BBYJU'S

KCET CHEMISTRY ANSWER KEYS (19.04.2018)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
B	C	A	D	A	B	B	B	D	C	B	C	A	B	C
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
B	D	C	B	C	A	A	C	D	A	D	B	B	B	B
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
A	C	A	A	A	A	A	B	D	B	C	A	C	D	C
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
C	D	B	B	A	C	C	D	B	C	C	A	D	B	A

1. Sol: (B)
$\mathrm{PbO}_{2}+$ conc. $\mathrm{HNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
2. Sol: (c)
$\mathrm{KI}+2 \mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KIO}_{3}+2 \mathrm{KOH}+\mathrm{MnO}_{2}$
3. Sol: (a)

Conceptual (Ambidendate ligand shows the linkage Isomerism)

4. Sol: (d)

Conceptual
5. Sol: (a)

6. Sol: (b)

7. Sol: (b)

8. Sol: (b)

9. Sol: (d)
$\mathrm{C}_{1}-\mathrm{C}_{4} \alpha$-linkage
10. Sol: (c)

Zeigler Natta Catalyst is $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) 3 \mathrm{Al}+\mathrm{TiCl}_{4}$ which is used to prepare High Density polythene.

$$
\underset{\substack{\text { (Ethene) }}}{\mathrm{n}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)} \xrightarrow[\begin{array}{c}
\text { Ziegler Natta } \\
\text { Catalyst }
\end{array}]{\text { polymerization }}+\mathrm{CH}_{2}-\mathrm{CH}_{2} \frac{1}{\hbar}
$$

14. Sol: (b)
$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
$\therefore 1$ mole of O_{2} reacts with 2 moles of Mg
.00875 mole of O_{2} reacts with $\frac{2}{1} \times .00875$ moles of Mg $=.0175$ Moles of Mg
$\left[\because\right.$ Moles of $\mathrm{O} 2=\frac{0.28}{32}=.00875$]
Hence, mass of magnesium that reacts

$$
\begin{aligned}
& =\text { moles } \times \text { molar mass } \\
& =.0175 \times 24=0.42 \mathrm{~g}
\end{aligned}
$$

That means, that of the 1 g of Mg that reacts only 0.42 g is used.
Therefore Magnesium is in excess and by $(1-0.42)=0.58 \mathrm{~g}$.
12. Sol: (c)

Conceptual
' s ' orbital is always nearer to the nucleus.
13. Sol: (a)

Conceptual
Size of Anion is bigger than the neutral atoms and size of cation is smaller than the neutral atom from which they are formed.
14. Sol: (b)

15. Sol: (c)

Conceptual
16. Sol: (b)

Conceptual (For Ideal gas Z = 1)
Compressibility factor
17. Sol: ()
$K_{p}=K_{c}(R T)^{\Delta n}$
$\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})} \rightleftharpoons \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})}$
$\therefore \Delta n=n_{P}=n_{R}$

$$
=2-0=2
$$

18. Sol: (c)

Conceptual
According to Lewis "Acid" are those who can accept a lone pair of electrons. Hence, BF_{3} accept lone pair of electrons since it is electron deficient.

19. Sol: (b)
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
20. Sol: (c)

Conceptual
21. Sol: (a)

Conceptual
22. Sol: (a)

But-2-ene

23. Sol: (c)

Conceptual
$\mathrm{C}+\mathrm{Na}+\mathrm{N} \rightarrow \mathrm{NaCN}$
24. Sol: (d)

We can cis alkene by lindlar's catalyst and trans alkene by $\mathrm{Na} /$ liquid NH_{3}.
25. Sol: (a)

Hardness in $\mathrm{H}_{2} \mathrm{O}$ is generally caused by calcium and magnesium salts.
26. Sol: (d)

Conceptual
27. Sol: (b)

Highest boiling point means the solution should have more number of particles.
In, $\mathrm{Na}_{2} \mathrm{SO}_{4}$ we are having highest number of particles i.e.
$\left[\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}\right]$
28. Sol: (b)

MnO_{4}^{-}	\rightarrow	MnO_{2}
\downarrow		\downarrow
$\mathrm{x}+4(-2)=-1$		$\mathrm{x}+2(-2)=0$
$\mathrm{x}=+7$		$\mathrm{x}=+4$

\therefore Change in $0 . N=7-4=3$
Hence charge required will be 3 F

29. Sol: (b)

$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftarrows 2 \mathrm{SO}_{3}$
$-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{SO}_{2}\right]}{\mathrm{dt}}=-\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{SO}_{3}\right]}{\mathrm{dt}}$
$\therefore \frac{\mathrm{d}\left[\mathrm{SO}_{3}\right]}{\mathrm{dt}}=\frac{2 \mathrm{~d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}$

$$
\begin{aligned}
& =2 \times 2 \times 10^{-4} \\
& =4 \times 10^{-4} \mathrm{~mol} \mathrm{l}^{-} \mathrm{s}^{-1}
\end{aligned}
$$

30. Sol: (b)

According to Hardy-Schulze rule, greater is the valency of oppositely charged ions, greater will be the coagulating value.
31. Sol: (a)

Conceptual
32. Sol: (c)

Conceptual
33. Sol: (a)

Conceptual
[Both $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{Cr}_{2} \mathrm{O}_{3}$ can show the property of Acidic as well as basic oxide]
34. Sol: (a)
[Co($\left.\left.\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$
Tetra ammine chloridonitrito-N-Cobalt (III) Chloride.

35. Sol: (a)

Conceptual
36. Sol: (a)

Phenol reacts with bromine water whereas ethanol does not react.

37. Sol: (a)

For halogen reaction like lodoform compounds must have either of these groups.

38. Sol: (b)
$\mathrm{C}_{6} \mathrm{H}_{5} N_{2}^{+} \mathrm{X}^{-}$is the most stable one because of resonance.
40. Sol: (b)
$\mathrm{n}\left(400 \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}\right)+\mathrm{n}\left(\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{2}\right)$ (Adipic Acid) (Hexamethylene diamine)

41. Sol: (c)

Conceptual
42. Sol: (a)
$\Lambda_{m}=\frac{K \times 1000}{M}$
$\Rightarrow \frac{\Lambda_{m}}{\mathrm{~K}}=\frac{1000}{\mathrm{M}}=\frac{1000}{10^{-2}}=10^{5} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$
43. Sol: (c)

Conceptual
44. Sol: (d)

For every $10^{\circ} \mathrm{C}$ rise in temperature the rate of reaction doubles.
\therefore From $30^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
it is 64 times
45. Sol: (c)

Conceptual
46. Sol: (c)

Bauxite mainly contains $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and SiO_{2} as the impurities.
47. Sol: (c)
$2 \mathrm{NaN}_{3} \xrightarrow{300^{\circ} \mathrm{C}} 2 \mathrm{Na}+3 \mathrm{~N}_{2}$
48. Sol: (b)

The most common oxidation states of lanthanides is +3
49. Sol: (b)
$X \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
If X is at +3 oxidation state than initially,
$X \rightarrow[\operatorname{Ar}] 4 s^{2} 3 d^{6}$
\therefore Atomic Number is 26 .
50. Sol: (a)

Wurtz reacition
$\mathrm{n}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right) \xrightarrow[\text { dry ether }]{\mathrm{Na}} \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}$
51. Sol: (c)

52. Sol: (c)
+l effect decreases the acidic strength and -I effect increases acidic strength.

53. Sol: (d)

+1 effect increases the Basic strength

54. Sol: (b)

Conceptual
55. Sol: (c)

Conceptual
56. Sol: (c)

Body diagonal $=\sqrt{3}$ a
$=\sqrt{3} \times 300=519.6 \mathrm{pm}$
57. Sol: (a)

Conceptual
58. Sol: (d)
$E_{\text {cell }}^{o}=\frac{.0591}{2} \log \mathrm{~K}_{\mathrm{c}}$
$0.3=\frac{.0591}{2} \log K_{c}$
$\Rightarrow \log \mathrm{K}_{\mathrm{c}}=10.15$
$\Rightarrow \mathrm{Kc}=\operatorname{Antilog}(10.15) \equiv 10^{10}$ (approx.)
59. Sol: (b)

Conceptual
60. Sol: (a)

Conceptual

