

KCET CHEMISTRY ANSWER KEYS (19.04.2018)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	С	Α	D	Α	В	В	В	D	С	В	С	Α	В	С
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
В	D	С	В	С	Α	Α	С	D	Α	D	В	В	В	В
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Α	С	Α	Α	Α	Α	Α	В	D	В	С	Α	С	D	С
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
С	D	В	В	Α	С	С	D	В	С	С	Α	D	В	Α

1. Sol: (B)

 $PbO_2 + conc. HNO_3 \rightarrow Pb(NO_3)_2 + H_2O + O_2$

2. Sol: (c)

 $\text{KI} + 2\text{KMnO}_4 + \text{H}_2\text{O} \rightarrow \text{KIO}_3 + 2\text{KOH} + \text{MnO}_2$

3. Sol: (a)

Conceptual (Ambidendate ligand shows the linkage Isomerism)

4. Sol: (d) Conceptual

Conceptua

5. Sol: (a)

6. Sol: (b)

7. Sol: (b)

 $C_1 - C_4 \alpha$ -linkage

Zeigler Natta Catalyst is (C₂H₅)3Al + TiCl₄ which is used to prepare High Density polythene.

n(CH₂ = CH₂) $\xrightarrow{\text{polymerization}}$ (Ethene) Ziegler Natta Catalyst (High Denisty polythene)

14. Sol: (b) $2Mg + O_2 \rightarrow 2MgO$

∴ 1 mole of O₂ reacts with 2 moles of Mg

.00875 mole of O₂ reacts with $\frac{2}{1} \times .00875$ moles of Mg = .0175 Moles of Mg

[: Moles of O2 = $\frac{0.28}{32}$ = .00875]

Hence, mass of magnesium that reacts

= moles × molar mass

= .0175 × 24 = 0.42 g

That means, that of the 1 g of Mg that reacts only 0.42 g is used. Therefore <u>Magnesium</u> is in excess and by (1 - 0.42) = 0.58 g.

12. Sol: (c)Conceptual's' orbital is always nearer to the nucleus.

13. Sol: (a)

Conceptual

Size of Anion is bigger than the neutral atoms and size of cation is smaller than the neutral atom from which they are formed.

14. Sol: (b)

15. Sol: (c) Conceptual

16. **Sol: (b)** Conceptual (For Ideal gas Z = 1) Compressibility factor

17. Sol: () $K_p = K_c (RT)^{\Delta n}$ $NH_4Cl_{(s)} \rightleftharpoons NH_{3(g)} + HCl_{(g)}$ $\therefore \Delta n = n_P = n_R$ = 2 - 0 = 2

18. Sol: (c)

Conceptual

According to Lewis "Acid" are those who can accept a lone pair of electrons. Hence, BF_3 accept lone pair of electrons since it is electron deficient.

F-B-F | F

19. Sol: (b) $2MnO_4^- + 5H_2C_2O_4 + 6H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$

20. Sol: (c) Conceptual

21. Sol: (a) Conceptual

22. **Sol: (a)** But – 2 – ene

> H₃C C=C and C=CH cis H H trans C=3

23. Sol: (c) Conceptual $C + Na + N \rightarrow NaCN$

24. Sol: (d)

 $R - C \equiv CR' + H_2 \xrightarrow{\text{Na/liqud}}_{\text{NH}_3} \xrightarrow{\text{R}}_{\text{H}} C = C$

We can cis alkene by lindlar's catalyst and trans alkene by Na/liquid NH₃.

25. Sol: (a)

Hardness in H₂O is generally caused by calcium and magnesium salts.

26. Sol: (d) Conceptual

27. Sol: (b)

Highest boiling point means the solution should have more number of particles. In, Na₂SO₄ we are having highest number of particles i.e. [Na₂SO₄ \rightarrow 2Na⁺ + SO₄²⁻]

28. Sol: (b)

 $\begin{array}{cccc} MnO_4^- & \rightarrow & MnO_2 \\ \downarrow & & \downarrow \\ x + 4(-2) = -1 & & x + 2(-2) = 0 \\ x = +7 & & x = +4 \end{array}$

: Change in 0.N = 7 - 4 = 3Hence charge required will be 3F

29. Sol: (b) $2SO_2 + O_2 \rightleftharpoons 2SO_3$

$$-\frac{1}{2} \frac{d[SO_2]}{dt} = -\frac{d[O_2]}{dt} = \frac{1}{2} \frac{d[SO_3]}{dt}$$

$$\therefore \frac{d[SO_3]}{dt} = \frac{2d[O_2]}{dt}$$

$$= 2 \times 2 \times 10^{-4}$$

$$= 4 \times 10^{-4} \text{ mol } \text{l}^{-5} \text{s}^{-1}$$

30. Sol: (b)

According to Hardy-Schulze rule, greater is the valency of oppositely charged ions, greater will be the coagulating value.

31. Sol: (a) Conceptual

32. Sol: (c) Conceptual

33. Sol: (a)
Conceptual
[Both V₂O₅ and Cr₂O₃ can show the property of Acidic as well as basic oxide]

34. **Sol: (a)** [Co(NH₃)₄ Cl(NO₂)]Cl Tetra ammine chloridonitrito-N-Cobalt (III) Chloride.

35. Sol: (a) Conceptual

36. **Sol: (a)** Phenol reacts with bromine water whereas ethanol does not react.

37. Sol: (a)

For halogen reaction like lodoform compounds must have either of these groups.

$$CH_3 - C - or CH_3 - CH - OH OH$$

$$\Rightarrow \frac{\Lambda_m}{K} = \frac{1000}{M} = \frac{1000}{10^{-2}} = 10^5 \text{ cm}^3 \text{ mol}^-$$

43. **Sol: (c)** Conceptual 44. **Sol: (d)**

For every $10^{\circ}\mathrm{C}$ rise in temperature the rate of reaction doubles.

45. **Sol: (c)** Conceptual

46. **Sol: (c)**

Bauxite mainly contains $\mathsf{Fe}_2\mathsf{O}_3$ and SiO_2 as the impurities.

47. Sol: (c) 2NaN₃ $\xrightarrow{300^{\circ}C}$ 2Na + 3N₂

48. Sol: (b)

The most common oxidation states of lanthanides is +3

49. Sol: (b)

 $X \rightarrow [Ar]3d^{5}$ If X is at +3 oxidation state than initially, X → [Ar]4s² 3d⁶ ∴ Atomic Number is 26. 50. **Sol: (a)** Wurtz reacition n(CH₃ CH₂ CH₂ Cl) $\xrightarrow{Na}_{dry \ ether}$ CH₃ – (CH₂)₄ – CH₃

51. Sol: (c)

 $\begin{array}{cccc} CH_3 & CH_3 \\ H_3C - C - OH & 573 \text{ K} \\ Cu & H_3C - C + H_2O \\ CH_3 & CH_2 \\ \hline CH_2 \\ \text{tertiary butyl} \\ alcohol \end{array}$

52. Sol: (c)

+I effect decreases the acidic strength and – I effect increases acidic strength.

```
53. Sol: (d)
```

```
+ I effect increases the Basic strength
```

CH2--NH2

(Benzyl amine)

54. Sol: (b) Conceptual

55. Sol: (c) Conceptual 56. Sol: (c) Body diagonal = $\sqrt{3}$ a = $\sqrt{3} \times 300 = 519.6$ pm 57. **Sol: (a)** Conceptual

58. **Sol: (d)** $E_{cell}^{o} = \frac{.0591}{2} \log K_{c}$

$$0.3 = \frac{.0591}{2} \log K_c$$

 $\Rightarrow \log K_c = 10.15$

 \Rightarrow Kc = Antilog(10.15) \equiv 10¹⁰ (approx.)

59. **Sol: (b)** Conceptual

60. Sol: (a) Conceptual