Maharashtra Board
 Class VI Mathematics
 Board Paper - 1
 Solution

Q1.

1. $5 \times 5 \times 5 \times 5=625$
2. $25: 45=\frac{25}{45}=\frac{25 \div 5}{45 \div 5}=\frac{5}{9}=5: 9$
3. 50 percent of $84=84 \times \frac{50}{100}=\frac{84 \times 50}{100}=\frac{84}{2}=42$
4. The prime numbers from 1 to 100 are given below.
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89$, and 97 .
There are 25 prime numbers between 1 and 100 .
5. $48=3 \times 16$
$16=16 \times 1$
L.C.M. $=16 \times 3=48$
6. $12 \times 14 \div 7=12 \times 2=24$
7. Base 6 , index $4=64$
8. $38.974+9.408=48.382$
9. $0.83=\frac{83}{100}=83$ percent
10. Given, $\mathrm{l}=12 \mathrm{~cm}$ and $\mathrm{b}=10 \mathrm{~cm}$

Area of the rectangle $=\mathrm{l} \times \mathrm{b}=12 \times 10=120$ sq. cm
11. Radius $=r=7 \mathrm{~cm}$

Diameter $=2 \times$ radius $=2 \times 7=14 \mathrm{~cm}$
12. A triangle has 6 exterior angles in all.

Q2.

1. We have,
$\mathrm{m} \angle \mathrm{ABC}=25^{\circ}$ and $\mathrm{m} \angle \mathrm{PQR}=107^{\circ}$.
$\Rightarrow \mathrm{m} \angle \mathrm{PQR}>\mathrm{m} \angle \mathrm{ABC}$
Thus, $\angle \mathrm{PQR}$ is the bigger angle of the two angles.
2. $\mathrm{p}^{2}+\mathrm{q}^{2}=(3)^{2}+(5)^{2}=9+25=34$
3. Given, Length (l) of a rectangle $=30 \mathrm{~m}$, perimeter of a rectangle $=100 \mathrm{~m}$

Now, perimeter of a rectangle $=2(l+b)$
$\Rightarrow 100=2(30+b)$
$\Rightarrow 50=30+b$
$\Rightarrow \mathrm{b}=50-30=20$
Therefore, the breadth of the rectangular pool is 20 m .
4. (1) The lines whose point of concurrence is Q are lines $P Q, S Q$ and RQ.
(2) Lines PS, SR and QS are concurrent lines.

5. $5 \times[10+(-13)]=5 \times[10-13]=5 \times[-3]=-15$
6. In $\triangle \mathrm{RST}, \mathrm{m} \angle \mathrm{R}+\mathrm{m} \angle \mathrm{S}+\mathrm{m} \angle \mathrm{T}=180^{\circ}$
[The sum of the three angles of a triangle will always add up to 180 degrees]
$\Rightarrow 70^{\circ}+30^{\circ}+\mathrm{m} \angle \mathrm{T}=180^{\circ}$
$\Rightarrow 100^{\circ}+\mathrm{m} \angle \mathrm{T}=180^{\circ}$
$\Rightarrow \mathrm{m} \angle \mathrm{T}=180^{\circ}-100^{\circ}$
$\Rightarrow \mathrm{m} \angle \mathrm{T}=80^{\circ}$
7. Length of the room (l) $=5.2 \mathrm{~m}$

Breadth of the room (b) $=5 \mathrm{~m}$
Area of the room $=l \times b$
Area of the mat $=$ Area of the room
\Rightarrow Area of the mat $=\mathrm{l} \times \mathrm{b}=5.2 \times 5=26.0 \mathrm{sq} . \mathrm{m}$ Thus, the area of the mat is 26 sq. m.
8. Radii: Seg CB, Seg CX, Seg CH, Seg CA, Seg CM, Seg CI.

Chords: Seg RG, Seg AH, Seg IH, Seg MX, Seg AB
Diameter: Seg IH, Seg MX, Seg AB.

Q3.

1. Length of the tank (l) $=2.5 \mathrm{~m}$, breadth (b) $=2 \mathrm{~m}$, height (h) $=3 \mathrm{~m}$

Volume of the tank $=\mathrm{l} \times \mathrm{b} \times \mathrm{h}=2.5 \times 2 \times 3=15 \mathrm{cu} \mathrm{m}$
The volume of the water which the tank can hold is equal to the volume of the tank.
Thus, the tank will hold 15 cu m of water.
2. Selling price(S.P.) of 15 shirts $=$ Rs. 2340

Loss (L) = Rs. 60
Cost Price (C.P.) = Selling Price (S.P.) + Loss (L)
\Rightarrow Cost Price (C.P.) of 15 shirts $=2340+60=$ Rs. 2400
\Rightarrow Cost Price (C.P.) of 1 shirt $=2400 \div 15=160$
Therefore, the cost of each shirt is Rs. 160.
3. Given, length of line segment $=6.5 \mathrm{~cm}$

1. Draw line segment AB of length 6.5 cm .
2. Take the span of the compass more than half of length $A B$.
3. Keep the steel head of the compass on point ' A ' and draw arcs on either side of line AB. Now, keep the steel end of the compass on point ' B ' and draw two more arcs to cut the previous arcs at points P and Q, respectively.
4. Join PQ.

Thus, PQ is the perpendicular bisector of line segment AB .
4. $16 \times 81+34 \times 81$
$=81(16+34)$
$=81 \times 50$
$=4050$
5. Perimeter of a square $=4 \times$ Side

Given, perimeter of the square room $=16 \mathrm{~m}$.
$\Rightarrow 4 \times$ Length of side of a square $=16$
\Rightarrow Length of side of a square $=16 \div 4=4$
Therefore, the length of each side of a square room is 4 m .
6. $8: 12=2: x$
$\Rightarrow \frac{8}{12}=\frac{2}{x}$
$\Rightarrow \frac{8}{12}=\frac{4 \times 2}{4 \times 3}=\frac{2}{3}$
Now, $\frac{2}{3}=\frac{2}{x}$
$\therefore \mathrm{x}=3$
7. Given, maximum marks $=800$
35% out of 800 marks are required for passing.
$\therefore 35 \%$ of $800=\frac{35}{100} \times 800=280$
Therefore, 280 marks are required for passing.

Q4.

1. 75 out of 625 means $\frac{75}{625}$.
$\frac{75}{625}=\frac{75 \div 25}{625 \div 25}=\frac{3}{25}$
Therefore, $\frac{75}{625}$ and $\frac{3}{25}$ are equivalent fractions.
Percentage (the letters were greeting cards) $=\frac{3}{25}=\frac{3 \times 4}{25 \times 4}=\frac{12}{100}$
Thus, out of the total number of letters, 12% were greeting cards.
2.

$\frac{784.8}{0.4}=\frac{784.8 \times 10}{0.4 \times 10}=\frac{7848}{4}$
$4 \longdiv { 7 8 4 8 }$
-4
38
-36

024

$-\quad 24$
008

$\begin{array}{r}-\quad 8 \\ \hline 0\end{array}$
Thus, $784.8 \div 0.4=1962$.
3. Cost Price of 50 apples (C.P.) = Rs. 260

Selling price of 50 apples (at Rs. 5 per apple) $=50 \times 5=$ Rs. 250
If selling price is less than the cost price, there is a loss in this transaction.
Thus, Loss = Cost price - Selling price $=260-250=10$
Thus, Hanif has a loss of Rs. 10.
4. Length of the first playground $\left(l_{1}\right)=120 \mathrm{~m}$

Breadth of the first playground $\left(\mathrm{b}_{1}\right)=52 \mathrm{~m}$
\therefore Area of the first playground $=\mathrm{l}_{1} \times \mathrm{b}_{1}=120 \times 52=6240$ sq. m
Length of the second playground $\left(l_{2}\right)=110 \mathrm{~m}$
Length of the second playground $\left(b_{2}\right)=62 \mathrm{~m}$
\therefore Area of the second playground $=l_{1} \times \mathrm{b}_{1}=110 \times 62=6820$ sq. m Now, $6820>6240$.
\Rightarrow Area of the second playground $>$ Area of the first playground Thus, the playground which is 110 m long and 62 m wide is bigger.

Q5.

1.

(a) Draw a horizontal line as x -axis and draw a vertical line at right angle to the x -axis, on the graph paper after leaving a specific space.
(b) Show 'Types of books' on x-axis.
(c) Show 'Numbers of books' on y-axis.
(d) 0 n y-axis, $1 \mathrm{~cm}=25$ books.
(e) On x-axis, leave 1 cm box and draw $1^{\text {st }}$ bar of 5 cm width. Same way, draw other bars.
(f) Keep equal distance between each box.

2. Given: Length of the rectangle $(\mathrm{l})=50 \mathrm{~cm}$

Breadth of the rectangle (b) $=30 \mathrm{~cm}$
Length of the wire $=$ Perimeter of the rectangle
Perimeter of the rectangle $=2(\mathrm{l}+\mathrm{b})=2(50+30)=2(80)=160 \mathrm{~cm}$
\therefore the length of the wire is 160 cm .
Now, the wire is bent into a square.
\therefore Perimeter of a square $=160 \mathrm{~m}$
Perimeter of a square of side ' a ' $=4 \mathrm{a}$
$\therefore 4 \times \mathrm{a}=160$
$\Rightarrow \mathrm{a}=160 \div 4=40$
Thus, the length of each side of a square is 40 cm .

