Consortium of Medical Engineering and Dental Colleges of Karnataka (COMEDK-2008)

MATHEMATICS

- 1. A variable line $\frac{x}{a} + \frac{y}{b} = 1$ is such that a + b = 4. The locus of the midpoint of the portion of the line intercepted between the axes is
 - 1) x + y = 42) x + y = 83) x + y = 14) x + y = 2
- 2. The point (5, -7) lies outside the circle
 - 1) $x^{2} + y^{2} 8x = 0$ 2) $x^{2} + y^{2} - 5x + 7y = 0$ 3) $x^{2} + y^{2} - 5x + 7y - 1 = 0$ 4) $x^{2} + y^{2} - 8x + 7y - 2 = 0$
- 3. If the circles $x^2 + y^2 = 9$ and $x^2 + y^2 + 2\alpha x + 2y + 1 = 0$ touch each other internally, then $\alpha =$

1)
$$\pm \frac{4}{3}$$

3) $\frac{4}{3}$
2) 1
4) $\frac{-4}{3}$

- 4. The locus of the midpoints of the line joining the focus and any point on the parabola $y^2 = 4ax$ is a parabola with the equation of directrix as
 - 1) x + a = 0 2) 2x + a = 0

3)
$$x = 0$$
. 4) $x = \frac{a}{2}$

5. The tangents drawn at the extremeties of a focal chord of the parabola $y^2 = 16x$

- 1) intersect on x = 0 2) intersect on the line x + 4 = 0
- 3) intersect at an angle of 60^0 4) intersect at an angle of 45^0

6. On the set Z, of all integers * is defined by a * b = a + b - 5. If 2 * (x * 3) = 5 then x = 5

- 1) 0 2) 3
- 3) 5 4) 10
- 7. Which of the following is false ?
 - 1) Addition is commutative in N.
 - 2) Multiplication is associative in N.
 - 3) If $a * b = a^b$ for all $a, b \in N$ then * is commutative in N.
 - 4) Addition is associative in N.

8. If $\vec{a} \cdot \hat{i} = \vec{a} \cdot (\hat{i} + \hat{j}) = \vec{a} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ then $\vec{a} =$

1) i+j 2) $\hat{i}-\hat{k}$

3)
$$\hat{i}$$
 4) $i+j-k$

9. If \vec{a} and \vec{b} are unit vectors and $\left|\vec{a}+\vec{b}\right|=1$ then $\left|\vec{a}-\vec{b}\right|$ is equal to

 1) $\sqrt{2}$ 2) 1

 3) $\sqrt{5}$ 4) $\sqrt{3}$

10. The projection of $\vec{a} = 3\hat{i} - \hat{j} + 5\hat{k}$ on $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ is

1)	8 √35	2)	8 √ <u>39</u>

3) $\sqrt{14}$ 4) $\sqrt{14}$

- 11. If $f: R \to R$ is defined by $f(x) = x^3$ then $f^{-1}(8) =$
 - 1) $\{2\}$ 2) $\{2, 2w, 2w^2\}$
 - 3) {2, -2} 4) {2, 2}
- 12. *R* is a relation on *N* given by $R = \{(x, y) | 4x + 3y = 20\}$. Which of the following belongs to *R*?
 - 1) (-4, 12)2) (5, 0)3) (3, 4)4) (2, 4)

13. If $Log_{10}7=0.8451$ then the position of the first significant figure of 7^{-20} is

 1)
 16
 2)
 17

 3)
 20
 4)
 15

14. $\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots$ upto *n* terms = 1) 4n + 63) 6n + 42) $\frac{n}{6n + 4}$ 4) $\frac{n}{3n + 7}$

15. The ten's digit in 1!+4!+7!+10!+12!+13!+15!+16!+17! is divisible by

- 1) 4 2) 3!
- 3) 5 4) 7

16. The equation $\frac{x^2}{2-\lambda} - \frac{y^2}{\lambda-5} - 1 = 0$ represents an ellipse if

1) $\lambda > 5$ 2) $\lambda < 2$

$$3) \quad 2 < \lambda < 5 \qquad \qquad 4) \quad 2 > \lambda > 5$$

17. The equation to the normal to the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ at (-4, 0) is

1)	2x - 3y = 1	2)	x = 0
3)	x = 1	4)	y = 0

- 18. The converse of the contrapositive of the conditional $p \rightarrow \sim q$ is
 - 1) $p \rightarrow q$ 2) $\sim p \rightarrow \sim q$ 3) $\sim q \rightarrow p$ 4) $\sim p \rightarrow q$
- 19. The perimeter of a certain sector of a circle is equal to the length of the arc of the semicircle. Then the angle at the centre of the sector in radians is

1)	$\pi - 2$	2)	$\pi + 2$
3)	π 3	4)	$\frac{2\pi}{3}$

20. The value of Tan $67\frac{1}{2}^{0} + Cot \ 67\frac{1}{2}^{0}$ is

- 1) $\sqrt{2}$ 2) $3\sqrt{2}$
- 3) $2\sqrt{2}$ 4) $2-\sqrt{2}$

21. If e_1 and e_2 are the eccentricities of a hyperbola $3x^2 - 3y^2 = 25$ and its conjugate, then

- 1) $e_1^2 + e_2^2 = 2$ 2) $e_1^2 + e_2^2 = 4$
- 3) $e_1 + e_2 = 4$ 4) $e_1 + e_2 = \sqrt{2}$

22. If p and q are prime numbers satisfying the condition $p^2 - 2q^2 = 1$, then the value of $p^2 + 2q^2$ is

 1)
 5
 2)
 15

 3)
 16
 4)
 17

23. If A(adj A) = 5I where I is the identity matrix of order 3, then |adj A| is equal to 1) 125 2) 25

3) 5 4) 10

24. The number of solutions for the equation Sin 2x + Cos 4x = 2 is

 1)
 0
 2)
 1

 3)
 2
 4)
 Infinite

 $25. \quad \int e^x \cdot x^5 \, dx \text{ is}$

1) $e^{x} \left[x^{5} + 5x^{4} + 20x^{3} + 60x^{2} + 120x + 120 \right] + C$ 2) $e^{x} \left[x^{5} - 5x^{4} - 20x^{3} - 60x^{2} - 120x - 120 \right] + C$ 3) $e^{x} \left[x^{5} - 5x^{4} + 20x^{3} - 60x^{2} + 120x - 120 \right] + C$ 4) $e^{x} \left[x^{5} + 5x^{4} + 20x^{3} - 60x^{2} - 120x + 120 \right] + C$ 26. If f(x) is an even function and f'(x) exists, then f'(e) + f'(-e) is

$$3) \geq 0 \qquad \qquad 4) < 0$$

27. If α is a complex number satisfying the equation $\alpha^2 + \alpha + 1 = 0$ then α^{31} is equal to

1)
$$\alpha$$
 2) α^2
3) 1 4) ι

28. The derivative of $Sin(x^3)$ w.r.t. $Cos(x^3)$ is

1)
$$-Tan(x^3)$$
 2) $Tan(x^3)$

 3) $-Cot(x^3)$
 4) $Cot(x^3)$

29. A unit vector perpendicular to both the vectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is

1)
$$\begin{array}{c} -\hat{i} - \hat{j} + \hat{k} \\ \sqrt{3} \end{array}$$
2)
$$\begin{array}{c} \hat{i} + \hat{j} - \hat{k} \\ 3 \end{array}$$
3)
$$\begin{array}{c} \hat{i} + \hat{j} + \hat{k} \\ \sqrt{3} \end{array}$$
4)
$$\begin{array}{c} \hat{i} - \hat{j} + \hat{k} \\ \sqrt{3} \end{array}$$

30. If
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
 and $B = \begin{bmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$ then
1) $A = -B$
3) $B = 0$
2) $A = B$
4) $B = A^2$

31. The locus of a point which moves such that the sum of its distances from two fixed points is a constant is

a circle
 a parabola
 an ellipse
 a hyperbola

32. The centroid of the triangle ABC where $A \equiv (2, 3)$, $B \equiv (8, 10)$ and $C \equiv (5, 5)$ is

 1) (5, 6)
 2) (6, 5)

 3) (6, 6)
 4) (15, 18)

33. If $3x^2 + xy - y^2 - 3x + 6y + K = 0$ represents a pair of lines, then K = 11) 0 2) 9 3) 1 4) -9

34. The equation of the smallest circle passing through the points (2, 2) and (3, 3) is

- 1), $x^{2} + y^{2} + 5x + 5y + 12 = 0$ 3) $x^{2} + y^{2} + 5x - 5y + 12 = 0$ 4) $x^{2} + y^{2} - 5x - 5y + 12 = 0$ 4) $x^{2} + y^{2} - 5x + 5y - 12 = 0$
- **35.** The characteristic roots of the matrix $\begin{bmatrix}
 1 & 0 & 0 \\
 2 & 3 & 0 \\
 4 & 5 & 6
 \end{bmatrix}
 are
 1)1, 3, 62)3)4, 5, 64)2, 4, 6$

36. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then $A^{-1} =$	
1) $\frac{-1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$	$2) \frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$
$3) \begin{bmatrix} -2 & 4 \\ 1 & 3 \end{bmatrix}$	$4) \left[\begin{array}{rrr} 2 & 4 \\ 1 & 3 \end{array} \right]$

37. The set $\{-1, 0, 1\}$ is not a multiplicative group because of the failure of

1)	Closure	law	2)	Associative law
3)	Identity	law	4)	Inverse law

38 The angle of elevation of the top of a TV tower from three points A, B and C in a straight line through the foot of the tower are α , 2α and 3α respectively. If $AB = \alpha$, the height of the tower is

1)	a Tan α	2)	a Sin	α
3)	a Sin 2a	4)	a Sin	3α

39. The angles A, B and C of a triangle ABC are in A.P. If $b: c = \sqrt{3}: \sqrt{2}$, then the angle A is

1)	30 ⁰	2)	15 ⁰
3)	75 ⁰	4)	45 ⁰

40. $Sin\left(2Sin^{-1}\sqrt{\frac{63}{65}}\right) =$ 1) $\frac{2\sqrt{126}}{65}$ 2) $\frac{4\sqrt{65}}{\cdot 65}$ 3) $\frac{8\sqrt{63}}{65}$ 4) $\frac{\sqrt{63}}{65}$ 41. The general solution of |Sin x| = Cos x is (when $n \in Z$) given by

1)
$$n \pi + \frac{\pi}{4}$$

3) $n \pi \pm -$
2) $2n \pi \pm \frac{\pi}{4}$
4) $n \pi - \frac{\pi}{4}$

42. The real root of the equation $x^3 - 6x + 9 = 0$ is 1) -6 2) -9 3) 6 4) -3

43. The digit in the unit's place of 5^{834} is

 1) 0
 2) 1

 3) 3
 4) 5

44. The remainder when $3^{100} \times 2^{50}$ is divided by 5 is

 1)
 1
 2)
 2

 3)
 3
 4)
 4

45. $\int_{\sqrt{1-Sin^{4}x}}^{Sin x \cos x} dx =$ 1) $\frac{1}{2} Sin^{-1} (Sin^{2}x) + C$ 2) $\frac{1}{2} Cos^{-1} (Sin^{2}x) + C$ 3) $Tan^{-1} (Sin^{2}x) + C$ 4) $Tan^{-1} (2 Sin x) + C$

46. The value of $\int_{-2} (ax^3 + bx + c) dx$ depends on the 1) value of b 2) value of c 3) value of a 4) values of a and b

47. The area of the region bounded by $y = 2x - x^2$ and the x-axis is

1) $\frac{8}{3}$ sq. units2) $\frac{1}{3}$ sq. units3) $\frac{7}{3}$ sq. units4) $\frac{2}{3}$ sq. units

48. The differential equation $y \frac{dy}{dx} + x = c$ represents

- 1) a family of hyperbolas
- 2) a family of circles whose centres are on the y-axis
- 3) a family of parabolas
- 4) a family of circles whose centres are on the x-axis

49. If $f(x^5) = 5x^3$, then f'(x) =

- 1) $\frac{3}{5\sqrt{x^2}}$ 2) $\frac{5}{\sqrt{x}}$ 3) 3 4) $\frac{5}{\sqrt{x}}$
- 50. f(x) = 2a x in -a < x < a= 3x - 2a in $a \le x$.

Then which of the following is true?

- 1) f(x) is discontinuous at x = a 2) f(x) is not differentiable at x
- 3) f(x) is differentiable at all $x \ge a$ 4) f(x) is continuous at all x < a

The maximum area of a rectangle that can be inscribed in a circle of radius 2 units is **51**. (in square units)

1) 4 2)
$$8\pi$$

52. If Z is a complex number such that Z = -Z, then

1) Z is purely real

3) 2

- 2) Z is purely imaginary
- 3) Z is any complex number
- 4) Real part of Z is the same as its imaginary part

53. The value of
$$\sum_{K=1}^{6} \left[Sin \frac{2K \Pi}{7} - i Cos \frac{2K \Pi}{7} \right]$$
 is
1) i
3) -i
54.
$$\sum_{K \to \infty}^{Lt} x Sin\left(\frac{2}{x}\right)$$
 is equal to
1) ∞
3) 2
4) 1
2) 0
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 2
4) 4
4) 2
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4) 4
4)

- A stone is thrown vertically upwards and the height x ft. reached by the stone in t seconds 55. is given by $x = 80t - 16t^2$. The stone reaches the maximum height in
 - 1) 2 seconds 2) 2.5 seconds
 - 3) 3 seconds 4) 1.5 seconds

56. The maximum value of Log x in $(2, \infty)$ is

57. If
$$f(x) = be^{ax} + ae^{bx}$$
, then $f''(0) =$
1) 0 2) $2ab$
3) $ab(a+b)$ 4) ab

58. If
$$\frac{\overline{1+\cos A}}{1-\cos A} = \frac{x}{y}$$
, then the value of $Tan A =$
1) $\frac{x^2 + y^2}{x^2 - y^2}$
2) $\frac{2xy}{x^2 + y^2}$
3) $\frac{2xy}{x^2 - y^2}$
4) $\frac{2xy}{y^2 - x^2}$
59. $\int_{\sec x + Tan x} dx -$
1) $Tan x - \sec x + C$
2) $Log (1 + Sin x) + C$

3) Sec x + Tan x + C4) Log Sin x + Log Cos x + C

60. If $\int f(x) dx = g(x)$, then $\int f(x) g(x) dx =$ 1) $\frac{1}{2} f^{2}(x)$ 3) $\frac{1}{2} [g'(x)]^{2}$ 2) $\frac{1}{2} g^{2}(x)$ 4) f'(x) g(x)