r available d vith a BLUE wer sheet.	CANDIDATES Il have one statement and four distracters right hand side of this question booklet and g pages or items etc., if so, get it replaced by
	1 3	4	
by the scanner. Therefore, a	avoid multiple markings of a	ny kind on th	
for the same. 6. After the last bell is rung		on the OMR	gh Work. Do not use the OMR answer sheet answer sheet and affix your LEFT HAND tions.
 Hand over the OMR ANSW After separating the top she to you to carry home for se 	VER SHEET to the room invect (Our Copy), the invigilator of the invigilator of the invigilator of the second sec	rigilator as it i or will return	s. the bottom sheet replica (Candidate's copy)
9. Preserve the replica of the C	OMR answer sheet for a mini	mum period o	of ONE year. [Turn Ove

	NOC				
1.	A physical quantity Q is found to dependent Q = $\frac{x^3y^2}{z}$. The percentage error in the percentag	end on ob	ents of r v a	y and z, obeying related z are 1% 2% and	ation
	respectively. What is percentage error in		EPY LAVIAN		. 470
DM		The second second second second	3%	XIMUM MARKS	AM
	(1) 4 % 23TUAIM 07 (3) 11 %	UTES	3 % 1 %	60	
	TION BOOKLET DETAILS V CODE SERIAL NUMBER	QUES' VERSION	CH PARTY HERE	MENTION YOU	
2.	Which of the following is not a vector qu	antity?	anaparen 12.	a di latamant	
	(1) Weight	(2)	Nuclear spir		DOs:
.1	(3) Momentum (3) Momentum	(4)	Potential en	ergy ald on B notes of aid	2. 1
	red on the OMR answer sheet and the respective circ		estion booklet sl	he Version Code of this qu	4. T
3.	A car moves from A to B with a speed 20 kmph. What is the average speed of the the speed of the		nph and fron	n B to A with a spee	d of
BE	(1) 25 kmph	(2)	21 Irmah	HE TIMING AND MA	L I
	(3) 50 kmph	(4)		The 3 rd Bell rings at 10.40 Do not remove the pap	
4. ers bns	A body starts from rest and moves with x_1 in first half of time and x_2 in next half (1) $x_2 = x_1$ (3) $x_2 = 3x_1$	constant a of time, th (2) (4)	acceleration for $x_2 = 2x_1$ $x_2 = 4x_1$	Four different options / chi after the 3 rd Bell is rung at heck that this booklet does complete test booklet. Rea buring the subsequent 70 m Read each question o	
	Space For	r Rough W		Choose the connect are each question / state	
	th a BLUE OR BLACK INK BALL POINT P ver sheet. e OMR answer sheet is as shown below :	OMR answ	number on the	against the question	•
				10000000 0001000	
	OMR answer sheet will also be recognised and record y kind on the OMR answer sheet. klet for Rough Work. Do not use the OMR answer sh		ite unintended in void multiple m ach page of the c	y the scanner. Therefore, a lse the space provided on a or the same.	5. T fi
	gilator as it is.		the OMR answe ER SHEET to t	HUMB IMPRESSION on and over the OMR ANSW	Т Л. Н
(vq	will return the bottom sheet replica (Candidate's co		f-evaluation.	o you to carry home for sel	t
A-1		st for a minim 2	MR answer shee	reserve the replica of the O	9 .e P
Yer ([Tura C				P I

5. A person is driving a vehicle at uniform speed of 5 ms⁻¹ on a level curved track of radius 5 m. The coefficient of static friction between tyres and road is 0.1. Will the person slip while taking the turn with the same speed ? Take $g = 10 \text{ ms}^{-2}$.

Choose the correct statement.

- (1) A person will slip if $v^2 = 5 \text{ ms}^{-1}$ (2) A person will slip if $v^2 > 5 \text{ ms}^{-1}$
 - (3) A person will slip if $v^2 < 5 \text{ ms}^{-1}$ (4) A person will not slip if $v^2 > 10 \text{ ms}^{-1}$

6. A stone is thrown vertically at a speed of 30 ms⁻¹ making an angle of 45° with the horizontal. What is the maximum height reached by the stone ? Take $g = 10 \text{ ms}^{-2}$.

(1)	maniana The maximum 30 m 00	(2)	22.5 m	
(3)	15 m	(4)	10 m	

- 7. A force $\vec{F} = 5\hat{i} + 2\hat{j} 5\hat{k}$ acts on a particle whose position vector is $\vec{r} = \hat{i} 2\hat{j} + \hat{k}$. What is the torque about the origin ?
- (1) $8\hat{i} + 10\hat{j} + 12\hat{k}$ (2) $8\hat{i} + 10\hat{j} - 12\hat{k}$ (3) $8\hat{i} - 10\hat{j} - 8\hat{k}$ (4) $10\hat{i} - 10\hat{j} - \hat{k}$
- 8. What is a period of revolution of earth satellite ? Ignore the height of satellite above the surface of earth.
 - Given : (1) The value of gravitational acceleration $g = 10 \text{ ms}^{-2}$.

(2) Radius of earth $R_{\rm E} = 6400$ km. Take $\pi = 3.14$. began and Γ monthly out

- (1) 85 minutes (2) 156 minutes (2) 82 72 minutes (4) 90 minutes
- (3) 83.73 minutes (4) 90 minutes

Space For Rough Work

	(3)	30 h	ke g = 10 ms ".	(4)		while taking the turn with Choose the correct statem	
10.	What is the	he source	temperature of the	Carnot en	igine req	uired to get 70% efficient	cy?
	Given sinl			$< 5 m s^{-1}$		(3) A person will s	
the						A stone is thrown vertic horizontal. What is the ma	6.
11.	A 10 kg	metal bloc from equil	k is attached to a ibrium position by	spring of s	pring co	nstant 1000 Nm ⁻¹ . A bloc The maximum acceleratio	
	(1)	10 ms ⁻²	(4) 10 m	(2)	100 ms ⁻	(3) IS m 2-	
t is	$\hat{z}\hat{j} + \hat{k}$. What		ose position vector	particle who		A force $\vec{F} = 5\hat{i} + 2\hat{j} - 5\hat{k}$ a	
12.			m length has a ma speed of transvers			f a tension of 100 N is app	olied
	(1)	100 ms ⁻¹	(4) $10\hat{i} - 10\hat{j} - \hat{k}$	(2)	10 ms^{-1}	(3) $8\hat{1} - 10\hat{j} - 8\hat{k}$	
	(3)	200 ms ⁻¹		(4)	0.1 ms ⁻	1	
edit	llite above	ght of sate	te ? Ignore the hei	arth satelli	tion of e	What is a period of revolu	.8
13.						0 ms ⁻¹ while blowing a wh rd by a stationary observe	
	the platfor	m? Given	speed of sound $= 3$	40 ms ⁻¹ .04	$b R_{\rm B} = 64$	(2) Radius of eart	
	(1)	330 Hz	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(2)	350 Hz	(1) 85 minutes	
	(1)	550 IIL	(2) 156 minutes	(-)		Sommer Co (1)	

A-1

	(1)		uming to be uniform				
		· · ·					
	(3)	2π rad s ⁻²	(2) 0.5 ms ⁻¹	(4)	40π rad s ⁻²	1 ms ⁻¹⁻¹	(1)
15.	A flow of	liquid is strea	mline if the Reynol	ld numbe	er is	2 ms ⁻¹	(3)
	(1)	less than 100	00	(2)	greater than	1000	
	(3)	between 200	0 to 3000 and 10 og	(4) e	between 400	00 to 5000	. A cycle t
			(2) Adiabatic			Isothermal	(I)
16.		-	and open at both t a 1.1 kHz source ?		-		
	(1)	Fifth harmon	nic	(2)	Fourth harm	onic	
	(3)	Thind home					
be	oes magnin		oncave mirror p <mark>oin</mark> ave mirror ?			et is plac zinon se. What is for	
				he conci	al length of t	ge. What is fou	real imag
b9 17.	In anomal	ous expansior	f nomin over of water, at what t	he conci emperat	t lo dignol les ure, the densi	ty of water is	maximum ?
	In anomal		ave mirror ?	emperat (2)	al length of t	ty of water is	real imag
	In anomal (1) (3)	ous expansior 4 °C > 4 °C	f nomin over of water, at what t	emperat (2) (4)	t to dignal last ure, the densit <4 °C 10 °C	ty of water is	maximum ?
17.	In anomal (1) (3) An aeropl	ous expansior 4 °C > 4 °C ane executes a	ave mirror ? a of water, at what t mo 2.7 (4)	(2) (4) t a speed	t to dignal last ure, the densit <4 °C 10 °C	ty of water is moothing of water is	maximum ?
17.	In anomal (1) (3) An aeropl	ous expansior 4 °C > 4 °C ane executes a	? romin over a of water, at what t mo 2.7 (b) a horizontal loop at	(2) (4) t a speed g = 10 m	t to dignal last ure, the densit <4 °C 10 °C	ty of water is moothing of water is	maximum ?

P

A-1

	(3)	10 cm	(4), 10 °C	(4)	7.5 cm	(3) >4 °C	
			perature, the densit $(2) < 4 ^{\circ}\mathrm{C}$			anomalous expansion (1) 4 °C	
21.	real image	e. What is fo	cal length of the co	ncave mi	rror?	duces three times mag	
			(2) Fourth harm				
						pipe of 30 cm long a lode of pipe resonates a	
	(1)	Isothermal		(2)	Adiabatic		
20.	A cycle ty	re bursts suc	ddenly. What is the	type of th	nis process	(3) between 200 ?	
		1000 ^{11/} 10/	(2) greater than			(1) ¹ less than 100	
	(3)	2 ms ⁻¹	ai 15dmur	(4)	1.5 ms ⁻¹	flow of liquid is stream	5. A
	(1)	1 ms ⁻¹	(4) $40\pi \text{ rad s}^{-2}$	(2)	0.5 ms^{-1}	(3) $2\pi \text{ rad s}^{-2}$	

23. A microscope is having objective of focal length 1 cm and eyepiece of focal length 6 cm. If tube length is 30 cm and image is formed at the least distance of distinct vision, what is the magnification produced by the microscope ? Take D = 25 cm.

(1)	6	(4) 0.001227 Å	(2)	150	
(3)	25	N 1221000 (F)	(4)	125	

28. The maximum kinetic energy of the photoelectrons depends only on

- 24. A fringe width of a certain interference pattern is $\beta = 0.002$ cm. What is the distance of 5th dark fringe from centre ?
 - (1) 1×10^{-2} cm (2) 11×10^{-2} cm
 - (3) 1.1×10^{-2} cm (4) 3.28×10^{6} cm (4) 3.28×10^{6} cm

25. Diameter of the objective of a telescope is 200 cm. What is the resolving power of a telescope ? Take wavelength of light = 5000 Å.

(1) 6.56×10^{6} (2) 3.28×10^{5} (3) 1×10^{6} (4) 3.28×10^{6}

26. A polarized light of intensity I_0 is passed through another polarizer whose pass axis makes an angle of 60° with the pass axis of the former. What is the intensity of emergent polarized light from second polarizer?

(1)	$I = I_o$	(2) $\lambda T = \overline{2}$	(2)	$I = I_0/6$	(1) $\lambda T = 1$
(3)	$I = I_o/5$	(4) $\lambda = \log 2T$	(4)	I _o /4	(3) $\lambda T = \log_{e} 2$

Space For Rough Work

afficience	of 100 yolt ?	icast dis	u ai inc	iorococ	the length is 30 cm and image is	di
(1)	12.27 Å			(2)	e raymification produced by the n 1.227 A	
(3)	0.1227 Å	150		(4)	0.001227 Å	
		125			64 (C)	
28. The maxim	mum kinetic energ	gy of the	photoe	lectrons	s depends only on	
l(f)nce of 5 th	potential	= 0.002	tern is B	(2)	frequency certagonal of a certagonal of	A .
(3)	incident angle			(4)	rk fringe from centre ? snuesrq	
	⁻² cm	11×10	(2)		(1) 1×10^{-2} cm	
	agnetic wave ? Paschen series			(2)	Pfund series	
(3) a to the second sec	-	om. Wh	is 200 (0 Å.	(4)	Pfund series Balmer series	. Di
(3)	Lyman series	3.28 ×	0 Å. - (2)	(4)	Balmer series	. Di tel
(3)	Lyman series he energy of the el	3.28 ×	Å (volving	(4)	Balmer series	. Di tel
(3) 30. What is th (1)	Lyman series he energy of the el	× 82.8 ectron re	Å (volving	(4) g in thir (2)	Balmer series	. Di
 (3) 30. What is th (1) (3) 	Lyman series he energy of the el 1.51 eV 4.53 eV	ectron re	۵ Å. evolving	(4) g in thir (2) (4)	Balmer series ed orbit expressed in eV ? 3.4 eV	tel
 (3) 30. What is th (1) (3) assiant aixs as 	Lyman series he energy of the el 1.51 eV 4.53 eV on between half li	a 28 x ectron to 2.28 x nother p	A O evolving	(4) g in thir (2) (4) y consta	Balmer series ed orbit expressed in eV ? 3.4 eV 4 eV	tei A
 (3) 30. What is th (1) (3) assiant aixs as 	Lyman series he energy of the el 1.51 eV 4.53 eV on between half li	ectron re quantum fe (T) ar	Å (evolving decay	(4) g in thir (2) (4) y consta	Balmer series of orbit expressed in eV? 3.4 eV 4 eV ant (λ) is	tei

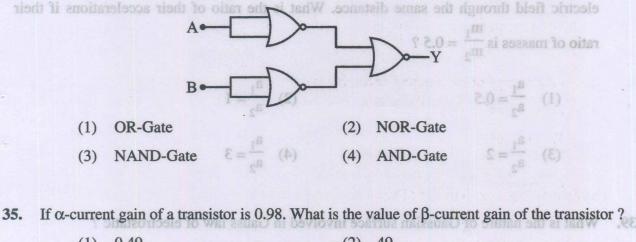
A-1

8

- 32. A force between two protons is same as the force between proton and neutron. The nature of the force is
 - (1) Weak nuclear force
- (2) Strong nuclear force

37. If a charge on the body is 1 nC, then how many ele

(3) 6.25×10^{27}


- Electrical force (3)

- (4) Gravitational force

In n type semiconductor, electrons are majority charge carriers but it does not show any 33. negative charge. The reason is

- (1) electrons are stationary
 - (2) electrons neutralize with holes
 - (3) mobility of electrons is extremely small
 - (4) atom is electrically neutral

34. For the given digital circuit, write the truth table and identify the logic gate it represents :

(1)	0.49	Electrical	(2)	(2)	49	Scalar	(I)	
(3)	4.9	Vector	(4)	(4)	5			

36. A tuned amplifier circuit is used to generate a carrier frequency of 2 MHz for the amplitude modulation. The value of √LC is

(1) 1/(2π × 10⁶)
(2) 1/(2 × 10⁶)
(3) 1/(3π × 10⁶)
(4) 1/(4π × 10⁶)

37. If a charge on the body is 1 nC, then how many electrons are present on the body ?

(1) 1.6 × 10¹⁹
(2) 6.25 × 10⁹
(3) 6.25 × 10²⁷
(4) 6.25 × 10²⁸

38. Two equal and opposite charges of masses m_1 and m_2 are accelerated in an uniform electric field through the same distance. What is the ratio of their accelerations if their

ratio of masses is
$$\frac{m_1}{m_2} = 0.5$$
 ?

(1)
$$\frac{a_1}{a_2} = 0.5$$

(2) $\frac{a_1}{a_2} = 1$
(3) $\frac{a_1}{a_2} = 2$
(4) $\frac{a_1}{a_2} = 3$
(5) (1) (2) (2) (2) (3) (3) (4) $\frac{a_1}{a_2} = 3$

39. What is the nature of Gaussian surface involved in Gauss law of electrostatic ?

(1)	Scalar	(2) 49	(2)	Electrical	(1) 0.49
(3)	Magnetic	(4) 5	(4)	Vector	(3) 4.9

Space For Rough Work

	(1)	270 V	f resistances ?	(2)	3 V 0	valent resistance is	
	(3)	300 V		(4)	30 V		
			8 Ω, 1 Ω	(2)		$(1) - 4 \Omega, 6 \Omega$	
41.	When a d reads 2 V.	ielectric sla What is th	b is introduced e dielectric cons	between plat stant of the ma	es for the sar aterial ?	citor with air as a di me configuration, v	oltmeter
	(1) (3)	0.5 8	(2) V gives balar th is found to be	(2) (4)	2 10	potentiometer expen ell is replaced by an cond cell ?	the c
42.			or of radius 2 cm 3 cm from the c		-	h 3 nC. What is the	electric
	. (1)	$3 \times 10^6 \text{ V}$	m ⁻¹	(2)	3 V m ⁻¹		
	doudW (3)	$3 \times 10^4 \text{ V}$	the presence of	(4)		arged particle expo	
13.	A carbon f	ilm resistor	has colour code	Green Black		The value of the resident	
	(1)		and the stand	re anonSpire es		oranned sur (r)	
	(3)	$500 \pm 5\%$	eld is parallel to ΩM	(4)	$500 \pm 10\%$	(2) The particle	
	(5)		field is perpend				
44.	Two resis	tors of resi	stances 2 Ω and	d 6 Ω are con	nnected in p	arallel. This combin	nation is
	then conn	ected to a	battery of emf 2	2V and intern	al resistance	0.5Ω . What is the diod and viscolar	current
	(1)		rged particle ?	(2) by a cha	$\frac{4}{3}$ A descent	netic field, what is t	magn
		1	and a second	(2)	5	(1) Circular	
	(2)	$\frac{4}{17}$ A	Helical	(1)	1 A		

A-1

Ψ

45. The equivalent resistance of two resistors connected in series is 6 Ω and their parallel

equivalent resistance is $\frac{4}{3}\Omega$. What are the values of resistances ?

T

300 V

46. In a potentiometer experiment of a cell of emf 1.25 V gives balancing length of 30 cm. If the cell is replaced by another cell, balancing length is found to be 40 cm. What is the emf of second cell ?

(1) $\simeq 1.57$ V and $\simeq 1.67$ V (3) $\simeq 1.47$ V (3) $\simeq 1.47$ V (4) $\simeq 1.37$ V (5) $\simeq 1.37$ V (6) $\simeq 1.37$ V (7) $\simeq 1.37$ V (7

47. A charged particle experiences magnetic force in the presence of magnetic field. Which of the following statement is correct ?

(1) The particle is moving and magnetic field is perpendicular to the velocity.

- (2) The particle is moving and magnetic field is parallel to velocity.
- (3) The particle is stationary and magnetic field is perpendicular.

(4) The particle is stationary and magnetic field is parallel.

then connected to a battery of emf 2V and internal resistance 0.5 Ω . What is the current

- **48.** If a velocity has both perpendicular and parallel components while moving through a magnetic field, what is the path followed by a charged particle ?
 - (1) Circular
 (2) Elliptical
 (3) Linear
 (4) Helical

⁽¹⁾ $4\Omega, 6\Omega$

⁽²⁾ $8\Omega, 1\Omega$

49. A solenoid has length 0.4 cm, radius 1 cm passed through this solenoid, what is the ma				
(1) $6.28 \times 10^{-4} \mathrm{T}_{26} \mathrm{mms}^{\mathrm{q}}$ (2)	(2) $6.28 \times 10^{-3} \text{ Transmit}$ (1)			
(3) $6.28 \times 10^{-7} \text{ Transformed}^{(4)}$	(4) $6.28 \times 10^{-6} \mathrm{T}^{\mathrm{smons}}$ (8)			
50. A gyromagnetic ratio of the electron rev is 8.8×10^{10} C kg ⁻¹ . What is the matrix	volving in a circular orbit of hydrogen atom ass of the electron ? Given charge of the			
electron = 1.6×10^{-19} C. (1)	(I) 2J			
(1) $1 \times 10^{-29} \text{ kg}$ (4)	(2) $0.1 \times 10^{-29} \text{ kg}$ (2) (2)			
(3) $1.1 \times 10^{-29} \text{ kg}$	(4) $\frac{1}{11} \times 10^{-29} \text{ kg}$			
A.C. source as 100 V. What is the peak value of	55. A multimeter reads a voltage of a certain A voltage of A.C. source ?			
51. What is the value of shunt resistance required 100 Ω into an ammeter of range 1A ?	uired to convert a galvanometer of resistance			
Given : Full scale deflection of the galvanometer is 5 mA.				
(1) $\frac{5}{9.95}\Omega$ He Capacitance 10 0 He C	$\Omega \frac{20.9}{5} (2)$			
is the frequency at which $\Omega = 0.0$ in (E) power is	a frequency A.C. source $\Omega \ \overline{c0.0}^{d}$, (4) hat dissipated ?			
moment of the coil ?	rns carries a current 1A. What is the magnetic			
(1) $3.142 \times 10^4 \text{ Am}^2 \times \frac{10^4}{10^4}$	(2) $10^4 \text{ A m}^2 = \frac{10^5 \text{ Hz}}{\pi} = 10^5 \text{ M} \text{ A}^{-1} \text{ (E)}$			
(3) 3.142 Am^2	(4) 3 Am^2			
Space For Rough Work				

- 53. A susceptibility of a certain magnetic material is 400. What is the class of the magnetic material? biometric material?
 - (1) Diamagnetic (2) Paramagnetic
 - (3) Ferromagnetic (4) Ferroelectric (2)

54. A solenoid of inductance 2H carries a current of 1 A. What is the magnetic energy stored in a solenoid ?

- (1) 2 J (3) 4 J (3) 4 J (3) 4 J (4) 5 J (4) 5 J (5) $2^{2} e^{2} e^{2}$
- 55. A multimeter reads a voltage of a certain A.C. source as 100 V. What is the peak value of voltage of A.C. source ?

(1)	required to convert a galvanometer \mathbf{V} 002	(2)	. What is the value of shunt residation $\mathbf{V} = 001$ (100 Ω into an ammeter of range 1A
(3)	141 A V	(1)	Given : Full scale deflection of the

56. A series LCR circuit contains inductance 5 mH, capacitance 2 μ F and resistance 10 Ω . If a frequency A.C. source is varied, what is the frequency at which maximum power is dissipated ?

(1)
$$\frac{10^5}{\pi}$$
 Hz
(2) $\frac{10^{-5}}{\pi}$ Hz
(3) $\frac{2}{\pi} \times 10^5$ Hz
(4) $\frac{5}{\pi} \times 10^3$ Hz
(5) $\frac{10^{-5}}{\pi}$ Hz
(6)

Space For Rough Work

A-1

57. A step down transformer has 50 turns on secondary and 1000 turns on primary winding. If a transformer is connected to 220 V 1A A.C. source, what is output current of the transformer ?

(1)	$\frac{1}{20}$ A	(2)	20 A
(3)	100 A	(4)	2 A

58. The average power dissipated in A.C. circuit is 2 watt. If a current flowing through a circuit is 2 A and impedance is 1 Ω , what is the power factor of the AC circuit ?

(1) 0.5	(2)	1
(3) 0	(4)	$\frac{1}{\sqrt{2}}$

59. A plane electromagnetic wave of frequency 20 MHz travels through a space along x direction. If the electric field vector at a certain point in space is 6 V m⁻¹, what is the magnetic field vector at that point?

(1)	2 × 10 ⁻⁸ T	(2)	$\frac{1}{2} \times 10^{-8} \text{ T}$
(3)	2T	(4)	$\frac{1}{2}T$

60. Two capacitors of 10 PF and 20 PF are connected to 200 V and 100 V sources respectively. If they are connected by the wire, what is the common potential of the capacitors ?

(1)	133.3 volt	(2)	150 volt	
(3)	300 volt	(4)	400 volt	

P