Maharashtra State Board
 Class IX Mathematics
 (Algebra) Board Paper 1
 Solution

Time: 2 hours

Total Marks: 40
1.
i. Given: $n(A \cup B)=40, n(A)=20$ and $n(A \cap B)=12$

Now, $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$\therefore 40=20+n(B)-12$
$\therefore 40=8+\mathrm{n}(\mathrm{B})$
$\therefore \mathrm{n}(\mathrm{B})=40-8=32$
ii. $\sqrt{50}-\sqrt{98}+\sqrt{162}=\sqrt{25 \times 2}-\sqrt{49 \times 2}+\sqrt{81 \times 2}$

$$
\begin{aligned}
& =5 \sqrt{2}-7 \sqrt{2}+9 \sqrt{2} \\
& =\sqrt{2}(5-7+9) \\
& =7 \sqrt{2}
\end{aligned}
$$

iii. $8 y^{3}-\frac{125}{y^{3}}=(2 y)^{3}-\left(\frac{5}{y}\right)^{3}$

$$
\begin{aligned}
& =\left(2 y-\frac{5}{y}\right)\left(4 y^{2}+2 y \times \frac{5}{y}+\frac{25}{y^{2}}\right) \\
& =\left(2 y-\frac{5}{y}\right)\left(4 y^{2}+10+\frac{25}{y^{2}}\right)
\end{aligned}
$$

iv. If the x-co-ordinate is negative and the y-co-ordinate is positive, then the point lies in the $\mathrm{II}^{\text {nd }}$ quadrant.
v. $2.5 \mathrm{~kg}=2.5 \times 1000=2500 \mathrm{gm}$

Ratio of 2500 gm to $8500 \mathrm{gm}=\frac{2500}{8500}=\frac{5}{17}$
\therefore Ratio of 2.5 Kg to $8500 \mathrm{gm}=5: 17$
vi. Number of observations, $\mathrm{n}=7$
$\operatorname{Mean}(\bar{x})$ of seven numbers $=63$
\therefore Sum of seven numbers $=63 \times 7=441$
Sum of six given numbers $=65+70+68+59+73+55=390$
\therefore Seventh number $=$ Sum of seven numbers - Sum of six numbers

$$
\begin{aligned}
& =441-390 \\
& =51
\end{aligned}
$$

2.

i.
(a) $B=\{x \mid x$ is a capital of India $\}$
$\therefore B=\{$ Delhi $\}$
i.e., Set B has only one element.

Hence, B is not an empty set, it is a singleton set.
(b) $F=\{y \mid y$ is a point of intersection of two parallel lines $\}$

The two parallel lines do not intersect each other.
\therefore There are 0 elements in set F.
Hence, F is an empty set.
ii. $\frac{1}{2 \sqrt{3}+\sqrt{7}}$
$=\frac{1}{2 \sqrt{3}+\sqrt{7}} \times \frac{2 \sqrt{3}-\sqrt{7}}{2 \sqrt{3}-\sqrt{7}}$
$=\frac{2 \sqrt{3}-\sqrt{7}}{(2 \sqrt{3})^{2}-(\sqrt{7})^{2}}$
$=\frac{2 \sqrt{3}-\sqrt{7}}{12-7}$
$=\frac{2 \sqrt{3}-\sqrt{7}}{5}$
iii. Let $p(x)=2 x^{3}-6 x^{2}+5 x+a$

Substituting $x=2$ in $p(x)$, we get

$$
\begin{aligned}
p(2) & =2(2)^{3}-6(2)^{2}+5(2)+a \\
& =2(8)-6(4)+10+a \\
& =16-24+10+a \\
& =2+a
\end{aligned}
$$

But $p(2)$ must be 0 , because $(x-2)$ is a factor of $p(x)$.
$\therefore 2+a=0$
$\therefore \mathrm{a}=-2$
iv. $\frac{27}{99}=27 \div 99$

$$
\begin{array}{r}
0.2727 \\
9 9 \longdiv { 2 7 . 0 0 0 0 }
\end{array}
$$

$$
-198
$$

$$
720
$$

$$
\frac{-693}{270}
$$

$$
\frac{-198}{720}
$$

$$
\begin{array}{r}
-693 \\
\hline 27
\end{array}
$$

$$
\therefore \frac{27}{99}=0.2727 \ldots=0 . \overline{27}
$$

v. $2 x+y=5$
$3 x-y=5$
Adding equations (1) and (2), we get

$$
\begin{aligned}
& 2 x+y=5 \\
& +3 x-y=5 \\
& \hline 5 x=10 \\
& \therefore x=\frac{10}{5} \\
& \therefore x=2
\end{aligned}
$$

Substituting $x=2$ in equation (1), we get
$2(2)+y=5$
$\therefore 4+y=5$
$\therefore y=5-4=1$
$\therefore \mathrm{x}=2$ and $\mathrm{y}=1$ is the solution of the given equations.
vi. $27 x^{3}+y^{3}+z^{3}-9 x y z$

$$
\begin{aligned}
& =(3 x)^{3}+(y)^{3}+(z)^{3}-3(3 x)(y)(z) \\
& =(3 x+y+z)\left[(3 x)^{2}+(y)^{2}+(z)^{2}-(3 x)(y)-(y)(z)-(z)(3 x)\right] \\
& =(3 x+y+z)\left(9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 x z\right)
\end{aligned}
$$

3.

i. Mean weight of 25 students $=48 \mathrm{~kg}$
\therefore Total weight of 25 students $=48 \times 25=1200 \mathrm{~kg}$
Mean weight of first 13 students $=50 \mathrm{~kg}$
\therefore Total weight of first 13 students $=50 \times 13=650 \mathrm{~kg}$
Mean weight of last 13 students $=46 \mathrm{~kg}$
\therefore Total weight of last 13 students $=46 \times 13=598 \mathrm{~kg}$
Now, total weight of the first 13 students and last 13 students
$=(650+598) \mathrm{kg}$
$=1248 \mathrm{~kg}$
\therefore Weight of $13^{\text {th }}$ student
$=$ Total weight of the first 13 students and the last 13 students - Total weight of 25 students
$=(1248-1200) \mathrm{kg}$
$=48 \mathrm{~kg}$
Thus, the weight of $13^{\text {th }}$ students is 48 kg .
ii. $12 x^{3}-11 x^{2}+9 x+18 \div 4 x+3$

$$
\begin{array}{r}
3 x+3 \begin{array}{r}
3 x^{2}-5 x+6 \\
\begin{array}{l}
12 x^{3}-11 x^{2}+9 x+18 \\
12 x^{3}+9 x^{2}
\end{array} \\
-\quad- \\
-20 x^{2}+9 x+18 \\
-20 x^{2}-15 x \\
+\quad+
\end{array} \\
\hline \begin{array}{r}
24 x+18 \\
24 x+18 \\
-\quad- \\
\hline
\end{array}
\end{array}
$$

$\therefore 12 x^{3}-11 x^{2}+9 x+18=(4 x+3)\left(3 x^{2}-5 x+6\right)+0$
iii. Given equation is $-3 x+4 y=12$.

Rewriting it, we get $4 y=3 x+12$
i.e. $y=0.75 x+3$

x	0	1	2
y	3	3.75	4.5
(x, y)	$(0,3)$	$(1,3.75)$	$(2,4.5)$

iv. $2 x-y-3=0$
$\therefore 2 x-y-3=0$
$\therefore y=2 x-3$
$4 x-y-5=0$
(2)(given)

Substitute $y=2 x-3$ in equation (2),
$4 x-(2 x-3)-5=0$
$\therefore 4 x-2 x+3-5=0$
$\therefore 2 x-2=0$
$\therefore 2 x=2$
$\therefore \mathrm{x}=1$
Substituting $x=1$ in equation (1),
$y=2(1)-3$
$\therefore y=2-3 \therefore y=-1$
$\therefore \mathrm{x}=1$ and $\mathrm{y}=-1$
$v . b$ is the geometric mean of a and c.
$\therefore \mathrm{b}^{2}=\mathrm{ac}$
L.H.S. $=a^{2} b^{2} c^{2}\left[\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right]$
$=a^{2} b^{2} c^{2}\left(\frac{b^{3} c^{3}+c^{3} a^{3}+a^{3} b^{3}}{a^{3} b^{3} c^{3}}\right)$
$=(a c)^{2} b^{2}\left(\frac{b^{3} c^{3}+(c a)^{3}+a^{3} b^{3}}{(a c)^{3} b^{3}}\right)$
$=\left(b^{2}\right)^{2} b^{2}\left[\frac{b^{3} c^{3}+\left(b^{2}\right)^{3}+a^{3} b^{3}}{\left(b^{2}\right)^{3} b^{3}}\right]$
$\ldots[$ from (1) $]$
$=b^{4} b^{2}\left(\frac{b^{3} c^{3}+b^{6}+a^{3} b^{3}}{b^{6} b^{3}}\right)$
$=b^{6} b^{3}\left(\frac{c^{3}+b^{3}+a^{3}}{b^{6} b^{3}}\right)$
$=a^{3}+b^{3}+c^{3}$
$=$ R.H.S.
$\therefore a^{2} b^{2} c^{2}\left[\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right]=a^{3}+b^{3}+c^{3}$
4.
i. The subdivided bar diagram is as follows:

ii.

From the graph it can be clearly seen that the points P, R and Q are collinear.

Also the line passing through these points is parallel to the x-axis.
iii. $A=\{2,4\}$
$B=\left\{x \mid x=2^{n}, n<5, n \in N\right\}$
$\therefore B=\{2,4,8,16\}$
$C=\{x \mid x$ is an even natural number $\leq 16\}$
$\therefore C=\{2,4,6,8,10,12,14,16\}$
The Venn diagram will be as given below:

5.
i. $\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+b \sqrt{7}$
$\therefore \frac{\sqrt{7}-1}{\sqrt{7}+1} \times \frac{\sqrt{7}-1}{\sqrt{7}-1}-\frac{\sqrt{7}+1}{\sqrt{7}-1} \times \frac{\sqrt{7}+1}{\sqrt{7}+1}=a+b \sqrt{7}$
$\therefore \frac{(\sqrt{7}-1)^{2}}{(\sqrt{7})^{2}-(1)^{2}}-\frac{(\sqrt{7}+1)^{2}}{(\sqrt{7})^{2}-(1)^{2}}=a+b \sqrt{7}$
$\therefore \frac{7+1-2 \sqrt{7}}{7-1}-\frac{7+1+2 \sqrt{7}}{7-1}=a+b \sqrt{7}$
$\therefore \frac{8-2 \sqrt{7}}{6}-\frac{8+2 \sqrt{7}}{6}=a+b \sqrt{7}$
$\therefore \frac{8-2 \sqrt{7}-8-2 \sqrt{7}}{6}=a+b \sqrt{7}$
$\therefore \frac{-4 \sqrt{7}}{6}=a+b \sqrt{7}$
$\therefore-\frac{2}{3} \sqrt{7}=a+b \sqrt{7}$
$\therefore 0+\left(-\frac{2}{3}\right) \sqrt{7}=a+b \sqrt{7}$
Equating the values of both the sides, we get $a=0$ and $b=-\frac{2}{3}$.
ii.
(a) $x^{2}-4 x-5=x^{2}-5 x+x-5$

$$
\begin{aligned}
& =x(x-5)+1(x-5) \\
& =(x+1)(x-5)
\end{aligned}
$$

The polynomials have zeroes when $p(x)=0$.
$\therefore \mathrm{x}+1=0$ or $\mathrm{x}-5=0$
$\therefore x=-1$ or $x=5$
\therefore The zeroes of the polynomial $\mathrm{x}^{2}-4 \mathrm{x}-5$ are -1 and 5 .
Now, sum of zeroes $=-1+5=4=-\frac{(-4)}{1}=-\frac{b}{a}$
and product of zeroes $=(-1) \times(5)=-5=\frac{-5}{1}=\frac{c}{a}$
(b) Let the quadratic polynomial be $a x^{2}+b x+c$ and its zeroes be α and β.

We know $\alpha+\beta=-11=\frac{-b}{1}$ and $\alpha \beta=10=\frac{c}{a}$
If $a=1$, then $b=11$ and $c=10$.
Thus, the required quadratic equation is $x^{2}+11 x+10$.
iii. a, b, c are in continued proportion.

$$
\text { Let } \frac{a}{b}=\frac{b}{c}=k
$$

$\therefore \mathrm{a}=\mathrm{bk}$ and $\mathrm{b}=\mathrm{ck}$
$\therefore a=c k . k=c k^{2}$
L.H.S. $=\frac{(a+b)^{2}}{(b+c)^{2}}$
$=\frac{\left(c k^{2}+c k\right)^{2}}{(c k+c)^{2}}$
$=\frac{[\mathrm{ck}(\mathrm{k}+1)]^{2}}{[\mathrm{c}(\mathrm{k}+1)]^{2}}$
$=\frac{\mathrm{c}^{2} \mathrm{k}^{2}}{\mathrm{c}^{2}}$
$=\mathrm{k}^{2}$
R.H.S. $=\frac{a^{2}+b^{2}}{b^{2}+c^{2}}$

$$
\begin{aligned}
& =\frac{\left(c k^{2}\right)^{2}+(c k)^{2}}{(c k)^{2}+c^{2}} \\
& =\frac{c^{2} k^{4}+c^{2} k^{2}}{c^{2} k^{2}+c^{2}} \\
& =\frac{c^{2} k^{2}\left(k^{2}+1\right)}{c^{2}\left(k^{2}+1\right)} \\
& =k^{2}
\end{aligned}
$$

\therefore L.H.S. $=$ R.H.S.
$\therefore \frac{(\mathrm{a}+\mathrm{b})^{2}}{(\mathrm{~b}+\mathrm{c})^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{~b}^{2}+\mathrm{c}^{2}}$

