Trigonometric Formulas

Right-Triangle Definition:

For this definition we assume that

$$0 < \theta < \frac{\pi}{2} \text{ or } 0^{\circ} < \theta < 90^{\circ}.$$

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$
 $\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}}$ $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ $\sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}}$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$
 $\cot \theta = \frac{\text{adjacent}}{\text{opposite}}$

Reciprocal Identities:

$$\sin x = \frac{1}{\csc x} \qquad \qquad \csc x = \frac{1}{\sin x}$$

$$\cos x = \frac{1}{\sec x}$$
 $\sec x = \frac{1}{\cos x}$

$$\tan x = \frac{1}{\cot x}$$
 $\cot x = \frac{1}{\tan x}$

Ratio Identities:

$$\tan x = \frac{\sin x}{\cos x} \qquad \cot x = \frac{\cos x}{\sin x}$$

$$\sin x = \cos x \tan x$$
 $\cos x = \sin x \cot x$

Tangent and Cotangent Identities:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

Pythagorean Identities:

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

Reciprocal Identities:

$$csc \theta = \frac{1}{\sin \theta} \qquad sin \theta = \frac{1}{\csc \theta}$$

$$sec \theta = \frac{1}{\cos \theta} \qquad cos \theta = \frac{1}{\sec \theta}$$

$$cot \theta = \frac{1}{\tan \theta} \qquad tan \theta = \frac{1}{\cot \theta}$$

Half Angle Formulas:

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}} \qquad \sin^2\theta = \frac{1}{2}(1-\cos(2\theta))$$

$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}} \qquad \cos^2\theta = \frac{1}{2}(1+\cos(2\theta))$$

$$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} \qquad \tan^2\theta = \frac{1-\cos(2\theta)}{1+\cos(2\theta)}$$

Sum and Difference Formulas/Identities:

$$\sin(u+v) = \sin u \cos v + \cos u \sin v$$

$$\sin(u-v) = \sin u \cos v - \cos u \sin v$$

$$\cos(u+v) = \cos u \cos v - \sin u \sin v$$

$$\cos(u-v) = \cos u \cos v + \sin u \sin v$$

$$\tan(u+v) = \frac{\tan u + \tan v}{1 - \tan u \tan v}$$

$$\tan(u-v) = \frac{\tan u - \tan v}{1 + \tan u \tan v}$$

Double-angle formulas:

Substitute $\alpha = \beta$ in the previous sum formulas, then we find the double-angle formulas:

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$

$$\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$$
(7)

Two useful forms of (7) are derived by replacing $\cos^2\alpha$ by $1-\sin^2\alpha$, resp. $\sin^2\alpha$ by $1-\cos^2\alpha$:

$$\cos 2\alpha = 1 - 2 \sin^2 \alpha$$

$$\cos 2\alpha = 2 \cos^2 \alpha - 1$$
And so:
$$\sin^2 \alpha = \frac{1}{2} (1 - \cos 2\alpha)$$

$$\cos^2 \alpha = \frac{1}{2} (1 + \cos 2\alpha)$$

Inverse Trig Functions:

Definition

$$y = \sin^{-1} x$$
 is equivalent to $x = \sin y$
 $y = \cos^{-1} x$ is equivalent to $x = \cos y$
 $y = \tan^{-1} x$ is equivalent to $x = \tan y$

Domain and Range

Function	Domain	Range
$y = \sin^{-1} x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$y = \cos^{-1} x$	$-1 \le x \le 1$	$0 \le y \le \pi$
$y = \tan^{-1} x$	$-\infty < x < \infty$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$

Inverse Properties

$$\cos(\cos^{-1}(x)) = x \qquad \cos^{-1}(\cos(\theta)) = \theta$$
$$\sin(\sin^{-1}(x)) = x \qquad \sin^{-1}(\sin(\theta)) = \theta$$
$$\tan(\tan^{-1}(x)) = x \qquad \tan^{-1}(\tan(\theta)) = \theta$$

Alternate Notation

$$\sin^{-1} x = \arcsin x$$
$$\cos^{-1} x = \arccos x$$
$$\tan^{-1} x = \arctan x$$

Sum to Product Formulas:

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

Degrees to Radians Formulas:

If x is an angle in degrees and t is an angle in radians then

$$\frac{\pi}{180} = \frac{t}{x}$$
 \Rightarrow $t = \frac{\pi x}{180}$ and $x = \frac{180t}{\pi}$

Cofunction Formulas:

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta \qquad \sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta \qquad \cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$

Law of Sines, Cosines and Tangents:

Law of Sines

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

Law of Cosines

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Mollweide's Formula

$$\frac{a+b}{c} = \frac{\cos\frac{1}{2}(\alpha-\beta)}{\sin\frac{1}{2}\gamma}$$

Law of Tangents

$$\frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(\alpha-\beta)}{\tan\frac{1}{2}(\alpha+\beta)}$$

$$\frac{b-c}{b+c} = \frac{\tan\frac{1}{2}(\beta-\gamma)}{\tan\frac{1}{2}(\beta+\gamma)}$$

$$\frac{a-c}{a+c} = \frac{\tan\frac{1}{2}(\alpha-\gamma)}{\tan\frac{1}{2}(\alpha+\gamma)}$$

How to Find Reference Angles:

Step 1: Determine which quadrant the angle is in

Step 2: Use the appropriate formula

Quad I = is the angle itself

Quad II = $180 - \theta$ or $\pi - \theta$

Quad III = $\theta - 180$ or $\theta - \pi$

Quad IV = $360 - \theta$ or $2\pi - \theta$

Odd-Even Identities:

$$Sin(-x) = -sin x$$
 $Csc(-x) = -csc x$

$$Cos(-x) = cos x$$
 $Sec(-x) = sec x$

$$Tan(-x) = -tan x$$
 $Cot(-x) = -cot x$

Facts and Properties

Period:

The period of a function is the number, T, such that $f(\theta + T) = f(\theta)$. So, if ω is a fixed number and θ is any angle we have the following periods.

$$\sin(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\cos(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\tan(\omega\theta) \rightarrow T = \frac{\pi}{\omega}$$

$$\csc(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\sec(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\cot(\omega\theta) \rightarrow T = \frac{\pi}{\omega}$$

Domain:

The domain is all the values of θ that can be plugged into the function.

$$\sin \theta$$
, θ can be any angle $\cos \theta$, θ can be any angle $\tan \theta$, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, ...$ $\csc \theta$, $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2, ...$ $\sec \theta$, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, ...$ $\cot \theta$, $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2, ...$

Range:

The range is all possible values to get out of the function.

$$-1 \le \sin \theta \le 1$$
 $\csc \theta \ge 1$ and $\csc \theta \le -1$
 $-1 \le \cos \theta \le 1$ $\sec \theta \ge 1$ and $\sec \theta \le -1$
 $-\infty < \tan \theta < \infty$ $-\infty < \cot \theta < \infty$

Unit circle definition:

For this definition θ is any angle.

$$\sin \theta = \frac{y}{1} = y \qquad \csc \theta = \frac{1}{y}$$

$$\cos \theta = \frac{x}{1} = x \qquad \sec \theta = \frac{1}{x}$$

$$\tan \theta = \frac{y}{x} \qquad \cot \theta = \frac{x}{y}$$

$$\cos \theta = \frac{x}{1} = x$$
 $\sec \theta = \frac{1}{x}$

$$\tan \theta = \frac{y}{x}$$
 $\cot \theta = \frac{x}{y}$

Unit Circle:

Radian and Degree Measures of Angles:

1 rad =
$$\frac{180^{\circ}}{\pi} \approx 57^{\circ}17'45''$$

$$1^{\circ} = \frac{\pi}{180} \text{ rad} \approx 0.017453 \text{ rad}$$

$$1' = \frac{\pi}{180 \cdot 60}$$
 rad ≈ 0.000291 rad

$$1" = \frac{\pi}{180 \cdot 3600}$$
 rad ≈ 0.000005 rad

Angle (degrees)	0	30	45	60	90	180	270	360
Angle (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

Signs of Trigonometric Functions:

Quadrant	Sin	Cos	Tan	Cot	Sec	Cosec
Quadrant	α	α	α	α	α	α
I	+	+	+	+	+	+
II	+					+
III	1		+	+		
IV		+			+	

Trigonometric Functions of Common Angles:

α°	α rad	sin α	cosα	tan a	cot a	sec a	cosec a
0	0	0	1	0	∞	1	8
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	$\frac{2}{\sqrt{3}}$	2
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	2	$\frac{2}{\sqrt{3}}$
90	$\frac{\pi}{2}$	1	0	80	0	8	1
120	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{\sqrt{3}}$	-2	$\frac{2}{\sqrt{3}}$
180	π	0	-1	0	8	-1	00
270	$\frac{3\pi}{2}$	-1	0	8	0	8	-1
360	2π	0	1	0	∞	1	∞

α°	α rad	sin a	cosα	tan a	cot a
15	$\frac{\pi}{12}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2 - \sqrt{3}$	$2+\sqrt{3}$
18	$\frac{\pi}{10}$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\sqrt{\frac{5-2\sqrt{5}}{5}}$	$\sqrt{5+2\sqrt{5}}$
36	$\frac{\pi}{5}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}$	$\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}}$
54	$\frac{3\pi}{10}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}}$	$\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}$
72	$\frac{2\pi}{5}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\sqrt{5+2\sqrt{5}}$	$\sqrt{\frac{5-2\sqrt{5}}{5}}$
75	$\frac{5\pi}{12}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2 - \sqrt{3}$

Most Important Formulas:

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\sec^2 \alpha - \tan^2 \alpha = 1$$

$$\csc^2 \alpha - \cot^2 \alpha = 1$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$\tan \alpha \cdot \cot \alpha = 1$$

$$\sec \alpha = \frac{1}{\cos \alpha}$$

$$\csc\alpha = \frac{1}{\sin\alpha}$$