Maharashtra Board
 Class IX Mathematics
 (Geometry) Sample Paper - 1
 Solution

Time: 2 hours
Total Marks: 40

Note: (1) All questions are compulsory.
(2) Use of a calculator is not allowed.
1.
i. In the two triangles ABD and ACD ,
$\mathrm{AB}=\mathrm{AC}, \mathrm{BD}=\mathrm{CD}, \mathrm{AD}=\mathrm{AD}$
\therefore The two triangles ABD and ACD are congruent by the SSS criterion.
ii. In triangle PSQ and SRQ we have, $\angle P S Q=\angle R S Q$ and $\angle \mathrm{PQS}=\angle \mathrm{SQR}$ and $\mathrm{SQ}=\mathrm{SQ}$
$\therefore \triangle \mathrm{PSQ} \cong \triangle \mathrm{RSQ} \quad .$. By ASA criteria
Hence, $\mathrm{PS}=\mathrm{SR}=5 \mathrm{~cm}$
iii. In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \mathrm{AB}=12$ and $\mathrm{AC}=13$

Using Pyrthagoras Theorem
$\mathrm{AC}^{2}=A B^{2}+B C^{2}$
$\Rightarrow 13^{2}=12^{2}+B C^{2}$
$\Rightarrow B C=5$
$\therefore \tan A-\cot C=\frac{B C}{A B}-\frac{B C}{A B}=\frac{5}{12}-\frac{5}{12}=0$
iv. Euclid's fifth postulate implies the existence of parallel lines.

It states: 'For every line l and for every point P not lying on l, there exists a unique line m passing through P and parallel to l^{\prime}.
v. The mid-point theorem states that the line segment joining the mid-points of any two sides of a triangle is parallel to the third side and half of it.
In the figure,

$\mathrm{DE} \| \mathrm{BC}$ and $\mathrm{DE}=\frac{1}{2} \mathrm{BC}(\mathrm{D}$ and E are the mid-points of sides AB and AC$)$
vi. Let the length of the fourth side be xcm .

Perimeter $=130 \mathrm{~cm}$
$30+40+25+x=130 \mathrm{~cm}$
$95+\mathrm{x}=130 \mathrm{~cm}$
$\mathrm{x}=130-95$
$\mathrm{x}=35 \mathrm{~cm}$
Therefore, the length of the fourth side is 35 cm .
vii. a) ABCDE is a pentagon.
b) The 5 pairs of adjacent sides are (i) AB, BC; (ii) BC, CD; (iii) CD, ED; (iv) ED, EA; (v) EA, AB.
2.
i. In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{ABE}$,

$\mathrm{AD}=\mathrm{AE}$ (given)
$\mathrm{BD}=\mathrm{EC}$ (given)
$\Rightarrow \mathrm{BD}+\mathrm{DE}=\mathrm{DE}+\mathrm{EC}$
$\Rightarrow \mathrm{BE}=\mathrm{CD}$
$\angle \mathrm{ADC}=\angle \mathrm{AEB}(\because \mathrm{AD}=\mathrm{AE})$
$\therefore \triangle A B E \cong \triangle A C D \quad \ldots$ by SAS
ii. Parallel lines: Railway lines, opposite edges of a cuboid, opposite sides of a football field
Intersecting lines: Adjacent sides of a cuboid, adjacent sides of a tennis court, adjacent sides of a kite
iii. Let the angles be $x, 2 x$ and $3 x$.

Thus, by the angle sum property,
$x+2 x+3 x=180^{\circ}$
Or $6 x=180^{\circ}$
Or $x=30^{\circ}$
Hence, the angles are $30^{\circ}, 60^{\circ}$ and 90°.
iv. Here, $\mathrm{P}=6.5+7+7.5=21 \mathrm{~cm}$

So, $s=\frac{21}{2}=10.5 \mathrm{~cm}$
$s-6.5=4, s-7=3.5, s-7.5=3$
Area of $\Delta=\sqrt{10.5 \times 4 \times 3.5 \times 3}=\sqrt{441}=21 \mathrm{~cm}^{2}$
v. Here, Diagonal AC $=8 \mathrm{~cm}$

Perpendicular DP $=4.5 \mathrm{~cm}$
And Perpendicular BQ $=3.5 \mathrm{~cm}$
Therefore, the sum of the perpendiculars $=D P+B Q=4.5+3.5=8 \mathrm{~cm}$
Now, Area of quadrilateral $=\frac{1}{2} \times A C \times(D P+B Q)=\frac{1}{2} \times 8 \times 8=32 \mathrm{~cm}^{2}$
vi. Let the coordinates of end point B be (x, y).
\therefore By the section formula, coordinates of C are
$\left(\frac{3 x+8}{3+4}, \frac{3 y+20}{3+4}\right)=(-1,2)$
$\frac{3 x+8}{7}=-1$ and $\frac{3 y+20}{7}=2$
$3 x=-7-8=-15$ and $3 y=14-20=-6$
$\Rightarrow \mathrm{x}=-5$ and $\mathrm{y}=-2$
Hence, point B is $(-5,-2)$.
3.
i. The mid-point theorem states that the line segment joining the mid-points of any two sides of a triangle is parallel to the third side and half of it.
$\mathrm{BC}=\frac{1}{2} \times \mathrm{QR}=\frac{1}{2} \times 8=4 \mathrm{~cm}$
$\mathrm{AB}=\frac{1}{2} \times \mathrm{PQ}=\frac{1}{2} \times 7=3.5 \mathrm{~cm}$
$\mathrm{AC}=\frac{1}{2} \times \mathrm{PR}=\frac{1}{2} \times 9=4.5 \mathrm{~cm}$
The perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$

$$
\begin{aligned}
& =3.5+4+4.5 \\
& =12 \mathrm{~cm}
\end{aligned}
$$

ii. Let $\mathrm{C}(-1,1)$ divide AB in the ratio of $\mathrm{k}: 1$.

$$
\stackrel{\mathrm{C}(-1,1)}{ } \stackrel{\mathrm{A}(-3,-1)}{\mathrm{k}: 1} \mathrm{~B}(1,3)
$$

Using the section formula, we have
$(\mathrm{k}-3) /(\mathrm{k}+1)=-1$
$(3 \mathrm{k}-1) /(\mathrm{k}+1)=1$
From (1),
$\mathrm{k}-3=-\mathrm{k}-1$
$2 \mathrm{k}=2$
$\mathrm{k}=1$
Thus, C divides $A B$ in the ratio 1:1, i.e. C is the mid-point of $A B$.
$\therefore \mathrm{A}, \mathrm{B}$ and C are collinear.
iii. The diagonals are equal in the rectangle.

So, HF = EG
$4 \mathrm{x}+2=5 \mathrm{x}-1$
$2+1=5 \mathrm{x}-4 \mathrm{x}$
3 = x
So, $\mathrm{HF}=4 \times 3+2=14$ units
And EG $=5 \times 3-1=14$ units
Now, it is also known that the diagonals of a rectangle bisect each other.
Therefore,
$\mathrm{OH}=\frac{1}{2} \times \mathrm{HF}=\frac{1}{2} \times 14$ units $=7$ units
$\therefore \quad O E=\frac{1}{2} \times E G=\frac{1}{2} \times 14$ units $=7$ units
iv. Join AB.

$A B$ is the common chord.
We know that equal chords subtend equal angles, and here, two circles are congruent. $\angle \mathrm{APB}=\angle \mathrm{AQB}$
In $\triangle B P Q$,
$\mathrm{PB}=\mathrm{QB}$ (lines opposite equal angles are equal)
v. In the figure, by the exterior angle property, we have

$$
\begin{aligned}
& \angle \mathrm{ACD}=\angle \mathrm{A}+\angle \mathrm{B} \\
& \angle \mathrm{CBF}=\angle \mathrm{A}+\angle \mathrm{C} \\
& \angle \mathrm{BAE}=\angle \mathrm{B}+\angle \mathrm{C}
\end{aligned}
$$

Adding the above equations, we get

$$
\begin{aligned}
\angle \mathrm{ACD}+\angle \mathrm{CBF}+\angle \mathrm{BAE} & =\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{A}+\angle \mathrm{C}+\angle \mathrm{B}+\angle \mathrm{C} \\
& =2(\angle \mathrm{~A}+\angle \mathrm{B}+\angle \mathrm{C}) \\
& =2 \times 180^{\circ} \quad \text { (angle sum of a triangle) }
\end{aligned}
$$

$$
\therefore \angle \mathrm{ACD}+\angle \mathrm{CBF}+\angle \mathrm{BAE}=360^{\circ}
$$

The sum of the exterior angles $=$ four right angles $\left(360^{\circ}=4 \times 90^{\circ}\right)$

4.

i. Steps of construction

The following steps will be followed to construct the required triangle.
Step I: Draw a line segment AB of 11 cm (as XY + YZ + ZX = 11 cm)
Step II: Construct an angle PAB of 30° at point A and an angle QBA of 90° at point B .
Step III: Bisect PAB and QBA. Let these bisectors intersect each other at point X.
Step IV: Draw perpendicular bisector ST of AX and UV of BX.
Step V: Let ST intersect $A B$ at Y and $U V$ intersect $A B$ at Z. Join $X Y, X Z$. DXYZ is the required triangle.

ii. The above data can be shown in a figure as follows:

Let PQRS represent the rectangular park and the shaded region represent the path 3.5 m wide.
Thus, to find the length AB and breadth BC , we have to add 3.5 m to both sides of the rectangular park whose dimensions are 38×15.
So, the length and breadth of the path are
Length $\mathrm{AB}=(38+3.5+3.5) \mathrm{m}=45 \mathrm{~m}$
Breadth $\mathrm{BC}=(15+3.5+3.5) \mathrm{m}=22 \mathrm{~m}$
So, the outer perimeter of the path $=2 \times(1+b)$
$=2 \times(45+22)$
$=2 \times 67=134 \mathrm{~m}$
Thus, the outer perimeter of the path is 134 m .
iii. Let us mark the four unshaded areas as I, II, III and IV.

Area of I + Area III = Area of square - Area of two semicircles
Area of I + Area III $=\left(10 \times 10-2 \times \frac{1}{2} \times \pi \times 5^{2}\right) \mathrm{cm}^{2}$
Area of I + Area III $=(100-3.14 \times 25) \mathrm{cm}^{2}$
Area of I + Area III $=(100-78.5) \mathrm{cm}^{2}=21.5 \mathrm{~cm}^{2}$
Similarly, Area of II + Area of IV $=21.5 \mathrm{~cm}^{2}$
So, the area of the shaded region $=$ Area of ABCD - Area (I + II + III + IV)
Area of the shaded region $=(100-2 \times 21.5) \mathrm{cm}^{2}=100-43=57 \mathrm{~cm}^{2}$
5.
i. Steps of construction:

1. Draw a ray QX . Mark a point S on ray QX such that $\mathrm{QS}=1.8 \mathrm{~cm}$.
2. Draw a ray ST such that $\angle \mathrm{QST}=110^{\circ}$.
3. With Q as the centre and radius 4.5 cm , draw an arc intersecting ray ST at R .
4. Join points Q and R. Draw a perpendicular bisector of seg RS.
5. Let it intersect ray $Q X$ at P.
6. Join P and R. Hence, $\triangle P Q R$ is the required triangle.
7. Measure $\angle \mathrm{P}$ and verify it is 40°.

ii. Const: Draw EC || AD

Proof:
$\mathrm{AD}=\mathrm{CE}$ (opposite sides of parallelogram AECD)
However, $\mathrm{AD}=\mathrm{BC}$ (given)
Therefore, $\mathrm{BC}=\mathrm{CE}$
$\angle \mathrm{CEB}=\angle \mathrm{CBE}$ (angle opposite to equal sides are also equal)
Consider parallel lines AD and CE . AE is the transversal line for them.
$\angle \mathrm{A}+\angle \mathrm{CEB}=180^{\circ}$ (angles on the same side of transversal)
$\angle \mathrm{A}+\angle \mathrm{CBE}=180^{\circ}$ (using the relation $\angle \mathrm{CEB}=\angle \mathrm{CBE}$) ... (1)
However, $\angle \mathrm{ABC}+\angle \mathrm{CBE}=180^{\circ}$ (linear pair angles) ... (2)
From equations (1) and (2), we obtain
$\angle \mathrm{DAB}=\angle \mathrm{ABC}$
i.e. $\angle \mathrm{A}=\angle \mathrm{B}$
(b)

Construction: Draw BE\|AD
Proof: ABED is a parallelogram.
$\angle 1=\angle 2$ (opposite angle of a parallelogram)
$\angle 4=\angle 5$ (angle opposite to equal sides)
$\angle 1+\angle 3=180^{\circ}$ (adjacent angles of a parallelogram)
$\Rightarrow \angle 2+\angle 3=180^{\circ}$

Also, $\angle 2=180^{\circ}-\angle 4$ (linear pair)
$\Rightarrow \angle 3=180^{\circ}-\angle 2=180^{\circ}-\left(180^{\circ}-\angle 4\right)$
$\Rightarrow \angle 3=\angle 4$
But $\angle 4=\angle 5$
$\Rightarrow \angle 3=\angle 5$
$\Rightarrow \angle \mathrm{C}=\angle \mathrm{D}$
iii. $\mathrm{OP}=\mathrm{OQ}$ and $\angle \mathrm{BOQ}=90^{\circ}$

Let $\mathrm{OB}=\mathrm{xcm}, \mathrm{OA}=21-\mathrm{xcm}$
In $\triangle \mathrm{AOP}$,
$\mathrm{OA}^{2}+\mathrm{OP}^{2}=\mathrm{AP}^{2}$
$(21-x)^{2}+O P^{2}=17^{2}$
$\mathrm{OP}^{2}=289-(21-\mathrm{x})^{2}$
In \triangle BOP,
$\mathrm{OB}^{2}+\mathrm{OP}^{2}=\mathrm{BP}^{2}$
$\mathrm{x}^{2}+\mathrm{OP}^{2}=10^{2}$
$\mathrm{OP}^{2}=100-\mathrm{x}^{2}$
$\therefore 289-(21-\mathrm{x})^{2}=100-\mathrm{x}^{2}$
$\Rightarrow 289-\left(441+x^{2}-42 \mathrm{x}\right)=100-\mathrm{x}^{2}$
$\Rightarrow 289-441-\mathrm{x}^{2}+42 \mathrm{x}=100-\mathrm{x}^{2}$
$\Rightarrow 42 \mathrm{x}=252$
$\Rightarrow \mathrm{x}=6$
$\therefore \mathrm{OP}^{2}=100-6^{2}=64$
$\mathrm{OP}=8$
$P Q=2 \times O P=2 \times 8=16 \mathrm{~cm}$

