Maharashtra State Board
 Class IX Mathematics
 (Algebra) Board Paper 1

Time: 2 hours
Total Marks: 40

Note: - (1) All questions are compulsory.
(2) Use of calculator is not allowed.

1. Attempt any five sub-questions from the following:
i. If $n(A \cup B)=40, n(A)=20$ and $n(A \cap B)=12$, find $n(B)$.
ii. Simplify: $\sqrt{50}-\sqrt{98}+\sqrt{162}$
iii. Factorise: $8 y^{3}-\frac{125}{y^{3}}$
iv. In which quadrant does the point lie if its x-co-ordinate is negative and y-co-ordinate is positive?
v. Find the ratio of the first quantity with the second in its simplest form.
$2.5 \mathrm{Kg}, 8500 \mathrm{gm}$
vi. The mean of seven numbers is 63 . If the six numbers are $65,70,68,59$, 73,55 . Find the seventh number.
2. Attempt any four sub-questions from the following:
i. Which of the following sets are empty?
(a) $B=\{x \mid x$ is a capital of India $\}$.
(b) $F=\{y \mid y$ is a point of intersection of two parallel lines $\}$
ii. Rationalize the denominator: $\frac{1}{2 \sqrt{3}+\sqrt{7}}$
iii. Find the value of a, if $(x-2)$ is a factor of $2 x^{3}-6 x^{2}+5 x+a$.
iv. Write the rational number $\frac{27}{99}$ in decimal form.
v. Solve: $2 x+y=5 ; 3 x-y=5$
vi. Factorise: $27 x^{3}+y^{3}+z^{3}-9 x y z$
3. Attempt any three of the following sub-questions:
i. The mean weight of 25 students of a class is 48 kg . If the mean weight of first 13 students is 50 kg and that of last 13 students is 46 kg . Find the weight of the $13^{\text {th }}$ student.
ii. Divide $12 x^{3}-11 x^{2}+9 x+18$ by $4 x+3$ and express as Dividend $=$ Divisor \times Quotient + Remainder.
iii. Draw the graph of $-3 x+4 y=12$.
iv. Solve by substitution method: $2 x-y-3=0 ; 4 x-y-5=0$
v. If b is the geometric mean of a and c, then show that $a^{2} b^{2} c^{2}\left[\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right]=a^{3}+b^{3}+c^{3}$
4. Attempt any two sub-questions from the following:
i. Draw a subdivided bar diagram to denote the following given information:

Number of tourists	Country A	Country B
Jan	2,000	1,500
Feb	3,500	1,000
Mar	4,000	1,200
Apr	2,000	4,500
May	1,000	3,000
Jun	1,000	1,500

ii. Plot the points $P(2,4), Q(-3,4)$ and $R(0,4)$. Are these points collinear? If so, draw the line passing through them. Justify your result.
iii. Draw a Venn diagram showing sub-set relations of the following sets.
$A=\{2,4\}$
$B=\left\{x \mid x=2^{n}, n<5, n \in N\right\}$
$C=\{x \mid x$ is an even natural number $\leq 16\}$
5. Attempt any two of the following sub-questions:
i. If $\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+b \sqrt{7}$, find the values of a and b.
ii.
(a) Find the zeroes of the quadratic polynomial $x^{2}-4 x-5$ and verify the relationship between the zeroes and the coefficients.
(b) Find the quadratic polynomial, the sum and product of whose zeroes are -11 and 10 respectively.
iii. If a, b, c are in continued proportion, then show that $\frac{(a+b)^{2}}{(b+c)^{2}}=\frac{a^{2}+b^{2}}{b^{2}+c^{2}}$.

