Maharashtra Board
 Class IX Mathematics
 (Geometry) Sample Paper - 3
 Solution

Time: 2 hours
Total Marks: 40
1.
i. Three sides of an equilateral triangle are congruent.
\therefore Perimeter of an equilateral triangle $=3 \times$ side
$\therefore 3 \times$ side $=16.5$
\therefore Side $=\frac{16.5}{3}=5.5 \mathrm{~cm}$
Thus, the length of each side of the equilateral triangle is 5.5 cm .
ii. $A B=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}$.
$\therefore A C>B C>A B$
$\therefore \angle \mathrm{B}>\angle \mathrm{A}>\angle \mathrm{C} \quad \ldots$. (Inequality property of a triangle)
The smallest angle is $\angle \mathrm{C}$ and the greatest angle is $\angle \mathrm{B}$.
iii. We know that equal chords of a circle are equidistant from the center.

Thus, $O E=O F$ and hence, $O F=5 \mathrm{~cm}$.
iv. Let $P(x, y)$ be equidistant from the points $A(2,-4)$ and $B(-2,6)$.

Hence, $A P=B P$
$\therefore A P^{2}=B P^{2}$
$\therefore(x-2)^{2}+(y+4)^{2}=(x+2)^{2}+(y-6)^{2}$
$\therefore x^{2}-4 x+4+y^{2}+8 y+16=x^{2}+4 x+4+y^{2}-12 y+36$
$\therefore 8 x-20 y+20=0$
$\therefore 2 x-5 y+5=0$
Thus, the relation between x and y is $2 x-5 y+5=0$.
v. $\tan ^{2} 30+\tan ^{2} 45+\tan ^{2} 60=\left(\frac{1}{\sqrt{3}}\right)^{2}+(1)^{2}+(\sqrt{3})^{2}$

$$
=\frac{1}{3}+1+3
$$

$$
=\frac{1+3+9}{3}
$$

$$
=\frac{13}{3}
$$

vi. Diagonal of a square $=5 \sqrt{6} \mathrm{~cm}$

$$
\text { Area of a square }=\frac{(\text { Diagonal) })^{2}}{2}=\frac{(5 \sqrt{6})^{2}}{2}=\frac{25 \times 6}{2}=75 \mathrm{~cm}^{2}
$$

2.

i. In $\triangle L M P$ and $\Delta T S P$,
$\angle \mathrm{PLM}=\angle \mathrm{PTS} \quad$....(alternate angles, since LM || ST)
$\angle \mathrm{PML}=\angle \mathrm{PST} \quad$....(alternate angles, since LM || ST)
$\angle L P M=\angle T P S \quad . .$. .(vertically opposite angles)
$\therefore \triangle L M P \sim \Delta T S P$
....(by AAA test)
$\therefore \frac{\mathrm{MP}}{\mathrm{PS}}=\frac{\mathrm{LP}}{\mathrm{PT}}=\frac{\mathrm{LM}}{\mathrm{ST}}$
$\therefore \frac{\mathrm{MP}}{12}=\frac{3}{4}=\frac{9}{\mathrm{ST}}$
$\therefore \mathrm{MP}=\frac{12 \times 3}{4}=9 \mathrm{~cm}$ and $\mathrm{ST}=\frac{4 \times 9}{3}=12 \mathrm{~cm}$
ii. Let Q, R and S be the three collinear points.

Four lines can be drawn through given four points such that three points are collinear.
The four lines are line PQ, line PS, line PR, and line QS.
iii. Since sum of two sides of a triangle is greater than the third side, we have

In $\triangle P Q S, P Q+Q S>P S$
Similarly, in $\triangle P R S, R P+R S>P S$
Adding equations (1) and (2), we get
PQ + QS + RP + RS > PS + PS
$\therefore P Q+(Q S+R S)+R P>2 P S$
$\therefore \mathrm{PQ}+\mathrm{QR}+\mathrm{RP}>2 \mathrm{PS}$
iv. Join $O Q$ and $O R$, where O is the center of the circle.

In $\triangle O P Q$ and $\triangle O P R$,
seg $O Q \cong$ seg $O R \ldots$ (Radii of the same circle)
$\operatorname{seg} P Q \cong \operatorname{seg} P R$
....(Given)
$\operatorname{seg} \mathrm{PO} \cong \operatorname{seg} \mathrm{PO}$
....(Common side)
$\therefore \triangle \mathrm{OPQ} \cong \triangle \mathrm{OPR}$
....(SSS test)
$\therefore \angle \mathrm{OPQ} \cong \angle \mathrm{OPR}$
\therefore seg PO is the bisector of $\angle \mathrm{QPR}$.
i.e. the bisector of $\angle R P Q$ passes through the centre of the circle.

v. Given $A B C D$ is a parallelogram.
$\therefore \angle D=\angle B=102^{\circ} \ldots$ (opposite angles are equal)
For $\triangle A C D$,
$y=\angle D A C+\angle A D C \quad .$. (exterior angle property)
$\therefore y=40^{\circ}+102^{\circ}=142^{\circ}$
Now, AD || BC
$\therefore \angle D A B+\angle B=180^{\circ} \quad \ldots .\left(\right.$ sum of co-interior angles is $\left.180^{\circ}\right)$
$\therefore \angle \mathrm{DAB}+102^{\circ}=180^{\circ}$
$\therefore \angle \mathrm{DAB}=180^{\circ}-102^{\circ}=78^{\circ}$
Now, $\angle D A B=\angle D A C+\angle B A C$
$\therefore 78^{\circ}=40^{\circ}+z$
$\therefore \mathrm{z}=78^{\circ}-40^{\circ}=38^{\circ}$
vi. $\quad \sin \theta=\frac{2 \sqrt{2}}{3}, \cos \theta=\frac{1}{3}$

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \therefore \tan \theta=\frac{\frac{2 \sqrt{2}}{3}}{\frac{1}{3}}=2 \sqrt{2}
\end{aligned}
$$

Now, $\tan \theta \times \cot \theta=1$

$$
\begin{aligned}
& \therefore 2 \sqrt{2} \times \cot \theta=1 \\
& \therefore \cot \theta=\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

3.

i. $\quad \triangle U V W$ is a right-angled triangle.

Then, by Pythagoras theorem, we have $U W^{2}=U V^{2}+V W^{2}$
$\therefore(8)^{2}=(6)^{2}+V W^{2}$
$\therefore \mathrm{VW}^{2}=(8)^{2}-(6)^{2}=64-36=28$
$\therefore V W=2 \sqrt{7}$
$\sin W=\frac{U V}{U W}=\frac{6}{8}=\frac{3}{4}$
$\cos W=\frac{V W}{U W}=\frac{2 \sqrt{7}}{8}=\frac{\sqrt{7}}{4}$
$\tan W=\frac{U V}{V W}=\frac{6}{2 \sqrt{7}}=\frac{3}{\sqrt{7}}$
$\cot W=\frac{V W}{U V}=\frac{2 \sqrt{7}}{6}=\frac{\sqrt{7}}{3}$
$\sec W=\frac{U W}{V W}=\frac{8}{2 \sqrt{7}}=\frac{4}{\sqrt{7}}$
$\operatorname{cosec} W=\frac{U W}{U V}=\frac{8}{6}=\frac{4}{3}$
ii. Let $\square A B C D$ be a square with diagonal $A C$ of length 13 cm .
$\therefore A B=B C=C D=A D$
In right-angled $\triangle A B C$,
$A C^{2}=A B^{2}+B C^{2}$
....(by Pythagoras theorem)
$\therefore A C^{2}=A B^{2}+A B^{2}$
$\therefore A C^{2}=2 A B^{2}$

$\therefore A B^{2}=\frac{A C^{2}}{2}=\frac{(13)^{2}}{2}=\frac{169}{2}$
$\therefore A B=\frac{13}{\sqrt{2}}=\frac{13}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{13 \sqrt{2}}{2}$
Thus, the length of each side of a square is $\frac{13 \sqrt{2}}{2} \mathrm{~cm}$.
iii. In $\triangle A B C, m \angle B=30^{\circ}, \mathrm{m} \angle \mathrm{C}=25^{\circ}$,
$\therefore \angle B>\angle C$
\therefore side $A C>$ side $A B$
....(side opposite to the greater angle is greater)
$\angle A D B+\angle A D C=180^{\circ} \quad \ldots$ (Angles in a linear pair)
$\therefore \angle \mathrm{ADB}+70^{\circ}=180^{\circ}$
$\therefore \angle A D B=110^{\circ}$
In $\triangle A B D, \angle A D B=110^{\circ}$ and $\angle B=30^{\circ}$
$\therefore \angle A D B>\angle B$
\therefore side $A B>$ side $A D$
From (1) and (2), we have
side $A C>$ side $A B>$ side $A D$.
iv. Let the angle be A.

Then its supplement is $\left(180^{\circ}-A\right)$ and its complement is $\left(90^{\circ}-A\right)$.
According to the given information, we have
$\left(180^{\circ}-A\right)=3 \times\left(90^{\circ}-A\right)+10$
$\therefore 180^{\circ}-A=270^{\circ}-3 \mathrm{~A}+10$
$\therefore 180^{\circ}-A=280^{\circ}-3 A$
$\therefore 3 A-A=280^{\circ}-180^{\circ}$
$\therefore 2 \mathrm{~A}=100^{\circ}$
$\therefore \mathrm{A}=\frac{100^{\circ}}{2}=50^{\circ}$
Thus, the measure of an angle is 50°.
v. $L \equiv(1,3), M \equiv(-1,-1)$ and $N \equiv(-2,-3)$

By using distance formula, we have
$L M=\sqrt{(-1-1)^{2}+(-1-3)^{2}}=\sqrt{(-2)^{2}+(-4)^{2}}=\sqrt{4+16}=\sqrt{20}=2 \sqrt{5}$
$\therefore \mathrm{LM}=2 \sqrt{5}$
$M N=\sqrt{(-2+1)^{2}+(-3+1)^{2}}=\sqrt{(-1)^{2}+(-2)^{2}}=\sqrt{1+4}=\sqrt{5}$
$\therefore \mathrm{MN}=\sqrt{5}$
$\mathrm{LN}=\sqrt{(-2-1)^{2}+(-3-3)^{2}}=\sqrt{(-3)^{2}+(-6)^{2}}=\sqrt{9+36}=\sqrt{45}=3 \sqrt{5}$
$\therefore \mathrm{LN}=3 \sqrt{5}$
From (1), (2) and (3), we have $\mathrm{LN}=\mathrm{LM}+\mathrm{MN}$
Thus, the points L, M and N are collinear.
4.
i. We have,
$A R=10+12=22 \mathrm{~m}$
$S Q=S R+R Q=12+38=50 \mathrm{~m}$
$\mathrm{QD}=\mathrm{QP}+\mathrm{PD}=15+15=30 \mathrm{~m}$
$R P=R Q+Q P=38+15=53 \mathrm{~m}$
$A Q=A S+S R+R Q=10+12+38=60$
(1) Area of $\triangle D E P=\frac{1}{2} \times E P \times P D=\frac{1}{2} \times 40 \times 15=300 \mathrm{~m}^{2}$
(2) Area of trapezium $E F R P=\frac{1}{2} \times R P \times(E P+F R)=\frac{1}{2} \times 53 \times 60=1590 \mathrm{~m}^{2}$
(3) Area of $\triangle \mathrm{AFR}=\frac{1}{2} \times \mathrm{FR} \times \mathrm{AR}=\frac{1}{2} \times 20 \times 22=220 \mathrm{~m}^{2}$
(4) Area of $\triangle \mathrm{DQC}=\frac{1}{2} \times \mathrm{DQ} \times \mathrm{QC}=\frac{1}{2} \times 30 \times 37=555 \mathrm{~m}^{2}$
(5) Area of trapezium $\mathrm{BCQS}=\frac{1}{2} \times \mathrm{QS} \times(\mathrm{QC}+\mathrm{SB})=\frac{1}{2} \times 50 \times 62=1550 \mathrm{~m}^{2}$
(6) Area of $\triangle \mathrm{ABS}=\frac{1}{2} \times \mathrm{AS} \times \mathrm{BS}=\frac{1}{2} \times 10 \times 25=125 \mathrm{~m}^{2}$
\therefore Area of the field $=300+1590+220+555+1550+125=4340 \mathrm{~m}^{2}$
ii.
(a) Seg PN \|l seg LM and LN is the transversal(given) $\therefore \angle M L N$ (i.e., $\angle M L A$) $\cong \angle L N P$ (i.e., $\angle A N P$)(alternate angles)
In $\triangle L A M$ and $\triangle N A P$,
$\angle M L A \cong \angle A N P \quad \ldots$. (proved)
$\angle L A M \cong \angle N A P \quad \ldots$. (vertically opposite angles)
$\therefore \Delta$ LAM $\sim \Delta N A P \quad \ldots$ (AA test for similarity)
(b) \triangle LAM $\sim \triangle N A P$
....(proved)

$$
\begin{array}{ll}
\therefore \frac{\mathrm{LM}}{\mathrm{NP}}=\frac{\mathrm{LA}}{\mathrm{NA}} & \ldots .\binom{\text { Corresponding sides are }}{\text { proportional }} \\
\therefore \frac{8}{12}=\frac{5}{\mathrm{NA}} & \ldots .\binom{\text { substituting the given }}{\text { values }} \\
\therefore \mathrm{NA}=\frac{5 \times 12}{8} & \\
\therefore \mathrm{NA}=\mathrm{AN}=7.5 &
\end{array}
$$

iii. Steps of construction:

1. Draw $\overline{\mathrm{BC}}$ of length 4.7 cm .
2. Draw $\overrightarrow{B X}$, passing through point B, such that $\angle C B X=45^{\circ}$
3. Draw a ray $\overrightarrow{B Y}$ opposite to $\overrightarrow{B X}$
4. With centre B and radius 2.5 cm draw an arc which intersects $\overrightarrow{X Y}$ at point D. Join D and C.
5. Keeping C and D as centres and radius greater than half of $C D$, draw arcs of circle above and below the line segment CD.
6. Mark the points of intersection of arcs as F and E.
7. Join $\overline{\mathrm{EF}}$ which is the perpendicular bisector of $\overline{\mathrm{CD}}$.
8. Mark the point of intersection of $\overline{E F}$ and $\overrightarrow{B X}$ as A. Join A and C.
9. Now by perpendicular bisector theorem, $A D=A C$.

$$
\begin{aligned}
& \quad B D=2.5 \mathrm{~cm} \\
& \therefore A C-A B=A D-A B=2.5 \mathrm{~cm}(\because A C=A D)
\end{aligned}
$$

Hence, $\triangle A B C$ is the required triangle.

5.
i. Given that $\angle \mathrm{PEB}=70^{\circ}$
$\therefore \angle \mathrm{AEF}=\angle \mathrm{PEB} \quad \ldots$. (vertically opposite angles)
$\therefore \angle A E F=70^{\circ}$
$\angle P E B+\angle B E F=180^{\circ}$
$\therefore 70+\angle B E F=180^{\circ}$
$\therefore \angle B E F=180^{\circ}-70^{\circ}$
$\therefore \angle B E F=110^{\circ}$
$\angle \mathrm{PEA}=\angle \mathrm{BEF}$ (vertically opposite angles)
$\therefore \angle P E A=110^{\circ}$
$\angle B E F+\angle E F D=180^{\circ} \quad \ldots$. (converse of interior angles theorem)
$\therefore 110^{\circ}+\angle E F D=180^{\circ}$
$\therefore \angle E F D=180^{\circ}-110^{\circ}$
$\therefore \angle E F D=70^{\circ}$
$\angle E F D=\angle C F Q$ (vertically opposite angles)
$\therefore \angle \mathrm{CFQ}=70^{\circ}$
$\angle \mathrm{EFD}+\angle \mathrm{DFQ}=180^{\circ} \quad \ldots$ (angles in a linear pair)
$\therefore 70^{\circ}+\angle D F Q=180^{\circ}$
$\therefore \angle \mathrm{DFQ}=180^{\circ}-70^{\circ}$
$\therefore \angle \mathrm{DFQ}=110^{\circ}$
$\angle D F Q=\angle C F E$ (vertically opposite angles)
$\therefore \angle C F E=110^{\circ}$
ii. Diagonal MP is the perpendicular bisector of diagonal NQ.
$\therefore \operatorname{seg} \mathrm{NT} \cong \operatorname{seg} \mathrm{QT}$
$\angle \mathrm{NTM}=\angle \mathrm{QTM}=\angle \mathrm{PTN}=\angle \mathrm{PTQ}=90^{\circ}$
Now, in $\triangle M N T$ and $\triangle M Q T$,
$\operatorname{seg} N T \cong \operatorname{seg} Q T$
$\angle \mathrm{MTN} \cong \angle \mathrm{MTQ}$
$\operatorname{seg} M T \cong \operatorname{seg} M T$
$\therefore \triangle \mathrm{MNT} \cong \triangle M Q T$
$\therefore \operatorname{seg} \mathrm{MN} \cong \operatorname{seg} M Q$
...[From (1)]
...[From (2)]
...(Common side)
...(SAS test)
...(c.s.c.t.)

In $\triangle P N T$ and $\triangle P Q T$,
seg $N T \cong \operatorname{seg} Q T$
$\angle \mathrm{PTN} \cong \angle \mathrm{PTQ}$
$\operatorname{seg} \mathrm{PT} \cong \operatorname{seg} \mathrm{PT}$
$\therefore \triangle \mathrm{PNT} \cong \triangle \mathrm{PQT}$
\therefore seg NP \cong seg QP

In $\triangle N M P$ and $\triangle Q M P$,
$\operatorname{seg} M N \cong \operatorname{seg} M Q$
$\operatorname{seg} N P \cong \operatorname{seg} Q P$
$\operatorname{seg} M P \cong \operatorname{seg} M P$
$\therefore \triangle \mathrm{PNT} \cong \triangle \mathrm{PQT}$
....[From (1)]
....[From (2)]
...(Common side)
...(SAS test)
...(c.s.c.t.)
...(Common side)
...(SSS test)
iii. $\square P Q R S$ is a rhombus having diagonals PR and QS of length 16 cm and 30 cm .

Let the diagonals PR and QS intersect at point M.
Now, diagonals of a rhombus are perpendicular bisectors of each other.

$\therefore \operatorname{seg} P M=\operatorname{seg} R M=\frac{1}{2} P M=\frac{1}{2} \times 16=8 \mathrm{~cm}$
$\operatorname{seg} S M=\operatorname{seg} Q M=\frac{1}{2} S Q=\frac{1}{2} \times 30=15 \mathrm{~cm}$
Now, in \triangle PMS,

$$
\begin{aligned}
\mathrm{PS}^{2} & =\mathrm{PM}^{2}+\mathrm{SM}^{2} \quad \ldots .(\text { by Pythagoras theorem }) \\
& =(8)^{2}+(15)^{2} \\
& =64+225 \\
& =289 \\
\therefore \mathrm{PS} & =17
\end{aligned}
$$

Since all the sides of a rhombus are congruent, the length of each side of a rhombus is 17 cm .

