Maharashtra State Board Class IX Mathematics – Geometry Board Paper 1 Solution

Time: 2 hours

Total Marks: 40

1.

i. Let the measure of each interior opposite angle be x.
Since, Sum of two interior opposite angles = Measure of exterior angle
∴ x + x = 80°
∴ 2x = 80°
∴ x = 40°
Hence, the measure of each interior opposite angle is 40°.

ii. $\angle ACB = 180^{\circ} - 105^{\circ}$ $\therefore \angle ACB = 75^{\circ}$ $\angle ABC = \angle ACB = 75^{\circ}$ (angles opposite to equal sides of a triangle) Now, in $\triangle ABC$, $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$ $\therefore 75^{\circ} + 75^{\circ} + \angle BAC = 180^{\circ}$ $\therefore 150^{\circ} + \angle BAC = 180^{\circ}$ $\therefore \angle BAC = 180^{\circ} - 150^{\circ} = 30^{\circ}$

- iii. Radius of the circle is 6.7 cm.
 - d(P, R) = 5.7 cm
 - ∴ 5.7 cm < 6.7 cm
 - \therefore The distance between P and R is less than the radius of the circle.
 - \therefore Point R lies in the interior of the circle.
- iv. Let $A = (x_1, y_1)$ and $B = (x_2, y_2)$. Here, $x_1 = 2$, $y_1 = 5$ and $x_2 = -6$, $y_2 = 8$ By distance formula, we have $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-6 - 2)^2 + (8 - 5)^2} = \sqrt{(-8)^2 + (3)^2} = \sqrt{64 + 9}$ $\therefore AB = \sqrt{73}$ Thus, the distance between the points A and B is $\sqrt{73}$ units.

v.
$$\frac{\cos 80^{\circ}}{\sin 10^{\circ}} + \cos 59^{\circ} \times \csc 31^{\circ} = \frac{\cos 80^{\circ}}{\cos (90^{\circ} - 10^{\circ})} + \sin (90^{\circ} - 59^{\circ}) \times \frac{1}{\sin 31^{\circ}}$$
$$= \frac{\cos 80^{\circ}}{\cos 80^{\circ}} + \sin 31^{\circ} \times \frac{1}{\sin 31^{\circ}}$$
$$= 1 + 1$$
$$= 2$$

- vi. Area of the square-shaped field = $(side)^2 = (300)^2 = 90000 \text{ m}^2$ Cost of leveling the field per square metre = Rs. 1.25
 - \therefore Cost of leveling = Rate × Area

= Rs. 1.25×90000

Thus, the cost of leveling the field is Rs. 1, 12, 500.

2.

i.	Seg QS is the angle bisector of \angle PQR(Given	
	∴ ∠PQS ≌ ∠RQS	(1)
	Seg QS is the bisector of $\angle PSR$	(Given)
	∴ ∠PSQ ≌ ∠RSQ	(2)
	In ΔPQS and ΔRQS ,	
	∠PQS ≌∠RQS	[From (1)]
	seg QS ≌ seg QS	(Common side)
	∠PSQ ≌ ∠RSQ	[From (2)]
	$\therefore \Delta PQS \cong \Delta RSQ$	(ASA test)
	$\therefore \angle P \cong \angle R$	(c.a.c.t.)

ii. In ΔNYX , $m \angle NYX = 90^{\circ}$ (Given) $\therefore m \angle N + m \angle X = 90^{\circ}$ (Acute angles of a right angled triangle) $\therefore m \angle N + 45^{\circ} = 90^{\circ}$ (Given : $m \angle X = 45^{\circ}$) $\therefore m \angle N = 45^{\circ}$ Now, in ΔNMZ , $m \angle N + m \angle NMZ + m \angle Z = 180^{\circ}$ (Angle Sum property of a triangle) $\therefore 45^{\circ} + 110^{\circ} + x = 180^{\circ}$ $\therefore 155^{\circ} + x = 180^{\circ}$ $\therefore x = 180^{\circ} - 155^{\circ}$ $\therefore x = 25^{\circ}$

iii. Given, angle = s

Then, its supplementary angle = $(180^{\circ} - s)$ According to given information, we have $s = 4 \times (180 - s) + 20$ $\therefore s = 720 - 4s + 20$ $\therefore 5s = 740$ $\therefore s = 148$ Thus, the measure of angle 's' = 148°

iv. Given: In a circle with centre O, seg PQ and seg RS are two chords.

 $\angle POQ \cong \angle ROS$ To prove: chord PQ \cong chord RS Proof: In $\triangle POQ$ and $\triangle ROS$, seg OP \cong seg OR(radii of same circle) $\angle POQ \cong \angle ROS$ (given) seg OQ \cong seg OS(radii of same circle) $\therefore \ \Delta POQ \cong \Delta ROS$ (SAS test) $\therefore \ seg PQ \cong seg RS$ (c.s.c.t.) $\therefore \ chord PQ \cong chord RS$

v. In \Box PQRS

 $\angle P + \angle Q + \angle R + \angle S = 360^{\circ} \qquad \dots \text{ (angle sum property of a quadrilateral)}$ $\therefore \angle P + \angle Q + 100^{\circ} + 30^{\circ} = 360^{\circ}$ $\therefore \angle P + \angle Q = 230^{\circ}$ $\therefore \frac{1}{2} \angle P + \frac{1}{2} \angle Q = \frac{1}{2} \times 230^{\circ}$ i.e. $\angle APQ + \angle AQP = 115^{\circ} \qquad \dots (1)$ Now, in $\triangle APQ$, $\angle APQ + \angle AQP + \angle PAQ = 180^{\circ}$ $\therefore 115^{\circ} + \angle PAQ = 180^{\circ}$ $\therefore \angle PAQ = 180^{\circ} - 115^{\circ} = 65^{\circ}$ $\therefore \angle PAQ = 65^{\circ}$

vi. LH.S. = sin A = sin 30° =
$$\frac{1}{2}$$

R.H.S. = $\sqrt{\frac{1 - \cos 2A}{2}} = \sqrt{\frac{1 - \cos 60°}{2}}$...(since ∠A = 30°, 2∠A = 60°)
 $= \sqrt{\frac{1 - \frac{1}{2}}{2}}$
 $= \sqrt{\frac{1}{2}}$
 $= \sqrt{\frac{1}{2}}$
 $= \sqrt{\frac{1}{4}}$
 $= \frac{1}{2}$
 \therefore L.H.S. = R.H.S. (Proved)
i. I(PL) + I (LN) = I(PN) (P-L-N)
 $\therefore I(PL) + 5 = 11$
 $\therefore I(PL) = 6$ units
I(MN) + I(NR) = I(MR) (M-N-R)
 $\therefore 7 + I(NR) = 13$
 $\therefore I(NR) = 6$ units
I(LM) + I(MQ) = I(LQ) (L-M-Q)
 $\therefore 6 + 2 = I(LQ)$
 $\therefore I(LQ) = 8$ units
ii. In ΔOAB

3.

OA + OB > AB ...(1) $In \ \Delta OBC$ OB + OC > BC ...(2) $In \ \Delta OCD,$ OC + OD > CD ...(3) $In \ \Delta ODA,$ OD + OA > AD ...(4) Adding (1), (2), (3) and (4) 2(OA + OB + OC + OD) > AB + BC + DC + DA 2[(OA + OC) + (OB + OD)] > AB + BC + CD + DA2(AC + BD) > AB + BC + CD + DA iii. $\angle QMR = 50^{\circ}$...(given) $\angle PMS = \angle QMR$ (vertically opposite angles) $\therefore \angle PMS = 50^{\circ}$ The diagonals of a rectangle are congruent and bisect each other. $\therefore MS = MP$ $\therefore \angle MPS = \angle MSP$ (angles opposite to equal sides are equal) Now, in $\triangle MSP$, $\angle PMS + \angle MPS + \angle MSP = 180^{\circ}$ $\therefore 50^{\circ} + 2\angle MPS = 180^{\circ}$ $\therefore 2\angle MPS = 130^{\circ}$

iv. Let $P \equiv (-2, 2)$ and $Q \equiv (6, -6)$

 $\therefore \angle MPS = 65^{\circ}$

Segment PQ is divided into four equal parts by the points A, B and C. Point B is the mid-point of segment PQ.

Then, by Mid point formula for B, we have

$$\left(\frac{-2+6}{2},\frac{2-6}{2}\right) = \left(\frac{4}{2},\frac{-4}{2}\right) = (2,-2)$$

$$\therefore B \equiv (2,-2)$$

Now, point A is the mid-point of segment PB.

Then, by Mid point formula, we have

$$\left(\frac{-2+2}{2},\frac{2-2}{2}\right) = \left(\frac{0}{2},\frac{0}{2}\right) = (0,0)$$

$$\therefore A = (0,0)$$

Also, point C is the mid-point of segment BQ.

Then, by Mid point formula, we have

$$\left(\frac{6+2}{2},\frac{-6-2}{2}\right) = \left(\frac{8}{2},\frac{-8}{2}\right) = (4,-4)$$
$$\therefore B \equiv (4,-4)$$

Thus, the coordinates of the points A, B and C which divide the line segment into four equal parts are (0, 0), (2, -2) and (4, -4) respectively.

$$\begin{aligned} \text{v.} \quad (a) \ \frac{\cos 35^{\circ}}{\sin 55^{\circ}} + \frac{\sin 11^{\circ}}{\cos 79^{\circ}} - \cos 28^{\circ} \csc ec 62^{\circ} \\ &= \frac{\cos(90^{\circ} - 55^{\circ})}{\sin 55^{\circ}} + \frac{\sin(90^{\circ} - 79^{\circ})}{\cos 79^{\circ}} - \cos(90^{\circ} - 62^{\circ}) \csc ec 62^{\circ} \\ &= \frac{\sin 55^{\circ}}{\sin 55^{\circ}} + \frac{\cos 79^{\circ}}{\cos 79^{\circ}} - \sin 62^{\circ} \csc ec 62^{\circ} \\ &= 1 + 1 - 1 \\ &= 1 \end{aligned}$$
$$\begin{aligned} \text{(b)} \ \frac{\cos 81^{\circ}}{\sin 9^{\circ}} + \frac{\cos 14^{\circ}}{\sin 76^{\circ}} = \frac{\cos(90^{\circ} - 9)}{\sin 9^{\circ}} + \frac{\cos(90^{\circ} - 76^{\circ})}{\sin 76^{\circ}} \\ &= \frac{\sin 9^{\circ}}{\sin 9^{\circ}} + \frac{\sin 76^{\circ}}{\sin 76^{\circ}} \\ &= 1 + 1 \\ &= 2 \end{aligned}$$

4.

A(△PQR) =
$$\frac{1}{2} \times \text{base} \times \text{height}$$

∴ 360 = $\frac{1}{2} \times 80 \times \text{height}$
∴ height = $\frac{360 \times 2}{80} = 9 \text{ cm}$
∴ PS = 9 cm(1)

In an isosceles triangle, the perpendicular to the base bisects the base.

$$\therefore QS = \frac{1}{2}QR = \frac{1}{2} \times 80 \text{ cm}$$

$$\therefore QS = 40 \text{ cm} \qquad \dots (2)$$

In right angled $\triangle PQS$, by Pythagoras Theorem,

$$PQ^2 = QS^2 + PS^2$$

$$= (40)^2 + (9)^2 \qquad \dots [From (2) \text{ and } (4)]$$

$$= 1600 + 81$$

$$= 1681$$

$$\therefore PQ = 41 \text{ cm} \qquad \dots (3)$$

Perimeter of $\triangle PQR = PQ + QR + PR$

$$= 41 + 80 + 41 \qquad \dots [From (3) \text{ and given}]$$

$$= 162 \text{ cm}$$

Thus, the perimeter of the given triangle is 162 cm.

ii.

(a) PQ || SR $\therefore \angle RFE = \angle EPQ \qquad(alternate angles)$ $\angle REF = \angle PEQ \qquad(vertically opposite angles)$ $\therefore \Delta FER \sim \Delta PEQ$ $\therefore \frac{ER}{EQ} = \frac{RF}{QP}$ $\therefore \frac{ER}{QR - ER} = \frac{9}{6}$ $\therefore \frac{ER}{10 - ER} = \frac{3}{2}$ $\therefore 2ER = 30 - 3ER$ $\therefore 5ER = 30$ $\therefore ER = 6 \text{ cm}$

(b) In $\triangle OSF$ and $\triangle OQP$,

 $\angle QPO = \angle OFS \quad (alternate angles)$ $\angle POQ = \angle SOF \quad (vertically opposite angels)$ $\therefore \Delta OSF \sim \Delta OQP$ $\therefore \frac{OF}{OP} = \frac{SF}{QP}$ $\therefore \frac{OF}{4} = \frac{SR + RF}{6}$ $\therefore \frac{OF}{4} = \frac{12 + 9}{6}$ $\therefore \frac{OF}{4} = \frac{21}{6}$ $\therefore OF = \frac{4 \times 21}{6} = 14 \text{ cm}$ Now, PF = PO + OF $\therefore PF = 4 + 14 = 18 \text{ cm}$

- iii. Steps of construction:
 - 1. Draw seg AC = 7 cm.
 - 2. Taking A as the centre and radius = 6 cm, draw arc of circle above the seg AC.
 - 3. Taking C as the centre and radius = 4 cm, draw an arc of circle above seg AC intersecting the previous arc.
 - 4. Mark the point of intersection as B.
 - 5. Construct \triangle ABC by joining points A and B, B and C.
 - 6. Taking A and C as the centres and radius greater than half of AC, draw arcs of circle above and below seg AC intersecting each other at points E and D. Join E and D and extend to get the perpendicular bisector of seg AC.
 - 7. Draw perpendicular bisectors of seg BC and seg AB in the same manner.

The perpendicular bisectors of seg AC, seg BC and seg AB intersect at one point.

5.

i. $\angle 2 = \angle 4$ (vertically opposite angles) $\therefore 2x + 30 = x + 2y$ $\therefore 2x - x - 2y + 30 = 0$ $\therefore x - 2y + 30 = 0$ (1) Also, $\angle 4 = \angle 6$ (alternate angles) x + 2y = 3y + 10 $\therefore x + 2y - 3y - 10 = 0$ $\therefore x - y - 10 = 0$ (2) Subtracting equation (2) from (1), we get -y + 40 = 0 $\therefore -y = -40$ ∴ y = 40 Substituting y = 40 in equation (2), we get x - 40 - 10 = 0 $\therefore x - 50 = 0$ ∴ x = 50 Now, $\angle 4 = (x + 2y)$ $\therefore \ \angle 4 = 50 + 2(40) = 50 + 80 = 130^{\circ}$ But, $\angle 4 + \angle 5 = 180^{\circ}$ (Interior angles) $\therefore 130^{\circ} + \angle 5 = 180^{\circ}$ $\therefore \ \angle 5 = 180^{\circ} - 130^{\circ} = 50^{\circ}$

ii.

(a) In $\triangle ABC$, side $AB \cong$ side BC and A-P-C. ...(Given) $\therefore \angle A \cong \angle C$ (1)(Isosceles \triangle Theorem) $\angle BPC > A$ (2)(Exterior Angle Theorem) From (1) and (2), $\angle BPC > \angle C$ $\therefore BC > BP$...(Side opposite to greater angle) i.e. BP < BC(3) $AB \cong BC$ (4)(Given) From (3) and (4), BP < BC and BP < AB $\therefore BP < \text{ congruent sides}$

 $\angle BCA > \angle P$(2)(Exterior Angle Theorem)

From (1) and (2), $\angle A > \angle P$

 \therefore BP > BA(3)(Side opposite to greater angle)

side $AB \cong$ side BC(4)(Given)

From (3) and (4),

BP > BA and BP > BC

 \therefore BP > congruent sides

iii. Construction: Join LN.

 \Box LMNR is a rectangle.

 \therefore LM || RN(opposite sides of a rectangle)

i.e. LM ∥ RQ

But $RQ \parallel SP$ (opposite sides of a rectangle)

∴ LM || RQ || SP

In Δ PSR, M is the midpoint of PR and LM || SP.

Then, by converse of midpoint theorem, point L is the midpoint of side SR.

 \therefore SL = LR (proved)

The diagonals of a rectangle are congruent.

:. In rectangle LMNR

 $LN = MR \dots (1)$

In rectangle PQRS,

PR = SQ ...(2)
Also, RM =
$$\frac{1}{2}$$
PR(since point M is the midpoint of PR)
 \therefore LN = $\frac{1}{2}$ PR [From (1)]

$$\therefore LN = \frac{1}{2}PR \quad \dots[From (1)]$$

$$\therefore LN = \frac{1}{2}SQ \quad \dots[From (2)]$$

