Consortium of Medical Engineering and Dental Colleges of Karnataka (COMEDK-2008)

MATHEMATICS

1. A variable line $\frac{x}{a}+\frac{y}{b}=1$ is such that $a+b=4$. The locus of the midpoint of the portion of the line intercepted between the axes is
1) $x+y=4$
2) $x+y=8$
3) $x+y=1$
4) $x+y=2$
2. The point (5, -7) lies outside the circle
1) $x^{2}+y^{2}-8 x=0$
2) $x^{2}+y^{2}-5 x+7 y=0$
3) $x^{2}+y^{2}-5 x+7 y-1=0$
4) $x^{2}+y^{2}-8 x+7 y-2=0$
3. If the circles $x^{2}+y^{2}=9$ and $x^{2}+y^{2}+2 \alpha x+2 y+1=0$ touch each other internally, then $\alpha=$
1) $\pm \begin{aligned} & 4 \\ & 3\end{aligned}$
2) 1
3) $\begin{aligned} & 4 \\ & 3\end{aligned}$
4) $\begin{gathered}-4 \\ 3\end{gathered}$
4. The locus of the midpoints of the line joining the focus and any point on the parabola $y^{2}=4 a x$ is a parabola with the equation of directrix as
1) $x+a=0$
2) $2 x+a=0$
3) $x=0$.
4) $x=\frac{a}{2}$
5. The tangents drawn at the extremeties of a focal chord of the parabola $y^{2}=16 x$
1) intersect on $x=0$
2) intersect on the line $x+4=0$
3) intersect at an angle of 60°
4) intersect at an angle of 45°
6. On the set Z, of all integers $*$ is defined by $a * b=a+b-5$. If $2 *(x * 3)=5$ then $x=$
1) 0
2) 3
3) 5
4) 10
7. Which of the following is false ?
1) Addition is commutative in N.
2) Multiplication is associative in N.
3) If $a * b=a^{b}$ for all $a, b \in N$ then $*$ is commutative in N.
4) Addition is associative in N.
8. If $\vec{a} \cdot \hat{i}=\vec{a} \cdot(\hat{i}+\hat{j})=\vec{a} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ then $\vec{a}=$
1) $i+j$
2) $\hat{i}-\hat{k}$
3) $\hat{\imath}$
4) $i+j-k$
9. If \vec{a} and \bar{b} are unit vectors and $|\vec{a}+\bar{b}|=1$ then $|\vec{a}-\bar{b}|$ is equal to
1) $\sqrt{2}$
2) 1
3) $\sqrt{5}$
4) $\sqrt{3}$
10. The projection of $\vec{a}=3 \hat{i}-\hat{j}+5 \hat{k}$ on $\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}$ is
1) $\begin{gathered}8 \\ \sqrt{3 E}\end{gathered}$
2) $\begin{gathered}8 \\ \underline{\sqrt{39}}\end{gathered}$
3) $\sqrt{14}$
4) $\sqrt{14}$
11. If $f: R \rightarrow R$ is defined by $f(x)=x^{3}$ then $f^{-1}(8)=$
1) $\{2\}$
2) $\left\{2,2 w, 2 w^{2}\right\}$
3) $\{2,-2\}$
4) $\{2,2\}$
12. R is a relation on N given by $R=\{(x, y) \mid 4 x+3 y=20\}$. Which of the following belongs to R ?
1) $(-4,12)$
2) $(5,0)$
3) $(3,4)$
4) $(2,4)$
13. If $\log _{10} 7=0.8451$ then the position of the first significant figure of 7^{-20} is
1) 16
2) 17
3) 20
4) 15
14. $\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots \ldots$. upto n terms $=$
1)

$4 n+6$
2) $\overline{6 n+4}$
3)
$6 n+4$
4) $\begin{gathered}n \\ 3 n+7\end{gathered}$
15. The ten's digit in $1!+4!+7!+10!+12!+13!+15!+16!+17$! is divisible by

1) 4
2) 3 !
3) 5
4) 7
1.6. The equation $\frac{x^{2}}{2-\lambda}-\frac{y^{2}}{\lambda-5}-1=0$ represents an ellipse if
5) $\lambda>5$
6) $\lambda<2$
7) $2<\lambda<5$
8) $2>\lambda>.5$
17. The equation to the normal to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ at $(-4,0)$ is
1) $2 x-3 y=1$
2) $x=0$
3) $x=1$
4) $y=0$
18. The converse of the contrapositive of the conditional $p \rightarrow \sim q$ is
1) $p \rightarrow q$
2) $\sim p \rightarrow \sim q$
3) $\sim q \rightarrow p$
4) $\sim p \rightarrow q$
19. The perimeter of a certain sector of a circle is equal to the length of the arc of the semicircle. Then the angle at the centre of the sector in radians is
1) $\pi-2$
2) $\pi+2$
3) $\begin{aligned} & \pi \\ & 3\end{aligned}$
4) $\begin{gathered}2 \pi \\ 3\end{gathered}$
20. The value of $\operatorname{Tan} 67 \frac{1}{2}^{0}+\operatorname{Cot} 67 \frac{1}{2}^{0}$ is
1) $\sqrt{2}$
2) $3 \sqrt{2}$
3) $2 \sqrt{2}$
4) $2-\sqrt{2}$
21. If e_{1} and e_{2} are the eccentricities of a hyperbola $3 x^{2}-3 y^{2}=25$ and its conjugate, then
1) $e_{1}^{2}+e_{2}^{2}=2$
2) $e_{1}^{2}+e_{2}^{2}=4$
3) $e_{1}+e_{2}=4$
4) $e_{1}+e_{2}=\sqrt{2}$
22. If p and q are prime numbers satisfying the condition $p^{2}-2 q^{2}=1$, then the value of $p^{2}+2 q^{2}$ is
1) 5
2) 15
3) 16
4) 17
23. If $A(\operatorname{adj} A)=5 I$ where I is the identity matrix of order 3 , then $|\operatorname{adj} A|$ is equal to
1) 125
2) 25
3) 5
4) 10
24. The number of solutions for the equation $\operatorname{Sin} 2 x+\operatorname{Cos} 4 x=2$ is
1) 0
2) 1
3) 2
4) Infinite
25. $\int e^{x} \cdot x^{5} d x$ is
1) $e^{x}\left[x^{5}+5 x^{4}+20 x^{3}+60 x^{2}+120 x+120\right]+C$
2) $e^{x}\left[x^{5}-5 x^{4}-20 x^{3}-60 x^{2}-120 x-120\right]+C$
3) $e^{x}\left[x^{5}-5 x^{4}+20 x^{3}-60 x^{2}+120 x-120\right]+C$
4) $e^{x}\left[x^{5}+5 x^{4}+20 x^{3}-60 x^{2}-120 x+120\right]+C$
26. If $f(x)$ is an even function and $f^{\prime}(x)$ exists, then $f^{\prime}(e)+f^{\prime}(-e)$ is
1) >0
2) 0
3) ≥ 0
4) <0
27. If α is a complex number satisfying the equation $\alpha^{2}+\alpha+1=0$ then α^{31} is equal to
1) α
2) α^{2}
3) 1
4) t
28. The derivative of $\operatorname{Sin}\left(x^{3}\right)$ w.r.t. $\operatorname{Cos}\left(x^{3}\right)$ is
1) $-\operatorname{Tan}\left(x^{3}\right)$
2) $\operatorname{Tan}\left(x^{3}\right)$
3) $-\operatorname{Cot}\left(x^{3}\right)$
4) $\operatorname{Cot}\left(x^{3}\right)$
29. A unit vector perpendicular to both the vectors $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ is
1) $-\hat{i}-\hat{j}+\hat{k}$
2) $\begin{gathered}\hat{i}+\hat{j}-\hat{k} \\ 3\end{gathered}$
3) $\begin{gathered}\hat{i}+\hat{j}+\hat{k} \\ \sqrt{3}\end{gathered}$
4) $\begin{gathered}\hat{i}-\hat{j}+\hat{k} \\ \sqrt{3}\end{gathered}$
$\begin{array}{llllllll}a_{1} & b_{1} & c_{1}\end{array} c_{1} \quad c_{2} \quad c_{3}$
30. If $A=a_{2} \quad b_{2} \quad c_{2}$ and $B=a_{1} \quad a_{2} \quad a_{3}$ then $\begin{array}{llllll}a_{3} & b_{3} & c_{3}\end{array} \quad b_{1} \quad b_{2} \quad b_{3}$
1) $A=-B$
2) $A=B$
3) $B=0$
4) $B=A^{2}$
31. The locus of a point which moves such that the sum of its distances from two fixed points is a constant is
1) a circle
2) a parabola
3) an ellipse
4) a hyperbola
32. The centroid of the triangle $A B C$ where $A \equiv(2,3), B \equiv(8,10)$ and $C \equiv(5,5)$ is
1) $(5,6)$
2) $(6,5)$
3) $(6,6)$
4) $(15,18)$
33. If $3 x^{2}+x y-y^{2}-3 x+6 y+K=0$ represents a pair of lines, then $K=$
1) 0
2) 9
3) 1
4) -9
34. The equation of the smallest circle passing through the points $(2,2)$ and $(3,3)$ is
1). $x^{2}+y^{2}+5 x+5 y+12=0$
2) $x^{2}+y^{2}-5 x-5 y+12=0$
3) $x^{2}+y^{2}+5 x-5 y+12=0$
4) $x^{2}+y^{2}-5 x+5 y-12=0$
35. The characteristic roots of the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6\end{array}\right]$ are
1) $1,3,6$
2) $1,2,4$
3) $4,5,6$
4). $2,4,6$
36. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then $A^{-1}=$
1) $\frac{-1}{2}\left[\begin{array}{rr}4 & -2 \\ -3 & 1\end{array}\right]$
2) $\frac{1}{2}\left[\begin{array}{rr}4 & -2 \\ -3 & 1\end{array}\right]$
3) $\left[\begin{array}{rr}-2 & 4 \\ \mathrm{~L} & 1\end{array}\right]$
4) $\left[\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right]$
37. The set $\{-1,0,1\}$ is not a multiplicative group because of the failure of
1) Closure law
2) Associative law
3) Identity law
4) Inverse law

38 The angle of elevation of the top of a TV tower from three points A, B and C in a straight line through the foot of the tower are $\alpha, 2 \alpha$ and 3α respectively. If $A B=a$, the height of the tower is

1) $a \operatorname{Tan} \alpha$
2) $a \operatorname{Sin} \alpha$
3) $a \operatorname{Sin} 2 \alpha$
4) $a \operatorname{Sin} 3 \alpha$
39. The angles A, B and C of a triangle $A B C$ are in A.P. If $b: c=\sqrt{3}: \sqrt{2}$, then the angle A is
1) 30^{0}
2) 15^{0}
3) 75^{0}
4) 45^{0}
40. $\operatorname{Sin}\left(2 \operatorname{Sin}^{-1} \sqrt{\frac{63}{65}}\right)=$
1) $\begin{gathered}2 \sqrt{ } 126 \\ 65\end{gathered}$
2) $\begin{aligned} & 4 \sqrt{65} \\ & 65\end{aligned}$
3) $\begin{gathered}8 \sqrt{63} \\ 65\end{gathered}$
4) $\begin{array}{r}63 \\ 65\end{array}$
41. The general solution of $|\operatorname{Sin} x|=\operatorname{Cos} x$ is (when $n \in Z$) given by
1) $n \pi+\frac{\pi}{4}$
2) $2 n \pi \pm \frac{-}{4}$
3) $n \pi \pm-$
4) $n \pi-\frac{\pi}{4}$
42. The real root of the equation $x^{3}-6 x+9=0$ is
1) -6
2) -9
3) 6
4) -3
43. The digit in the unit's place of 5^{834} is
1) 0
2) 1
3) 3
4) 5
44. The remainder when $3^{100} \times 2^{50}$ is divided by 5 is
1) 1
2) 2
3) 3
4) 4
45. $\iint_{\sqrt{1-\operatorname{Sin}^{4} x} .}^{\operatorname{Sin} x \operatorname{Cos} x} d x=$
1) $\frac{1}{2} \operatorname{Sin}^{-1}\left(\operatorname{Sin}^{2} x\right)+C$
2) $\frac{1}{2} \operatorname{Cos}^{-1}\left(\operatorname{Sin}^{2} x\right)+C$
3) $\operatorname{Tan}^{-1}\left(\operatorname{Sin}^{2} x\right)+C$
4) $\operatorname{Tan}^{-1}(2 \operatorname{Sin} x)+C$
46. The value of $\int_{-2}\left(a x^{3}+b x+c\right) d x$ depends on the
1) value of b
2) value of c
3) value of a
4) values of a and b
47. The area of the region bounded by $y=2 x-x^{2}$ and the x-axis is
1) $\frac{8}{3}$ sq. units
2) $\overline{3}$ sq. units
3) $\frac{7}{3}$ sq. units
4) $\frac{2}{3}$ sq. units
48. The differential equation $y \frac{d y}{d x}+x=c$ represents
1) a family of hyperbolas
2) a family of circles whose centres are on the y-axis
3) a family of parabolas
4) a family of circles whose centres are on the x-axis
49. If $f\left(x^{5}\right)=5 x^{3}$, then $f^{\prime}(x)=$
1) $\begin{gathered}3 \\ \sqrt[5]{x^{2}}\end{gathered}$
2) $\sqrt[5]{x}$
3) 3
4) $\sqrt[5]{x}$
50. $f(x)=2 a-x$ in $-a<x<a$
$=3 x-2 a$ in $a \leq x$.
Then which of the following is true?
1) $f(x)$ is discontinuous at $x=a$
2) $f(x)$ is not differentiable at x
3) $f(x)$ is differentiable at all $x \geq a$
4) $f(x)$ is continuous at all $x<a$
51. The maximum area of a rectangle that can be inscribed in a circle of radius 2 units is (in square units)
1) 4
2) 8π
3) 8
4) 5
52. If Z is a complex number such that $Z=-Z$, then
1) Z is purely real
2) Z is purely imaginary
3) Z is any complex number
4) Real part of Z is the same as its imaginary part
53. The value of $\sum_{K=1}^{6}\left[\operatorname{Sin} \frac{2 K \Pi}{7}-i \operatorname{Cos} \frac{2 K \Pi}{7}\right]$ is
1) l
2) 0
3) $-\imath$
4) -1
54. $\underset{x \rightarrow \infty}{L t} x \operatorname{Sin}\left(\frac{2}{x}\right)$ is equal to
1) ∞
2) 0
3) 2
4) $\begin{aligned} & 1 \\ & 2\end{aligned}$
55. A stone is thrown vertically upwards and the height $x \mathrm{ft}$. reached by the stone in t seconds is given by $x=80 t-16 t^{2}$. The stone reaches the maximum height in
1) 2 seconds
2) 2.5 seconds
3) 3 seconds
4) 1.5 seconds
56. The maximum value of $\log x^{\log (2, \infty) \text { is }}$
1) 1
2). e
2) e
3) e
57. If $f(x)=b e^{a x}+a e^{b x}$, then $f^{\prime \prime}(0)=$
1) 0
2) $2 a b$
3) $a b(a+b)$
4) $a b$
58. If $\frac{\overline{1+\operatorname{Cos} A}}{1-\operatorname{Cos} A}=\frac{x}{y}$, then the value of $\operatorname{Tan} A=$
1) $\begin{aligned} & x^{2}+y^{2} \\ & x^{2}-y^{2}\end{aligned}$
2) $\begin{gathered}2 x y \\ x^{2}+y^{2}\end{gathered}$
3) $\begin{gathered}2 x y \\ x^{2}-y^{2}\end{gathered}$
4) $\begin{gathered}2 x y \\ y^{2}-x^{2}\end{gathered}$.
59. $\int_{\operatorname{Sec}} \frac{\operatorname{Sec} x}{x+\operatorname{Tan} x} d x-$
1) $\operatorname{Tan} x-\operatorname{Sec} x+C$
2) $\log (1+\operatorname{Sin} x)+C$
3) $\operatorname{Sec} x+\operatorname{Tan} x+C$
4) $\log \operatorname{Sin} x+\log \operatorname{Cos} x+C$
60. If $\int f(x) d x=g(x)$, then $\int f(x) g(x) d x=$
1) $\frac{1}{2} f^{2}(x)$
2) $\frac{1}{2} g^{2}(x)$
3) $\frac{1}{2}\left[g^{\prime}(x)\right]^{2}$
4) $f^{\prime}(x) g(x)$
