Maharashtra Board
 Class VII Mathematics
 Board Paper - 1
 Solution

Time: $\mathbf{2} \mathbf{h r} 30$ min
Total Marks: 60

Q1.

1. For a cuboid,

Length $=\mathrm{I}=2.5 \mathrm{~m}$
Breadth $=\mathrm{b}=2 \mathrm{~m}$
Height $=\mathrm{h}=1 \mathrm{~m}$
Volume of cuboid $=1 \times b \times h=2.5 \times 2 \times 1=5 \mathrm{cu} . \mathrm{m}$.
2. S.P. of the calculators $=$ Rs. 1200

Profit made on the sale = Rs. 500
C.P. $=$ S.P. - Profit $=$ Rs. $(1200-500)=$ Rs. 700

Hence, the cost price of the calculators is Rs. 700.
3. Angles formed in the same segment are equal.

Hence, $\angle \mathrm{LNP}=\angle \mathrm{LQP}=75^{\circ}$
4. Length of a rectangular plot $=85 \mathrm{~cm}$

Breadth of a rectangular plot $=1 \mathrm{~m}=100 \mathrm{~cm}$
Area of a rectangular plot $=$ length \times breadth $=85 \times 100=8500 \mathrm{~cm}^{2}$
5. Pairs of corresponding sides:

Side DH and side BS
Side HP and side SC
Side DP and side BC
Pairs of corresponding angles:
$\angle D$ and $\angle B$
$\angle \mathrm{H}$ and $\angle \mathrm{S}$
$\angle \mathrm{P}$ and $\angle \mathrm{C}$
6. Area of Rectangle $=$ length \times breadth $=(x+y)(x-y)=x^{2}-y^{2}$
7. $12 x y-15 x$
$=2 \times 2 \times 3 \times x \times y-3 \times 5 \times x$
$=3 \times x(2 \times 2 \times y-5)$
$=3 x(4 y-5)$
8. A quadrilateral whose all angles measure 90° is rectangle/square.
9. $X Y$ is the diameter and $X Z Y$ is a semicircular segment.

Angle in a semicircular segment is a right angle.
Hence, $\angle X Z Y=90^{\circ}$
10.For quadrilateral $A B C D, A B=B C=C D=A D=5 \mathrm{~cm}$,
i.e., all sides are equal.

And, $\angle A=\angle C=100^{\circ}$ and $\angle B=\angle D=80^{\circ}$
i.e., opposite angles are equal.

Now, a rhombus has all its sides equal and its opposite angles are also equal.
Hence, quadrilateral $A B C D$ is a rhombus.
$11.0+\frac{-12}{13}=\frac{-12}{13}$
12.To find $(2 p+3 q)^{2}$

We use the identity $(a+b)^{2}=a^{2}+2 a b+b^{2}$
Taking $a=2 p$ and $b=3 q$
We get, $(2 p+3 q)^{2}=(2 p)^{2}+2(2 p)(3 q)+(3 q)^{2}=4 p^{2}+12 p q+9 q^{2}$

Q2.

1. Length of the pit, $I=2 \mathrm{~m}$

Breadth of the pit, $b=2 \mathrm{~m}$
Area of the pit $=1 \times b=2 \times 2=4$ sq. m

Length of the plot, $\mathrm{I}=12.4 \mathrm{~m}$
Breadth of the plot, $b=10.2 \mathrm{~m}$
Area of the plot $=l \times b=12.4 \times 10.2=126.48$ sq. m

Now, area of the plot after the pit is dug
$=$ Area of the plot - Area of the pit
$=126.48-4$
$=122.48$ sq. m
Thus, the area of the plot after the pit is dug is $122.48 \mathrm{sq} . \mathrm{m}$.
2. $\frac{r^{2}}{s^{2}}-\frac{81}{100}=\left(\frac{r}{s}\right)^{2}-\left(\frac{9}{10}\right)^{2}$

$$
=\left(\frac{r}{s}+\frac{9}{10}\right)\left(\frac{r}{s}-\frac{9}{10}\right)
$$

3. $(10-3 p)^{2}$

$$
\begin{aligned}
& =(10)^{2}-2(10)(3 p)+(3 p)^{2} \\
& =100-2(30 p)+9 p^{2} \\
& =100-60 p+9 p^{2}
\end{aligned}
$$

4. $\left(\frac{a}{2}-\frac{b}{3}\right)\left(\frac{a}{2}+\frac{b}{3}\right)$

We use the identity: $(x-y)(x+y)=x^{2}-y^{2}$
Taking, $x=\frac{a}{2}$ and $y=\frac{b}{3}$
We get, $\left(\frac{a}{2}-\frac{b}{3}\right)\left(\frac{a}{2}+\frac{b}{3}\right)=\left(\frac{a}{2}\right)^{2}-\left(\frac{b}{3}\right)^{2}$

$$
=\frac{a^{2}}{4}-\frac{b^{2}}{9}
$$

5. $\frac{-7}{6}-\frac{13}{8}=\frac{-7 \times 4}{6 \times 4}-\frac{-13 \times 3}{8 \times 3}$

$$
\begin{aligned}
& =\frac{-28}{24}-\frac{39}{24} \\
& =\frac{-28-39}{24} \\
& =\frac{-67}{24}
\end{aligned}
$$

6. For a trunk,

Length $=\mathrm{I}=1.5 \mathrm{~m}$, breadth $=\mathrm{b}=1.2 \mathrm{~m}$ and height $=\mathrm{h}=1.3 \mathrm{~m}$
Total surface area of the trunk $=2(1 \times b+b \times h+h \times I)$

$$
\begin{aligned}
& =2(1.5 \times 1.2+1.2 \times 1.3+1.3 \times 1.5) \\
& =2(1.80+1.56+1.95) \\
& =2 \times 5.31 \\
& =10.62 \mathrm{sq} . \mathrm{m}
\end{aligned}
$$

7. Two cubes of side 2 cm are joined to form a cuboid as shown. Now,
Length of the cuboid $=2 \mathrm{~cm}$
Breadth of the cuboid $=2 \mathrm{~cm}$
Height of the cuboid $=4 \mathrm{~cm}$

Volume of cuboid $=$ length \times breadth \times height

$$
\begin{aligned}
& =2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 4 \mathrm{~cm} \\
& =16 \mathrm{~cm}^{3}
\end{aligned}
$$

So, the volume of the new cuboid is $16 \mathrm{~cm}^{3}$.
8.
A. Trapeziums have only one pair of parallel opposite sides.

There are 6 trapeziums in the given picture.
They are AGHB, GHFE, EFJI, IJDC, ABJI and GHDC.
B. The opposite sides of a parallelogram are parallel and equal.

The opposite angles of a parallelogram are equal.
There are 4 parallelograms in the given figure.
They are AEFB, ECDF, GIJH and ACDB.

Q3.

1. Here since, $\triangle M N Y \cong \Delta S G K$, we can write the corresponding parts without the help of a figure.
(a) $\angle \mathrm{M} \leftrightarrow \angle \mathrm{S}$
(b) $\mathrm{YN} \leftrightarrow \mathrm{KG}$
(c) $\angle \mathrm{N} \leftrightarrow \angle \mathrm{G}$
(d) $M Y \leftrightarrow S K$
(e) $\angle \mathrm{Y} \leftrightarrow \angle K$
(f) $N M \leftrightarrow G S$
2. Volume of the room $=64 \mathrm{cu} . \mathrm{m}$

Breadth of the room $=\mathrm{b}=4 \mathrm{~m}$ and height of the room $=\mathrm{h}=2 \mathrm{~m}$
Volume of the room $=1 \times \mathrm{b} \times \mathrm{h}$
$\therefore 64=1 \times 4 \times 2$
$\therefore \mathrm{I}=\frac{64}{4 \times 2}=8 \mathrm{~m}$
Thus, the length of the room is 8 m .
3. Side of a square blackboard $=4 \mathrm{~m}$

Area of the square blackboard $=$ side \times side $=4 \mathrm{~m} \times 4 \mathrm{~m}=16 \mathrm{~m}^{2}$
Given, area of square blackboard $=$ area of rectangular blackboard
\therefore Area of rectangular blackboard $=16 \mathrm{~m}^{2}$
Length of a rectangular blackboard $=8 \mathrm{~m}$

Now, Area of rectangular blackboard $=$ length \times breadth
\therefore Breadth $=$ Area \div Length
\therefore Breadth $=16 \div 8=2 \mathrm{~m}$

Thus, the breadth of the rectangular blackboard is 2 m .
4. $16 m^{2}-40 m n+25 n^{2}$
$=(4 m)^{2}-2 \times 4 m \times 5 n+(5 n)^{2}$
$=(4 m-5 n)^{2}$
$=(4 m-5 n)(4 m-5 n)$
5. The L.C.M. of the denominators 8 and 4 is 8 .

Therefore make their denominators 8 .
$\frac{-15}{8}=\frac{-15}{8}$
$\frac{-9}{4}=\frac{-9 \times 2}{4 \times 2}=\frac{-18}{8}$
Now, $-15>-18$
$\therefore \frac{-15}{8}>\frac{-18}{8}$
$\therefore \frac{-15}{8}>\frac{-9}{4}$
6. Cost price of a TV set = Rs. 10000

Selling price of a TV set $=$ Rs. 8000
Here, Selling price < Cost price.
Hence, there is a loss.
Loss $=$ Cost price - Selling price $=$ Rs. $(10000-8000)=$ Rs. 2000
On cost price of Rs 10000 , loss = Rs. 2000
On cost price of Rs. 100 , loss $=$?
Let the loss on a C.P. of Rs. 100 be x .
Then, $\frac{10000}{100}=\frac{2000}{x}$
$\therefore \frac{100}{1}=\frac{2000}{x}$
$\therefore \mathrm{x}=20$
\therefore Loss percent $=20$
Hence, Shriraj incurred a loss of 20%.
7. $4 x^{2}+\frac{1}{9 x^{2}}-\frac{4}{3}$
$=(2 x)^{2}+\frac{1}{(3 x)^{2}}-\frac{4}{3}$
$=(2 x)^{2}+\frac{1}{(3 x)^{2}}-2 \times(2 x) \times\left(\frac{1}{3 x}\right)$
Taking $a=2 x$ and $b=\frac{1}{3 x}$ in the identity $a^{2}-2 a b+b^{2}=(a-b)^{2}$, we get
$4 x^{2}+\frac{1}{9 x^{2}}-\frac{4}{3}=\left(2 x-\frac{1}{3 x}\right)^{2}$

$$
=\left(2 x-\frac{1}{3 x}\right)\left(2 x-\frac{1}{3 x}\right)
$$

Q4.

1.

(i) In Marathi, Govinda scored 65 marks in the first term examination and 70 marks in the second term examination.
(ii) Govinda's marks fell in Hindi and Science in the second term exam.
(iii) Maths marks in the $1^{\text {st }}$ term $=80$

Maths marks in the $2^{\text {nd }}$ term $=85$
Thus, increase in Maths marks in the second term $=85-80=5$
(iv) Govinda's marks in Maths were more than 80 in the second term.
2. Steps of construction:

1. Draw seg LM of length 5.5 cm .
2. Using a protractor, draw a ray $\mathrm{LX} \perp \mathrm{LM}$ at point L and a ray $\mathrm{MY} \perp \mathrm{LM}$ at point M.
3. Placing the point of the compass on point L and taking a radius of 3.5 cm , draw an arc of circle to cut LX at point P.
4. Taking the same radius and placing the point of the compass on point M, draw an arc of circle to cut MY at point N .
5. Join seg NP.

Thus a rectangle LMNP with $\mathrm{LM}=5.5 \mathrm{~cm}$ and $\mathrm{MN}=3.5 \mathrm{~cm}$ is constructed.

3.
(i) $y-1+y^{3}-y^{2}$
$=y-1+y^{3}-y^{2}$
$=1(y-1)+y^{2}(y-1)$
$=(y-1)\left(1+y^{2}\right)$
(ii) $\mathrm{m}^{3}+\mathrm{m}^{2}+\mathrm{m}+1$
$=\underline{m^{3}+m^{2}}+\underline{m+1}$
$=m^{2}(m+1)+1(m+1)$
$=\left(m^{2}+1\right)(m+1)$
4. (i) $\frac{-20}{9} \div \frac{-10}{3}$
$=\frac{-20}{9} \times \frac{-3}{10}$
$=\frac{(-2) \times 10 \times(-3)}{3 \times 3 \times 10}$
$=\frac{2}{3}$
(ii) $\frac{-15}{8} \times \frac{-16}{25}$
$=\frac{5 \times(-3)}{8} \times \frac{-2 \times 8}{5 \times 5}$
$=\frac{5 \times(-3) \times-2 \times 8}{8 \times 5 \times 5}$
$=\frac{(-3) \times(-2)}{5}$
$=\frac{6}{5}$
5.
(i) $\angle X Y Z$ and $\angle X P Z$ are the angles in the same segment and angles in the same segment are congruent.
Hence $\angle X Y Z$ and $\angle X P Z$ have equal measures.
$\therefore \mathrm{m} \angle \mathrm{XYZ}=\mathrm{m} \angle \mathrm{XPZ}=100^{\circ}$
(ii) Seg SK is the diameter of the given circle, and hence divides the circle into two semicircular regions.
Now, an angle in a semicircular region is a right angle.
Hence, $\mathrm{m} \angle \mathrm{STK}=90^{\circ}$
\angle SMK also is an angle in the semicircular region.
Hence, $\mathrm{m} \angle \mathrm{SMK}=90^{\circ}$

Q5.

1. Length of a tank $=1=2.5 \mathrm{~m}$

Breadth of a tank $=b=2 \mathrm{~m}$
Height of a tank $=h=2.4 \mathrm{~m}$
Metal sheet required for the tank
$=$ Total surface area of the tank
$=2(\mathrm{l} \times \mathrm{b}+\mathrm{b} \times \mathrm{h}+\mathrm{h} \times \mathrm{I})$
$=2(2.5 \times 2+2 \times 2.4+2.4 \times 2.5)$
$=2(5+4.8+6)$
$=2 \times 15.8$
$=31.6$ sq. m

Cost of constructing 1 sq. $\mathrm{m}=$ Rs. 10
\therefore Cost of constructing 31.6 sq. m = Rs. $(31.6 \times 10)=$ Rs. 316
Volume of the tank $=1 \times b \times h$

$$
\begin{aligned}
& =2.5 \times 2 \times 2.4 \\
& =12 \mathrm{cu} . \mathrm{m}
\end{aligned}
$$

2.

(i) Nikhil's and Sagar's scores were same in match II.
(ii) Sagar scored more in the third match.
(iii) Number of runs Nikhil scored more than Sagar in the first match
$=$ Number of runs scored by Nikhil in the first match - Number of runs scored by Sagar in the first match
= $35-25$
= 10 runs
(iv) In matches II and IV, Sagar had equal scores.
(v) In matches II and III, Nikhil had equal scores.

