Maharashtra State Board
 Class IX Mathematics - Geometry
 Board Paper 1
 Solution

Time: $\mathbf{2}$ hours
Total Marks: 40
1.
i. Let the measure of each interior opposite angle be x .

Since, Sum of two interior opposite angles $=$ Measure of exterior angle
$\therefore \mathrm{x}+\mathrm{x}=80^{\circ}$
$\therefore 2 x=80^{\circ}$
$\therefore \mathrm{x}=40^{\circ}$
Hence, the measure of each interior opposite angle is 40°.
ii. $\angle A C B=180^{\circ}-105^{\circ}$
$\therefore \angle A C B=75^{\circ}$
$\angle A B C=\angle A C B=75^{\circ} \quad \ldots$ (angles opposite to equal sides of a triangle)
Now, in $\triangle A B C$,
$\angle A B C+\angle A C B+\angle B A C=180^{\circ}$
$\therefore 75^{\circ}+75^{\circ}+\angle B A C=180^{\circ}$
$\therefore 150^{\circ}+\angle \mathrm{BAC}=180^{\circ}$
$\therefore \angle B A C=180^{\circ}-150^{\circ}=30^{\circ}$
iii. Radius of the circle is 6.7 cm .
$d(P, R)=5.7 \mathrm{~cm}$
$\therefore 5.7 \mathrm{~cm}<6.7 \mathrm{~cm}$
\therefore The distance between P and R is less than the radius of the circle.
\therefore Point R lies in the interior of the circle.
iv. Let $A \equiv\left(x_{1}, y_{1}\right)$ and $B \equiv\left(x_{2}, y_{2}\right)$.

Here, $x_{1}=2, y_{1}=5$ and $x_{2}=-6, y_{2}=8$
By distance formula, we have
$A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(-6-2)^{2}+(8-5)^{2}}=\sqrt{(-8)^{2}+(3)^{2}}=\sqrt{64+9}$
$\therefore A B=\sqrt{73}$
Thus, the distance between the points A and B is $\sqrt{73}$ units.
v. $\frac{\cos 80^{\circ}}{\sin 10^{\circ}}+\cos 59^{\circ} \times \operatorname{cosec} 31^{\circ}=\frac{\cos 80^{\circ}}{\cos \left(90^{\circ}-10^{\circ}\right)}+\sin \left(90^{\circ}-59^{\circ}\right) \times \frac{1}{\sin 31^{\circ}}$

$$
\begin{aligned}
& =\frac{\cos 80^{\circ}}{\cos 80^{\circ}}+\sin 31^{\circ} \times \frac{1}{\sin 31^{\circ}} \\
& =1+1 \\
& =2
\end{aligned}
$$

vi. Area of the square-shaped field $=(\text { side })^{2}=(300)^{2}=90000 \mathrm{~m}^{2}$

Cost of leveling the field per square metre = Rs. 1.25
\therefore Cost of leveling $=$ Rate \times Area

$$
\begin{aligned}
& =\text { Rs. } 1.25 \times 90000 \\
& =\text { Rs. } 1,12,500
\end{aligned}
$$

Thus, the cost of leveling the field is Rs. 1, 12, 500.

2.

i. Seg QS is the angle bisector of $\angle \mathrm{PQR}$(Given)
$\therefore \angle \mathrm{PQS} \cong \angle \mathrm{RQS}$
Seg QS is the bisector of $\angle \mathrm{PSR}$
$\therefore \angle \mathrm{PSQ} \cong \angle \mathrm{RSQ}$
In $\triangle P Q S$ and $\triangle R Q S$,
$\angle \mathrm{PQS} \cong \angle \mathrm{RQS}$
...[From (1)]
$\operatorname{seg} \mathrm{QS} \cong \operatorname{seg} \mathrm{QS}$
$\angle \mathrm{PSQ} \cong \angle \mathrm{RSQ}$
$\therefore \triangle \mathrm{PQS} \cong \triangle \mathrm{RSQ}$
$\therefore \angle \mathrm{P} \cong \angle \mathrm{R}$
...(Common side)
.....[From (2)]
....(ASA test)
....(c.a.c.t.)
ii. In $\triangle N Y X, m \angle N Y X=90^{\circ}$
...(Given)
$\therefore \mathrm{m} \angle \mathrm{N}+\mathrm{m} \angle \mathrm{X}=90^{\circ} \ldots$. (Acute angles of a right angled triangle)
$\therefore \mathrm{m} \angle \mathrm{N}+45^{\circ}=90^{\circ} \quad \ldots$ (Given : $\mathrm{m} \angle \mathrm{X}=45^{\circ}$)
$\therefore \mathrm{m} \angle \mathrm{N}=45^{\circ}$
Now, in $\triangle N M Z$,
$\mathrm{m} \angle \mathrm{N}+\mathrm{m} \angle \mathrm{NMZ}+\mathrm{m} \angle \mathrm{Z}=180^{\circ} \quad \ldots$ (Angle Sum property of a triangle)
$\therefore 45^{\circ}+110^{\circ}+\mathrm{x}=180^{\circ}$
$\therefore 155^{\circ}+\mathrm{x}=180^{\circ}$
$\therefore x=180^{\circ}-155^{\circ}$
$\therefore \mathrm{x}=25^{\circ}$
iii. Given, angle $=s$

Then, its supplementary angle $=\left(180^{\circ}-\mathrm{s}\right)$
According to given information, we have
$\mathrm{s}=4 \times(180-\mathrm{s})+20$
$\therefore \mathrm{s}=720-4 \mathrm{~s}+20$
$\therefore 5 \mathrm{~s}=740$
$\therefore \mathrm{s}=148$
Thus, the measure of angle ' s ' $=148^{\circ}$
iv. Given: In a circle with centre 0 , seg $P Q$ and seg RS are two chords.
$\angle P O Q \cong \angle R O S$
To prove: chord $\mathrm{PQ} \cong$ chord RS
Proof:
In $\triangle P O Q$ and $\triangle R O S$,
seg $O P \cong \operatorname{seg} O R \quad \ldots$ (radii of same circle)
$\angle P O Q \cong \angle R O S \quad \ldots$. (given)
$\operatorname{seg} \mathrm{OQ} \cong \operatorname{seg} \mathrm{OS} \quad \ldots .($ radii of same circle)
$\therefore \triangle P O Q \cong \triangle R O S \quad \ldots$. (SAS test)
$\therefore \operatorname{seg} \mathrm{PQ} \cong \operatorname{seg} R S \quad$....(c.s.c.t.)
\therefore chord $\mathrm{PQ} \cong$ chord RS
v. In $\square \mathrm{PQRS}$
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}+\angle \mathrm{S}=360^{\circ} \quad \ldots$.(angle sum property of a quadrilateral)
$\therefore \angle P+\angle Q+100^{\circ}+30^{\circ}=360^{\circ}$
$\therefore \angle P+\angle Q+130^{\circ}=360^{\circ}$
$\therefore \angle \mathrm{P}+\angle \mathrm{Q}=230^{\circ}$
$\therefore \frac{1}{2} \angle \mathrm{P}+\frac{1}{2} \angle \mathrm{Q}=\frac{1}{2} \times 230^{\circ}$
i.e. $\angle A P Q+\angle A Q P=115^{\circ}$

Now, in $\triangle A P Q$,
$\angle A P Q+\angle A Q P+\angle P A Q=180^{\circ}$
$\therefore 115^{\circ}+\angle \mathrm{PAQ}=180^{\circ}$
$\therefore \angle \mathrm{PAQ}=180^{\circ}-115^{\circ}=65^{\circ}$
$\therefore \angle \mathrm{PAQ}=65^{\circ}$
vi. L.H.S. $=\sin A=\sin 30^{\circ}=\frac{1}{2}$

$$
\begin{aligned}
\text { R.H.S. }=\sqrt{\frac{1-\cos 2 \mathrm{~A}}{2}} & =\sqrt{\frac{1-\cos 60^{\circ}}{2}} \quad \ldots\left(\text { since } \angle \mathrm{A}=30^{\circ}, 2 \angle \mathrm{~A}=60^{\circ}\right) \\
& =\sqrt{\frac{1-\frac{1}{2}}{2}} \\
& =\sqrt{\frac{1}{2}} \\
& =\sqrt{\frac{1}{4}} \\
& =\frac{1}{2}
\end{aligned}
$$

\therefore L.H.S. $=$ R.H.S. (Proved)
3.
i. $\quad I(P L)+I(L N)=I(P N) \quad(P-L-N)$
$\therefore \mathrm{l}(\mathrm{PL})+5=11$
$\therefore I(P L)=6$ units
$I(M N)+I(N R)=I(M R) \quad(M-N-R)$
$\therefore 7+\mathrm{I}(\mathrm{NR})=13$
$\therefore \mathrm{I}(\mathrm{NR})=6$ units
$I(L M)+I(M Q)=I(L Q) \quad(L-M-Q)$
$\therefore 6+2=1(L Q)$
$\therefore \mathrm{I}(\mathrm{LQ})=8$ units
ii. In $\triangle O A B$
$O A+O B>A B \ldots(1)$
In $\triangle O B C$
$O B+O C>B C \ldots(2)$
In $\triangle O C D$,
OC + OD > CD
In \triangle ODA,
$O D+O A>A D$.
Adding (1), (2), (3) and (4)
$2(O A+O B+O C+O D)>A B+B C+D C+D A$
$2[(O A+O C)+(O B+O D)]>A B+B C+C D+D A$
$2(A C+B D)>A B+B C+C D+D A$
iii. $\angle \mathrm{QMR}=50^{\circ} \quad$...(given)
$\angle \mathrm{PMS}=\angle \mathrm{QMR} \ldots$...(vertically opposite angles)
$\therefore \angle \mathrm{PMS}=50^{\circ}$
The diagonals of a rectangle are congruent and bisect each other.

$\therefore \mathrm{MS}=\mathrm{MP}$
$\therefore \angle \mathrm{MPS}=\angle \mathrm{MSP} \quad \ldots$. (angles opposite to equal sides are equal)
Now, in $\triangle M S P$,
$\angle \mathrm{PMS}+\angle \mathrm{MPS}+\angle \mathrm{MSP}=180^{\circ}$
$\therefore 50^{\circ}+2 \angle \mathrm{MPS}=180^{\circ}$
$\therefore 2 \angle \mathrm{MPS}=130^{\circ}$
$\therefore \angle \mathrm{MPS}=65^{\circ}$
iv. Let $P \equiv(-2,2)$ and $Q \equiv(6,-6)$

Segment PQ is divided into four equal parts by the points A, B and C.
Point B is the mid-point of segment PQ .
Then, by Mid point formula for B, we have
$\left(\frac{-2+6}{2}, \frac{2-6}{2}\right)=\left(\frac{4}{2}, \frac{-4}{2}\right)=(2,-2)$
$\therefore \mathrm{B} \equiv(2,-2)$
Now, point A is the mid-point of segment PB.
Then, by Mid point formula, we have
$\left(\frac{-2+2}{2}, \frac{2-2}{2}\right)=\left(\frac{0}{2}, \frac{0}{2}\right)=(0,0)$
$\therefore \mathrm{A} \equiv(0,0)$
Also, point C is the mid-point of segment $B Q$.
Then, by Mid point formula, we have

$$
\left(\frac{6+2}{2}, \frac{-6-2}{2}\right)=\left(\frac{8}{2}, \frac{-8}{2}\right)=(4,-4)
$$

$\therefore B \equiv(4,-4)$
Thus, the coordinates of the points A, B and C which divide the line segment into four equal parts are $(0,0),(2,-2)$ and $(4,-4)$ respectively.
v. (a) $\frac{\cos 35^{\circ}}{\sin 55^{\circ}}+\frac{\sin 11^{\circ}}{\cos 79^{\circ}}-\cos 28^{\circ} \operatorname{cosec} 62^{\circ}$

$$
\begin{aligned}
& =\frac{\cos \left(90^{\circ}-55^{\circ}\right)}{\sin 55^{\circ}}+\frac{\sin \left(90^{\circ}-79^{\circ}\right)}{\cos 79^{\circ}}-\cos \left(90^{\circ}-62^{\circ}\right) \operatorname{cosec} 62^{\circ} \\
& =\frac{\sin 55^{\circ}}{\sin 55^{\circ}}+\frac{\cos 79^{\circ}}{\cos 79^{\circ}}-\sin 62^{\circ} \operatorname{cosec} 62^{\circ} \\
& =1+1-1 \\
& =1
\end{aligned}
$$

(b) $\frac{\cos 81^{\circ}}{\sin 9^{\circ}}+\frac{\cos 14^{\circ}}{\sin 76^{\circ}}=\frac{\cos \left(90^{\circ}-9\right)}{\sin 9^{\circ}}+\frac{\cos \left(90^{\circ}-76^{\circ}\right)}{\sin 76^{\circ}}$

$$
=\frac{\sin 9^{\circ}}{\sin 9^{\circ}}+\frac{\sin 76^{\circ}}{\sin 76^{\circ}}
$$

$$
=1+1
$$

$$
=2
$$

4.

i. Let $\triangle P Q R$ be an isosceles triangle with base $Q R=80 \mathrm{~cm}$.
$P Q=P R$ and $P S$ is the height.
$A(\triangle P Q R)=360 \mathrm{~cm}^{2} \quad \ldots$ (given)
$\mathrm{A}(\triangle \mathrm{PQR})=\frac{1}{2} \times$ base \times height
$\therefore 360=\frac{1}{2} \times 80 \times$ height
\therefore height $=\frac{360 \times 2}{80}=9 \mathrm{~cm}$

$\therefore \mathrm{PS}=9 \mathrm{~cm}$
In an isosceles triangle, the perpendicular to the base bisects the base.
$\therefore \mathrm{QS}=\frac{1}{2} \mathrm{QR}=\frac{1}{2} \times 80 \mathrm{~cm}$
$\therefore \mathrm{QS}=40 \mathrm{~cm}$
In right angled $\triangle \mathrm{PQS}$, by Pythagoras Theorem, $\mathrm{PQ}^{2}=\mathrm{QS}^{2}+\mathrm{PS}^{2}$

$$
=(40)^{2}+(9)^{2}
$$

....[From (2) and (4)]
$=1600+81$

$$
=1681
$$

$\therefore P Q=41 \mathrm{~cm}$
$\therefore P Q=P R=41 \mathrm{~cm}$
Perimeter of $\triangle P Q R=P Q+Q R+P R$

$$
\begin{aligned}
& =41+80+41 \\
& =162 \mathrm{~cm}
\end{aligned}
$$

Thus, the perimeter of the given triangle is 162 cm .
ii.
(a) $P Q$ \| $S R$
$\therefore \angle R F E=\angle E P Q \quad \ldots$ (alternate angles)
$\angle R E F=\angle P E Q \quad \ldots$. (vertically opposite angles)
$\therefore \triangle \mathrm{FER} \sim \triangle \mathrm{PEQ}$
$\therefore \frac{\mathrm{ER}}{\mathrm{EQ}}=\frac{\mathrm{RF}}{\mathrm{QP}}$
$\therefore \frac{E R}{Q R-E R}=\frac{9}{6}$
$\therefore \frac{E R}{10-E R}=\frac{3}{2}$
$\therefore 2 E R=30-3 E R$
$\therefore 5 E R=30$
$\therefore E R=6 \mathrm{~cm}$
(b) In \triangle OSF and $\triangle O Q P$,
$\angle \mathrm{QPO}=\angle \mathrm{OFS} \ldots$...(alternate angles)
$\angle \mathrm{POQ}=\angle \mathrm{SOF} \ldots$...vertically opposite angels)
$\therefore \triangle \mathrm{OSF} \sim \triangle \mathrm{OQP}$
$\therefore \frac{\mathrm{OF}}{\mathrm{OP}}=\frac{\mathrm{SF}}{\mathrm{QP}}$
$\therefore \frac{\mathrm{OF}}{4}=\frac{\mathrm{SR}+\mathrm{RF}}{6}$
$\therefore \frac{\mathrm{OF}}{4}=\frac{12+9}{6}$
$\therefore \frac{\mathrm{OF}}{4}=\frac{21}{6}$
$\therefore \mathrm{OF}=\frac{4 \times 21}{6}=14 \mathrm{~cm}$
Now, $\mathrm{PF}=\mathrm{PO}+\mathrm{OF}$
$\therefore P F=4+14=18 \mathrm{~cm}$
iii. Steps of construction:

1. Draw seg $A C=7 \mathrm{~cm}$.
2. Taking A as the centre and radius $=6 \mathrm{~cm}$, draw arc of circle above the seg AC.
3. Taking C as the centre and radius $=4 \mathrm{~cm}$, draw an arc of circle above seg AC intersecting the previous arc.
4. Mark the point of intersection as B.
5. Construct $\triangle A B C$ by joining points A and B, B and C.
6. Taking A and C as the centres and radius greater than half of $A C$, draw arcs of circle above and below seg AC intersecting each other at points E and D. Join E and D and extend to get the perpendicular bisector of seg AC.
7. Draw perpendicular bisectors of seg $B C$ and seg $A B$ in the same manner.
The perpendicular bisectors of seg $A C$, seg $B C$ and seg $A B$ intersect at one point.

8.

i. $\angle 2=\angle 4 \quad \ldots$.(vertically opposite angles)
$\therefore 2 x+30=x+2 y$
$\therefore 2 x-x-2 y+30=0$
$\therefore x-2 y+30=0$
Also, $\angle 4=\angle 6 \quad \ldots$. (alternate angles)
$x+2 y=3 y+10$
$\therefore x+2 y-3 y-10=0$
$\therefore x-y-10=0$
Subtracting equation (2) from (1), we get
$-y+40=0$
$\therefore-y=-40$
$\therefore y=40$
Substituting $y=40$ in equation (2), we get
$x-40-10=0$
$\therefore x-50=0$
$\therefore \mathrm{x}=50$
Now, $\angle 4=(x+2 y)$
$\therefore \angle 4=50+2(40)=50+80=130^{\circ}$
But, $\angle 4+\angle 5=180^{\circ} \quad \ldots$. (Interior angles)
$\therefore 130^{\circ}+\angle 5=180^{\circ}$
$\therefore \angle 5=180^{\circ}-130^{\circ}=50^{\circ}$
ii.
(a) In $\triangle A B C$, side $A B \cong$ side $B C$ and $A-P-C$. ...(Given)
$\therefore \angle A \cong \angle C \quad \ldots .(1)$ (Isosceles \triangle Theorem)
$\angle \mathrm{BPC}>\mathrm{A} \quad \ldots .(2)($ Exterior Angle Theorem)
From (1) and (2), $\angle \mathrm{BPC}>\angle \mathrm{C}$
$\therefore \mathrm{BC}>\mathrm{BP} \quad \ldots$ (Side opposite to greater angle)
i.e. $B P<B C$
$A B \cong B C$
$\ldots .(4)$ (Given)
From (3) and (4),
$B P<B C$ and $B P<A B$

$\therefore \mathrm{BP}<$ congruent sides
(b) In $\triangle A B C$, side $A B \cong$ side $B C$ and $A-C-P$.
$\therefore \angle A \cong \angle B C A \quad \ldots .(1)$ (Isosceles Triangle Theorem)

$\angle \mathrm{BCA}>\angle \mathrm{P} \quad \ldots .(2)$ (Exterior Angle Theorem)
From (1) and (2), $\angle \mathrm{A}>\angle \mathrm{P}$
$\therefore B P>B A \quad \ldots(3)($ Side opposite to greater angle)
side $A B \cong$ side $B C \quad \ldots .(4)$ (Given)
From (3) and (4),
$B P>B A$ and $B P>B C$
$\therefore \mathrm{BP}>$ congruent sides
iii. Construction: Join LN.
\square LMNR is a rectangle.
\therefore LM || RN(opposite sides of a rectangle)
i.e. $L M \| R Q$

But RQ \| SP(opposite sides of a rectangle)
$\therefore \mathrm{LM}\|\mathrm{RQ}\| \mathrm{SP}$
In $\triangle P S R, M$ is the midpoint of $P R$ and $L M \| S P$.
Then, by converse of midpoint theorem, point L is the midpoint of side SR.
$\therefore \mathrm{SL}=\mathrm{LR} \quad$ (proved)
The diagonals of a rectangle are congruent.
\therefore In rectangle LMNR
LN = MR
In rectangle PQRS,
$P R=S Q$
Also, $R M=\frac{1}{2} P R \quad \ldots$ (since point M is the midpoint of $P R$)
$\therefore \mathrm{LN}=\frac{1}{2} \mathrm{PR} \quad \ldots[$ From (1)]
$\therefore \mathrm{LN}=\frac{1}{2} \mathrm{SQ}$
....[From (2)]

