Maharashtra State Board Class VI Mathematics
 Board Paper 2
 Solution

Time: $\mathbf{2} \mathbf{h r} 30$ min
Total Marks: 60

Q1.

1. Numbers to the left of zero are:
$-9,-28,-100,-4,-1,-48,-95$.
Numbers to the right of zero are:
$+5,+81,+1,+72,+65$.
2. $6=\mathrm{k}-2$
$\therefore 6+2=\mathrm{k}-2+2 \quad$...[Addition property of equality]
$\therefore 8=\mathrm{k}+0 \quad \ldots[\because(-2)+2=0$ and $6+2=8]$
$\therefore 8=\mathrm{k} \quad$...(\because Any number $+0=$ the same number)
Hence, the value of k is 8 .
3. A triangle has 6 exterior angles in all.

Exterior angles of the triangle are:
$\angle A X Y, \angle B X Z, \angle C Z X, \angle D Z Y, \angle F Y Z$, and $\angle E Y X$
4. $\frac{7}{20}=\frac{7 \times 5}{20 \times 5}=\frac{35}{100}=35 \%$

5. Diameter of the circle $=5.6 \mathrm{~cm}$
\therefore Radius of the circle $=(5.6 \div 2) \mathrm{cm}=2.8 \mathrm{~cm}$
6. Magnitude of the two numbers $=7$ and 9

Bigger magnitude $=9$
Difference between the magnitudes $=9-7=2$
7. If the lengths of two sides of a triangle are equal, then such a triangle is called an isosceles triangle.
$\mathrm{PQ}=7 \mathrm{~cm}$ and $\mathrm{QR}=6 \mathrm{~cm}$
Thus, $\triangle P Q R$ will be an isosceles triangle if $P R=6 \mathrm{~cm}$ or $P R=7 \mathrm{~cm}$.
8. $15 x$ and $7 y$ are unlike terms. Hence, when adding $15 x$ and $7 y$ we cannot add their coefficients.
\therefore Sum of 15 x and 7 y is written as ' $15 \mathrm{x}+7 \mathrm{y}^{\prime}$.
9. Length of a rectangle $=12 \mathrm{~cm}$

Breadth of a rectangle $=10 \mathrm{~cm}$
\therefore Area of a rectangle $=$ Length \times Breadth $=12 \times 10=120$ sq. cm
10.Side of a cube, $\mathrm{I}=10 \mathrm{~cm}$

Now, volume of the cube $=1^{3}$

$$
\begin{aligned}
& =10^{3} \\
& =10 \times 10 \times 10 \\
& =1000 \mathrm{cu} . \mathrm{cm}
\end{aligned}
$$

11. $-16-(-9)=-16+9$ $=7$
12.Algebraic term: $-5 b^{3}$

Coefficient: -5
Variable: b

Q2.

1. Length of the wall $=I=5 \mathrm{~m}$

Height of the wall $=b=3 \mathrm{~m}$
Area of the wall $=1 \times b$

$$
\begin{aligned}
& =5 \times 3 \\
& =15 \mathrm{sq} . \mathrm{m}
\end{aligned}
$$

Cost of painting 1 sq. $\mathrm{m}=$ Rs. 15
\therefore Cost of painting 15 sq. $\mathrm{m}=15 \times 15=$ Rs. 225
Thus, the cost of painting the wall would be Rs. 225 .
2. 5% of 60
$=\frac{5}{100} \times 60$
$=\frac{1}{20} \times 60$
$=3$
Hence, 5% of 60 is 3 .
3. Given: $a=3, b=4$ and $c=-2$

$$
\begin{aligned}
\therefore \mathrm{b}^{2}+\mathrm{a}^{2}-\mathrm{c}^{2} & =(4)^{2}+(3)^{2}-(-2)^{2} \\
& =16+9-4 \\
& =21
\end{aligned}
$$

4. A triangle with one obtuse angle is called an obtuse-angled triangle. In $\triangle A B C, m \angle A B C=110^{\circ}$ and hence $\angle A B C$ is an obtuse angle.
Therefore, $\triangle A B C$ is an obtuse-angled triangle.
5. $(-5) \times[-13+10]$
$=(-5) \times(-3)$
$=15$
6. By the property of exterior angle of a triangle,
$\mathrm{m} \angle \mathrm{BCD}=\mathrm{m} \angle B A C+\mathrm{m} \angle A B C$
$\therefore 130^{\circ}=\mathrm{m} \angle \mathrm{BAC}+60^{\circ}$
$\therefore \mathrm{m} \angle \mathrm{BAC}=130^{\circ}-60^{\circ}$
$\therefore \mathrm{m} \angle \mathrm{BAC}=70^{\circ}$
7. Length of the water tank $=\mathrm{I}=5 \mathrm{~m}$

Breadth of the water tank $=\mathrm{b}=3 \mathrm{~m}$
Height of the water tank $=\mathrm{h}=1 \mathrm{~m}$
Volume of the water tank $=1 \times b \times h$

$$
\begin{aligned}
& =5 \times 3 \times 1 \\
& =15 \mathrm{cu} . \mathrm{m}
\end{aligned}
$$

Thus, the volume of the water tank is $15 \mathrm{cu} . \mathrm{m}$
8. Radius $=45 \mathrm{~mm}=(45 \div 10) \mathrm{cm}=4.5 \mathrm{~cm}$

Take a Point O on a paper. Using a compass, take Point O as the centre and radius 4.5 cm , draw a circle.

Diameter $=2 \times$ radius $=2 \times 4.5 \mathrm{~cm}=9 \mathrm{~cm}$
Thus, the diameter of the circle is 9 cm .

Q3.

1. The principal remains the same but the period increases 3 times.
(2 years $\times 3=6$ years)
\therefore The interest will also be tripled.
\therefore Interest for 6 years $=$ Rs. $(3300 \times 3)=$ Rs. 9,900.
2. We know that the diameter of a circle $=2 \times$ (radius)

By applying the formula, we get
(i) Radius $=12.9 \mathrm{~cm}$

Diameter $=2 \times 12.9 \mathrm{~cm}=25.8 \mathrm{~cm}$
Hence, the diameter of the circle is 25.8 cm .
(ii) Radius $=0.6 \mathrm{~m}$

Diameter $=2 \times 0.6 \mathrm{~m}=1.2 \mathrm{~m}$
Hence, the diameter of the circle is 1.2 m .
(iii) Radius $=8.5 \mathrm{~cm}$

Diameter $=2 \times 8.5=17 \mathrm{~cm}$
Hence, the diameter of the circle is 17 cm .
3. Area of Shamita's room $=$ length \times breadth

$$
\begin{aligned}
& =25 \mathrm{~m} \times 22 \mathrm{~m} \\
& =550 \mathrm{~m}^{2}
\end{aligned}
$$

25
$\times \quad 20$
$\quad 50$
$+\quad 500$
5500

So, the area of Shamita's room is $550 \mathrm{~m}^{2}$.
Area of square tile $=$ Side \times Side

$$
\begin{aligned}
& =1 \mathrm{~m} \times 1 \mathrm{~m} \\
& =1 \mathrm{~m}^{2}
\end{aligned}
$$

So, the area of one square tile is $1 \mathrm{~m}^{2}$.
Number of tiles needed for Shamita's room
= Area of Shamita's room \div Area of one square tile
$=550 \div 1$
$=550$ tiles
Hence, 550 tiles will be required for Shamita's room.
4.
(i) $\triangle \mathrm{ABC}, \triangle \mathrm{ABO}, \triangle \mathrm{ACO}, \triangle \mathrm{BOC}$
(ii) $\triangle O A C, \triangle O A B, \triangle O B C$
(iii) $\triangle A O B, \triangle A O C, \triangle A B C$
5. $(2 p+3 q+4 c)+(4 q-5 p)$

Writing the like terms together:
$(2 p-5 p)+(3 q+4 q)+4 c$
$=-3 p+7 q+4 c$
6. Let the measure of each angle be x.

Then, $\mathrm{x}+\mathrm{x}+\mathrm{x}=180^{\circ}$
$\therefore 3 x=180^{\circ}$
$\therefore \mathrm{x}=\frac{180^{\circ}}{3}$
$\therefore \mathrm{x}=60^{\circ}$
Hence, if all three angles of a triangle are equal then the measure of each angle is 60°.
7. Steps of construction:

1. Draw a line $A B$.
2. Take a point C outside the line.
3. Adjust the compass to a convenient radius.
4. Place the point of the compass on C and draw two arcs cutting $A B$ at points E and F.
5. Using the same radius and placing the point of compass on E and F draw two arcs of circle intersecting each other on the side of line $A B$ opposite to point C.
6. Name the point of intersection as D.
7. Draw the line CD passing through points C and D.

Hence, $C D \perp A B$

Q4.
1.

Type of books
2.
(i) The points which are in the exterior of the circle are Points A, C and D. The points which are in the interior of the circle are Points B and O.
(ii) The radii of the circle are Line segments OP, OS, OT, OQ and OR.
(iii) The diameter of the circle is Line segment ST.
(iv) The chords of the circle are Line segments ST and QR.
3. Length of the wall $=10 \mathrm{~m}=1000 \mathrm{~cm}$

Height of the wall $=4 \mathrm{~m}=400 \mathrm{~cm}$
Thickness of the wall $=24 \mathrm{~cm}$
Volume of the wall $=(1000 \times 400 \times 24) \mathrm{cm}^{3}$
Volume of each brick $=(24 \times 12 \times 8) \mathrm{cm}^{3}$
No. of bricks required $=\frac{\text { Volume of the wall }}{\text { Volume of each brick }}$

$$
\begin{aligned}
& =\frac{1000 \times 400 \times 24}{24 \times 12 \times 8} \\
& =4166.667
\end{aligned}
$$

Since, the brick is to be taken as a whole, so to build the wall 4167 bricks are required.
4. Rate of interest is 10 p.c.p.a.
\therefore Interest on a principal of Rs. 100 for 1 year $=$ Rs. 10
\therefore Interest on Rs. 100 principal for 2 years $=$ Rs. 20
Now, Rs. 20,000 is 200 times Rs. 100.
\therefore Interest on Rs. 20,000 for 2 years $=20 \times 200=$ Rs. 4000
5. Steps of construction:

1. Draw $\angle \mathrm{LMN}$ of measure 146°.
2. Place the point of the compass on point M.
3. Taking a suitable span, draw an arc intersecting ray ML and ray MN at the points P and Q respectively.
4. Keeping the same span, draw arcs, first with centre P and then another with centre Q , to intersect the first arc. Let the point of intersection be O.
5. Draw ray MO.

Thus, ray MO is the bisector of $\angle \mathrm{LMN}$.

Q5.
1.

Average Sea Temperature of Mumbai (${ }^{\circ} \mathrm{C}$)

2.
(i) $\frac{y}{5}=12$
$\therefore \frac{\mathrm{y}}{5} \times 5=12 \times 5 \quad$ (Multiplication property of equality)
$\therefore \mathrm{y} \times 1=60$
$\left(\because \frac{5}{5}=1\right.$ and $\left.12 \times 5=60\right)$
$\therefore \mathrm{y}=60$
$(\because 1 \times$ any number $=$ the same number $)$
When the value of y is 60 , the two sides become equal.
$\therefore 60$ is the solution of the given equation.
(ii) $18=3 \mathrm{u}$
$\frac{18}{3}=\frac{3 u}{3} \quad$ (Division property of equality)
$\therefore 6=1 \mathrm{u} \quad\left(\because \frac{18}{3}=6\right.$ and $\left.\frac{3}{3}=1\right)$
$\therefore \mathrm{u}=6 \quad(\because 1 \times$ any number $=$ the same number $)$
When the value of u is 6 , the two sides become equal.
$\therefore 6$ is the solution of the given equation.

