Maharashtra Board
 Class IX Mathematics - Algebra
 Sample Paper - 3 Solution

Time: 2 hours
Total Marks: 40
1.
i. A = \{January, February, March, May, July, August, October, December\}
ii. Let $x=1 . \overline{3}=1.33333 \ldots$.
$\therefore 10 x=13.3333 .$.
Now, 10x-x = 12
$\therefore 9 x=12$
$\therefore x=\frac{12}{9}=\frac{4}{3}$
iii. Let ' x ' be the expression to be subtracted from $2 a+6 b-5$ to get $-3 a+$ $2 b+3$.
$\therefore 2 a+6 b-5-x=-3 a+2 b+3$
$\therefore 2 a+6 b-5-x+3 a-2 b-3=0$
$\therefore 2 a+3 a+6 b-2 b-5-3-x=0$
$\therefore 5 a+4 b-8-x=0$
$\therefore x=5 a+4 b-8$
iv. Length of a rectangle is 4 cm more than its breadth, perimeter of the rectangle is 40 cm .

Let the length of the rectangle be xcm and the breadth be ycm .
According to the first condition,
$x=y+4$
$\therefore \mathrm{x}-\mathrm{y}=4$
Now, perimeter of the rectangle $=2$ (length + breadth $)$
According to the second condition,
$2(x+y)=40$
$\therefore \mathrm{x}+\mathrm{y}=20$
v. Given data: $7,6,10,13,1,3,4,4$

Number of observations, $\mathrm{n}=8$
Mean, $\bar{x}=\frac{\text { Sum of observations }}{\text { Number of observations }}=\frac{7+6+10+13+1+3+4+4}{8}=\frac{48}{8}=6$
vi. $(a+b)(c+d)-a^{2}+b^{2}$

$$
\begin{aligned}
& =(a+b)(c+d)-\left(a^{2}-b^{2}\right) \\
& =(a+b)(c+d)-(a+b)(a-b) \\
& =(a+b)[(c+d)-(a-b)] \\
& =(a+b)(c+d-a+b) \\
& =(a+b)(-a+b+c+d)
\end{aligned}
$$

2.

i. The ungrouped frequency distribution table is as follows:

Number of children	Tally marks	Frequency (f)
1	TM TM,	11
2	M M M M M 1	16
3	TM 1	6
4	I	1
	Total	$\mathrm{N}=\sum \mathrm{f}_{\mathrm{i}}=34$

ii. $E=\{x \mid x \in N$ and x is a divisor of 12$\}$
$\therefore E=\{1,2,3,4,6,12\}$
$F=\{y \mid y \in N$ and y is a divisor of 18$\}$
$\therefore F=\{1,2,3,6,9,18\}$
$\therefore E \cup F=\{1,2,3,4,6,9,12,18\}$
iii. $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=a+b \sqrt{6}$
$\therefore \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}=a+b \sqrt{6}$
$\therefore \frac{3+\sqrt{6}+\sqrt{6}+2}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}=a+b \sqrt{6}$
$\therefore \frac{5+2 \sqrt{6}}{3-2}=a+b \sqrt{6}$
$\therefore 5+2 \sqrt{6}=a+b \sqrt{6}$
Equating the values of both the sides, we get $a=5$ and $b=2$.
iv. Let x be the number to be added to each of the given numbers.

Then the numbers $(1+x),(7+x),(9+x)$ and $(31+x)$ are in proportion.
$\therefore \frac{(1+\mathrm{x})}{(7+\mathrm{x})}=\frac{(9+\mathrm{x})}{(31+\mathrm{x})}$
$\therefore(1+\mathrm{x})(31+\mathrm{x})=(7+\mathrm{x})(9+\mathrm{x})$
$\therefore 31+x+31 x+x^{2}=63+7 x+9 x+x^{2}$
$\therefore 31+32 x+x^{2}=63+16 x+x^{2}$
$\therefore 32 x-16 x=63-31$
$\therefore 16 x=32$
$\therefore x=\frac{32}{16}$
$\therefore \mathrm{x}=2$
Thus, 2 should be added to each of the given numbers to make them in proportion.
v. From the given figure, we have
(a) It is a subdivided bar diagram.
(b) There are 20 boys and 50 girls in division D.
(c) There are 30 girls in division B.
(d) Division C has equal number of boys and girls, i.e. 40 boys and 40 girls.
vi. Dividend: $x^{3}-4 x^{2}-2 x+1$

Index form: $x^{3}-4 x^{2}-2 x+1$
Co-efficient form: $(1,-4,-2,1)$
Comparing the divisor $(x-3)$ with $(x-a)$, we have $a=3$

\therefore Quotient in co-efficient form: $(1,-1,-5)$
\therefore Quotient $=\mathrm{x}^{2}-\mathrm{x}-5$ in the variable x
Remainder $=-14$
$\therefore\left(x^{3}-4 x^{2}-2 x+1\right)=(x-3)\left(x^{2}-x-5\right)+(-14)$
3.
i. $\quad 5 x+7 y=17$
$7 x+5 y=19$
Adding equations (1) and (2), we have
$5 x+7 y=17$
$\begin{array}{r}+7 x+5 y=19 \\ \hline 12 x+12 y=36\end{array}$
$\therefore 12(x+y)=36$
$\therefore \mathrm{x}+\mathrm{y}=3$
Subtracting equation (1) from equation (2), we have

$$
\begin{aligned}
7 x+5 y=19 \\
5 x+7 y=17 \\
-\quad-\quad- \\
\hline 2 x-2 x=2 \\
\therefore 2(x-y)=2 \\
\therefore x-y=1 \\
\therefore x+y=3 \text { and } x-y=1
\end{aligned}
$$

ii. $5 \sqrt{3}+2 \sqrt{27}+4 \sqrt{\frac{1}{3}}$
$=5 \sqrt{3}+2 \sqrt{9 \times 3}+4 \sqrt{\frac{1}{3}} \times \sqrt{\frac{3}{3}}$
$=5 \sqrt{3}+2 \times 3 \sqrt{3}+4 \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$=5 \sqrt{3}+6 \sqrt{3}+\frac{4 \sqrt{3}}{3}$
$=\sqrt{3}\left[5+6+\frac{4}{3}\right]$
$=\sqrt{3}\left[11+\frac{4}{3}\right]$
$=\sqrt{3}\left[\frac{33+4}{3}\right]$
$=\sqrt{3}\left[\frac{37}{3}\right]$
iii. (a) In Quadrant I, the coordinates of the required point will be $(5,4)$.
(b) In Quadrant II, the coordinates of the required point will be $(-5,4)$.
(c) In Quadrant III, the coordinates of the required point will be $(-5,-4)$.
(d) In Quadrant IV, the coordinates of the required point will be $(5,-4)$.
iv. $\frac{7 a^{2}+2 b^{2}}{7 a^{2}-2 b^{2}}=\frac{113}{13}$
$\therefore \frac{7 a^{2}+2 b^{2}+7 a^{2}-2 b^{2}}{7 a^{2}+2 b^{2}-\left(7 a^{2}-2 b^{2}\right)}=\frac{113+13}{113-13} \quad \ldots($ Compodendo - Dividendo $)$
$\therefore \frac{14 a^{2}}{7 a^{2}+2 b^{2}-7 a^{2}+2 b^{2}}=\frac{126}{100}$
$\therefore \frac{14 \mathrm{a}^{2}}{4 \mathrm{~b}^{2}}=\frac{126}{100}$
$\therefore \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}=\frac{126}{100} \times \frac{4}{14}$
$\therefore \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}=\frac{9}{25}$
$\therefore \frac{\mathrm{a}}{\mathrm{b}}= \pm \frac{3}{5} \quad \ldots$ (Taking square root)
$\therefore \frac{\mathrm{a}}{\mathrm{b}}=\frac{3}{5}$ or $\frac{\mathrm{a}}{\mathrm{b}}=-\frac{3}{5}$
v.

Weight (kg) x_{i}	Number of students f_{i}	c.f. (less than type)
35	6	6
36	5	$6+5=11$
38	8	$11+8=19$
40	9	$19+9=28$
42	2	$28+2=30$
44	7	$30+7=37$
45	$n=\Sigma f_{i}=41$	$37+4=41$

Here, $n=41$ (odd number)
\therefore Median $=\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ term $=\left(\frac{41+1}{2}\right)^{\text {th }}$ term $=\left(\frac{42}{2}\right)^{\text {th }}$ term $=21^{\text {st }}$ term
Now, $21^{\text {st }}$ term in the cumulative frequency column corresponds to c.f. 28. And, the weight corresponding to c.f. 28 is 40 kg .
\therefore Median weight is 40 kg .
4.
i. $U=\{1,3,5,7,9,11,13,15,17\}, A=\{1,3,5,7\}, B=\{1,3,9,11\}$ Hence, $A \cap B=\{1,3\}$ and

$$
A \cup B=\{1,3,5,7,9,11\}
$$

Now,

$$
\begin{aligned}
& A^{\prime}=U-A \\
&=\{1,3,5,7,9,11,13,15,17\}-\{1,3,5,7\} \\
&=\{9,11,13,15,17\} \\
& B^{\prime}=U-B \\
&=\{1,3,5,7,9,11,13,15,17\}-\{1,3,9,11\} \\
&=\{5,7,13,15,17\} \\
&(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \\
&=\{9,11,13,15,17\} \cup\{5,7,13,15,17\} \\
&=\{5,7,9,11,13,15,17\} \\
& \begin{aligned}
(A \cup B)^{\prime} & =A^{\prime} \cap B^{\prime} \\
& =\{9,11,13,15,17\} \cap\{5,7,13,15,17\} \\
& =\{13,15,17\}
\end{aligned}
\end{aligned}
$$

ii. $3 x^{5}-4 x^{4}+3 x^{3}+2 x \div x^{2}-3$

$$
\therefore 3 x^{5}-4 x^{4}+3 x^{3}+2 x=\left(x^{2}-3\right)\left(3 x^{3}-4 x^{2}+12 x-12\right)+(38 x-36)
$$

$$
\begin{aligned}
& 3 x^{3}-4 x^{2}+12 x-12 \\
& x ^ { 2 } - 3 \longdiv { 3 x ^ { 5 } - 4 x ^ { 4 } + 3 x ^ { 3 } + 0 x ^ { 2 } + 2 x + 0 } \\
& 3 x^{5}-9 x^{3} \\
& \frac{+}{-4 x^{4}+12 x^{3}+0 x^{2}+2 x+0} \\
& -4 x^{4}+12 x^{2} \\
& \frac{+\quad-}{12 x^{3}-12 x^{2}+2 x+0} \\
& 12 x^{3}-36 x \\
& \begin{array}{l}
-\quad+ \\
\hline
\end{array} \\
& -12 x^{2}+36 \\
& + \\
& 38 x-36
\end{aligned}
$$

iii. Take point A on a number line such that $A=-1$.
$\therefore O A=1$
Construct $A B \perp O A$ such that $A B=1$ unit.
Since $A B \perp O A, \triangle O A B$ is a right triangle.
In $\triangle \mathrm{OAB}$, by Pythagoras theorem,
$(O B)^{2}=(O A)^{2}+(A B)^{2}$
$\therefore(O B)^{2}=1^{2}+1^{2}=2$
$\therefore \mathrm{OB}=\sqrt{2}$
Draw an arc of radius $O B$ taking O as centre.
The arc intersects the number line, in the left direction at C .
$-\sqrt{2}$ is thus marked at point C on the number line.

5.
i. Since $(x-5)$ is a factor of $p(x)$,
$\therefore \mathrm{p}(5)=0$
$\therefore(5)^{3}+\mathrm{a}(5)^{2}+\mathrm{b}(5)+30=0$
$\therefore 125+25 a+5 b+30=0$
$\therefore 25 a+5 b+155=0$
$\therefore 5 a+b+31=0$
Also, $\mathrm{p}(-6)=-396$
$\therefore(-6)^{3}+\mathrm{a}(-6)^{2}+\mathrm{b}(-6)+30=-396$
$\therefore-216+36 a-6 b+30=-396$
$\therefore 36 a-6 b-186=-396$
$\therefore 36 a-6 b+210=0$
$\therefore 6 a-b+35=0$
Adding equations (1) and (2), we get
$11 a+66=0$
$\therefore 11 a=-66$
$\therefore \mathrm{a}=-6$

Substituting a $=-6$ in equation (1), we get
$5(-6)+b+31=0$
$\therefore-30+b+31=0$
$\therefore \mathrm{b}+1=0$
$\therefore \mathrm{b}=-1$
Then, we have

$$
\begin{aligned}
p(x) & =x^{3}-6 x^{2}-x+30 \\
& =x^{3}-5 x^{2}-x^{2}+5 x-6 x+30 \\
& =x^{2}(x-5)-x(x-5)-6(x-5) \\
& =(x-5)\left(x^{2}-x-6\right) \\
& =(x-5)\left(x^{2}-3 x+2 x-6\right) \\
& =(x-5)[x(x-3)+2(x-3)] \\
& =(x-5)(x-3)(x+2)
\end{aligned}
$$

ii. Following points are plotted on a graph paper:

1. $A(-5,6)$
2. $B(2.2,7.3)$
3. $C(7,0)$
4. $D(7,-6)$
5. $\mathrm{E}(-8,0)$
6. $F(0,4)$
7. $G(-5,-6)$
8. $H(3.5,4.5)$
9. $I(-3,5.5)$

iii.

Village	A	B	C	D
Female	150	240	90	140
Male	225	160	210	110
Total	375	400	300	250

Percentage of females in village $A=\frac{150 \times 100}{375}=40 \%$
\therefore Percentage of males in village $A=(100-40) \%=60 \%$
Percentage of females in village $B=\frac{240 \times 100}{400}=60 \%$
\therefore Percentage of males in village $B=(100-60) \%=40 \%$
Percentage of females in village $C=\frac{90 \times 100}{300}=30 \%$
\therefore Percentage of males in village $C=(100-30) \%=70 \%$
Percentage of females in village $D=\frac{140 \times 100}{250}=56 \%$
\therefore Percentage of males in village $D=(100-56) \%=44 \%$

The percentage bar diagram is as follows:

