Book a FREE class

Trigonometric Formulas

Right-Triangle Definition:

For this definition we assume that
$0<\theta<\frac{\pi}{2}$ or $0^{\circ}<\theta<90^{\circ}$.

$$
\begin{array}{ll}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} & \csc \theta=\frac{\text { hypotenuse }}{\text { opposite }} \\
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} & \sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }} \\
\tan \theta=\frac{\text { opposite }}{\text { adjacent }} & \cot \theta=\frac{\text { adjacent }}{\text { opposite }}
\end{array}
$$

Reciprocal Identities:

$$
\begin{array}{ll}
\sin x=\frac{1}{\csc x} & \csc x=\frac{1}{\sin x} \\
\cos x=\frac{1}{\sec x} & \sec x=\frac{1}{\cos x} \\
\tan x=\frac{1}{\cot x} & \cot x=\frac{1}{\tan x}
\end{array}
$$

Ratio Identities:

$$
\begin{array}{ll}
\tan x=\frac{\sin x}{\cos x} & \cot x=\frac{\cos x}{\sin x} \\
\sin x=\cos x \tan x & \cos x=\sin x \cot x
\end{array}
$$

Tangent and Cotangent Identities:

$\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}$

Pythagorean Identities:

$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\tan ^{2} \theta+1=\sec ^{2} \theta$
$1+\cot ^{2} \theta=\csc ^{2} \theta$

Reciprocal Identities:

$\csc \theta=\frac{1}{\sin \theta} \quad \sin \theta=\frac{1}{\csc \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cos \theta=\frac{1}{\sec \theta}$
$\cot \theta=\frac{1}{\tan \theta}$
$\tan \theta=\frac{1}{\cot \theta}$

Half Angle Formulas:

$$
\begin{array}{ll}
\sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}} & \sin ^{2} \theta=\frac{1}{2}(1-\cos (2 \theta)) \\
\cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}} & \cos ^{2} \theta=\frac{1}{2}(1+\cos (2 \theta)) \\
\tan \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} & \tan ^{2} \theta=\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)}
\end{array}
$$

Sum and Difference Formulas/Identities:
$\sin (u+v)=\sin u \cos v+\cos u \sin v$
$\sin (u-v)=\sin u \cos v-\cos u \sin v$
$\cos (u+v)=\cos u \cos v-\sin u \sin v$
$\cos (u-v)=\cos u \cos v+\sin u \sin v$
$\tan (u+v)=\frac{\tan u+\tan v}{1-\tan u \tan v}$
$\tan (u-v)=\frac{\tan u-\tan v}{1+\tan u \tan v}$

Double-angle formulas:

Substitute $\alpha=\beta$ in the previous sum formulas, then we find the double-angle formulas:

$$
\begin{aligned}
& \cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha \\
& \sin 2 \alpha=2 \sin \alpha \cos \alpha \\
& \tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}
\end{aligned}
$$

Two useful forms of (7) are derived by replacing $\cos ^{2} \alpha$ by $1-\sin ^{2} \alpha$, resp. $\sin ^{2} \alpha$ by $1-\cos ^{2} \alpha$:

$$
\cos 2 \alpha=1-2 \sin ^{2} \alpha
$$

$$
\cos 2 \alpha=2 \cos ^{2} \alpha-1
$$

And so:

$$
\begin{aligned}
& \sin ^{2} \alpha=\frac{1}{2}(1-\cos 2 \alpha) \\
& \cos ^{2} \alpha=\frac{1}{2}(1+\cos 2 \alpha)
\end{aligned}
$$

Inverse Trig Functions:

Definition

$y=\sin ^{-1} x$ is equivalent to $x=\sin y$
$y=\cos ^{-1} x$ is equivalent to $x=\cos y$
$y=\tan ^{-1} x$ is equivalent to $x=\tan y$

Domain and Range

Function Domain
Range
$y=\sin ^{-1} x \quad-1 \leq x \leq 1 \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
$y=\cos ^{-1} x \quad-1 \leq x \leq 1 \quad 0 \leq y \leq \pi$
$y=\tan ^{-1} x \quad-\infty<x<\infty \quad-\frac{\pi}{2}<y<\frac{\pi}{2}$

Inverse Properties

$$
\begin{array}{ll}
\cos \left(\cos ^{-1}(x)\right)=x & \cos ^{-1}(\cos (\theta))=\theta \\
\sin \left(\sin ^{-1}(x)\right)=x & \sin ^{-1}(\sin (\theta))=\theta \\
\tan \left(\tan ^{-1}(x)\right)=x & \tan ^{-1}(\tan (\theta))=\theta
\end{array}
$$

Alternate Notation

$\sin ^{-1} x=\arcsin x$
$\cos ^{-1} x=\arccos x$
$\tan ^{-1} x=\arctan x$

Sum to Product Formulas:

$$
\begin{aligned}
& \sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right) \\
& \sin \alpha-\sin \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)
\end{aligned}
$$

$\cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
$\cos \alpha-\cos \beta=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$

Degrees to Radians Formulas:

If \bar{x} is an angle in degrees and t is an angle in radians then

$$
\frac{\pi}{180}=\frac{t}{x} \quad \Rightarrow \quad t=\frac{\pi x}{180} \quad \text { and } \quad x=\frac{180 t}{\pi}
$$

Cofunction Formulas:

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta & \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta \\
\csc \left(\frac{\pi}{2}-\theta\right)=\sec \theta & \sec \left(\frac{\pi}{2}-\theta\right)=\csc \theta \\
\tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta & \cot \left(\frac{\pi}{2}-\theta\right)=\tan \theta
\end{array}
$$

Law of Sines, Cosines and Tangents:

> Law of Sines
> $\frac{\sin \alpha}{a}=\frac{\sin \beta}{b}=\frac{\sin \gamma}{c}$

Law of Cosines

$a^{2}=b^{2}+c^{2}-2 b c \cos \alpha$
$b^{2}=a^{2}+c^{2}-2 a c \cos \beta$
$c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$

Mollweide's Formula

$$
\frac{a+b}{c}=\frac{\cos \frac{1}{2}(\alpha-\beta)}{\sin \frac{1}{2} \gamma}
$$

Law of Tangents

$$
\begin{aligned}
& \frac{a-b}{a+b}=\frac{\tan \frac{1}{2}(\alpha-\beta)}{\tan \frac{1}{2}(\alpha+\beta)} \\
& \frac{b-c}{b+c}=\frac{\tan \frac{1}{2}(\beta-\gamma)}{\tan \frac{1}{2}(\beta+\gamma)} \\
& \frac{a-c}{a+c}=\frac{\tan \frac{1}{2}(\alpha-\gamma)}{\tan \frac{1}{2}(\alpha+\gamma)}
\end{aligned}
$$

How to Find Reference Angles:

Step 1: Determine which quadrant the angle is in
Step 2: Use the appropriate formula
Quad I $=$ is the angle itself
Quad II $=180-\theta$ or $\pi-\theta$
Quad III $=\theta-180$ or $\theta-\pi$
Quad IV $=360-\theta$ or $2 \pi-\theta$

Odd-Even Identities:

$$
\begin{array}{ll}
\operatorname{Sin}(-x)=-\sin x & \operatorname{Csc}(-x)=-\csc x \\
\operatorname{Cos}(-x)=\cos x & \operatorname{Sec}(-x)=\sec x \\
\operatorname{Tan}(-x)=-\tan x & \operatorname{Cot}(-x)=-\cot x
\end{array}
$$

Facts and Properties

Period:

The period of a function is the number, T, such that $f(\theta+T)=f(\theta)$. So, if ω is a fixed number and θ is any angle we have the following periods.

$$
\begin{array}{ll}
\sin (\omega \theta) & \rightarrow \\
\cos (\omega \theta) & \rightarrow \\
& T=\frac{2 \pi}{\omega} \\
\tan (\omega \theta) & \rightarrow \\
\csc (\omega \theta) & T=\frac{2 \pi}{\omega} \\
\sec (\omega \theta) & \rightarrow \\
& T=\frac{2 \pi}{\omega} \\
\cot (\omega \theta) & \rightarrow \\
& T=\frac{2 \pi}{\omega} \\
\hline
\end{array}
$$

Domain:

The domain is all the values of θ that can be plugged into the function.
$\sin \theta, \quad \theta$ can be any angle
$\cos \theta, \quad \theta$ can be any angle

$$
\tan \theta, \quad \theta \neq\left(n+\frac{1}{2}\right) \pi, \quad n=0, \pm 1, \pm 2, \ldots
$$

$\csc \theta, \quad \theta \neq n \pi, \quad n=0, \pm 1, \pm 2, \ldots$
$\sec \theta, \quad \theta \neq\left(n+\frac{1}{2}\right) \pi, \quad n=0, \pm 1, \pm 2, \ldots$
$\cot \theta, \quad \theta \neq n \pi, \quad n=0, \pm 1, \pm 2, \ldots$

Range:

The range is all possible values to get out of the function.
$-1 \leq \sin \theta \leq 1 \quad \csc \theta \geq 1$ and $\csc \theta \leq-1$
$-1 \leq \cos \theta \leq 1 \quad \sec \theta \geq 1$ and $\sec \theta \leq-1$
$-\infty<\tan \theta<\infty \quad-\infty<\cot \theta<\infty$

Unit circle definition:
For this definition θ is any angle.

$$
\begin{array}{ll}
\sin \theta=\frac{y}{1}=y & \csc \theta=\frac{1}{y} \\
\cos \theta=\frac{x}{1}=x & \sec \theta=\frac{1}{x} \\
\tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}
\end{array}
$$

Unit Circle:

Radian and Degree Measures of Angles:

$$
\begin{aligned}
& 1 \mathrm{rad}=\frac{180^{\circ}}{\pi} \approx 57^{\circ} 17^{\prime} 45^{\prime \prime} \\
& 1^{\circ}=\frac{\pi}{180} \mathrm{rad} \approx 0.017453 \mathrm{rad} \\
& 1^{\prime}=\frac{\pi}{180 \cdot 60} \mathrm{rad} \approx 0.000291 \mathrm{rad} \\
& 1^{\prime \prime}=\frac{\pi}{180 \cdot 3600} \mathrm{rad} \approx 0.000005 \mathrm{rad} \\
& \begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{array}{c}
\text { Angle } \\
\text { (degrees) }
\end{array} & 0 & 30 & 45 & 60 & 90 & 180 & 270 & 360 \\
\hline \begin{array}{c}
\text { Angle } \\
\text { (radians) }
\end{array} & 0 & \frac{\pi}{6} & \frac{\pi}{4} & \frac{\pi}{3} & \frac{\pi}{2} & \pi & \frac{3 \pi}{2} & 2 \pi \\
\hline
\end{array}
\end{aligned}
$$

Signs of Trigonometric Functions:

Quadrant	Sin	Cos	Tan	Cot	Sec	Cosec
	α	α	α	α	α	α
I	+	+	+	+	+	+
II	+					+
III			+	+		
IV		+			+	

Trigonometric Functions of Common Angles:

α°	$\alpha \operatorname{rad}$	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$	$\cot \alpha$	$\sec \alpha$	$\operatorname{cosec} \alpha$
0	0	0	1	0	∞	1	∞
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	$\frac{2}{\sqrt{3}}$	2
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	2	$\frac{2}{\sqrt{3}}$
90	$\frac{\pi}{2}$	1	0	∞	0	∞	1
120	$\frac{2 \pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{\sqrt{3}}$	-2	$\frac{2}{\sqrt{3}}$
180	π	0	-1	0	∞	-1	∞
270	$\frac{3 \pi}{2}$	-1	0	∞	0	∞	-1
360	2π	0	1	0	∞	1	∞

α°	$\alpha \mathrm{rad}$	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$	$\cot \alpha$
15	$\frac{\pi}{12}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2-\sqrt{3}$	$2+\sqrt{3}$
18	$\frac{\pi}{10}$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2 \sqrt{5}}}{4}$	$\sqrt{\frac{5-2 \sqrt{5}}{5}}$	$\sqrt{5+2 \sqrt{5}}$
36	$\frac{\pi}{5}$	$\frac{\sqrt{10-2 \sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2 \sqrt{5}}}{\sqrt{5}+1}$	$\frac{\sqrt{5}+1}{\sqrt{10-2 \sqrt{5}}}$
54	$\frac{3 \pi}{10}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2 \sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{\sqrt{10-2 \sqrt{5}}}$	$\frac{\sqrt{10-2 \sqrt{5}}}{\sqrt{5}+1}$
72	$\frac{2 \pi}{5}$	$\frac{\sqrt{10+2 \sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\sqrt{5+2 \sqrt{5}}$	$\sqrt{\frac{5-2 \sqrt{5}}{5}}$
75	$\frac{5 \pi}{12}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$

Most Important Formulas:

$$
\begin{aligned}
& \sin ^{2} \alpha+\cos ^{2} \alpha=1 \\
& \sec ^{2} \alpha-\tan ^{2} \alpha=1 \\
& \csc ^{2} \alpha-\cot ^{2} \alpha=1 \\
& \tan \alpha=\frac{\sin \alpha}{\cos \alpha} \\
& \cot \alpha=\frac{\cos \alpha}{\sin \alpha}
\end{aligned}
$$

$$
\tan \alpha \cdot \cot \alpha=1
$$

$$
\sec \alpha=\frac{1}{\cos \alpha}
$$

$$
\operatorname{cosec} \alpha=\frac{1}{\sin \alpha}
$$

