Time: $\mathbf{2 ~ h r ~} \mathbf{3 0}$

# Maharashtra Board Class VII Mathematics Sample Paper - 3 Solution 

## min Q1.

1. $\angle A C D$ and $\angle A B D$ are angles in the same segment.

We know that angles in the same segment are congruent.
Hence, $\mathrm{m} \angle \mathrm{ACB}=\mathrm{m} \angle \mathrm{ADB}=45^{\circ}$.
2. Loss $=$ Cost price - Selling price
$\therefore$ Selling price $=$ Cost price - Loss $=$ Rs. $(897-190)=$ Rs. 707
3. Area of the rectangular mirror
$=$ length $\times$ breadth
$=100.5 \times 56.4 \mathrm{~cm}^{2}$
$=5668.2 \mathrm{~cm}^{2}$
Hence, area of the mirror is $5668.2 \mathrm{~cm}^{2}$.
4. The given one to one correspondence between the vertices is shown below using arrows.

5. $(4-x)^{2}$
$=4^{2}-2 \times 4 \times x+x^{2}$
$=16-8 x+x^{2}$
6. $144 m n-48 m$
$=12 \times 4 \times 3 \times m \times n-12 \times 4 \times m$
$=12 \times 4 \times m(3 \times n-1)$
$=48 m(3 n-1)$
7. Diagonals of a rectangle are equal in length.

Hence, the length of the other diagonal is also 10.6 cm .
8. The shaded part i.e. segment $P X Q$ is the minor segment and the unshaded part i.e. segment PYQ is the major segment of the given circle.

9. Total surface area of a cube $=6 \times$ Area of one face

$$
\begin{aligned}
& =6 \times 24 \mathrm{~cm}^{2} \\
& =144 \mathrm{~cm}^{2}
\end{aligned}
$$

$10.45 x^{2} y=3 \times 3 \times 5 \times x \times x \times y$
$65 y^{2}=13 \times 5 \times y \times y$
$\therefore$ Common factors of $45 x^{2} y$ and $65 y^{2}$ are 5 and $y$.
11. $-100 \times \frac{-1}{100}=1$

Hence, the multiplicative inverse of -100 is $-\frac{1}{100}$.
12.The quadrilateral which has only one pair of parallel sides is called a trapezium.

## Q2.

1. Given cost price of the refrigerator $=$ Rs. 12,500

Money spent on repairs = Rs. 947
Money spent on transport = Rs. 450
Total cost price $=$ Rs. $(12500+947+450)=$ Rs. 13,897
Now, selling price of the refrigerator = Rs. 10, 478
Here, selling price < cost price, therefore, Mr Shah incurred a loss.

Loss $=$ Cost price - Selling price $=$ Rs. (13897-10478) $=$ Rs. 3419
Hence, Mr. Shah incurred a loss of Rs. 3419.
2. L.H.S. $=(x-y)(x+y)$

$$
\begin{aligned}
& =\left(\frac{3}{2}-\frac{1}{2}\right)\left(\frac{3}{2}+\frac{1}{2}\right) \\
& =\left(\frac{3-1}{2}\right)\left(\frac{3+1}{2}\right) \\
& =\frac{2}{2} \times \frac{4}{2} \\
& =2
\end{aligned}
$$

$$
\text { R.H.S. }=x^{2}-y^{2}
$$

$$
=\left(\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}
$$

$$
=\frac{9}{4}-\frac{1}{4}
$$

$$
=\frac{9-1}{4}
$$

$$
=\frac{8}{4}
$$

$$
=2
$$

Since L.H.S. $=$ R.H.S., we have verified the identity $(x-y)(x+y)=x^{2}-y^{2}$
3.

4. $57 \times 63$
$=(60-3)(60+3)$
$=(60)^{2}-(3)^{2}$
$=3600-9$
$=3591$
5. Total area of the garden plot
$=80 \times 45$
$=3600 \mathrm{~m}^{2}$
Area of the garden excluding the pathway
$=(80-4) \times(45-4)$
$=76 \times 41$
$=3116 \mathrm{~m}^{2}$
$\therefore$ Area of the pathway $=(3600-3116)=484 \mathrm{~m}^{2}$
6. Length of a road $=\mathrm{I}=1.8 \mathrm{~km}=1.8 \times 1000=1800 \mathrm{~m}$

Breadth of a road $=b=8 \mathrm{~m}$
Height of a road $=\mathrm{h}=15 \mathrm{~cm}=(15 \div 100) \mathrm{m}=0.15 \mathrm{~m}$
Now, volume of the road metal required
$=$ Volume of the road
$=1 \times b \times h$
$=1800 \times 8 \times 0.15$
$=2160 \mathrm{cu} . \mathrm{m}$
Thus, $2160 \mathrm{cu} . \mathrm{m}$ of road metal is required.
7. Let $x$ be one the three equal angles.

Sum of all the angles of a quadrilateral $=360^{\circ}$
$\Rightarrow x+x+x+60^{\circ}=360^{\circ}$
$\Rightarrow 3 x=360^{\circ}-60^{\circ}$
$\Rightarrow 3 x=300^{\circ}$
$\Rightarrow x=100^{\circ}$
Thus, the measure of each of the equal angles of a quadrilateral is $100^{\circ}$.
8. Figure (1):

In $\triangle P Q R$ and $\triangle X Y Z$,
Side $Q R \cong$ Side $Y Z$
Side $P Q \cong$ Side $X Z$
Side $P R \cong$ Side $X Y$
$P \leftrightarrow X, Q \leftrightarrow Z$ and $R \leftrightarrow Y$
Thus, $\triangle P Q R$ and $\triangle X Y Z$ are congruent by the correspondence PQR $\leftrightarrow X Z Y$.

Figure (2):
In $\triangle A B C$ and $\triangle D E F$,
Side $A C \cong$ Side $D F$
Side $A B \cong$ Side FE
Side $B C \cong$ Side $D E$
$A \leftrightarrow F, B \leftrightarrow E$ and $C \leftrightarrow D$
Thus, $\triangle A B C$ and $\triangle D E F$ are congruent by the correspondence $A B C \leftrightarrow F E D$.

## Q3.

1. C.P. of a washing machine $=$ Rs. 10000 , Loss $=12 \%$
$\therefore$ When the cost price is 100 , selling price $=100-12=$ Rs. 88
Suppose the selling price of the washing machine is Rs. $x$.
Ratio of cost prices $=$ Ratio of selling prices
$\therefore \frac{10000}{100}=\frac{x}{88}$
$\therefore \mathrm{x}=\frac{10000}{100} \times 88 \ldots$ (Multiplying both sides by 100 )
$\therefore \mathrm{x}=8800$
Hence, Damuseth sold the washing machine for Rs. 8800.
2. In $\triangle \mathrm{LMN}$ and $\Delta$ TUV,
(i) Three pairs of congruent angles: $\angle L M N \cong \angle U V T, \angle M N L \cong \angle V T U$ and $\angle M L N \cong \angle V U T$
(ii) Three pairs of congruent sides: Side LM $\cong$ Side UV, Side MN $\cong$ Side VT and Side LN $\cong$ Side UT
3. Let $-10=\frac{-10}{1}=\frac{a}{b}$ and $\frac{-83}{9}=\frac{c}{d}$

Then,
$a \times d=-10 \times 9=-90$
$b \times c=1 \times(-83)=-83$
As $-90<-83$, $a \times d<b \times c$
$\therefore \frac{\mathrm{a}}{\mathrm{b}}<\frac{\mathrm{c}}{\mathrm{d}}$
$\therefore-10<\frac{-83}{9}$
4.
(i) The angles in the minor segment $P R Q$ are $\angle P A Q$ and $\angle P B Q$.
(ii) The angles in the major segment PTQ are $\angle \mathrm{PDQ}$ and $\angle \mathrm{PCQ}$.
(iii) The pairs of angles in the minor segment PRQ are $\angle P A Q$ and $\angle P B Q$ and the pairs of angles in the major segment PTQ are $\angle P D Q$ and $\angle P C Q$.
5. Length of the plot, $\mathrm{I}=75.5 \mathrm{~m}$

Breadth of the plot, $b=30.5 \mathrm{~m}$
Area of the plot $=1 \times b$

$$
\begin{aligned}
& =75.5 \times 30.5 \\
& =2302.75 \mathrm{sq} . \mathrm{m}
\end{aligned}
$$

Rate per sq. $\mathrm{m}=$ Rs. 550
$\therefore$ Selling price of the plot $=$ Rate $\times$ Area

$$
\begin{aligned}
& =\text { Rs. }(550 \times 2302.75) \\
& =\text { Rs. } 1266512.50
\end{aligned}
$$

Thus, the selling price of the plot is Rs. 1266512.50.
6. C.P. of a cupboard $=$ Rs. 6500 , Profit $=15 \%$
$\therefore$ When the cost price is 100 , selling price $=100+15=$ Rs. 115
Suppose the selling price of a cupboard is Rs. x.
Ratio of cost prices $=$ Ratio of selling prices
$\therefore \frac{6500}{100}=\frac{x}{115}$
$\therefore \mathrm{x}=\frac{6500}{100} \times 115 \ldots$ (Multiplying both sides by 100 )
$\therefore \mathrm{x}=7475$
Hence, to get a $15 \%$ profit, the cupboard should be sold at Rs. 7475 .
7.
(i) The number of voters registered at Jawahar Vidyalaya center is 700 and the actual number of votes cast is 450 .
(ii) The City High School has the largest number of registered voters.
(iii) The highest number of votes was cast at the Remand Home polling center.

## Q4.

1. 

(i) Part I is a rectangle having length $=(4.5-1)=3.5 \mathrm{~cm}$ and breadth $=1 \mathrm{~cm}$
$\therefore$ Area of part I $=$ length $\times$ breadth $=3.5 \times 1=3.5 \mathrm{sq} . \mathrm{cm}$
(ii) Part II is a square with side length $=1 \mathrm{~cm}$
$\therefore$ Area of part II $=(\text { side })^{2}=(1)^{2}=1 \mathrm{sq} . \mathrm{cm}$
(iii) Part III is a rectangle with length $=6.5 \mathrm{~cm}$ and breadth $=1 \mathrm{~cm}$
$\therefore$ Area of part III $=$ length $\times$ breadth $=6.5 \times 1=6.5 \mathrm{sq} . \mathrm{cm}$
(iv) Part IV is a rectangle with length $=6.5 \mathrm{~cm}$ and breadth $=(4.5-1)=3.5 \mathrm{~cm}$
$\therefore$ Area of part IV $=$ length $\times$ breadth $=6.5 \times 3.5=22.75 \mathrm{sq} . \mathrm{cm}$
2.
(i) Side of a cube $=1=6.8 \mathrm{~m}$

Total surface area of a cube $=61^{2}=6(6.8)^{2}$

$$
\begin{aligned}
& =6 \times 6.8 \times 6.8 \\
& =277.44 \mathrm{sq} . \mathrm{m}
\end{aligned}
$$

(ii) Side of a cube $=1=9.3 \mathrm{~cm}$

Total surface area of a cube $=6 I^{2}=6(9.3)^{2}$

$$
\begin{aligned}
& =6 \times 9.3 \times 9.3 \\
& =518.94 \mathrm{sq} . \mathrm{cm}
\end{aligned}
$$

3. 

(i) The number of people getting the benefit of the EGS in village $R$ $=$ Number of men getting the benefit in village $R+$ Number of women getting the benefit in village $R$
$=170+50$
$=220$
(ii) Village Q has the most women beneficiaries.
(iii) In village $S$, there are 80 men beneficiaries and 120 women beneficiaries.
(iv) Village $P$ has more men beneficiaries.
4. Steps of construction:

1. Draw seg LM of any length, say, 5 cm .
2. Using a protractor draw a ray $\mathrm{LX} \perp \mathrm{LM}$ at point L .
3. Using a protractor draw a ray $M Y \perp L M$ at point $M$.
4. Taking $L$ as the centre and radius equal to $L M$, draw an arc to cut ray $L X$ at P .
5. Taking M as the centre and the same radius, draw an arc to cut ray MY at N .
6. Join PN.

Thus, LMNP is the required square.

5.
(i) $1-\frac{36 m^{2}}{49 n^{2}}$

$$
\begin{aligned}
& =(1)^{2}-\left(\frac{6 m}{7 n}\right)^{2} \\
& =\left(1+\frac{6 m}{7 n}\right)\left(1-\frac{6 m}{7 n}\right)
\end{aligned}
$$

(ii) $1-8 a+16 a^{2}$
$=(1)^{2}-2 \times 4 \times a+(4 a)^{2}$
$=(1-4 a)^{2}$
$=(1-4 a)(1-4 a)$

Q5.

1. Total surface area of the wooden cube-shaped box $=486 \mathrm{sq} . \mathrm{cm}$ Now, total surface area of a cube $=6 I^{2}$
$\therefore 486=61^{2}$
$\therefore I^{2}=\frac{486}{6}$
$\therefore 1^{2}=81$
$\therefore \mathrm{I}=9 \mathrm{~cm}$
Volume of the box $=1^{3}=(9)^{3}=9 \times 9 \times 9=729 \mathrm{cu} . \mathrm{cm}$
Cost to laminate $1 \mathrm{sq} . \mathrm{cm}=$ Rs. 1.50
$\therefore$ Cost to laminate $486 \mathrm{sq} . \mathrm{cm}=$ Rs. $(1.50 \times 486)=$ Rs. 729
2. 

| Subject | Maths | Science | History | English |
| :---: | :---: | :---: | :---: | :---: |
| Snehal's score | 80 | 64 | 70 | 85 |
| Vicky's Score | 65 | 72 | 80 | 60 |

Scale:
$1 \mathrm{~cm}=10$ marks on $\mathbf{Y}$-axis


