Maharashtra State Board
 Class IX Mathematics
 (Algebra) Board Paper 2 Solution

Time: 2 hours
Total Marks: 40
1.
i. $C=\left\{p \mid p \in I, p^{3}=-8\right\}$
$\therefore C=\{-2\}$
$\therefore C=\left\{p \mid p \in \mathrm{I}, \mathrm{p}^{3}=-8\right\}$ is a singleton set.
ii. $27 \sqrt[3]{18} \div 3 \sqrt[3]{9}$
$=\frac{27 \sqrt[3]{18}}{3 \sqrt[3]{9}}$
$=\frac{9 \sqrt[3]{9 \times 2}}{\sqrt[3]{9}}$
$=9 \sqrt[3]{\frac{9 \times 2}{9}}$
$=9 \sqrt[3]{2}$
iii. $p(x)=2 x^{3}-3 x^{2}+4 x-5$

Divisor $=x-1$
\therefore Put $\mathrm{x}=1$ in $\mathrm{p}(\mathrm{x})$
Then, by the Remainder Theorem

$$
\begin{aligned}
\text { Remainder }=\mathrm{p}(1) & =2(1)^{3}-3(1)^{2}+4(1)-5 \\
& =2(1)-3(1)+4-5 \\
& =2-3+4-5 \\
& =-2
\end{aligned}
$$

iv. Arranging the given data in a tabular form, we have

Observations	14	17	18	22	23	25	28
Frequency	4	1	3	1	1	1	2

Here, the maximum frequency is 4 and corresponds to observation 14.
\therefore The mode is 14 .
v. $A=\{2,3,4\}$ and $B=\{3,5\}$
$\therefore A \cap B=\{3\}$ and $A \cup B=\{2,3,4,5\}$
vi. Given data: $5,3,11,0,7,11,4,3,8$

Arranging the data in ascending order, we have
$0,3,3,4,5,7,8,11,11$
Here, $n=9$ (odd)
\therefore Median $=\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ term $=\left(\frac{9+1}{2}\right)^{\text {th }}$ term $=\left(\frac{10}{2}\right)^{\text {th }}=5^{\text {th }}$ term
\therefore Median $=5$
2.
i. Square root of $8+2 \sqrt{15}$
$=\sqrt{8+2 \sqrt{15}}$
$=\sqrt{(5+3)+2 \sqrt{5 \times 3}}$
$=\sqrt{(\sqrt{5})^{2}+(\sqrt{3})^{2}+2 \sqrt{5} \times \sqrt{3}}$
$=\sqrt{(\sqrt{5}+\sqrt{3})^{2}} \quad \cdots \cdot\left[\because a^{2}+b^{2}+2 a b=(a+b)^{2}\right]$
$=\sqrt{5}+\sqrt{3}$
\therefore Square root of $8+2 \sqrt{15}$ is $\sqrt{5}+\sqrt{3}$.
ii. Graph of $x=3$

iii.
(a) $(-3,2)$
$(-,+)$ are the signs of the coordinates of points in the Quadrant II.
\therefore The point $(-3,2)$ lies in the Quadrant II.
(b) $(-x,-y)$
$(-,-)$ are the signs of the coordinates of points in the Quadrant III.
\therefore The point $(-\mathrm{x},-\mathrm{y})$ lies in the Quadrant III.
iv. Mode is the observation which appears most often.
\therefore Mode $=\mathrm{y}-1$
Median is the middle most value.
\therefore Median $=4^{\text {th }}$ observation $=y+4$
Given, Mode + Median $=15$
$\therefore y-1+y+4=15$
$\therefore 2 y+3=15$
$\therefore 2 y=12$
$\therefore y=6$
v. $\frac{a-1}{b-1}-\frac{a+1}{b+1}$
$=\frac{(a-1)(b+1)-(a+1)(b-1)}{(b-1)(b+1)}$
$=\frac{a b+a-b-1-a b+a-b+1}{(b-1)(b+1)}$
$=\frac{2 a-2 b}{(b-1)(b+1)}$
$=\frac{2(a-b)}{(b-1)(b+1)}$
Here we have $a>b$ and $b \neq \pm 1$
$\therefore \frac{2(a-b)}{(b-1)(b+1)}$ is positive
$\therefore \frac{\mathrm{a}-1}{\mathrm{~b}-1}>\frac{\mathrm{a}+1}{\mathrm{~b}+1}$
vi. The ungrouped frequency distribution table is as follows:

Number of saplings	Tally marks	Frequency (f)
2	II	2
3	IN	5
4	IN III	8
5	IN II	7
6	IIII	4
7	III	3
8	I	1
	Total	$\mathrm{N}=\sum \mathrm{f}_{\mathrm{i}}=30$

3.

i. Given equation: $6 a^{4}+11 a^{2} b^{2}-10 b^{4}$

Let $a^{2}=m$ and $b^{2}=n$
Then $a^{4}=m^{2}, b^{4}=n^{2}$ and $a^{2} b^{2}=m n$

$$
\begin{aligned}
\therefore & 6 a^{4}+11 a^{2} b^{2}-10 b^{4} \\
& =6 m^{2}+11 m n-10 n^{2} \\
& =6 m^{2}+15 m n-4 m n-10 n^{2} \\
& =3 m(2 m+5 n)-2 n(2 m+5 n) \\
& =(2 m+5 n)(3 m-2 n)
\end{aligned}
$$

Re-substituting the values of m and n, we get $6 a^{4}+11 a^{2} b^{2}-10 b^{4}=\left(2 a^{2}+5 b^{2}\right)\left(3 a^{2}-2 b^{2}\right)$
ii. $\sqrt{294}-3 \sqrt{\frac{1}{6}}-5 \sqrt{6}+\sqrt{252}$

$$
\begin{aligned}
& =\sqrt{6 \times 49}-3 \frac{1}{\sqrt{6}}-5 \sqrt{6}+\sqrt{7 \times 36} \\
& =7 \sqrt{6}-\frac{3}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}-5 \sqrt{6}+6 \sqrt{7} \\
& =7 \sqrt{6}-\frac{3 \sqrt{6}}{6}-5 \sqrt{6}+6 \sqrt{7} \\
& =7 \sqrt{6}-\frac{\sqrt{6}}{2}-5 \sqrt{6}+6 \sqrt{7} \\
& =\sqrt{6}\left(7-\frac{1}{2}-5\right)+6 \sqrt{7} \\
& =\sqrt{6}\left(\frac{14-1-10}{2}\right)+6 \sqrt{7} \\
& =\frac{3}{2} \sqrt{6}+6 \sqrt{7}
\end{aligned}
$$

iii.
(a) The y-co-ordinate of point B is zero.
(b) $F \equiv(-1,-5)$ and $A \equiv(3,2)$.
(c) The line $A H$ is parallel to the Y-axis.
(d) The x-co-ordinate of point P and Q is same.
(e) The y-co-ordinate of point E is 3 .
(f) The x-co-ordinate of point M on line $A H$ is 3 .
iv. $y=\frac{(p+1)^{\frac{1}{3}}+(p-1)^{\frac{1}{3}}}{(p+1)^{\frac{1}{3}}-(p-1)^{\frac{1}{3}}}$

By componendo-dividendo,
$\frac{y+1}{y-1}=\frac{2(p+1)^{\frac{1}{3}}}{2(p-1)^{\frac{1}{3}}}$
Cubing both the sides,
$\frac{(y+1)^{3}}{(y-1)^{3}}=\frac{p+1}{p-1}$
$\therefore \frac{y^{3}+3 y^{2}+3 y+1}{y^{3}-3 y^{2}+3 y-1}=\frac{p+1}{p-1}$
By componendo-dividendo
$\frac{2 y^{3}+6 y}{6 y^{2}+2}=\frac{2 p}{2}$
$\therefore \frac{2\left(y^{3}+3 y\right)}{2\left(3 y^{2}+1\right)}=p$
$\therefore y^{3}+3 y=p\left(3 y^{2}+1\right)$
$\therefore y^{3}+3 y=3 p y^{2}+p$
$\therefore y^{3}-3 p y^{2}+3 y-p=0$
V.

Year	Income	Expenditure	Total
$2004-05$	155	148	303
$2005-06$	162	152	314
$2006-07$	181	169	350
$2007-08$	190	172	362

The subdivided bar diagram is as follows:

4.
i. Let a, b, c, d and e be the five numbers in continued proportion.

Second term $=\mathrm{b}=6$ and Fourth term $=\mathrm{d}=54$
Then, $a, 6, c, 54$ and e are in continued proportion.
$\therefore \mathrm{c}^{2}=6 \times 54$
$\therefore c^{2}=6 \times 6 \times 3 \times 3$
$\therefore c^{2}=6^{2} \times 3^{2}$
$\therefore \mathrm{c}=6 \times 3$
$\therefore \mathrm{c}=18$
Further, a, 6, c are in continued proportion.
$\therefore 6^{2}=a \times c$
$\therefore 36=\mathrm{a} \times 18$
$\therefore a=\frac{36}{18}=2$

Now, c, 54 and e are in continued proportion.
$\therefore 54^{2}=c \times e$
$\therefore 54^{2}=18 \times \mathrm{e}$
$\therefore e=\frac{54 \times 54}{18}=3 \times 54=162$
Hence, 2, 6, 18, 54 and 162 are the required numbers.
ii. $\frac{1}{\sqrt{6}+\sqrt{5}-\sqrt{11}}=\frac{1}{\sqrt{6}+\sqrt{5}-\sqrt{11}} \times \frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{\sqrt{6}+\sqrt{5}+\sqrt{11}}$

$$
=\frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{(\sqrt{6}+\sqrt{5})^{2}-(\sqrt{11})^{2}}
$$

$$
=\frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{6+5+2 \sqrt{6} \sqrt{5}-11}
$$

$$
=\frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{2 \sqrt{30}}
$$

$$
=\frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{2 \sqrt{30}} \times \frac{\sqrt{30}}{\sqrt{30}}
$$

$$
=\frac{\sqrt{30}(\sqrt{6}+\sqrt{5}+\sqrt{11})}{2(\sqrt{30})^{2}}
$$

$$
=\frac{\sqrt{30}(\sqrt{6}+\sqrt{5}+\sqrt{11})}{60}
$$

iii. Sum of zeroes $=-\frac{b}{a}=\frac{4+\sqrt{2}}{2} \ldots$.

Product of zeroes $=\frac{c}{a}=\frac{4-\sqrt{2}}{2}$.
From (1) and (2) we can say that, $a=2, b=-(4+\sqrt{2}), c=4-\sqrt{2}$
\therefore Required quadraticpolynomialis, $a x^{2}+b x+c=0$
$2 x^{2}-(4+\sqrt{2}) x+(4-\sqrt{2})=0$
5.
i. Let the first number be x and the second number be y.

Their ratio is $5: 6$.(given)
$\therefore \frac{x}{y}=\frac{5}{6}$
$\therefore 6 x=5 y$
If 8 is subtracted from each number, then the ratio becomes $4: 5$.
$\therefore \frac{\mathrm{x}-8}{\mathrm{y}-8}=\frac{4}{5}$
$\therefore 5(x-8)=4(y-8)$
$\therefore 5 x-40=4 y-32$
$\therefore 5 x-4 y=-32+40$
$\therefore 5 x-4 y=8$
$\therefore 4 y=5 x-8$
$\therefore y=\frac{5 x-8}{4}$
Substituting this value of y in equation (1), we get,
$6 x=5\left(\frac{5 x-8}{4}\right)$
$\therefore 6 x \times 4=25 x-40$
$\therefore 24 x=25 x-40$
$\therefore 25 x-24 x=40$
$\therefore \mathrm{x}=40$
Substituting this value of x in equation (3), we get

$$
\begin{aligned}
y & =\frac{5(40)-8}{4} \\
& =\frac{200-8}{4} \\
& =\frac{192}{4} \\
& =48
\end{aligned}
$$

\therefore The first number is 40 and the second number is 48 .
ii.
(a) $p(x)=(x-2)(x-9)$
$(x-2)(x-9)=0$
$\therefore x-2=0$ or $x-9=0$
$\therefore \mathrm{x}=2$ or $\mathrm{x}=9$
Hence, 2 and 9 are the zeroes of the given polynomial.
(b) $p(x)=x^{3}+a x^{2}+4 x-5$

Divisor is $x+1$
Put $x=-1$ in $p(x)$
Then, by Remainder Theorem, we have
Remainder $=p(-1)=(-1)^{3}+a(-1)^{2}+4(-1)-5$
$=-1+a-4-5$
$=a-10$
But, remainder $=14$
$\therefore a-10=14$
$\therefore a=14+10=24$
iii. Let B denote the set of students who play Basket ball and V denote the set of students who play Volley ball.
$\therefore \mathrm{n}(\mathrm{B})=400$ and $\mathrm{n}(\mathrm{V})=170$
Then, $n(B \cap V)$ denote the set of students who play both the games.
$\therefore \mathrm{n}(\mathrm{B} \cap \mathrm{V})=100$
(a) Now, number of students who play Basket ball only
= Number of students who play Basket ball - Number of students who play both the games
$=n(B)-n(B \cap V)$
$=400-100$
$=300$
(b) Number of students who play Volley ball only
$=$ Number of students who play Volley ball - Number of students who play both the games

$$
\begin{aligned}
& =n(V)-n(B \cap V) \\
& =170-100 \\
& =70
\end{aligned}
$$

(c) Total number of students in the school
$=$ Number of students who play Basket ball + Number of students who play Volley ball - Number of students who play both the games

$$
\begin{aligned}
& =n(B)+n(V)-n(B \cap V) \\
& =400+170-100 \\
& =470
\end{aligned}
$$

