Maharashtra Board
 Class IX Mathematics
 (Geometry) Sample Paper - 2
 Solution

Time: 2 hours
Total Marks: 40

Note: (1) All questions are compulsory.
(2) Use of a calculator is not allowed.
1.
i. The triangles are congruent by the SAS criterion, i.e. two sides and the included angle.

The figure shows that side $\mathrm{AC}=$ side AD .
$\mathrm{AC}=\mathrm{AD}$,
$\angle \mathrm{CAB}=\angle \mathrm{DAB} \quad(\mathrm{AB}$ bisects $\angle A)$
$\mathrm{AB}=\mathrm{AB} \quad$ (common side)
$\therefore \Delta \mathrm{ABC} \cong \Delta \mathrm{ABD}$
ii. In $\triangle \mathrm{ABC}, \angle B=90^{\circ}$,

We have
$\frac{A B}{A C}=\sin 30^{\circ}=\frac{1}{2}$
$\Rightarrow \frac{5}{A C}=\frac{1}{2}$
$\Rightarrow A C=10 \mathrm{~cm}$
And
$\frac{B C}{A C}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$B C=5 \sqrt{3}$
iii. For every line l and for every point P not lying on l, there exists a unique line m passing through P and parallel to l .
iv. Area of a regular polygon $=\frac{1}{2} \times n \times a \times r$

Given, $\mathrm{n}=9, \mathrm{a}=6 \mathrm{~cm}, \mathrm{r}=8 \mathrm{~cm}$
\therefore Area $=\frac{1}{2} \times 9 \times 6 \times 8=216$ sqcm. $=216 \mathrm{sq} \mathrm{cm}$
v. Perimeter of a n-sided regular polygon $=\frac{2 \times \text { Area }}{\text { In-Radius }}=\frac{2 \times 50}{10}=10 \mathrm{~cm}$
vi. $P Q=P R$
$P Q^{2}=P^{2}$
$(0-3)^{2}+(2-s)^{2}=(0-s)^{2}+(2-5)^{2}$
$9+4-4 \mathrm{~s}+\mathrm{s}^{2}=\mathrm{s}^{2}+9$
$4=4 \mathrm{~s}$
$\mathrm{s}=1$
vii. Circumference of a circle $=2 \pi \mathrm{r}$

Here, radius (r) $=14 \mathrm{~cm}, \pi=\frac{22}{7}$
Thus, the circumference $=2 \times \frac{22}{7} \times 14=2 \times 22 \times 2=88 \mathrm{~cm}$
So, the circumference of the circle $=88 \mathrm{~cm}$
2.
i. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$,
$\mathrm{AC}=\mathrm{AD}$ (given)
$\angle \mathrm{CAB}=\angle \mathrm{DAB}(\mathrm{AB}$ is bisection of $\angle \mathrm{DAC})$
$\mathrm{AB}=\mathrm{AB}$ (common)
So, by SAS congruency,
$\Delta \mathrm{ABC} \cong \triangle \mathrm{ABD}$
$\mathrm{BC}=\mathrm{BD}(\mathrm{CPCT})$

ii. Here, $\angle \mathrm{PRT}=64^{\circ}$ (vertically opposite angles as $\mathrm{PQ} \| \mathrm{TR}$)

Therefore, $\angle \mathrm{QRP}=180^{\circ}-\left(64^{\circ}+67^{\circ}\right)$ (linear pair)
Or $\angle \mathrm{QRP}=180^{\circ}-131^{\circ}=49^{\circ}$
iii. Side $=10 \mathrm{~cm}$
$S=\frac{10+10+10}{2}=15 \mathrm{~cm}$
Area of triangle $=\sqrt{15(15-10)(15-10)(15-10)}$
Area of triangle $=25 \sqrt{3} \mathrm{~cm}^{2}$
iv. Area of parallelogram $=$ base \times altitude
$\therefore \mathrm{AB} \times \mathrm{BF}=\mathrm{BC} \times \mathrm{DE}$
$\Rightarrow 20 \times 14=\mathrm{BC} \times 10$
$\Rightarrow \mathrm{BC}=28 \mathrm{~cm}$
$\mathrm{AD}=\mathrm{BC} \quad$ (opposite sides of a parallelogram)
$\therefore A D=28 \mathrm{~cm}$
v. $\mathrm{m} \angle \mathrm{BAC}+\mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle \mathrm{ACD}$ (exterior angle property)
$\therefore \mathrm{x}+60^{\circ}=115^{\circ}$
$\therefore \mathrm{x}=55^{\circ}$
vi. Side of the square $=14 \mathrm{~cm}$

From the figure, we see that the radius of each semicircle is 7 cm .
Perimeter of the shaded region $=A D+B C+$ length of arc DPC + length of arc APB
Length of arc DPC $=$ Length of arc APB
$=$ perimeter of a semicircle $=\pi r=\frac{22}{7} \times 7=22 \mathrm{~cm}$
Therefore, the perimeter of the shaded region $=14 \mathrm{~cm}+14 \mathrm{~cm}+22 \mathrm{~cm}+22 \mathrm{~cm}=$ 72 cm .

3.

i. ABCD is a parallelogram.
\therefore two pairs of opposite sides are parallel and equal.
a) If $A B=A D$, then you can say that $A B=B C=C D=A D$.

A parallelogram having all sides equal is called a RHOMBUS.
b) $\angle \mathrm{DAB}=90^{\circ}$. This means that all angles will be right angles, as the opposite angles of a parallelogram are equal, and the sum of the co-interior angles is 180°.
A parallelogram each of whose angles is 90° is called a RECTANGLE.
c) If $\mathrm{AB}=\mathrm{AD}$ and $\angle \mathrm{DAB}=90^{\circ}$, then this means that all the angles will be right angles as the opposite angles of a parallelogram are equal, the sum of the co-interior angles is 180° and all sides will be equal.
A parallelogram each of whose angles is 90° and all sides are equal is called a SQUARE.
ii. If $(x, y),(1,2)$ and $(7,0)$ are collinear then the area of the triangle formed by these points is zero.
Area of triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
Here, $x_{1}=x, y_{1}=y, x_{2}=1, y_{2}=2, x_{3}=7, y_{3}=0$
Area of triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
\Rightarrow Area of triangle $=\frac{1}{2}[x(2-0)+1(0-y)+7(y-2)]$
\Rightarrow Area of triangle $=\frac{1}{2}[2 x-y+7 y-14]$
\Rightarrow Area of triangle $=x+3 y-7$
Now, area of $\triangle \mathrm{ABC}=0$
$\therefore x+3 y-7=0$
$x+3 y=7$
iii. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ represents the three sides of the triangle and $\mathrm{a}=9 \mathrm{~cm}$.

Now, $a+b+c=22$
$\Rightarrow \mathrm{b}+\mathrm{c}=22-9=13$
$\Rightarrow \mathrm{b}+\mathrm{c}=13$... (1)
Also, b - c = 7 (given) ... (2)
Adding (1) and (2), we get
$2 b=20$ or $b=10$
From (1), c = 13-10 = 3
Hence, $a=9, b=10, c=3$ and $s=11$
Area $=\sqrt{s(s-a)(s-b)(s-c)}$
Area $=\sqrt{11(2)(1)(8)}=4 \sqrt{11}$ sq.cm
iv. Area of parallelogram $\mathrm{ABCD}=$ base \times Altitude

$$
\begin{aligned}
& =\mathrm{CD} \times \mathrm{AM} \\
& =15 \mathrm{~cm} \times 8 \mathrm{~cm} \\
& =120 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of parallelogram $\mathrm{ABCD}=\mathrm{AD} \times \mathrm{CN}$

$$
\begin{aligned}
& 120=A D \times 10 \\
& \mathrm{AD}=12 \mathrm{~cm}
\end{aligned}
$$

v. An isosceles triangle ABC

In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
D, E and F are the mid-points of sides $A B, A C$ and $B C$, respectively.
By the mid-point theorem,
$E F=\frac{1}{2} A B$
$D F=\frac{1}{2} A C$
$A B=A C$
$\therefore \frac{1}{2} A B=\frac{1}{2} A C$
$\Rightarrow \mathrm{EF}=\mathrm{DF}$
In $\triangle \mathrm{DEF}, \mathrm{EF}=\mathrm{DF}$.
Hence, DEF is an isosceles triangle.
4.
i. In $\triangle A B D$ and $\triangle A C D$,

$\mathrm{AB}=\mathrm{AC}$ (given)
$\mathrm{BD}=\mathrm{DC}$ (given)
$\mathrm{AD}=\mathrm{AD}$ (common)
Therefore, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ (by the SSS rule)
So, $\angle \mathrm{BAD}=\angle \mathrm{CAD}$ (by cpct) ... (1)
In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ACE}$,
$\mathrm{AB}=\mathrm{AC}$ (given)
$\mathrm{AE}=\mathrm{AE}$ (common)
$\angle \mathrm{BAD}=\angle \mathrm{DAC}$ [By (1)] ... (2)
Therefore, $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACE}$ (by SAS)
$\therefore \mathrm{BE}=\mathrm{CE}$ (by cppt)
And $\angle \mathrm{BEA}=\angle \mathrm{CEA}$ (cpcpt)
But $\angle \mathrm{BEA}+\angle \mathrm{CEA}=180^{\circ}$
$\therefore \angle \mathrm{BEA}=90^{\circ}$
ii. The perpendicular from the centre of the circle to a chord bisects the chord.
$\therefore P$ and Q are the mid-points of $A B$ and CD.
$A P=\frac{1}{2} A B=3 \mathrm{~cm}$
$C Q=\frac{1}{2} C D=4 \mathrm{~cm}$
In right triangles OAP and OCQ, we have
$\mathrm{OA}^{2}=\mathrm{OP}^{2}+\mathrm{AP}^{2}$ and $\mathrm{OC}^{2}=\mathrm{OQ}^{2}+\mathrm{CQ}^{2}$
$5^{2}=\mathrm{OP}^{2}+3^{2}$ and $5^{2}=0 \mathrm{Q}^{2}+4^{2}$
$\mathrm{OP}^{2}=5^{2}-3^{2}$ and $\Rightarrow O Q^{2}=5^{2}-4^{2}$
$\mathrm{OP}^{2}=16$ and $\mathrm{OQ}^{2}=9$
$\therefore \mathrm{OP}=4$ and $\mathrm{OQ}=3$
$\therefore \mathrm{PQ}=\mathrm{OP}+0 \mathrm{Q}=4+3=7 \mathrm{~cm}$
iii. Ratio of sides $=3: 5: 7$

Let sides be $3 x, 5 x$ and $7 x$
So $3 x+5 x+7 x=300 m$
$15 \mathrm{x}=300 \mathrm{~m}$
$\mathrm{x}=20 \mathrm{~m}$
Sides are $60 \mathrm{~m}, 100 \mathrm{~m}$ and 140 m
$\mathrm{s}=\frac{300}{2}=150 \mathrm{~m}$
$\Delta=\sqrt{S(s-a)(s-b)(s-c)}$
$\Delta=\sqrt{S(s-60)(s-100)(s-140)}$
$\Delta=\sqrt{150(90)(50)(10)}$
$\Delta=1500 \sqrt{3} m^{2}$
5.
i. Steps of construction:

1. Draw a ray BX and cut off a line segment $\mathrm{BC}=4.5 \mathrm{~cm}$ from it.
2. Construct $\angle \mathrm{XBY}=45^{\circ}$.
3. Cut of a line segment $\mathrm{BD}=2.5 \mathrm{~cm}$ from ray BY .
4. Join CD.
5. Draw a perpendicular bisector CD cutting BY at A .
6. Join AC.
7. ABC is the required triangle.
8. Justification:

Point A lies on the perpendicular bisector of DC . Therefore, $\mathrm{AD}=\mathrm{AC}$
So, $\mathrm{BD}=\mathrm{AB}-\mathrm{AD}=\mathrm{AB}-\mathrm{AC}$

ii. Let ABCD be the rhombus, where $\mathrm{AC}=10 \mathrm{~cm}$ and $\mathrm{BD}=24 \mathrm{~cm}$.

Let AC and BD intersect each other at 0 .
Now, the diagonals of the rhombus bisect each other at right angles.
Thus, we have
$A O=\frac{1}{2} \times A C=\frac{1}{2} \times 10=5 \mathrm{~cm}$
$B O=\frac{1}{2} \times B D=\frac{1}{2} \times 24=12 \mathrm{~cm}$
Because AOB is a right angled triangle, by Pythagoras theorem, we have $A B^{2}=A O^{2}+B O^{2}$
$A B^{2}=5^{2}+12^{2}=25+144=169$
Hence, $\mathrm{AB}=13$
Thus, the length of each side of the rhombus is 13 cm .
iii. Const: Join centre 0 to P. Draw $O R \perp A B$ and $\mathrm{OS} \perp C D$

Proof: We have
$\mathrm{AB}=\mathrm{CD}$ (given)

$\Rightarrow O R=O S$ (equal chords are equidistant from the centre)
In \triangle ORP and Δ OSP,
OR $=0 \mathrm{~S}$
$\angle O R P=\angle O S P \quad\left(\right.$ each $\left.90^{\circ}\right)$
and OP $=\mathrm{OP}$ (common)
$\Rightarrow \Delta$ ORP $\cong \Delta$ OSP (RHS criterion)
$\Rightarrow R P=S P$... (i)
Now, $\mathrm{AB}=\mathrm{CD}$
$\Rightarrow \frac{1}{2} A B=\frac{1}{2} C D$
$\Rightarrow \mathrm{BR}=\mathrm{DS} . .$. (ii)
Subtracting (ii) from (i),
RP - BR $=\mathrm{SP}-\mathrm{DS}$
$P B=P D$

