Maharashtra Board
 Class IX Mathematics - Algebra
 Sample Paper - 1 Solution

Time: 2 hours
Total Marks: 40

Note: - (1) All questions are compulsory.
(2) Use of calculator is not allowed.
1.
i. For the linear equation is $k x-\frac{3}{5} y=8$

Given values: $y=-\frac{1}{2}, x=1$
Substituting the value of x and y in the equation we get
$k-\frac{3}{10}=8$
$k=8+\frac{3}{10}=8.3$
ii. Because 70 occurs the maximum number of times, i.e. four times, the mode of the given data is 70 .
iii. We have,
$n(P \cup Q)=n(P)+n(Q)-n(P \cap Q)$
$\Rightarrow \mathrm{n}(\mathrm{P} \cap \mathrm{Q})=\mathrm{n}(\mathrm{P})+\mathrm{n}(\mathrm{Q})-\mathrm{n}(\mathrm{P} \cup \mathrm{Q})=5+12-14=3$
iv. The given expression can be rearranged as shown below :
$2 p q+4 p+5 q+10$
$=2 p(q+2)+5(q+2)$
$=(2 p+5)(q+2)$
v. $A=\{x: x$ is the cube of a natural number $\}$
vi. $\sqrt[4]{1250}=\sqrt[4]{625 \times 2}=5 \sqrt[4]{2}$
2.
i. Let the present age of the mother be 7 x years

Present age of the daughter $=3 x$ years
Lets us say that the mother was 26 years old, K years ago.
$7 \mathrm{x}=26+\mathrm{k}$ \qquad
$3 \mathrm{x}=6+\mathrm{k}$
Subtracting (2) from (1), we get
$4 \mathrm{x}=20$
x $=5$
So, the present age of the mother $=7 \mathrm{x}$ years $=35$ years
Present age of the daughter $=3 \mathrm{x}$ years $=15$ years
ii. Let the numbers be $6 x$ and $13 x$.

Their LCM = 78x
$78 \mathrm{x}=312$ (given)
$\mathrm{x}=4$.
The numbers are 24 and 52 .
iii. Here, $A=\{3,6,9,12,15\}$.
$B=\{3,5,7,9\}$
$A \cup B=\{3,5,6,7,9,12,15\}$
iv.
(a) Additive inverse of $\frac{2}{8}$ is $-\frac{2}{8}$
(b) Additive inverse of $-\frac{5}{8}$ is $\frac{5}{8}$
(c) Additive inverse of $\frac{-6}{-5}=\frac{6}{5}$ is $-\frac{6}{5}$
(d) Additive inverse of $\frac{2}{9}$ is $-\frac{2}{9}$
v. We have
$12 x y-15 x$
$=2 \times 2 \times 3 \times x \times y-3 \times 5 \times x$
$=3 \times x(2 \times 2 \times y-5)$
$=3 x(4 y-5)$
vi. (a) Secondary
(b) Primary
3.
i. To get the equivalent ratio we have to either multiply or divide the numerator and denominator of given ratio by same number (except 0).
Multiplying with 2,
Ratio $18: 12=\frac{18 \times 2}{12 \times 2}=\frac{36}{24}$
$\therefore 36: 24$ is an equivalent ratio if 18: 12 .
Dividing by 2 ,
Ratio $18: 12=\frac{18 \div 2}{12 \div 2}=\frac{9}{6}$
$\therefore 9: 6$ is an equivalent ratio if 18: 12 .
ii. Let ' 1 ' be the number line with the zero point 0 as origin. On this line cut off $0 A=1$ unit. At ' A ' draw perpendicular to number line ' l ' and on it cut off $\mathrm{AB}=1$ unit. Then $\Delta \mathrm{OAB}$ is a right angled at A .

By Pythagoras theorem, we have:
$\mathrm{OB}^{2}=\mathrm{OA}^{2}+\mathrm{AB}^{2}=1^{2}+1^{2}=2$
$O B=\sqrt{2}$
With O as center and radius OB , draw an arc of the circle meeting the line ' l ' at C .
Then OC = OB (Radii of circle)
$\mathrm{OC}=\sqrt{2}$
Hence the point ' C ' in the number corresponds to the irrational number $\sqrt{2}$ i.e. $\mathrm{OC}=$ $\sqrt{2}$.
iii. 1. Let $\mathrm{P}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$. $\mathrm{n}(\mathrm{P})=3$.

Hence, the number of subsets of Set $P=2^{3}=8$.
2. Set of letters in the word 'DELHI'

Let $\mathrm{Q}=$ Set of letters in the word 'DELHI'.
$Q=\{D, E, L, H, I\}$, so $n(Q)=5$
Hence, the number of subsets of $\operatorname{Set} Q=2^{5}=32$.
3. Let $R=\{0,3,6,9\}, n(R)=4$.

Hence, the number of subsets of Set R = $2^{4}=16$.
iv. Let the number of boys and girls be $3 x$ and x respectively.
$3 x+x=36$
$\mathrm{x}=9$
Number of boys $=27$
And number of girls =9
Let 'a' more girls be added, then
$\frac{27}{9+a}=\frac{9}{5}$
$\Rightarrow 135=81+9 a$
$\Rightarrow 9 a=54$
$\Rightarrow a=6$
So, 6 girls should be added to the council.
v. $99 x+101 y=499$
$101 x+99 y=501$
Adding equations (1) and (2), we get.
$200 \mathrm{x}+200 \mathrm{y}=1000$
Or, $x+y=5$
Subtracting (1) from (2), we get,
$2 \mathrm{x}-2 \mathrm{y}=2$
Or, $\mathrm{x}-\mathrm{y}=1$
Adding (3) and (4), we get,
$2 x=6 \Rightarrow x=3$
Putting the value of x in (3), we get, $y=2$
4.
i.
$x=\frac{4 \sqrt{6}}{\sqrt{2}+\sqrt{3}}$
$\frac{x}{2 \sqrt{2}}=\frac{2 \sqrt{3}}{\sqrt{2}+\sqrt{3}}$
$\frac{x+2 \sqrt{2}}{x-2 \sqrt{2}}=\frac{3 \sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
...(1) (By componendo and dividendo)
Also,
$\frac{x}{2 \sqrt{3}}=\frac{2 \sqrt{2}}{\sqrt{2}+\sqrt{3}}$
$\frac{x+2 \sqrt{3}}{x-2 \sqrt{3}}=\frac{3 \sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}$
...(2) (By componendo and dividendo)
Adding (1) and (2), we get

$$
\begin{aligned}
& \frac{x+2 \sqrt{2}}{x-2 \sqrt{2}}+\frac{x+2 \sqrt{3}}{x-2 \sqrt{3}}=\frac{3 \sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{3 \sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}} \\
& =\frac{3 \sqrt{3}+\sqrt{2}-3 \sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}} \\
& =\frac{2 \sqrt{3}-2 \sqrt{2}}{\sqrt{3}-\sqrt{2}} \\
& =\frac{2(\sqrt{3}-\sqrt{2})}{\sqrt{3}-\sqrt{2}} \\
& =2
\end{aligned}
$$

ii. (a) Our class intervals will be 0-5, 5-10, 10-15

The grouped frequency distribution table can be constructed as folllows:

Distance	Tally Marks	Number of children
$0-5$	I州 IIII	9
$5-10$	TH I II	12
$10-15$	H I I	6
$15-20$	III	3
	Total	30

(b) The number of children living at a distance of more than 15 km from school (i.e. in the interval 15-20) is 3.
iii. Given system of equations is
$2 x+3 y-2=0$
$5 x-\frac{3}{2} y-2=0$
Simplifying we get $2 \mathrm{x}+3 \mathrm{y}-2=0$
$10 \mathrm{x}-3 \mathrm{y}-4=0$
From equation (1), we get
$y=\frac{2-2 x}{3}$
Substituting this value of y in (2),
$10 \mathrm{x}-3\left(\frac{2-2 x}{3}\right)-4=0$
$\Rightarrow 10 x-2+2 x-4=0$
$\Rightarrow 12 x=6$
$\Rightarrow x=\frac{1}{2}$
Substituting this value of x in equation (1) we get,
$2\left[\frac{1}{2}\right]+3 y-2=0$
$3 y-1=0$
$\mathrm{y}=\frac{1}{3}$
Hence $\mathrm{x}=\frac{1}{2}$ and $\mathrm{y}=\frac{1}{3}$ are the required solution.
5.
i.

Class Interval	Class Marks	Frequency
$30-40$	35	3
$40-50$	45	6
$50-60$	55	25
$60-70$	65	65
$70-80$	75	50
$80-90$	85	28
$90-100$	95	14

ii. Let the monthly pocket money of Ravi and Sanjeev be 5 x and 7 x respectively.

Let their expenditure be $3 y$ and $5 y$ respectively.
Ravi's Savings $=5 \mathrm{x}-3 \mathrm{y}$
Sanjeev's savings $=7 x-5 y$
By the given information,
$5 x-3 y=80$
$7 x-5 y=80$
From (1) and (2), we have :
$5 x-3 y=7 x-5 y$
$\Rightarrow \mathrm{x}=\mathrm{y}$
From equation (1),
$5 \mathrm{x}-3 \mathrm{x}=80$
$\Rightarrow 2 \mathrm{x}=80$
$\Rightarrow \mathrm{x}=40$
Hence, Monthly Pocket money of Ravi $=5 \times 40=$ Rs. 200
Monthly pocket money of Sanjeev = $7 \times 40=$ Rs. 280
iii. Let the digit at units place be x and the digit at ten's place be y .

Then the number will be $=10 \mathrm{y}+\mathrm{x}$ and the number obtained by reversing the digit be $=10 \mathrm{x}+\mathrm{y}$.
Now according to the given condition, we get
$(10 y+x)+(10 x+y)=121$
$x+y=11$
also $\mathrm{x}-\mathrm{y}= \pm 3$
$[\because$ It is that difference of the digits is 3.]
$x+y=11$
$x-y=3$
Adding (1) and (2), we get
$2 x=14$ or $x=7$
Using $x=7$ in equation (1), we have
$7+y=11$
$\Rightarrow y=11-7=4$
Therefore the number is 47 .
Next,
$x+y=11$
$x-y=-3$
Adding (3) and (4) we get,
$2 \mathrm{x}=8$
$\Rightarrow \mathrm{x}=4$
$y=11-4=7$
So number is 74 .
Hence, the number is either 47 or 74 .

